A Domain-theoretic Model for a Higher-order
Process Calculus

Radhakrishnan Jagadeesan
Prakash Panangaden*

TR 89-1058
November 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This research was supported by NSF grant CCR-8818979.






A Domain-theoretic Model for a Higher-order
Process Calculus

Radhakrishnan Jagadeesan and Prakash Panangaden*
Computer Science Department, Cornell University

December 20, 1989

Abstract

In this paper we study a higher-order process calculus, a restriction of one due to
Boudol, and develop an abstract, model for it. By abstract we mean that the model
is constructed domain-theoretically and reflects a certain conceptual viewpoint about
observability. It is not constructed from the syntax of the calculus or from computation
sequences. We describe a new powerdomain construction that can be given additional
algebraic structure that allows one to model concurrent composition, in the same sense
that Plotkin’s powerdomain can have a continuous binary operation defined on it to
model choice. We show that the model constructed this way is adequate with respect
to the operational semantics. The model that we develop and our analysis of it is
closely related to the work of Abramsky and Ong on the lazy lambda calculus.

1 Introduction

A fundamental problem in the semantics of parallel programming languages is integrating
concurrency with abstraction. In this paper we study a higher-order process calculus, a
restriction of one due to Boudol [4], and develop an abstract, mathematical model for it.
The restrictions we make simplify certain aspects of the calculus, for example, deadlock is
.not possible, but it preserves much of the complexity. In particular both concurrency and
nondeterminism still exist. By abstract we mean that the model is constructed domain
theoretically and reflects a certain conceptual viewpoint about observability. It is not
constructed from the syntax of the calculus or from computation sequences. We describe a
new powerdomain construction that can be given additional algebraic structure that allows
one to model concurrent composition, in the same spirit that Plotkin’s powerdomain can
have a continuous binary operation defined on it to model choice. We show that the model
constructed this way is adequate with respect to the operational semantics. The model

*This research supported by NSF grant CCR-8818979



that we develop and our analysis of it is closely related to the work of Abramsky and
Ong [2] on the lazy lambda calculus.

Kahn’s pioneering work on static dataflow [10] is an example where concurrency meshes
smoothly with an abstraction. More precisely, in Kahn’s model one can abstract away the
internal operational details of processes and view them as continuous stream-functions that
compose as functions should. Feedback is modeled by a standard fixed-point iteration. This
is a very pleasant application of Scott’s semantic ideas.

In almost any elaboration of Kahn’s model the situation becomes much more difficult.
In particular, though process algebra has now reached a high degree of mathematical
maturity and elegance, see, for example, the recent books by Milner and by Hennessy [7,14],
it remains essentially an operational analysis of processes. The semantic models available
are constructed from the computations of terms.

In the context of indeterminate dataflow, recent work by Kok, Jonsson and others has
shown that one gets fully abstract models from the traces of computations [9,11,20]. Traces
do not, however, give one the same level of abstraction that is provided by being able to
think of processes as functions.

Powerdomains [18] do give one an elegant model of certain parallel languages. They
were defined essentially to combine indeterminacy with abstraction. When one attempts
to use the Plotkin powerdomain to model concurrency as well one finds that certain op-
erational laws are violated in the model. Our model, though not fully abstract, describes
the interplay between choice, lambda abstraction and concurrency in a smooth way.

Recent advances in process algebra include the study of higher-order process calculi [15,
22]. The studies cited, as well as Boudol’s presentation of his calculus, focus entirely on
the operational semantics. There are other related developments, most importantly the
development of label passing calculi by Milner and his co-workers and, independently by
Engberg and Neilsen [6]. The relationship between these calculi and the higher-order
process calculi remains to be understood. Though these systems are theoretical there
are other closely related systems, in varying stages of formal analysis, that are actually
implemented and are being used in experiments. The most interesting of these is Reppy’s
calculus that incorporates events as first-class entities in Standard ML [19]. Though our
work does not directly bear on these activities it does indicate that these ideas are ripe for
an intensive study. .

Following Boudol, we want the A-calculus to be embedded in the process calculus. Our
study of the restricted version of Boudol’s calculus, henceforth called the v calculus, is
based on viewing the communication abilities of processes as the fundamental observables.
This is, in some sense, a natural extension of the idea of making convei‘ge’nce the basic
observable in the A-calculus. A process that is diverging has no communication ability, a
process that can accept a single input and then diverges has more communication ability.
The connection with A-calculus comes about by observing that the presence of an outer A-
abstraction signifies that a term has communication ability. Clearly, we should distinguish
Az.Q from Q, where ) represents any divergent term such as (Az.xa)(Av.22), since they
have different communication abilities. Thus we need our model to resemble thie models of

o



the lazy A-calculus [2] rather than the models discussed by Scott and Wadsworth [23]. The
new ingredient that we need to deal with is the fact that a term may or may not converge;
thus we need two predicates to capture the convergence properties of term; these are “may
converge” and “must converge”.

The key differences between the y-calculus and other process calculi, for example
CCS [12] are the following.

1. The y-calculus has no notion of sequential composition of output actions; a term may
just be output, it cannot produce output and then go on and do something else.

2. In CCS the parallel composition operator expresses two effects, viz. juxtaposition and
interaction. In the v-calculus these are described by two different operators, written
| and ©. The latter is not associative, unlike in CCS where parallel composition is
defined to be associative.

It is not clear what the relative expressive power of CCS and the v-calculus is. Very likely
CCS is more expressive, it appears highly unlikely that one could emulate the behaviour of
the CCS composition operator using the operators of the 4-calculus. This does not mean
that the y-calculus is very weak. One can fairly easily code up the standard concurrent
programming examples, mutual exclusion, schedulers etc., using the y-calculus. The notion
of bisimulation that we use in our analysis is different from what one sees in process calculi
and also different from the one used by Boudol in his analysis.

The paper is organised as follows. In section 2 we introduce the v-calculus and discuss
it informally through some examples. In section 3 we define a sub-calculus and its opera-
tional semantics and introduce the bisimulation relation and show that bisimulation is a
congruence. In section 4 we give the powerdomain construction, in section 5 we analyze
the structure of the powerdomain in terms of its finite approximants. In section 6 we prove
adequacy and make some remarks about full abstraction. In the final section we discuss
related work and directions for further study.

2 The v Calculus

In this section we quickly review Boudol’s y-calculus and describe an example of a simple
concurrent program expressed in it. The key contribution of this calculus is to provide
a smooth integration of concurrent communication concepts with functional abstraction.
Boudol’s original work [4] describes the calculus and shows how the lazy, A-calculus is
embedded in it. We will not reproduce his discussion of the embedding. =

Let C be a set of channel names. Terms are generated by the grammar:

Terms = x || (M) ... | Aexr)-p ||
Ap.1 |1

P® qllplg
where A, ;...\ are (not necessarily distinct) members of C. The novel constructs here
are (\z1]...|\xr), @, A and p|g. The term 1 represents the terminated process. It will

3



turn out to be the identity for both ©® and |. Roughly speaking, (Ajzy]|... | \wxt).p means
that p waits concurrently for k unordered values. The combinator| represents concurrency.
The intuitive meaning of p|q is that p and ¢ are juxtaposed, without any communication
between them. The term Ap represents a process that outputs p on channel X and terminates.
Finally, p ©® ¢ means that p and ¢ communicate on all channels. The processes p and ¢
cannot communicate with any other process until one of them terminates. The key points
to note are that | represents pure concurrency without any interaction while © represents
a very tight interaction between processes.

The following transition system presented informally, expresses these intuitive ideas.
First we begin by defining a syntactic congruence that expresses the fact that 1 is the
terminated process.

Definition 1. The syntactic relation = is the congruence (with respect to substitution)
that is generated by the following equations:

. pOl = 10p = p

epll=1p=p

* pl(glr) = (plg)lr
Let )\; be channel names.

® (Ni|...[NN|...|N,)
— (1W1|(/\1;r1| e |/\i_11’,‘_1
Q) (ZVIIN2| e |Nsle+1 e

M)

/\,’+1;I','+1 cee l/\k;l‘k).[l,‘i — ]\T].A/I|]\'Ik+1 .o |Mn)
N,)

] (N1|N2| v |Ns|)\_,‘N|N3+1 RN |N,-) ®
(]\/Ill ce A’Ikl(/\llll . /\k$k).ﬂf)|l‘/fk+1 ce l.f\[n)
— (N1|Ny| ... [Ny|Nyp1 ... IN) G
(.7\./[1| o e ]kal()\l’l‘1| e |/\,’_1;I','_1I/\,'+1;1‘,'+1 e

Aexi)-[wi = N)M| My ... M)

o — M—M' = M|N—M|N
— N—N'= M|N—M]|N'

o - M—M=>MON—MGON

- N—N=>MON—MON
In the above [z +— N]M is notation for substitution. The © serves as a generalization
of application. The communication is effected in the manner now customary in process

algebras, one matches a name with its dual name. Note how there is no communication
between processes that are combined with |. Finally there is no construct like Ap.M where

4



M represents a term. An output term cannot produce a value and go on to do something
else.

The following simple term that appers in Boudol’s original paper [4], illustrates some
of the features of the v-calculus.

A~ My.ax.(Bz|(y © My))
Now consider A ® AA. This term reduces in one step to
az.(Bz](A = X4)))

This last term has the property that it waits for a signal on « then outputs z on 3 and
reproduces itself. It is a term that repeatedly offers communication to the outside.

3 Operational Semantics

In this section we define the restricted calculus. From the point of view of difficulty of
modeling we have eliminated the possibility of deadlock but we have left in the indetermi-
nacy as well as the concurrency. We do not allow © in its unrestricted form; we force it to
look like application. More precisely, the © construct can only be used in the combination
Az.M @ AP. Thus it cannot be introduced in a case where there is no communication
possibility as in Az.xz ©® Ax.z. The bulk of this section is an analysis of our notion of
bisimulation.
The terms are generated by the grammar

Terms :=a || Mxy...2).p || pg || plg

we do not use the ® symbol explicitly. It is implicitly present in the applications. We use
Ay for the terms that do not have free variables, and call members of this set closed terms.

Definition 2. The syntactic equality = is the congruence generated by the equation:

pllqlr) = (plo)lr

Define, by mutual recursion:

Termsy =z || Mzy...2x).p || pq

Termss :=p||pl¢g .

where p, ¢ € Terms;UTerms,. Note that Terms, = Terms. Intuitively, Terms,; are the
terms without a | at ’outermost level’, and Terms, are the terms of the form t,]... |t,,

where the t; are either abstractions or applications. The following definition is intended to
capture the “number” of t/s.
Define len : Terms, — Int as follows:

o len(p) =1,if p € Terms,



o len(plg) = len(p) + len(q)

It can be checked that this function is well-defined on the terms quotiented by the syntactic
equality =. The following definition is intended to capture the “position” of ¢; in #,|... t,.
Define a partial function index : w x Terms; — Terms; as follows:

¢ index(n,p) = undefined if len(p) < n A len(p) # n

o index(1l,p) =p,if p € Terms,

¢ index(n,plq) = indexz(n,p), if n < len(p)

e index(n,plq) = index(n — len(p). q), if len(p) < n Alen(p) # n

The reduction rules are as follows. In this presentation, we have introduced notation (as a
subscript of —) to keep track of the redices, explicitly. Usually, we ignore these subscripts.

. (A(rl...xk).wl)]\’——»u i)/\<‘T ST, Tig -T2 NIM
Cif1<i<k

o index(s,(My|...|Maxy...ax).M|...|M,)) = May .. Lxk). M=
(My|... | Mar...2x).M|...|M,)N
7 (s,4)

Mll e |/\<$1 e e Li1y Tig1 - - - .1?k>.[;1?,’ = I\/r]j\.[[ e |A{[n, if1 S ) S k

o M—,M" = M|N—,M'|N

¢ N—,N' = M|N—, M|N'
where o’ = (first(o) + len(M), second(o))

o M—s, M’:>JUN——»< >W'N

3.1 Bisimulation

The key feature to note is the lazy evaluation. i.e. there are no reductions inside output
terms. Let K be the term A(zq,z,).7;. Note that (XM )N corresponds to non-deterministic
choice between M and N. The presence of non-determinism means that the theory of
equality induced by — is not consistent, i.e. all terms get identified.

Since the intuitive meaning that was aSIgned to Ax.M was the presence of a communica-
tion ability on port A, we attempt to set up a theory that “measures” the communication
ability of a term. The study of the lazy lambda calculus [2], proceeds on very similar
lines. There the “definedness” of a term is measured by its outermost abstractions or, in
other words, how many arguments it can accept. This is exactly what we do except that
we need to confront the indeterminacy in the reduction relation. The study of the lazy

6



A-calculus motivates the definition of a convergence predicate. Notice that the presence
of non-determinism means that for a given term M, we might have both the following
situations:

o M \axy...x). M’

¢ An infinite reduction sequence

M= 1’\/10———->M1 ——>M2 e

The above discussion motivates the definitions of the predicates ™Y read as “may con-
verge” and |J™** read as “must converge”. Let the closed terms be denoted by Ao.

Definition 3. Lo May.ooag). MY™y (V1 < k). (V... k). M € Ao)
2. Mymw v N|mw= M|N|mav
3. M) [M—= M' A M'||"]= M|mav
Definition 4. M{™* if there is no infinite reduction sequence M = My—sM; —M,. ..

The predicates ™ and |J™* are the only observables in the calculus. As a first attempt

at relating communication abilities of terms, one might define
M < N if,

° MUmay = NUmay
° MUmust = NUmust

We need, however, to measure much more when relating two terms operationally. Intu-
itively, we need to measure the communication abilities of M after it has been applied to
some arguments. This motivates the following definitions. Define (on closed terms Ao):

1. M=oN if
o Mymaw = N|may
o M|must = N|must
2. M= N if

] MjoN
° (VP S AO)[Z\/IijlVP]

Definition 5. <=N=, k€ w

The idea of < is extended to open terms in the usual way. Let M, N be terms such that
the free variables of M and N are contained in {#1...2,}. Then, M=<N if for all possible
substitutions P; ... P, of closed terms for {z1...2,}, we have

[ty P...2p... PJM=[2y = Py ... 2y ... P,]N.

The following lemma is easy to prove. Let M, N be closed terms.

~1



Lemma 1. MXN& (Vn) (VP,... P, € Ao) [MP, ... P,<oNP, ... P,]

In CCS one can define the bisimulation relation either as a fixed point of an appropriate
operator on the lattice of relations or inductively as we have done [13]. The bisimulation
obtained that way does not handle divergence properly, for example NIL and a completely
divergent process are identified. A version of bisimulation that does handle divergence
properly was defined by Walker [24]. The CCS situation is complicated by the presence of
silent actions. In the v-calculus the bisimulation that we have defined inductively is easily
seen to be given as a greatest fixed point. The handling of non-determinism arising from
internal silent actions resembles closely the ideas in testing equivalence [5].

Define a function F' on the relations of closed terms by:
M F(R) N if

o M=oN
e (VP € Ao) [(MP, NP) € R
Lemma 2. < is the maximum fixed point of F

Proof F'is monotone on relations ordered by C. From Tarski’s fixed point theorem, F' has
a maximum fixed point. It easily follows from the previous lemma that the closure ordinal '
of Fisin fact w. |

The most important fact about < is that operational extensionality holds, i.e. bisimula-
tion is contextual. The rest of this section is a rather long proof of this fact. A preliminary
step is to show that | behaves monotonically with respect to bisimulation.

3.2 Monotonicity of |

In this subsection, the monotonicity of | with respect to < is proved. This is a prelude
to the major result of this section namely that bisimulation is operationally extensional.
This section may be skipped on a first reading! The main point is that proving that |
is monotone with respect to bisimulation requires an analysis of the interleavings of the
reductions in each component. The proofs are not hard but they do require a rather careful
analysis of reduction.

Lemma 3. 1. (Qlijg)Um“y & QY v Q,lmw
2. (Q1|@2)Y™" & Quimt A Qalpmest

Proof:
1. This follows directly from the definition.

2. Note that the transition system has the rules

'And in all subsequent readings as well.

[0d]



o M—M' = M|N—M'|N
o N—N'= M|N—sM|N'

Also, all transitions of M

N are of the above type. The result follows. |

The following lemma involves interleaving the reductions. The basic idea is best il-
lustrated with a simple example. Consider (Q1|1Q2)PiP;. It may converge if Q,P;, may
converge; in order for this to happen, however, it has to be the case that Q, may converge
in order for it to be possible for @, to accept the argument P;. Thus one has to describe
the effects of partitioning the arguments to a parallel composition in the following fashion.

Lemma 4. Let 0 < n. Then (Q,|Q;)P; ... P,y &
(3(i1 ... %), (J1-..51) such that

® (i1...%) and (i ...j;) are (possibly empty) strictly increasing sequences of integers
from {1...n}

o k+l=n
o At least one of the following hold:

L (Q1Py ... P)U™¥ A(QuP, ... P, )™ . or
2. (Q1Py ... Py U™ A(QuP; ... D, )

Proof:

1. (Reverse direction) Let 0 < n. Assume that
(321 ... %), (j1...71) such that

e (i1...7) and (ji ... ;) are (possibly empty) strictly increasing sequences of in-
tegers from {1...n}

o k+l=n
® (QlPil . Rk )Umay A (QZPh .. le_l )Umay
(The case when (Q1 P, ... P, U™ A (Q:P;, ... P;)|me is proved by a similar

argument).

The proof is by induction on n. Base case., n = 0 follows from part 1 of lemma 3.
Assume result for n = 5. Let n = s + 1. Consider (Q11Q2)P; ... P,.! Note that we
have :; = 1 or j; = 1. Without loss of generality, assume that /; = 1. (The other case
can be proved by an argument similar to the one below). From the assumption that
(Q1P;, ... P, _ )™, it can be deduced that there is a reduction Q1—Q, where Q,
is of form

(M. . [Maq...2g).M|...|M,), for some 0 < t, such that

(My]... | M@1 . Thoy, Thy - - xg).[xi = Py ]M|. . |M)P, ... P, _ ™.

Note that we have,




o

e (Q1|Q2)P, ... P,—
(11/11, e I/\(’Ll PR 1 S T S Cl?g).[l'}, — P,I]A.[I e ]J"ItlQQ)P2 R Pn

°® (]\/[1' R l/\(”b] c oo Tho1yThe1 - .- .‘L‘g).[.Th — le]]\/ll cen I]‘{[t)P,':, e Pikumay

i (Q2Pj1 “‘Pjt—1 )U’may
e k—1+4+1l=n-1

e (i2...40x_1) and (j;...j;) are (possibly empty) strictly increasing sequences of
integers from in {2...n}

So, the inductive hypothesis can be used. i.e
(My].. M@y ... Thet, Thyr - - 2g).[Tn — P IM|...|M;|Qq)P, ... P,l™¥. Thus, we
have

(Q1|Q2)Py ... P,mev.

(Forward direction)

The proof proceeds by induction on r, where r is the length of the reduction
(@1|Q2)Py ... P, M, such that M is of form

(Mi]...|Ma1...2,).M]|...|M,). Note that the base case (r = 0) follows immediately.
Let (Q1|Q2)P; ... P,— M’ be the first step of the reduction sequence

(@:11Q2)Py ... P,— M. We have the following ( mutually exclusive) cases depending
on the reduction

(Q:1|Q2)P1 ... P,— M.

* 1—Q;, and M’ = (Q}]|Q;)P; ... P,. Result follows by the induction hypoth-
esis on (Q1]|Q2)P; ... P,

* Q2:—Q5, and M’ = (Q]|Q})P; ... P,. Result follows by the induction hypoth-
esis on (Q1|Q%)P; ... P,.

o The first step is a 3 reduction that involves P;. Without loss of generality,
assume that @, has form

(M| My .. 26).N| ... |Ny), for some 0 < ¢, and the first step is
(M| Mz ... 2).N|... |N,|Q2)P, ... Po—s
(N] oo IM@r e Tty Tt - )., — PN|...|Ng|Q2)P; ... P,, where 1 <

h <'s. ( The case in which Q, has this form can be handled similarly). Notice
that this term satisfies the induction hypothesis. Let

Q= (M| IMar. . xpoy, Thyr - . ry).Jxn — PiN|. .. |Ng).
So, we have

(3(i1... %), (j1...J1) such that

!
[}

= (i1...4) and (j1 ... ji) are (possibly empty) strictly increasing sequences of
integers from {2...n}

—k+l=n-1

— At least one of the following hold:

10



(a“) (QIIPH s Pik )Umay A (Q2Pj1 s le—l )U'may , O
(b) (QQPH s Pik—l )Umay N (Q2le s le )’Umay
. The result follows for (Q1|Q2)P; ... P, by setting

— The sequence for @ is the sequence got by adding 1 to the sequence for @}

— The sequence for @ is the same sequence as that obtained from the induc-
tion hypothesis. B

The must converge situation is rather like the may converge situation but is more
natural to state.

Lemma 5. Let 0 < n. Then (Q,|Q,)P; ... P, "t &
(V{(i1... %), (J1...7) such that

® (i1...7) and (j; ... ) are (possibly empty) strictly increasing sequences of integers
from {1...n}

o k+l=n
e Both of the following hold:

1. (leil e P,'k )UmUSt A (Qgpjl ... le )U'”“St
2 (QuPy o Py U™t A(Q2Pyy o Py
Proof:

¢ (Forward implication)

Proof is by induction on n. Part 2 of lemma 3 proves the base case. Assume the
result for n = s. Consider n = s + 1. Let

- P1 ...Pn € AO
— (é1... %), (j1...J1) be such that
* (Q1IQ2)P1 . Pnumuﬁ

* (11...4) and (i ... j;) are (possibly empty) strictly increasing sequences of
integers from {1...n} o

* k+1l=n ‘

Without loss of generality, assume that /; = 1. (The case in which J1 = 1 can be

handled similarly.) Note that

(Q1lQ2) Py ... P ™t = QUmust A Qul™*". Consider any reduction sequence

Qi— Ni|...|[Mazy... xs).N|...|N,

Consider any possible reduction Q,P;, ... P, —

(Nl My @hoy, Thyr - @) [en — PN |INg)P,, ... P

Note that

ke

11



- (@1]Q2)P, ... P,
(Nl, . |A<;131 oo Lhe1,Thyt - - - ;173>.[1'h = Pl];\vl e IATQIQQ)PZ e Pn

= (Mi] . M@y @t @ - 3) 2, — PN |Ng|Q2)P;, ... P,|Jmust
From the induction hypothesis,

= Q2P ... Byt
- (Nll e I/\(fll'] « o e Th-1sThy1 - Z[’s>.[;l’h = Pl].V] ce li g).P,‘2 N ‘Pik Umust

The result follows, since the above argument holds for ALL possible reduction se-
quences of Q.

(Reverse implication)

Proof is by induction on n. Part 2 of this lemma proves the base case. Note that we
have

(V(i1...%), (j1...J1) such that

— (i1...%) and (ji ... ;) are (possibly empty) strictly increasing sequences of in-
tegers from {1...n}

—k+l=n
is true, both of the following hold:

1. (Ql-Pil . Pik )Umust A (Q2P]1 L P][ )Um,ust
2. (Q]f’,’1 . ‘Pik )Umust A (Q?le . le )Umusl

Hence, we deduce Q™' A Q™. Consider any reduction sequence r of
(Q1|Q2)P; ... P,. From the above remark. we note that there is an initial segment of
the above reduction sequence such that (Q1|Q,)P; ... P,—
(Ni|...|Mz1...25).N|...|[Ny)P; ... P,. and the next term in the reduction sequence
is

(M| M@y oo Tty Tt - - ) [, P|N|...|N,)P,...P,.

Without loss of generality, assume that

- Q1—— (M|...[May...2,).N|...
— Q2= (Ng4a|... N,)

Ny)

a !

(The symmetric case with the roles of @, and Q, reversed can be handled similarly).
From assumption of part of lemma that is being proved, we get (Vi) (Gre--1)
such that

= (é1...4x) and (j; ... ji;) are (possibly cmpty) strictly increasing sequences of in-
tegers from {2...n}

—k+l=n-1



is true, both of the following hold,

L (N [Mar oo 2hor, @hgr oo 2g).Jan = PN NGB, L By ) must
2. (Npsil... NPy, ... Py )ymest

Using the induction hypothesis, we have
(M| IMer o ener, Zhgr - 2s).Jan = PUN| . |N,)P, ... P,™st. In particular, r
terminates. |

Lemma 6. M<M' A N=N'=> M|N<M'|N’

Proof: Follows easily from lemma 1 and the above lemma. @i

3.3 Operational Extensionality

The idea of the proof is quite simple but the details are a little complicated since one
has to keep track of redices carefully. The basic idea is as follows. Suppose that N<M,
we want to show that for any context, C[], C[N]2C[M]. Given any terms P,,...,P; we
need to show that if C[N]Py,...,Pj™ then C[M]P,,...,P;J™® as well; there is an
analogous condition with ™', If the reduction occur only inside the context the result
is immediate. Thus what we need to keep track of is when terms are inserted into the
“functional” position in a context. The structure of the proof resembles the structure of
the corresponding proof for the lazy lambda calculus.

Two reductions M—, M', and M—,.M" are different if o’ # o”. Note that there
are only finitely many different reductions. Let M € Ay. Construct a tree with labelled
edges corresponding to M denoted by T(M) as follows. Let M—,, M;, be all the possible
different one step reductions from M. Then. the root has an edge for each label o;.
The subtree at the node at the other end of the edge with label o; is the one obtained
by doing the construction for M;. Also, by a Konig’s lemma argument, we deduce that
MYmust = T(M) is finite.

Definition 6. Let (D, <) be the domain of labelled, finitely-branching trees of finite depth,
where the ordering relation < is the subtree ordering.

Note that (D, <) is well-founded. Furthermore, if MYt and M——M’, then T(M') <
T(M). : :

Define the contexts C[] with holes by the following grammar:
Cll = [ [ CullICaf] [[Mw - .. aa).Cal] [(CH D C[])
The following definition is intended to capture the idea of a hole occurring in a “functional”
position.

a !
N 1

Definition 7. e [] occurs functionally in |]

¢ [] occurs functionally in C;[]|C[] if at least one of the following hold:

13



— [] occurs functionally in C]]

— [] occurs functionally in C,|]

o [] occurs functionally in (C;[])(Cy[]) if
[} occurs functionally in C]

Lemma 7. The contexts D[] such that [] does not occur functionally in D[] are generated
by the following grammar:

D[ i= & || Da]|Daf] [|Ma1 ... xx) ] I(DI(C)

where C[] is ANY context at all

Proof: Structural induction [

Let C[] be any context with a hole. Let 3 be any term. Then
[[] = M]C]] is the term got by substituting M for [] in C[], and is usually denoted by
C[M].

Let M be any term. We define the notion of substituting M for the functional occurrences
of [] in C[], denoted by [[] = M]C[] by structural induction on C[].

o [y Mz=2

([} =y M} = M

[ = MG [ICR]) = ([ = MDD =5 M]Ca]])
[0 MIMay...2k).Ch[] = Mz ... 24).Cy ]

[} =5 MI(CLINC)) = ([ =7 MICH])(Cal])

Note that [] does not occur functionally in [[] —; M]C[].

Lemma 8. Let (VP € Terms)[([[] = P]D[]) = ([[] = P]D]]) € Terms). Then,
[(M=N)=[[} = M]D[]=[[] = M]DI)]

Proof: Note that the hypothesis of the lemma means that D[] is a member of the contexts
generated by the grammar: '
El] s=a [T (B (I E2]]) M1 ... 2h). P [[(Ci[P
where P is any term of the calculus. Proof now follows by structural induction. ( Mono-
tonicity of | is used in a case) NI .

A symmetric notion of substituting M for the non-functional occurrences of ] in C[],

denoted by [[] =,y M]C]] is defined by structural induction on C[.
o [[| s M]z =
o ([ =ns M]] =]
o [[I =ns MI(Ci[JIC2]]) = ([ =ons MICIDI[] —ny M]C2[])

14



o [ =ns MM 1. .. 24).C1l] = May ... 20).[[] — M]Ci[]
o [l =ns MI(CLI(C2]]) = ([[] =ng MICI)(]] — M]Ca])

Note that
CIM] = [[] = MI([[] =ng MIC[) = [} =ns MI([[] = M]C])).

Define a syntactic equality on contexts as follows:

Definition 8. The syntactic equality = is the congruence ( with respect to substitution)
that is generated by the equation:

pl(qlr) = (plg)|r

Define a reduction relation on contexts as follows:

o (Mar...21).Ci[)Co[— M (a1 ... @it Tigr - .. ap) o = Co[]]Cy]]
if1<i<k

(Cilll -+ My .. 2w).C[| ... |Ca[DC | —
Cil.. My ozicy, 2igr - oak).Joi = CYC]) . |Gl if 1 < i < k

Gl —Cill = Al —CH{lIC]]
Gl =Gl = GilllCl—uflIc]]
Gl =€l = (GG —(Ci(C)

Lemma 9. [] does not occur functionally in C[]=
(C[M]—T= C[|—D[| A D[M]= T)

Proof: Structural induction, and the characterisation of contexts of hypothesis of lemma,
as in lemma 7 . [

Lemma 10. P2Q =[(VC[]) [C[P]y™ = C[Q]|™]]

Proof: Proof proceeds by induction on the length n of the reduction
C[P]—= (My|...|Ma1...2,).N|...|Ns). Note that the case n = 0 is immediate. Assume
the result for n = s. We have the following two (mutually exclusive) cases.

e ([] does not occur functionally in C[]).
Then, we have C[M]—T= C[|— D[JA D[M] = T, from lemma 9. Since D[ M|}
in s steps, from the induction hypothesis, D[ N]{J™*¥. Since C[N]—+D[ ] C[N]ymav.

e ([] occurs functionally in C[))
Define D[] = [[] =, M]C[]. Note that D[M] = C[M]. Since, D[M]{}™, from case
the above D[N]{™¥. Note that
DINT = ([} =ns NI([[] =5 MIC[) = [[] = M)([[] =y NIC]))
From lemma 8, we deduce that

CIN] = [} =5 NI} =ns NIC[DY™ @ W

15



Lemma 11. P=Q =[(VC]]) [C[P]y™ust = ClQym™]

Proof: Proof proceeds by induction on T(C[M]). The base case is immediate. For the
induction step, we have the following two (mutually exclusive) cases.

e ([] does not occur functionally in C[]).
Then, we have C[N]—T=> C[]—DI[]A D[N] = T fromlemma 9. So C[M]— D[M].
Since D[M]§™** and T(D[M]) < T(C[M]), the induction hypothesis can be used to
deduce D[N]§™**. This is true for any reduction of C[N]. Hence, C[N]{™ut,

e ([] occurs functionally in C[]
Define D[] = [[] s M]C[]. Note that D[M] = C[M]. Since, D[M]{™s  from case
the above D[N]{™*st. Note that
DIN] = [ =ns NIl =5 MIC[) = [ =5 M([[) =ns NIC[)
From lemma 8, we deduce that

CIN] = [[ =5 NI([ll =ng NIC[DY™ W
With these lemmas in hand the proof of operational extensionality is complete.
Theorem 1. (Operational extensionality) M<N & (VC[.]) [C[M]=C[N]|

Proof: From lemmas 10 and 11 we immediately get M<N & (VC[]) [C[M]=,C[N]].
Clearly, any terms that we wish to use as arguments to C[] can be absorbed into another

context D[]. Thus M<N & (VC[.]) [C[M]XC[N]]. =

4 The Powerdomain Construction

In this section we define the powerdomain construction that we use. We introduce it
as a functor in a certain category of nondeterministic continuous algebras. We obtain
a model of the y-calculus by constructing a solution to a recursive domain equation in
the usual way [21]. We show how one can define the product structure, needed to model
the | construct of the y-calculus. inductively in the iterates that arise in the inductive
construction of the initial solution. Finally, we describe in detall certain index calculations
that are needed in the adequacy proof.

Many of the ideas are the same as in the analysis of the lazy A-calclilus but the details
are somewhat more complicated. The product structure is new and the powerdomain
construction itself is new. Before we begin with the mathematical details we discuss some
motivational issues. As the adequacy proof shows. semantic equality in our model is at least
as fine as bisimulation. We are almost certain that one could construct an adequate model
for the fragment of the y-calculus that we consider using the Plotkin powerdomain [18].
Why, then, did we choose to use this powerdomain rather than Plotkin’s?

Our model is probably not fully abstract but it is, in some sense, “closer” to being fully
abstract than a model based on the Plotkin powerdomain would be. In order to say what
we mean more clearly we discuss an example. We abbreviate the term (z, y).x as or and

16



write it in infix form for readability. One easily checks that A\z.[Q or A\y.Q] is bisimular to
Azy.Q or Az.Q. In our model these terms are equated but in a model based on the Plotkin
powerdomain they would not be. From our point of view, these terms should be equated
since they offer the same communication abilities. The key property that distinguishes our
powerdomain from the Plotkin powerdomain is the following:

lLeg=Llef

wa:{ F#{L=g# {1}
Ve.forCgoux

The preceding holds in our powerdomain but not in the Plotkin powerdomain. In the
Plotkin powerdomain, only the left to right implication holds.

Basic notation

All domains in this section are SFP objects. We use B(D) as notation for the basis of
D. We follow the notation of the work of S. Abramsky and L. Ong on the lazy lambda
calculus [2]. Recall the definition of lifting as the left adjoint of the forgetful functor from
CPO | to CPO where CPO | is the subcategory of strict functions. Let D, E objects of
CPO. Let fe D — E.

e D is the cpo defined as follows:

= |Dy | = {L}U{(0,d)|d € D}
— Let y, z€ D . Then
y;z <y =1V [y': <0,C]1) Nz = <O.(]2> A dl;D (l2

o If d € D, define up(d) = (0,d)

Define lift(f) € D| — E by:
~lift(f) (1) = Ly
— Lift(f) ({0,d)) = f (d)
Let dnp = li ft(idp)

o:(Dy — D,) | x Dy — Dy is defined by

—lox=1
- up(f) oz = f(z), where f € D; — D,

Definition 9. (D,*) is a continuous algebra if x is a continuous function in D x D — D,
satisfying upper semi-lattice axioms

17



Definition 10. Let (D;,%;) and (D;, ;) be continuous algebras. Let f € D; — D,. f is
said to be linear if

(V{xl,:rz} C Dy) [f(z1x z2) = f(x1) *2 f(xz)]

Definition 11. Let (D,*;) and (D;,*;) be continuous algebras. Then, (e,p) is a linear
embedding-projection pair if the following hold:

e poe=1p,
o copC 1p,
e ¢ is linear
e pis linear

Given any continuous algebra D, If s = {fi... f,} where (Vi) [1 < i < n] [f; €
(D — D) ], and « € D then s o is notation for fiozx fox...x f,oz.

4.1 The Powerdomain Functor

In this subsection we define the powerdomain functor and show that it is continuous on a
category of algebras very closely related to the bifinites (SFP).

Definition 12. Let (D, ) be a continuous algebra. Then P(D) is a preorder defined as
follows:

o |P(D)| = {s|s € Psin(B((D — D) | ))
o 51Lsp &

1. J_€82:>J_€81

2. 51 #{L}=>s2 # {1}
3. (Va € D)[s; 0 2Csy 0 7]

P(D) is the ideal completion of P(D). We now define a union operation on P(D) to
make it a continuous algebra. Define ff from P(D) x P(D) to P(D) by s;ls, = s1Us2

Lemma 12. |4 is monotone in each argument.

Proof: Conditions 1 and 2 in the definition 12 of the preordering relation are easy
to check. Condition 3 follows by noting that (s1l#s2) o = (57 02) * (9 oz ), and from the
monotonicity of *. [ | ‘ .

So |4} can be extended to a continuous function from P(D) x P(D) to P(D). The upper
semi-lattice axioms are easy to check for the members of P(D) and the continuity of |
enables us to verify the laws for members of P(D).

We hope to solve the recursive domain equation D~P(D). So, we need to establish
a suitable category in which the above construction generalises to a functor preserving
colimits of w- chains. Define the category NSFP as follows:

18



e Objects:
The objects are continuous algebras expressible as the colimits of w-chains of finite
continuous algebras, where the arrows of the chain are linear embedding-projection
pairs.

o Arrows:
The arrows are linear embedding projection pairs.

In particular, all the objects are SFP objects. The above category can be viewed
intuitively as that obtained by adding colimits of countable directed diagrams of finite
continuous algebras, where the arrows of the diagram are linear embedding-projection
pairs. Also note that the category is a subcategory of SFP that contains the image of
the Plotkin-powerdomain functor acting on SF P, where SF P is the category of SFP
objects with arrows embedding-projection pairs.

Lemma 13. (Existence of colimits)
e NSFP is closed under colimits of countable directed diagrams

o The one element domain is the initial object

The recursive domain equation D~P(D) can be solved in NSFP if we can prove that
P(.) is a functor on NSFP that preserves colimits of w-chains. We now define the action
of P(.) on linear embedding projection pairs. Let (D1,%) and (D,,*;) be continuous
algebras. Let (e, p), be a linear embedding-projection pair. Define ¢’ as follows:

e Define ¢’ : P(D,) — P(D,) by:
—e(L)=1

— € ((0,f)) =up (eodn (f)op)
— e{F...F.} = {(F)...€(F,)}

We need to show that e’ is well-defined and monotone.

Lemma 14. Let s; = {Fy... F,} and s, = {H,...H,,} be eleﬁlents' of P(D,), such that
51Esy. Then €'(s1)Ce'(s).

Proof: We check the three conditions of Definition 12. Tt

1. L €é€(sy)
= L € s; [from definition of ¢’]
= 1 € 51 [as s1Csy)
= L € €(s1)

19



2. {1} # €(s1)
= {1} # s1 [from definition of €]
= {_L} ;é So [as 81;.52]

= {1} # €(s2)

3. Let z € D,. Using the linearity of e, it follows that €'(s;) o 2 = e(s; o p(z)). Similarly,
we can deduce €/(s;) 0 & = e(s; ¢ p(x)). Since s;Cs,, we have s, o p(x)Csy o p(x). The
result follows from the monotonicity of e. |

Thus €’ is well-defined, monotone and extends uniquely to a continuous function from
P(D,) to P(D;). Furthermore, it follows immediately from the definition of ¢’ that
e'(s1l¥s2) = €'(s1)lY €'(s2), for s1,s2 € P(D;). The result, for arbitrary elements of P(D;),
follows from the continuity of all the functions involved.

The situation for p’ is almost identical. Define p’ as follows:

e p/(L)=1
o ' ({0.9)) = up (podn (g)oe)
o P{Fi...F} ={p(F)...p(F)}
Lemma 15. Let ¢; and ¢, be elements of P(D,), such that #;Ct,. Then P'(t1)Cp (o).

Proof: Similar to the previous lemma. |

Thus p' is also well-defined, monotone and extends uniquely to a continuous function
from P(D;) to P(D,). Also, it follows immediately from the definition of p’ that p/(¢,Wt;) =
p'(t)Y p'(t2), for t1,t, € P(D;). The result, for arbitrary elements of P(D;), follows from
the continuity of all functions involved.

Since €, p’ are linear and continuous, the proof that (¢/,p’) is a linear embedding pro-
jection pair reduces to the following lemma.

Lemma 16. Let F € P(D;), G € P(D,) be singleton sets.So, F € B((D1 — Dy) ), G €
B((D2 — D?)J_ Then,

o Yod(F)=F
o ¢'op/(G)CG
Proof:
1. Proving that p' o ¢/(F) = F:
o poe(l)=1
o poe({(0,£)}) =p'({up (po foe)}
=up(poeo fopoe)=(0,f) [as poec =idp,]

20



2. Proving that ¢’ o p'(G)CG :
Similar to above but using po eCidp, N

Now we have the machinery to define the action of the functor on the morphisms of
the category NSFP. Define P((e,p)) = (€/,p'). It is easy to check that

e P((idp,idp)) = (idp,idp), for any continuous algebra (D, «)

e Let (e1,p1) be a linear embedding projection pair between (D;,%;) and (D, ;). Let
(e2,p2) be a linear embedding projection pair between (D,,*;) and (Ds,3). Then
(e10€2,p2 0pq) is a linear embedding projection pair between (D1,*1) and (Ds,%3)
and we have

?(62 oey,propy) = ?((62,192)) OF((el,Pl))

The final lemma establishes that this functor is continuous and thus one can solve
recursive domain equations using it.

Lemma 17. Let A = (Dp, (fiun, fam)) be a chain of linear embedding projection pairs.
Let (D, p) = Colim A. Then, Colimm P(A)~ P(Colim A), where Colimm P(A) means
Colimg (P(Dum), P({fmn, fam)))-

Proof: It suffices (lemma 2, [17][ch 4, page 11]) to check that [ [P(p,) o P(pF) = id?(D)'
From the linearity and continuity of P(p,) and P(pR) it suffices to check | [P(p,) o P(pE)(s) =
s, for singleton sets of P(D). When we look at the singleton sets, however, it is clear that
we can mimic the standard verifications of this fact [21]. N

5 The Model and its Basic Properties

In this section we define the model and prove some basic properties of the model. The
properties are essentially tools that show how one can define structures on the domain by
induction using the iterates and also how one can use the projections onto the iterates
to get a handle on the finite approximants to the elements. They are similar in spirit to
the “index” calculations outlined in Wadsworth’s discussion of D, and to the “index”
calculations outlined in the discussion of the lazy lambda-calculus [2].

5.1 What is a Model of the vy-calculus?

Before constructing the initial solution we sketch how this is used to provide a model of
our subset of the y-calculus. The recursive domain equation that we solve is

D = P(D).

We solve this equation in the category NSFP.
From an algebraic point of view we have a cpo with three continuous operations, ap-
plication ¢, union x and product, x. These operations obey the following laws:

21



1. Lox =1

2. (dxe)oxz=(dox)*(eox)

3. X is associative

4. X 1s commutative

5. dx L=dx L

6. (dxe)ox=((dox)xe)x(dx(eox))
T.dx(exf)=(dxe)*(dx f).

We now have enough structure to give semantics to the fragment of the language that
we are considering. The following definition uses the familiar environment mechanism.
The functions Gr and Fun map between P(D) and D.

o [z] p = p(x)
o a.M]p =Gr(d— [M]plx— d])

o [Nz, a)M]p =
Gr(*[(dy = Gr(dy — [M] pla1 — dy, 29— dy] ),
(dy = Gr(dy — [M] plas = di, 1 — da] ))])

o [MN]p =[M]p o[N] p
o [MINTp =[M]p x [N]

5.2 Construction of the Initial Solution

Let (Dy, 1) and (D3, *;) be continuous algebras. Let (e, p) be a linear embedding-projection
pair. Define ¢’ as follows:

¢ Define ¢’ : B(P(D,)) — P(D,) by:
- (l)=1

— €' ((0,f)) = up (eodn (f)op)
— {F...F.} ={(F)...¢'(F)}

e* 1s the unique continuous extension of ¢’.

Define p' : B(P(D;)) — P(D,) as follows:
e p(L)=1

o 1 ({(0,9)) =up(podn(g)oe)



o p'{fi... i} = {P(H)...P(fa)}

p* is the unique continuous extension of p/'.
Let Do be the the one point continuous algebra, and let D; = P(D). Let i : Dy — D
be defined by ¢o(Lo) = Ly. Let jo : Dy — Dg be defined by jo(z) = Lo. Define inductively:

® Dpyy = -F(Dn)
o (int1,Jn+1) = (25, 57)

Note that (Vn) [(in,ja) is a linear ep pair]. Then (D, jn),., is an inverse system of finite
continuous algebras. Define, standardly, ¢,,, : D, — D,, by

® ¢nn=1p,
® Dmtin = Pmn O Jm, if (n <my n #m)

® Omntl = 1n O Py, if (M <, n#m)

Note that
(Vn,m) [m < n= {(m.ns Pn,m) is a linear ep pair]. Identify the initial solution D C ¢y D,

as D = {<$n)n€w' T, € D, /\jn(xn+1) = *l"n}
ordered pointwise. Note that we have the linear ep pairs (dm,c0r Poom)- Also, note that
(D,«) is a continuous algebra, where * is defined by

(ZTn)new * (Yn)new = (Tn *n Yn)new
We write z,,, for ¢oo (). Henceforth, we identify the element z of D,, with Bm,00(T).
5.3 Index calculations
The proof of the following two lemmas is standaard and is omitted.
Lemma 18. Let x € D. Then,
lL.z€Dp=z,=1
2. € Dy=iy(z) =z
3. 2 € Dyy1= ju(2)C 2
Lemma 19. Let x € D. Then,
L (2p)m = Tmin(n,m)

n<m= z,Cz,Cz

2.

3. = ,zn

4. x € D= (Vm > n) [z,, = ]
5. L, is the least element of D,
6. 1L,=_1



5.4 Applicative behaviour
Define App, : (D,, — D,)| x D, — D, as,
o App.(L,z)= 1

o Appu(up(f),2) = f(a), whete f € D, — D,

Define App,, : D41 X D,, — D,, as the left linear extension of the above. More formally,
let s={f1...fa} € Duy1. Then,

Appn(s,2) = Appn(fi, ) *n Appn(f2,7) ... %n Appn(fu, ). It follows from the definitions
that App, : D41 X D, — D, is a monotone (and hence continuous) function.

Lemma 20. Let n < k. Then,
L. Appn(Tns1, Yn)CAPPL(Thi1, Yr)
2‘ Appn(-rn-f-la yn) = Appk(($n+l )k+1’yk)

3. Appu(@n+1, Yn) = [ApPr(Trt1, (Yn )i]n
Proof:

1. (Proof is by induction on k)
Consider £ = n + 1. Depending on the structure of z,,, there are two cases:

® I,42 1s a singleton, i.e x4y = {f}, for some f € (D, — D, )| . This splits up
further into two cases.

— f= 1. Then z,4; = {1}, and result follows.

— f=up(g), for some g € D,, — D,,. Then, note that x,1; = up(g'), for some
g € D,y — D,_;. So, we have

Appn(Tntr,yn) = Appa(ns1(Tng2), In(Yns1))
Appn(up(jn © dn(ns2) 0 in), ju(Ynt1))
Jn 0 dn(2,42) 025 0 Ju(Ynt1)

Jn 0 dn(Tny2)(Yns1)

dn(Tn42)(Ynt1)

Appnt1(Tnt2, Ynt1)

I 1M

Il

® roy2={f1...fu}. Note that L
Int1(Tns2) = {Jng1(f1) -+ Jng1(fm)} = Hng1 {Gnp1 (f1) - - Jnt1(fm) }- .
Appn(Tnt1,Yn) = ApPa(Jns1(Tns2); jn(Yns1))
= Appn(*n-f—l {‘jn+1(fl ) s jn+1(fm)}’jn(yn+l))
= *n{Appn(jn-H(fl )-jn(yn+1))v e Appn(.jn+1(fm)ajn(yn+l))}

But, from the preceding case, App,((fi)nt1,yn)C Appn(fisynt+1). Result now
follows from monotonicity of %,



2. (Proof is by induction on k)

Assume result for k. Consider &+ 1. Depending on the structure of (2,41 )x42, there

are two cases:

® (Zny1)k42 is a singleton, i.e (2p1)rte = {f}, for some f € (Djyq — Diy1) | -

This splits up further into two cases.

— f= 1. Then 2,41 = {1}, and result follows.
— f =up(g), for some g € Dyy1 — Dyy1. We have

Apprs1 ((T-n+1 )k+2, Ykt1)

o (Tnt1 )2 = {(fi)rsz -

From previous cases, we have

Appr1 2k 1 (Trg Dkt 1, Yrg1)
Appres1(up(tr 0 dn(Tys1 kg1 © Jr), Yks1)
2k 0 dn(Tng1 k41 © Jk(Ykt1)

1k 0 dn(@ngr k1 (yr)

U APPE (T n1 k415 Yk))

0 (ApPn(Tnt1, Yn))

Appn(Znt1,Yn)

(fm)k+2}. We have
Apprsr ((Tns ez, Y1) = *r {Apprsr ((Fi)kezs Yo )s - -

Apprr ((fr k42, k1) }-

(VI<i<m) [Appk+1((f1)k+2’ Yes1) = Appa((fi)nt1, Yn)

So, we have

Appr1((Tng1 Je+2s Yr41)

*it { AP ((F1)kt25 Yrar), - -
* 1 {ApP((f1)nt1,Yn)s - - -
= *{Appa((
= Appn({(f1)nt1---

Appi1((Fm )kt2, Yrs1)}
Appa((fm )nt1,Yn)}
F)ut15Yn)s - - Appa((fim )ns1, Yn)}
(fm)n+1}v Yn)

Appn(<rn+1ayn) .

3. (Proof by induction on k)

Assume result for k. Consider & + 1. Depending on the structure of z;,,, there are

two cases:

® Ij40is a smgleton i.e 242 = {f}, for some f € (Djyq — Dk+1)i This splits

up further into two cases.

— f= 1. Then x,4; = {L}, and result follows.
— f=up(g), for some g € D1 — D;,;. We have

[APPk+1 ($k+27 (Yn k41 )]n

Prt1,n[APPrs1 (Thy2, (Yn)k+1)]
= P 0 Ji[ApPrs1(Try2, (Yn)kt1)]



Prn 0k 0 dn(Thy2) 0 i ((Yn)k)
P [Appr (a1 (Tra2)s (Yn k)]
= [Appc(Jrs1(Trs2). (Yn)i)]n

= [Appe(Th41, (Y ))]n

= Appn(Tny1,Yn)

° (;I?n+1)k+2 = {(fl)k+2 R (.fm)k+2}'

[Appk+1(($k+2)»(yn)k+1)]n = ‘I)k-l-l.n[A-ppk+l($k+2’(yn)k+1)]

ekt {APPea ((F)rr2s Yk1) - - - ApPrir ((Fo vz (U )it}
= *n{[APPkH((fl )k+2» yk+1)]n cee [Appk+l((fm )k+2, (yn)k+1)]n
= *n[{APpn((f1 Jnt1sYn) - - - Appn((fm)n+layn)}]

= Appn({(f1)nt1s- - (fm)ns1} Yn)

= Appna(Tns1,Yn) [ |

Define o : D x D — D by 20y = [neco[4APn(Tnt1,Yn)]. Lemma 20.1 proves that the
terms whose | | is being taken do form a chain.

Lemma 21. (Coherence) Let ¢ € D,,,1,y € D,,. Then,

T0Y = Apn(Tnt1,Yn)

Proof:

ToyYy =

Tnt1 ©Yn

UicwlAPi((2n41)it1- (yn)i)] [from 20 .2]
Uign[APi((InH)iH- (Yn )i ]
Apn(Tni1,Yn) |

It is easy to check that ¢ is a continuous function.

Lemma 22. Let z,y € D. Then,

L 27410y = Tn10Yn = [T O Yn)n

2. ;yoy=1

3. xpoy= L1

Proof: Proofs of 2, 3 are omitted. 1 is proved below.

Tp41 QY

Uicw[Appi((20s1)it1, yi)] use 20
= UicalAppi((€ns1)iz1,9i)] use 201
= Appn(*/l'nﬁ-[ - yn)

26



[33 o yn]n = [UiEw[Appi(('Tn+l )it1s yi)]]n
Uiew[APPi((2n41)i41, ¥i)]n from 20 3
Ui<nlAPPi((Zn41)it1, ¥i)]n
Ui<n[APPi(@it1.yi)]n
Ui<nlAppi(@ip1.yi)ln from 201
Appn(wn+l . yn)

= Tp410Yn [ |

5.5 Isomorphism between D and P(D)

(D,*) is a continuous algebra. Define App’ : (D — D) | XD — D as,
o App/(L,z)=1
o App'(up(f).x) = f(x), where f € D — D

Define App : P(D) x D — D as the left linear extension of App'. Formally, let s =

{fi-..fu} € Duy1. Then, App(s,z) = App(fi.2)* App(fo,7)... % App(fn,z). Recall that
P(D) was defined as:

o |P(D)| = {s|s € Prin(B((D — D) ))
® 81;.32 =4

1. _L€82:>J.€Sl

2. 51 # {L}=>s # {L}
3. (Vz € D)[App(sy, )T App(sy, x)]

It follows from the definitions that App : P(D) x D — D is a monotone function. Note
that B(P(D)) = P(D). Extend App continuously to the whole of P(D).
Define [rep()], : P(D) — D,y as follows. Let s € P(D).

¢ sis a singleton. This splits up into two cases.

— s = {L}. Define [rep(s)], = Lnt1.
— s = {up(f)}, where f € B(D — D). Define .
[rep(s)]ln = up(Ay € Dn.[App(s, y)].) |

o s={f1...fn}, where f; € B((D — D) ). Define
[rep(s)]n = *{[rep(fi)ln - . . [rep(fu)ln}-

Lemma 23. (Vy € D,,) [[rep(s)]. oy = [App(s.y)]a]
Proof: Proof is by cases depending on the structure of s. Let y € D,

27



e sis a singleton. This splits up into two cases.
— s = {L}. Result is immediate.
— s = {up(f)}, where f € B(D — D). Then
[rep(s)ln oy = Apa[up(Ay € Dn.[App(s,y)]a), y]
= [App(s.y)]n
e s={fi...fu}, where f; € B(D — D) ).
[rep(s)ln oy = H{[rep(fi)lu. . [rep(fu)ln} oy
= *[rep(fi)lnoy...[rep(fm)ln oy}
= *{[App(fr,9)]n - - [App(frns y)]n}

= [{App(f1,9) ... App(fim.¥)}n
= [App({fis - Fu},¥)]n ]

Lemma 24. s,C s3=> [rep(s1)],.C [rep(s2)]n

Proof: Let sy = {f;... fn}, s2 = {91--.9n}.

L erep(sy)], = LEs,
= 1 Es
= L € [rep(s1)]a

o [rep(si)ln # {L}= [rep(s2)]n # {L} is proved similarly.
o Let y € D,. Then,
[App(s1,9)]n

C [App(s2,¥)]n ,
[rep(s2)]a oy n

[rep(s1)ln oy

Il

As a corollary, we. get that [rep()], is well-defined on the equivalence classes of the
preorder P(D), and hence on B(P(D)). Extend [rep()], continuously to'the whole of
P(D). Continuity of the functions involved means that lemma 23 holds for the continuous

extensions so defined.

Lemma 25. joy1([rep(s)lns1) = [rep(s)]n

Proof: From linearity of j,, [rep()],, suffices to prove the result for singletons i.e s is of
form, s = {f}, where f € B((D — D) ). This splits up into the following two cases:

28



o f = 1. Result follows immediately.

o f=up(yg), for some g € D — D.

jn+1([7‘ep(3)]n+l) = Jnt1(Ay € Dn+1'[‘4pp(3ay)]n+l)

= up(Ay € Dy.jn 0 [Ay € Dyy1.[App(s, Y)lnt1] 0 in(y))
up(Ay € Dy jn([App(s, in(y))]n+1)
= up(Ay € Dy [App(s,in(y))]n) [y € Da=>in(y) = y]
= up(Ay € D,,.[App(s.y)]n)
= [TeP(S)]n |

Define rep() : P(D) — D as
rep(s) = |reorep(s)]n. The above lemma shows that the lub is well-defined. Furthermore,
we have the following lemma.

Lemma 26. Let y € D. Then, rep(s) oy = App(s.y)
Proof: Let y € D.
rep(s) oy = UicoAppi((rep(s))it1, i)
= Uieolrep(s) oyl
= UiGw[UnEw[rep(‘ ]n oyi]i
= Ui,vlew[[rep(s)]n ° yi]i
= Ujeullrep(s)]; o yjl;
= Ujeu[Arp(s.y;)];
= UnGine\u[ vayz ]
(

= Unew[“{pp S, y)]n
= App(s.y) [ |

Define Fun : D — P(D) as follows. We first define it on B(D). Note that B(D) =
Unew Dn- Let s € B(D). This definition is done by cases. -

e s={Ll}. Define Fun(s) = {L}.
o s = {up(g)}, for some 9 € D, — D,. Define Fun(s) = up(x — s o). |
¢ s={f1...fm}. Define Fun(s) = {Fun(f,).. . Fun(f,)}

Lemma 27. App(Fun(s),y) =soy

Proof: From linearity of App and Fun suffices to prove the result for singletons s. For
singletons, result follows directly from the definition. [

29



Lemma 28. Fun is monotone.

Proof: Let sy, s, € D,, and s;C s,. Let s; = {fi-. fm} Let s3={g1...9.}.

L€ Fun(sy) = 1 €s,y
= 1 € S
= L1 € Fun(sy)

o Fun(s1) # {L}= Fun(s;) # {L} is proved similarly.
o Let y € D. Then,
App(Fun(s1),y) = si0y

S0y
= App(Fun(sqy),y) |

M

Extend Fun to a continuous function in D — P(D). From continuity of all functions
involved we get App(Fun(s),y) =soy

Lemma 29. Funorep = id?(D)

Proof: Since F'un,rep are linear and continuous, it suffices to check the Fun o rep(s) =
s, for s = {f}, where f € B((D — D) ). We have the following two cases.

e f = 1. Result follows from definitions.

o f =up(g), for some g € B(D — D).

Fun(rep(s)) = {up(a — rep(s) o 1))
= {up(x — App(s,2))}
= {up(x — g(z))}
= 5 B

Lemma 30. repo Fun = idp

Proof: Since Fun,rep are linear and continuous, it suffices to check the rep o Fun(s) = s,
for s = {f}, s € Dny1, for some n. We have the following two cases.

o f = 1. Result follows from definitions.

30



o f =up(g), for some g € D,, — D,,).

rep(Fun(s)) = rep(up(z — sox))

Unew[[rep(up(a = s o 2))]]

Unew[up(Xy € Dr.[App(up(c = s 0 x),y)]4)]
Unew [up(Ay € D,.[so Yln)]

= Lhneo[up(Ay € Dy.[sn41 0 y])]

UnewSnt1

= g B

Lemma 31. Let s1,8, € D,,, 1 < n. Then, the following are equivalent:
o (s1)1C (s2)s
o [LeEsy= L €s1]A [s1# {L}=s, # {L}]

Proof: By induction on n, where 1 <n. R

Lemma 32. (Conditional Strong extensionality) Let d,e € D. Then
dC e& diE ey A (Vo € D) [do2C e o]

Proof: Forward implication is immediate. For the reverse implication, note that
(Vo € Dy)dnyr 0 = [doa],Eleox], = eny1 0w, This along with the previous lemma
shows that d,Ce,. B

6 Product structure on D

The | constructor is modelled by a continuous function x : D x D — D. In this section
we use [|; as shorthand for the projection map onto D;. The following lemma is used
implicitly in the following proofs.

Lemma 33. Let f € D,. Then,
o L& fe {dx.Lo}C [fly

e L=fe L=[fh

Proof: Inductionons. |}

Let D, be the iterates in the solution of the recursive domain equation D~P(D).
Define a family of functions X(s,t) : Ds X Dy — D(s44). by induction on s+t as follows. Let
f €D, g€ D,

® (s+t=0). fX009=Loog

31



® (s+1t # 0). Assume f, g are singleton sets. Then, define by cases on [fl1, [g): as

follows.

- {Xz.Lo} = [fl1, Lo = [g]:. Then,
f X(st) § = Loty * up[r € Dygyoy = (f o) X(s=1,t) L]
— {Az.Lo} = [¢g]1, Lo = [f]:. Then.
f X(s)9 = Loty * [up[t € Dyyy_y — L, X(st-1) (g o @)
- {Xe. Lo} = [fh, {Xv.Lo} = [g]1.. Then.
X g=uplx € Depror = ([f X(au-1) (g0 2)] % [(f 02) X(s-14) 9])
- J—0 = [f]la J-0 - [g]l Thenv
f X(st) g = —L(s+t)-

g (3+t#0)' f= {[f]lfm}v 9= {gl-”gn}- Then,

Xty 9= *[fi X5y g;11 <1 <m, 1< j <

We first show that x(,,) is well-defined and monotone in both its arguments.

Lemma 34. (Vs, t € w), the following holds. Let f € D,, g € D;. Then,

[f x(s,t) g] € D(.H-t)

o Let f'€ D,, g’ € Dy, fCf', gCg'. Then. f X (54) gCf X(s) 9'-

Proof: The proof of both parts is by induction on s + ¢. The base case s + t = 0, is
checked easily. For the induction step, assume result for s +¢ < n. Consider s +¢ = n +1.
Let f={fi... fm}, 9={91...9n}, such that f € D,, g € D,.

1.

(Proving that f X(s,t) 9 € Distr))-
Thus we need to prove the monotonicity of f X(s.t) 9> as a function from Dy, ) to
D(s+t—1)-

o ({Az.Lo}C[fli, {A2.Lo}Cg]1). Then.
(fxeng)or = *fiXxengll<i<m, 1<j<n]ox
= *(fiXengj)oz[l<i<m, 1<) <]
= H((fior) X(sory 97) * (fi X sy (g0 < i <m, 1< j < n
The result follows from induction hypothesis and the monotonicity of «.

o ({Mz.Lo}C[f, {Az.Lo} Z [¢9]1). Let gy = L. Then,
(f xX@epg)ox = *[f; Xty 9ill <i<m, 2<j<njox
* Lox [(*[fi X(oy L)1 <7 <m0 2]
= [((fiox) X(s=1) ) * (fi X(sp-1) (g 0 )1 < <m, 2< j <)
* Lox [((fior) X1 L) 1< <m]

a |
N 1

The result follows from induction hypothesis and the monotonicity of x.

32



o ({Xz.Lo} Z [flr, {Ae.Lo}E[g]1). Proof is similar to the preceding case.
o ({Xz.Lo} Z [fi, {Ax.Lo} Z [g]). Proof is similar to the previous cases.

2. (Proving monotonicity of (x(,))

We prove the monotonicity of X, in its left argument. Proof of monotonicity of
X(st) In its right argument is similar, and is omitted. Let h = {h;. i}, ko€
D,, fCh. Then,
o Let L €h X(s,t) g - Then,
lehxuyg = Lehvliey
= lefvlegy
= 1le€ f X(s,t) 9
o L#fXung= L #h Xy gis proved similarly.

So, proof is complete if we check
(V& € Doyt) [(f Xty 9) © 2E(h X (5.9 g) © x]. This splits up into the following cases.
({Az. Lo}E[f]1, {Az.Lo}E[g]1). So, {Ar.Lo}C[A], as fCh. Then,
(f Xs)9) 0T = (KfiXengill<i<m,1<;< n])ox
= H(fi xppg)or[l <i<m, 1<j<n]
= [((fiox) X(s=1.0) 9i) * (fi X(sp-1y (gj02))1<i<m, 1 <5 < n]
= [(fo@) Xam1 431 [f X (om10 (g5 02| 1 < j < ]
Similarly,
(h Xy g)ox=[(hox)X(_14) 9] * [h X(s—1,4) (950 )] 1 < j < n]

The result now follows from induction hypothesis, monotonicity of x and noting
that fozChox

o ({Az.Lo} Z [flr, {Az.Lo}C[g)i, {Av.Lo} T [A];). Then, L € f. Without loss of
generality, assume that f; = L

(fx@eng)oz = (*[f: X 9ill<i<m,1<j<n])ox
= *(fi x@spngj)oa|l <i<m,1<35< n|
= *[((.fioa")x(s—u)gj) * (fi X (54— 1)(9;01) | 1, 1 < g <n
*L [ L X (gy00))| 1 <j < n L
Furthermore, |
(hx(s't)g)oar = lhp X(50) 9511 <k <L, 1<j<njox

*[(he X5y gj) o1 <k <1, 1<j<n]
(hk X (s gj) 02l <k <1, 1< 5 <nj
((
((

Il

= * ]1L<>T)><(s 1.6) 95) % (P X (50-1) (g5 02))]1 <k <, 1 <5 <nj

ho 1 (s=1,t) f/J) (h X (s,t—1) (gj 0417))[ 1<;< n]

[
[
*
[((
= *[((

33



[(fi X(ae-1) (g5 0 )2 < i < m] ok [L X(o0mn) (g5 02)] = f X(s41) (g © ).

From induction hypothesis, f X (5,_1) (¢, ¢ *)C h X(s,t-1) (g5 © ). Also,

Lx[(fior) X1 9512 < <m] B (L X(emr) 65) * [(fi ©2) X(om1) 9512 < 7 < m]
= (foux) X(s=1,t) 95

C (hox) X(s-1,) gy

Hence, the result.
({Ae. Lo} Z [f]1, {Ae.Lo}Clgli, {A.Lo} Z [A]1). As in previous case,

(f xXeng)or = *[((fiox) X(s=1,0) 95) * (fi X(sp-1) (gj02))2<i<m, 1 <) < nj
* L ox [L X(pony (gi02))| 1 <5 <nl

Also by a similar argument,

(A xX@ng)or = *[((hrow) X1 gj) * (b X(sp1) (gj02))|2 <k <1, 1< 5 <n
*l x [L X(uo1y(gj02))| 1 <j<n]

As in previous case, we have

[(fi (-1 (g5 022 < i <m] * [L Xp0oy (g5 02)]

f X(s-1)(gj o)

C A X(se-1)(gj02)

[(Pie X (s.0-1) (g5 0 )2 < b < U [L X (41) (g 0 )]

Also,

Lx[(fiox) X1 gi12<i<m] T (L X(s_14) 95) *[(fi 0 2) X(s=1,t) 9512 < 1 < m]
= (forx) X(s=1,t) 9j
C [((heox) X510y 9)12 < k <]

The last step follows because

f<>;17
[hrox|2<k <] i

So, from idempotence and monotonicity of %, and induction hypothesis
L [(fiox) X(so1) 9512 < T < MIE[((hr 0 2) X(so1y 95)|2 < k <1 * L.
Hence, the result.

The proofs of the other cases are similar and are omitted. [ |

The following lemma shows that the subscripts can be dropped from X (s,t)-

34



Lemma 35. (Well-definedness of x,;))
Let f € D,, g € Di. Then i5(f) X(s41,6) 9 = Lot (f X () 9)-

Proof: We prove that i(f) X(s11) ¢ = i(sut)[f X (s.t) 9], from which result follows. Proof
is by induction on s 4 ¢t. The base case s +t = 0 follows immediately. Assume result
for s + ¢t < b. Consider the case s +¢t = n + 1. From the linearity of i,, 7,4 and the
bilinearity of x ), X (s+1,1), 1t suffices to prove the result for singletons f, g. Thus we have
the following cases.

o {Az.1} =[f]i, {)e.L} = [g]:. Then,

s+ (f X(st)9) = tsgt)(up(z — [((fox) X(s—1,0) 9)* (f X(s-1,t) (g ©x))]. The first two
conditions of definition 12 are verified easily. So, we just need to check that

(Vz € D(s+t)[(i(s+t)(f X(s,0) 9)) 0T = (15(f) X(s+1,t) 9) o x].
Let # € Do1r). Let y = jo4¢-1)(¢). Then,

(et (f X 9) 0T = iy [((F 0 1) X (s-1.0)) * (f X(su=1) (¢ ©¥))]
Ustt-1) [((F 0 )X (am1.)] % t(sqe—ny[(f X(si021) (g 0 9))]
= (fs-l(ny)X(s—l.t))* (25(f) X(si-1) (9 0Y))

The last step follows from the induction hypothesis. Since f € D — s,

tmi(foy) = Loa(foysmy) [s<s+t—1=y,) = T(s-1))
= is—l(.f037(3-1))
is—1(f o)
= fox  [i(f)=f]
= ,(f)oa

Hence the result.

o {Az.L} =[g]i, L = [f]i. Then,
fXeng=1 % up(z = [Lxep])(goa). So,

Ustt)(f X(s,0) 9) = Gagty (L) * dgepny(up(@ = (L X(54-1) (g 0 7)))).
The first two conditions in the definition 12 are checked easily.
Let © € D(s4t), ¥ = J(s+t-1)(2). Then, i

t(stt)(L) * (Z.(s+t5(.Lx(3,,)g))$ = L % dgspon[dL * (L X (goy)) |
= L *ip-n L] * dgpe-n[(L X(o41,21) (9 ©9))] Indn. Hyp
= L (15(L) X (s+1,t—1) (goy))
= L (1,(L) X (s41,t-1) (g0 )
= ((4s(L)) X541y g) 0

T € D(3+t)$[g T = gO;l'(,_l)], and T(t—1) = Y(t-1)-



o {Az.L} =[fli, L =[g)i. Then,
fX@eng=L % up(zx € Digpyo1y — [forx X(s—1,t) L]). So,
Ustt)(f X(st) 9) = L * iepn[up(c € Dipy_ny = [fox X(s—1,) L])]. The first two
conditions in the definition 12 are checked easily.
Let © € D(st), Y = j(s+t-1)(2). Then,

(i) (f Xy g)) oz = L « Hsrt-n)[L *(fox) X(s—1,t) L]
= L wt(epe_n[L]* istt—1)[(f oY) X(st-1) 1] Indn. Hyp
= L [ty (foy) Xoe-)y L] (Foy = (s 0 y(amn))
= Lx [(foy)) X1 L] (f =1(f))
= Lx [(55(f)0y) X(eu-1) L] (1(f) o x =1i,(f)oy)
= L [(2(f) o) X(50-1) 1]
= ((2s(f)) X (o419 L) 0@ |

So, we can drop the subscripts on the x. The above lemmas ensure that
X : B(D) x B(D) — B(D) is well-defined and monotone. Extend x to a continuous func-
tion X : Dx D — D. The following lemma delineates some algebraic properties that
describes the interaction between x, x and x. o. The proofs are done for finite elements
of D. The results for arbitrary elements of D follow from the continuity of all functions
involved.

Lemma 36. Let d, ,¢, f, 2 € B(D). Then
L.dx(exf)=(dx f)*(ex f)

2. (dx L)y« L=(dx 1)
3. Lx1l=_1
4. dxe=exd

)

CJ(dYL#d)A (e L#£e)] =
(dxe)of=((dof)xe)w(dx(cof))

6. (d¥W L # d)=>
(dxe)of=(dxe)ofwdof
T.dx(ex f)y=(dxe)x f) ;
Proof: The proofs of 1, 2, 3, 4, 5, 6 are immediate from the definitions of the indexed
version of x. 7 is proved below. The proof uses the indexed version of the definition of x.
We prove
(f X0 9) ><(3+t wh=Ff X (s,t+u) (9 X(t,0) . The proof proceeds by induction on s + t + u.
The base case is immediate. For the induction step, from the bilinearity of X (s,t)s X(s,t4u)>
it suffices to show the result for singletons f, ¢, h. The proof proceeds by cases on

[l [g]1, [P

36



1. [fli=4, [gh = L, [h]i = L. Result is immediate.

2. [fli# L, [gh # L, [h]s # L. The first two clauses in definition 12 are verified easily.
So, proof is complete if
(V& € Distequ-y) [((f X(s2) 9) X(sttu) B) 0@ = (f X(s04u) (9 X (e, w) h)) o a]. From def-
initions,
((f X (s,t) 9) X (s+t,u) h)ox
= [((f X(s) 9) @) X(se-1,0) Bl * [(f X(s) 9)] X(s+tu-1) (R0 )]
=[(fox X(s=1,0) 9) * (f X (50— 1) 9O T) X(spt—1,u) ] * [(f X(s,t)g)] X(s4t,u-1) (h o))
((fox X (5=1,t) 9) X(s+t—1,u) h) (( (f X(sygo ) X (s+t—1,0) R)* ((f X (s,t) g9) X (s+tu—1)
(gox)) Indn. Hyp
(f)o T X (s=1t4u) (9 X () R))* (f X (6.040u-1) (9 00) Xm0y B) % (F X(4uc1) (9 X (t,u=1)
how))
(f<> T X(s-1 zt+u) (9 X (t,u) h)) *(f X(s,t+u—1) ((g X (t.w) h) O<T))

3. [fli=4, [gh =41, [k # L. From definitions,we have

(f X(s,t) 9) X(s+tw) B = L up(x € Dsptu—ty = [L X (s+tu-1) (R0 T)])
f X (s,t+u) (g X (t,u) h) = 1lx L X (s,t+u) (up(x € D(f+u—1) = [—L X(t,u—1) (hoa’)]))

The first two clauses in definition 12 are verified easily. So, proof is complete if

(Ve € Disteru-1)) [(f X(5t) 9) X(stt) B) © ¥ = (f X(s4w) (¢ X (1) B)) © 7).
From definitions,

((f X(st) 9) X(sttw) )0 = L (L X (s+tu—1) (h o))

Also,

(f Xt (9 Xy B)) 0 = Lx (L X(suuct) (L X(tue1) (R o)) Indn. Hyp
= L~ ((L X (s.t) J—) X(s+t,u—1)(h<>1'))
= _L* ((_L X(s+l.ll—l) (ho:l‘))

4. [fli # 1, [gh = L, [h}1 = L. As in the preceding case.

5 [fli =41, [gh # L, [kl = L. Follows from Part 4 of the lemma.

6. [fli =L, [ghh # L, [h]; # L. From definitions,

(f X0 9) Xty b = [Lx up(e € Digprory = (L X(5421) 90 2))] X(s41,0) P
(L X (s+t) h) * (up(x € D(s+t—1) — (L X(s,t-1) gozx)) X (s+t,u) h)
= Lx up(v € Digprqu_1)L X (s+tu-1) (h o))

* (up(z € Dsqry = (L X(50-1) g0 7)) X (s+t,u) 1)

So, we have,

37



((f X (s,t) 9) X (s+t,u) h)ox = Lx L X(s+t.u—1) (hox)* ((L X (s,t—1) gox) X (s4t=1,u) h)
* (up(@ € Disyr-1) = (L X(5-1) 0 T))) X (stt,u-1) h o

From definitions,

I X (st4u) (9 X(t,u) R)

= X(s4u) (Wp(x € Dipyucr) = [(9 X(tuer) h 0 T) % (g0 T X(1_1,0) 1)]))

=1 x (Up(l’ € D(s+t+u—1) — [(—L X(s,t+u—l)(g X(!.u—l)h < ‘T))*(—L x(s,H—u—l)(g o X(f.—l.u)

)

So, we have

(f X(sit4u) (9 X(t,u) h)) 0@

=1 x (-L X (s,t+u—1) (g X(t,u—1) h OT))

* (L X(s,t+u—1) (gox X (t=1,u) 1))

The first two clauses in definition 12 are verified easily. So, proof is complete if

' (Ve € D(syttu-1)) [((f X(s,t) 9) X(stt) h) 0 x = (f X (s,t+u) (9 X(2,u) 1)) © ).
From induction hypothesis, L X (;44_1) (g 0 2 X (t=1,u) 1)

= L X(s4u=1) (90 X(¢=1,0) ).
Also,

L X(ettu—1) (ho)* (up(x € Dsye1y— (L X(st=1) § © T))) X (s4tu—1) h O T
= (L *(up(x € Disyr—1) = (L X(50-1) 90 7)))) X(sptme1) hO T
= (L X(s.0) 9) X(s+t,u-1) h oz Indn. Hyp

L X(st4u-1) (¢ X(tu=1) h 0 T)
Hence, the result.
- [fli # 4L, [gli = L, [R]i = L. As in preceding case.
fh# L lgh =L, [hh 7& 1. From definitions,

(f Xy 9) X4ty b = (L up(x € Dogry = [(f 02) X(sm1.y L])) X(agt) B
= (L X(spt) ) * (up(x € Dyyyy —~ [(f o 2) X (s=1,t) L]) X (s+t,u) 1)
= (L*up(re Disstyu-1) = L X(s4t,u-1) h<>a°))
* (up(x € Dyyror = [(f o) X(so14) L]) X (stt4) h)

Let ¢ € D(s4t4u-1)- We have ((f X(s,t) 9) X (s4t,u) h) O

= L+ (L X(s4t,u_1) hOT)

* (((Fox) X(smr) L) X(stt=1,u0) 1)

* (up(x € Dyyyoy — [(fo) X(s=1,t) 1]) X (s4t,u-1) b o T).

From definitions, f X (s,t4u) (9 X (t,0) )

=f X (s,t+u) (Lx up(z € D(H—u—l) = L X(u-1) (R o))

= (f X(S,H-U) J_) * (f x(s.t+u) U])(I € D(l+u—1) — L X(t,u—l) (h 017)))

38



= Lx up(z € D(sytpu-1) — (foz X(s-tttu) L)) * (f X(st4u) up(z € D(tyu-1) —
1 ><(t,u—l) (h OT)))

Let * € D(o4t4u-1). We have

(f X (s,t+u) (g X(tu) k) o

=1 (for X(-14u L) * (fou X (s=1t4u) UP(T € Diggu_1) = L X(gu 1y (R0 2)))
* (f X(sp4u-1) (L X (tu-1) (h 0 )))

Also,

(L X(s4tu-1) h o T) * (up(x € Dyyer = [(f o 2) X(om1,) L]) X (s+tu—1) h 0 T)
(L* (up(x € Dyjyoyg (foz) X(s=1,t) 1]) X (s4tu—1) h O T)
= (f X (s—1.t) 1) X (s+tu—1) hox)
Also, by induction hypothesis,

(foux X(s=1,t) 1) X (s4+t—1,u) h = (foux) X (s—1,t4u) (L X (t,u) B)
= (fO;L') X(s—l,H—u) (J_* ltp(l' c D(t-}-u—l) — L x(t,u-l) (h 0.13))

Result follows from the linearity of X (s—1,+u) 1N its right argument. §

7 Adequacy

In this section, we establish a relationship between | and non-termination in the calculus.
This is, of course, crucial if our mathematical model is to say anything interesting about
computation. The proof superficially resembles the proof of adequacy in the setting of
the lazy lambda calculus [1]. The details, however, are rather more intricate than that
situation as we have to deal with many possible reduction sequences.

The plan of the proof is as follows. We first introduce a labelled calculus and show
that it is strongly normalizing. We then consider a reduction strategy —,. We show that
any —, reduction in the labelled calculus can be mimicked in the 4-calculus. We then
define a semantics for the labelled calculus and show that the meaning of a completely
labelled term is less than the “union” of the meanings of all terms derived from one step
— reductions. Because the fully labelled calculus is strongly normalizing and reduction
is finitely-branching, we can classify all the “normal forms” that might exist after a fully
labelled term is reduced. We can also show that the meaning of a term in the ~y-calculus is
given by the least upper bound of the meanings of the completely labélled terms derived
from it. If we have a term M that never terminates, i.e. =(M{™@¥ ), we can inspect all
the terms that arise from reducing all its completely labelled versions and show that they
all denote L . Thus the original term itself must have meaning bottom.

A similar but slightly more subtle argument is used for the “must converge” case.
Suppose that we have a term, M, satisfying —(M{™t ). Reductions in the v-calculus
cannot be mimicked completely in the labelled version. However, if we examine a divergent
reduction sequence of M and attempt to mimic it in the labelled calculus, we will reach a
point where the head redex has label 0. At this point we know that the meaning of the
original term must “contain” L.

39



7.1 Labelled calculus

The terms of the labelled calculus with bottom, denoted BC¥ 1 is defined by the folowing
grammar

Terms ::= z || May...2x). M || MN || M|N ||M"
where n € w. Following the notation used in the study of the lazy lambda calculus (16],
we have

o |M] is notation for the term got by erasing the labels of M.
o subterm(M) denotes the set of all subterms of M
o Seq* denotes the set of all non-empty finite sequences of w.

e A labelled term M is formalised as a pair (M, Is) where
Ing i subterm(M) — Seq*U{oc}, maps a subterm N of M to the non-empty sequence
of (nested)labels of N. If N has no labels then I;(N) = co.

o The set of completely labelled labelled terms CL is defined by structural induction
as follows.

—a"reCL

- MeCL NeClL=
M™, (MN)*, (Az,...ax).M)", M|N € CL

Define
CL(M) = {In|(M, I)) is completely labelled }

Definition 13. The syntactic equality = is the congruence (with respect to substitution)
that is generated by the following equation:

pllqlr) = (plg)lr

Let [z +— N]M be notation for the usual notion of substitution. The reduction relation is
presented as a transition system. (The presentation here is semi-formal, but is formalised
clearly in the appendix where strong normalisation is proved).

° (A/[m)n_)l]\/[min(m,n)

o (May...2k) M) IN— May .. 2y, @iy ... ri). [ — N M
if1<:<k

o (My|...|(May...¢p). M) |M,)N—,
AJ]I . I/\(Zl'l oo T3 441 - - - Ik).[‘l’,‘ — ]\'n]J.ll e IA/[".
f1<:i<k

o MO—; |

40



o IM—; |
o 1", 1
o (My|...Mu)"—Mp|...|M"

M- M' = M|N—; M'|N

N—; N' = M|N—; M|N'

o M- M= MN—; M'N

e N—o; N = MN—; MN'

5, is the reflexive and transitive closure of —.

Theorem 2. (Strong normalisation)
Every reduction starting from a completely labelled term (M, I) terminates.

Proof: The proof is complicated but unsurprising. A detailed sketch of the proof is in
an appendix. |

The following definitions are needed to access the label of aparticular term. Define a
map min : Seqg*J{oo} — wU{co} as

o min(l) = minimum of /, if [ ¢ Seq*
o min(l) = oo, if I'¢ Seq*

Next, we define a reduction strategy —,, on the labelled terms as follows. This is done
in a manner similar to the treatment of the unlabelled calculus. The following definitions,
though simple are set out so that the proofs later will become intuitive. Define, by mutual
recursion:

Termsy =z || AM(21...2x).M || MN|| P"

Terms, := M || M|N || Q"

where M, N € Terms,|JTerms,, P € Terms. Q € Terms,. The following definition is
intended to capture the “number” of #.s.

Define len : Terms, — Int as follows:

o len(p) = 1,if p € Terms,

o len(plq) = len(p) + len(q)

It can be checked that this function is well-defined on the terms quotiented by the syntactic
equality =. The following definition is intended to capture the “position” of ¢; in 21 P A
Define a partial function

index : w X Termsy — Terms; as follows:

o index(n,p) = undefined if len(p) < n A len(p) #n

41



o wndex(l,p) =p,if p € Terms;

e index(n,plq) = index(n,p), if n < len(p)

e index(n,plg) = index(n — len(p), q), if len(p) < n Alen(p) #n

Now, we have the machinery required to define the reduction strategy —,.

o (May... azk)..M)rN—>w<L i)/\(arl e Tinly Ligy - Tx) [ > NTM

if 1 <i<k min(l)=n+1
(M ... $k>.‘7\1)r]\7—+w<1 i)MI’l i1, Tigy - k) [~ N]M
if 1 <4<k, min(/) = oo

index(s, (M. |(Mzy ... 2x). M| .. | M) = May ... ax). M=

(My] ... |(May ... ze). M. .. |M,)N—

wle 4
8,2

L7 £ IR DX € T ST R T W F N"IM|...|M,

if 1 <i<k minl)=n+1

-

index(s, (My|... [(Mzq...2e). M) .. M) = May ... xx). M=
;Ml| N |)\<.’131 SR TS [ AP PO fl'k)[T, — N]A[[ N |J/.[n

if 1 <i <k, min(}) = co

M—,,M'" = M|N—,,M'|N

N—y N = M|N—,, M|N'
where o' = (first(o) 4 len(N), second(o))

M—»w(,M' = AfN——)w<1 0_)114'/[\[

Define:

5 .is the reflexive, transitive closure of —y

nf(=) = {M| M ¢ dom(—.,)}

We have the fo]lov‘}ing corollary to the strong normalisation theoreni for completely

labelled terms.

Lemma 37. The reduction —, restricted to completely labelled terms is strongly normal-
1sing.

The closed, completely labelled terms that are in n f(—.,) can be described completely.
Define sets Sy, S;, S3, Sy inductively as follows:

42



.51

— (May...a). MY € Sy if FV(M) C {a,. .z}, min(l) =0
- M e S;= MN € Sy, if N is closed.
- A/I,N € Si= M'N € 51

[ ] 52
= (Mar...ap). MY € Sy if FV(M) C {ay...21}. min(D) = n + 1
— M,N € $;= M|N € S,
® 53
- M€ Sl, N e 52:> l’\/IING 53, NU‘[E 53
— M €Ss, N€ Sy;= M|N €Ss, NIM€ S,
— M€ Ss, N€S;= M|NeS;, NMeS,
o 54

- MeS;US; = MN € S,
- MeSy, = MNEeS,

Note that the sets S, S;, S3 are pairwise disjoint.

Lemma 38. (Classification of normal forms of closed terms)
Let (M, Inr) be a completely labelled term. Then
M enf(—y), M closed =M € S;US, U Ss

Proof: Structural induction. |

The reduction relations —, and — are closely related. Since we need to talk about
specific redices, we define the notion of a redex occurring at a position. This is done by
structural induction.

® Mzy...x).M occurs at position (1,4) in A(z; coeak).M,if 1 <i< k.
® P occurs at position ¢ in M = P occurs at position (1,0) in MN

e P occurs at position (a,c) in M =

— P occurs at position (a,0) in M|N

— P occurs at position (a + len(N).o) in N|M
Many labels are omitted in the following discussion, for the sake of clarity.

Lemma 39. (Relating —, and —)

43



1. Let (M, Ir) (N,Iy) € BC¥. Then, (M. I ;)—.(N, In)=[M—N v M = N].
2. Let M—,N. Let Ip; be a labelling of Af. Then, we have one of the following:
L4 (HIN) [(A{a I]W)'—)wa(Na IN)]7 or

® The redex P occurring at o has minimum label 0. Also, in this case, (M, I M) E
Sy.

Proof: Structural Induction. |
The relationship between the sets S;,i = 1...4 and the convergence predicates {may
and |} is described in the following lemma.

Lemma 40. Let M be a term. Let (M, I3;) be a complete labelling of M.

1. ~(Mmav)=
(V(N, In)) [(M, Ing)=5u(N, IN) A (N, In) € nf(—.))= (N, Iy) € Si]

2: ﬁ(‘]\JUmust):>
(AN, IN) (M, Ing) = (N In) A (N, In) € Sy

Proof:
1. (N, In) € SoUS3=N|™¥. The result follows from lemma 39.1.

2. =(M|™“s!)=> there is an infinite reduction sequence
M = My—M;— M, ... My .... Let (M, Inr) be a complete labelling. Since the
reduction relation —,, is strongly normalising, and using lemma 39.2 there exists a
k such that, (M, Ins)5,, (Mg, In,), and (Mi,In) € Ss. 1

7.2 Approximable models

First, we abstract out the properties that are required for the proof of adequacy. The fol-
lowing definition is an extension of the definition of models with approximable application
that is used for an analogous result for the lazy lambda calculus [16].

Definition 14. (D, Fun,Gr,¥,*, x,0) is approximable if
1. (D,®) is a continuous algebra. i

2. (P(D),*) is a continuous algebra, with a singleton embedding {| |} : (D. — D), —
P(D)

3. (Gr: P(D) — D,Fun: D — P(D)) is a linear embedding-projection pair.
4. D has a least element L.

5. ¢ 1s continuous.

44



6. There are continuous maps [|, : D — D, for each n € w satisfying:

(a) d = reudn

(b) do =L

(¢) Lod=1

(d) dny10€eC [doen]n
(€) [[d]n]mEldlmin(n,m)

7. W: D x D — D, is a continuous function that satisfies:

(a) d¥e=eWd

(b) (dye)w f=dw(ed f)
(c) dud=d

(d) [d¥ e]nCld]n ¥ [e]n

(e) (dwe)o fC(doe)W (eo f)

8. x: D x D — D, is a continuous function that satisfies:

(a) Lx L=1

(b) (dx L)Wl =dx L

(c)dxe=exd

(d) (dxe)x f=dx(exf)

(e) [dx e]aEld]n X [€]n

(f) dx(ew f)=(dxe)W(d x f)

(g) o [(duLlL#d)A (ewl #e)=
(dxe)o fE((do f) x e)W(dx (eof))

o (du L #d)=>

(dxe)ofC(dxe)ofwdof

9. dCell=> dyLl =d

The initial solution to the recursive domain equation D~P(D) satisfies the above con-
ditions. T
The semantics of the labelled calculus is defined as follows:

. [[(—L) I)]] p =41
o [(z,D)] p = [P(l’)]nzin(l(x))
o [(Mx)M,I)] p =[Gr(d— [(M, Ir)] plx +— d Hmin(](/\(f[‘)]\!))

45



o [(Mzr,z)M, )] p =
[Gr(*[(dy — Gr(dy — [(M,In)] pler = di. g — da] ),

(d] = Gr(d2 s II(AI, IM)]] p[ﬂ,‘g — d],l‘l — dz] ))])]min(l(/\(l'l,;172>]W))

L II(]‘/I.]V? I)]] p = [H(ZVI, IJ\’[)]] p )0 II(I\Tv IN)]] p ]min(I(}\rlN))
o ((MIN,D]p =[[(M,Ix)] p x [(N,IN)] P lmin(zervainy)

The following lemma establishes the relationship between L and the syntactic classes

S; and Sy.
Lemma 41. Let (M, I) be a completely labelled term. Then,
1. (M,I)e Si=[(M,I)]p =L
2. (M, I)e Sy=[(M,D] p v L =[(M.I)] p
Proof: Both proofs proceed by structural induction.
1. Recall that S; was defined inductively as:
o (May...ax). M) € Sy if FV(M) C {ay...ax}, min(l) =0

e M eS;= MN € S5,,if N is closed.
e M,N € S;= M|N € S,

Laws 6(a), 6(c), 8(a) of the definition of approximable models are used respectively
for the cases.

2. Recall that S3 was defined inductively as:

e MecS, NeS,= M|NeS;, N
o M€ S3, N € S3= J\/IlN €S53, N
o MecSs, Ne S;= M|N € S53. N

Me S,
M € 53
M € S5

Laws 8(f), 8(c), 8(b), 8(d) of the definition of approximable models are used to
prove the result. Recall that S; was defined inductively as: S

o M e SsUSi = MN €S,
e MeSy, = MNEeS,

Laws 6(c) of the definition of approximable models is used to prove the result. §

Lemma 42. Let (M, I) be a completely labelled term. Let (M;,I;), j = 1...n, be all the
terms such that (M, I)—,, (M;, ;). Then,
(M D]pE (M, I)]p W ... w [(M,,L)] p.

46



Proof: Proof is by structural induction. Let (M, I) be a completely labelled term.
Case 0: M = NP, P,. Result follows from structural induction on NP, and the mono-
tonicty of o.

Case 1: M = N|P.

Let N;, 1 < ¢ < n be all the possible terms such that (N, Iny)—, (N;,Iy,;). Similarly, let
Pj, » < j < m be all the possible terms such that

(P,Ip)—. (Pj,Ip;). From structural induction hypothesis,

o [(N,IN)]pC [(Ni,In)] p @ o [(Nws In)D P
e (PIp)]pE (P I P Y ... [(PnIp,)] p

Result follows from the bilinearity of x as given by laws 8(f) and 8(c) of approximable
models.

Case 2: M = (Mxy,x3).N)P. Let M' = Az, 12).N

Let min(I((A(z1,22).N)) = n + 1. The two possible one step reductions(—,) yield
Azy.[xa — P"|M and Azy.[x; — P"|M. By definitions, we have
[(Mar,22) N, )] p = ;

[Gr(«[(di = Gr(dy = [(M, )] plxy = dy, 2 — da] ),

(dy = Gr(dy — [(M,I)] plaz — di,xy — d2] )D]mincroa

Using the linearity of Gr and law 7(d) of approximable models

[(Ma1, z2)N.I)] p T

[GT([(dl = GT(d2 — II(A/I,I)]] p[l‘l g dl,.T.Q = (]2] ))]min(l(]\/[’)) )

[Gr(dy = Gr(dy — [(M, )] plxg > dy, 21 = do] DDl min(r(arry)

From definitions

[((Mz1,22). N)P, D)] p = [[(M, )] p o[(P. D] p |min(rrrny)-

Using law 7(e) of approximable models

[((Mz1,22).N)P,I)] p E

[Gr([(dr = Gr(dy = [(M, )] play = dv, 22 = o] )D)mincriaryy © [(P, 1] p

W [Gr([(di = Gr(dy = [(M,I)] plz2 = dv, 21 = da] ))Dlmincronyy © (P, D] p -
From law 6(d) of approximable models, we have

[Gr([(dl = Gr(d2 s H(Al, I)]] p[:l'l = d],(l’z — (ZZ] ))])]min(l(M’) < [[(P"I)]] /o
Cl(Azs.[z1 — PMIM,I)] p |
From law 6(d) of approximable models, we have, ,
(Gr([(dy = Gr(dy = [(M,I)] plzy — da. 22— di] D)D]mingroury © [(P, 1] p*
C [(Azy.[xz — P"]M,I)] p . The result follows. :

Case 3: M =NPA N =N|...|N..

For notational convenience, assume k& = 2. We have the following cases.

o All the N;s are of form A xy,...a).N/. Then, all the one step reductions are 3-
reductions involving P. The result follows from law 8(g) and the case above.

47



e N;is not of form A(zy,...z,).N/. for i = 1,2. Then, all the one-step reductions are
of form

= M=o N{ A (N1|N2)P— (N[ N2) P
— Na—u,Ny A (N1 Np) P— o, (N1|N) P
Then, result follows from structural induction hypothesis and observations 8(c), 8(f), 7(¢).

o Ny = May,...2,).N] and N, is not of this form. The one-step reductions are of form,
— Ny;— Ny A (N1|Ny)P—(N;|N,)P
— NiP—N{ A (N1|Ny)P—(N{|N,)
Let Qj, 7 = 1...t be such that N;——@Q;. From structural induction hypothesis,
[N2] p E[Q1] p w...[Q:] p. Using law 8(c). 8(f), and structural induction hypoth-

esis,

[NiN2] p E [V1|@1] p W ... [N1]Q:] p . Result now follows using law 8(¢g). N

The next lemma says that one can recover the meaning of a term in the original calculus
by taking the least upper bound of the meanings of all the fully labelled terms.

Lemma 43. [M] p = Ucran[l(M, D] p | I € CL(M))
Proof: Structural induction. Note that the set [[(M,I)] p | I € CL(M)] is directed.

o M = z. Result follows from law 6(«) of approximable models.
e M =NP.

Mlp = UnedINP]pln

Uneo[[N]p ©[P] p], Indn. Hyp
[
[

UnewlUiyecrnl(N-IN)] p) o (Uipecrp)[(P. IP)] p )]s
= LheolUreccoanl(N.IN)] p o [P, Ip] p ]n
UrecrnUneo [I(N, IN)] p © [P Ip] p s

= Ureceon[(N,IN)] p o [P, Ip] p

¢ M = Muxy,22)N. This involves the continuity of Gr and W and is, omitted.
e M =N|P

[Mlp = UneollNIP]p]n

= Unenl[Nlp x [P] p]n Indn. Hyp
Unew(Uiyecin) [N, In)] p ) X (Utpecry (P IP)] p )]n
UnewUrecon (N, IN)] p x [P, Ip] p ]l
UrecrianUneo l(N, IN)] p x [P, Ip] p ]n
= Urectonl(N.In)] p x [P Ip] p [

Il

48



Lemma 44. Let M be a closed term. Then, ~(A|)"%)= [M]p = L

Proof: From lemma 43, [M]p = Ucranl[(M.I)]p| I € CL(M)]. Let (M,I) be
any complete labelling of M. Let (M;,I;). j = 1...n, be all the terms such that
(M, )5S, (M, ;) A (Mj,I;) € nf(—,). Then. from lemma 42

(M,D]pC [(M,I1))]p & ... & [(M,I)]p.

From lemma 40, all the (M, I;) € S;. From lemma 41, (V1 < ¢ < n) (M. )] p = L.
Hence, the result. @

Lemma 45. Let M be a closed term. Then, =(M{™*)= [M]p w L =[M]p

Proof: From lemma 43, [M]p = Ucroan([(M.]p| I € CL(M)]. Let (M,I) be
any complete labelling of M. Let (M;,I;), j = 1...n, be all the terms such that
(M,I)—, (M;,I;). Then, from lemma 42
(M, D] pE[(M,I)]p W ... & [(M,L)]p.
From lemma 40, (31) [(M;, ;)= (N,J) A (N,J) € S]. From lemma 41, [[(N,J)] p @
L =[(N,J)] p. Hence, the result follows. |

For the converse of the above two lemmas, we need the following lemma. In the proof,
we use the following two facts about the model D.

L [(dWLl#£dA (eWl£e)=
(dxe)of=((dof)xe)w(dx(eof))

(dw L # d)=
(dxe)ofwdof=(dxe)of

o

3. (dWe)of=dofW eof
4. (dWe)x f=(dx f)W(ex f)
5. fx(dwe)=(f xd)W(f xe)
6. (dxe)x f=dx(exf)

Lemma 46. Let M be a closed, unlabelled term. Let M;, t = 1...n be such that
M—M;. Then, [M]p =[M]p W...[M]p.

Proof: (Sketch) Proof is by structural induction. ,
e M = NP, P,. Follows from structural induction hypothesis on NPI,‘_a,néd observation
3 above. .

o M = P,|P,. Follows from structural induction hypothesis on P;, P, and observation
4, 5, 6 above.

¢ M = NP, and N = May,...2).N'. Proof is almost identical to the corresponding
case in lemma 42.

19



¢ M = NP, and N = Ny|... Ni. Proof is almost identical to the corresponding case
in lemma 42.

The following lemma is the converse of lemma 44 and lemma 45.
Lemma 47. let M be a closed term. Then.
o MUm=[M]p #1L
o Mm™'=[M]p WLl #[M]p
The following theorem is an immediate consequence of lemma 47, lemma 44, lemma 45.

Theorem 3. (Adequacy)
Let M, N be closed terms. Then, [M]p T [N]p =M <N

8 ' Conclusions and Future Work

The work in this paper represent part of a growing interest in higher-order process calculi.
We feel that it is a significant achievement of Boudol’s to describe a calculus that can be
given a pleasant mathematical model and yet express concurrency and abstraction.

We plan to extend our model to the full calculus. We would also like to understand
what it takes to make the calculus fully abstract. Given that the language has concurrency
“naturally” built into it one might expect that one would get full abstraction by adding a
simple convergence tester; unlike the case of the lazy lambda calculus where one needed a
parallel convergence tester. This, however, seems unlikely though we do not yet have any
definitive answers as yet. We also plan to understand the structure of the powerdomain
more clearly as it seems to have pleasing algebraic properties. In particular, we would
like a representation theorem for the elements of the powerdomain. Finally we would like
to relate these semantical investigations to other formalisms and also to the implemnted
systems that are starting to appear.

A Strong Normalisation

The terms of the labelled calculus with bottom, denoted BC* 1 is defined by the folowing
grammar Y
Terms =z || AM(zy...2x).M || MN

where n € w.

M"

M I N |

Definition 15. The syntactic equality = is the congruence (with respect to substitution)
that is generated by the following equation:

pllalr) = (plg)lr

50



We need basic notation to be able to refer to redices. This is done in a style similar to
the techniques used in the study of the operational semantics of the unlabelled calculus.
Most of the definitions that appear below have been used before in the paper, but are
repeated here to make this section self contained.

Define, by mutual recursion:

Termsy =z || Mzy...ax).M || MN || M"

Termsy == M || M|N

where M, N € Terms;JTerms,. The intuitive meanings of these classes are the same as
the corresponding classes in the unlabelled calculus.

Intuitively, T'erms; are the terms of the form ¢,|...|t,, where the ¢; are either abstrac-
tions or applications. The following definition is intended to capture the “number” of
tls.

Define len : Termsy, — Int as follows:
o len(p) =1,if p € Terms,

o len(plq) = len(p) + len(q)

It can be checked that this function is well-defined on the terms quotiented by the syntactic
equality =. The following definition is intended to capture the “position” of ¢; in t]...1,.
Define a partial function index : w X Termsy, — Terms; as follows:

e index(n,p) = undefined if len(p) < n A len(p) # n

o index(1l,p) =p,if p € Terms,

o ndex(n,plq) = index(n,p), if n < len(p)

o index(n,plq) = index(n — len(p), q), if len(p) < n Alen(p) #n

Let [x — N]M be notation for the usual notion of substitution. Let M € Terms, Al <
s < len(M). Then, M[s +— N] is notation for the term M’ € Terms,, such that

o len(M') = len(M)

o If 1 <t <len(M') As #t, index(t', M) = index(M, 1)
o index(s,M') =N |
The reduction relation is presented as a transition system. We also for;nailise the notion

of “different” reductions. This is done by associating an ordered pair with a reduction, that
captures the position and argument of the abstraction that is involved in the reduction.

PY (A{m)n_}%l’0>A/Imin(m,n)

° (A/IO)—H(]" 0>_L



] _LnN“‘)l<1’O)J_

o (Mag... :ck).]V[)N—n(L i)/\<‘T’1 e X1, Ty Tg) T NJM
fl1<:<k

o If Pe Termsy A 1 < s <len(P), then
PN—>1<S O)M[s — ndez(s, P)N]

o M—,M' = M|N—y,M'|N

° N——>10.N' = M'Nﬁla/]\/[lN/
where o' = (first(o) + len(M), second(c))

¢ M—i,M! = MN—y o) M'N
¢ NoioN' = MN—y5 \ MN'

o M— M = M"—>l<1 U>]V['"

Two reductions M—, M’ and M ——,»M" are different if o’ # o”. Note that there
are only finitely many different reductions. =, is the reflexive and transitive closure of —,.

Let M € Ap. Construct a tree with labelled edges corresponding to M denoted by
T(M) as follows. Let M—,,M;, be all the possible different one step reductions from M.
Then, the root has an edge for each label o;. The subtree at the node at the other end of
the edge with label o; is the one obtained by doing the construction for M;. Define the set
of strongly normalising terms in BC*_L as follows.
SN = {M|there is no infinite reduction sequence M = My—M;— M, ...}. By a Konig’s
lemma argument, we deduce that M is SN = T(M) is finite.

Definition 16. Let (D, <) be the domain of labelled, finitely-branching trees of finite
depth, where the ordering relation < is the subtree ordering.

Note that (D, <) is well-founded. Furthermore, if M € SN and M—M’, then T(M') <
T(M), T(M') # T(M). T(M) plays a role analogous to the role of d(M) which is the
length of the reduction sequence from M in the proof of strong normalisation of the labelled
lambda calculus, as in Barendregt’s book [3].

We need to keep track of redices explicitly. First.we define positions of subterms in a
term. We define a partial function Fy; : Seq* — Terms, as follows. The intuition is that
Fp(o), 1s the subterm of M at position . This is done by structural induction.

o M e Terms;



— M € Var. Say, M = z. Then, F,((0.0)) =z
— M = PN. The,
* Fa((0,0)) =M
* Fy((1,0)) = Fp(o)
* Fap((2,0)) = Fy(o)
M = Xazy...zi).P. Let o be of form ().
* Fp((0,0)) = M
* Fyu((1,0)) = Fp(o)
— M = P". Let o be of form (,).
* Fp((0,0)) =M
* Fp((1,0)) = Fp(o)

o M eTermsy A len(M)=n+1A 1<n. Let 1 <7 <len(M). Then
— Ful(0,0))= M
— Fr((i,0)) = Findeo(ian({1,0)).1 <

Let M € BC“L. Let mark : BC¥L x Seq* be a predicate. The intuition is that
certain subterms of M are marked out. The following definition passes marking information
through reductions. This is done by analysing the structure of the reductions.

Definition 17. (Extending marking through reductions)

. (M"‘)”—>z(1’0>Mmi"(m’”). Then
— mark((M™)", (1,(1,0)))=mark(M™n"mn) (1, o))
— mark((M™)",(1,(0,0)))V mark((M™)", (1. (1,(0,0))))= mark(M™"m™ _(0,0))

. (]\/1'0)——>1<1 0>_L. Then
mark(M?°,(0,0)) vV mark(M°,(1,(0,0)))=mark(L,(0,0))
L] _Ln"—>l<1 O>_L Then
mark(L", (0, 0))"\/ mark(L", (1.(0.0)))=>mark(L, (0,0)) .
° _1_N—>1<1 0) 1. Then
mark(LN,(1,(0,0)))=mark(L,(0,0))
o (May... fl’k).]Vf)N——n(l Z->/\<:r1 e io13Tig1 - Tg) [ NJM A 1 < i< k. Then,
mark((Mxq ... xx). M)N,(1,(0,0)))=mark(P, o), if Fp(c) is defined

where P = Az1...%i_1,Tiy1 ... 2).[2i = N]M

53



o (May... a:k).M)(”*'l)N—)l(Li))\(ml e i1, Tip1 - T o NMIMA 1 <4 < k.
Then,
mark((Mzy ... zx). M)™D N, (1,(0,0)))V mark((Mz; ... zx).M)"I N, (1,(1,(0,0))))=
mark(P, o), if Fp(o) is defined
where P = Mzy...%i_1,Tiy1 ... 2).[2; = N |M

Marking information is extended to the whole term by structural induction.
e M = NP. Then,

— mark(N,o)= mark(MN,(1,0))
— mark(P,0)= mark(MN, (2,0))

o M = M;|M,. Let len(M) = s, 1 <i < s. Then,
mark(index(e, M), 0)= mark(M, (i, o))

Lemma 48. Let M € Termsy A len(M) =k A M5, P. Then
o Pe Termsy

o Let len(P) = s. Then,
(3212k+1) [(1 <<ty . S S hpr =8+ 1)A(0 F 19 A L iy F N ke F
such that
(3P, ... P) (Vj=1...k) [index(j, M), P; A P; € Terms,), and

- (V] =1... ]») [len(PJ) = i]'+1 - Z]]
- (Vy=1...k)(Vt =1...len(P;)) [index(t, P;) = index(i; + t — 1, P)]

Proof: Induction on the length of reduction M5,P. R
Let N € BC“1. Then, M* is notation for [x — N]|M.

Lemma 49. Let M € Termsy, A len(M) = k. Then
o M* e Terms,

o Let len(M) =k, len(M*) = s. Then, o
(Elil...ik+1) [(1 S il S 12 S ?.k S I‘k+1 :\—f-].)/\(ll ;é?t-z/\ ~~~ik—1 ;é ik/\jk ;éik+1)
such that , ;
(3P,...Py) (Vj =1...k) [(index(j, M))* = P; A P; € Terms,), and

— (Vj = 1...k) [len(Py) = ij41 — )]
= (Vj=1...k) (Vt=1...len(P;)) [index(t, P;) = index(i; +t — 1, M*)]

Proof: Structural induction. [ |

Lemma 50. Let M € Termsy A len(M) =k A M*5;P. Then

54



o PecTerms,

o Let len(P) = s. Then,
(Eil...ik+1) [(1 S il S ?2 S lk S ik+l = §-|—1)/\(?1 # iz/\ ...I.k_l 75 i'k/\ik 7é ik+1)
such that
(3P1...P) (Vj =1...k) [(index(j, M))* 5 P; A P; € Terms,], and

- (Vj =1... k) [len(PJ) = ij+1 — 7J]
- (Vy=1...k) (Vt=1...len(P;)) [index(t, Pj;) = index(i; +t — 1, M*)]

Proof: From lemma 48 and lemma 49. |

Let M € Termsy A len(M) = k A M*5P. From above lemma, under the hypothesis
of the above lemma, there is a well defined function
f:{1...len(P)} — len(M) such that

o (index(f(s), M))=1Ps) A[(31 < t < len(Pyy))) [index(t, Py()) = indea(s, P)]]
° if(s) <s< (if(s) + len(Pf(s)) —-1)

The following special class of terms plays an important role in the proof of the strong
normalisation theorem. Define, by mutual recursion:
Ty n=a || TN || M
T, :==T,|P || P|Tz || T}
where P € BC¥L1

Consider M* = [ — N|M. Let M*—P. For the proofs, we need to trace the terms of
P that arise from the N’s that have been substituted for x. This is done using the marking
machinery that has been set up earlier. The initial marking on M* is defined by structural
induction. Without loss of generality, assume that @ does not occur as the variable bound
in an abstraction.

¢ R = [z — N]z. Then,
Fr(o) defined = mark(R, o)

¢ R=[z+— N](RiR;). Then,

— mark([z — N]R1,0)= mark([zx — N](R1R,),(1,0))
— mark([z — N|R;,0)= mark([z — N](R1R,).(2,0))

o M =[x — NJ|(M;|M,;). Let len(M) =s. 1<t <s. Leti; <t S'ij;l./\ t# 241,
where the 7;’s are the indices given by lemma 49. Then,
— 1; < len(My) A mark([x — Nlindex(t, My).0)= mark(M,(t, o))

— len(My) < v Ay # len(My) A mark([x — Nlindex(t — len(M;), My), o)
= mark(M, (t,o))

55



The following lemmas are analogous to lemma 14.1.8 to 14.1.10 of Barendregt’s book on
the lambda calculus [3]. Restricted to pure lambda-terms, the statements are identical to
the corresponding lemmas for the labelled lambda calculus. The proofs are quite similar
to the corresponding proofs for the labelled lambda calculus and are omitted, with T'(7M)
playing the role of d(M) in the proofs in the case of the labelled lambda calculus.

Lemma 51. Let M € SN. Let M*5R, where R € TermsyAindex(s, R) = My ... yx). P,
for some s,k € w. Then,

e (3R, € Termsy) [M5 Ry A Rt 5R)
o Let f(s) = k. Then, one of the following hold.

- znder(k, R) = /\(yl N yk>.P1 A Pl*-—*—qP

— index(k,R) =T, where T € T,. Then, mark(R, (s, (0,0))), where mark(T*, ) is
defined as above.

Lemma 52. Let M € BC¥L. Let mark(M. ) be defined such that, mark(M, o) is true for
exactly one o, where Fj(c) is defined. Let M5 R, where R € Terms,. Let index(t,R) =
(My1 ... yx).P)". Furthermore, let mark(R, (t.(0,0))) be true, where mark(R, ) is defined
by using induction on the definition 17. Then. n < label( Fa(a)).

Lemma 53. M € SN= [z — LM € SN
Lemma 54. M,N € SN= [t — N]M € SN

Theorem 4. (Strong normalisation)
Every reduction starting from a completely labelled term (M, I) terminates.

References

(1] S. Abramsky. Unpublished lecture at MFPS, 1989.

[2] S. Abramsky and C. H. L. Ong. Full abstraction in the lazy lambda calculus. Sub-
matted to Information and Computation, 1988.

[3] H. P. Barendregt: The Lambda Calculus, Its Syntaz and Semantics. Studles in Logic.
North-Holland, Amsterdam, revised edition edition, 1984,

[4] G. Boudol. Towards a lambda-calculus for concurrent and communicating systems. In
J. Diaz, editor, TAPSOFT 89, Lecture Notes in Computer Science 351, pages 149-161.
Springer-Verlag, 1989.

5] R. deNicola and M. Hennessy. Testing equivalences for processes. Theoretical Com-
g
puter Science, 34:83-133, 1983.

56



[6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

U. Engberg and M. Neilsen. A calculus of communicating systems with label passing.
DAIMI PB-208, Aarhus University, 1986.

M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

R. Jagadeesan and P. Panangaden. A domain-theoretic model for a higher-order
process calculus. Technical report, Cornell, 1989.

B. Jonsson. A fully abstract trace model for dataflow networks. In Proceedings of the
Sizteenth Annual ACM Symposium On Principles Of Programming Languages, 1989.

G. Kahn. The semantics of a simple language for parallel programming. In Informa-
tion Processing 74, pages 993-998. North-Holland, 1977.

J. Kok. A fully abstract semantics for dataflow nets. In Proceedings of Parallel Archi-
tectures And Languages Europe 1987, pages 351-368, Berlin, 1987. Springer-Verlag.

R. Milner. A Calculus for Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer-Verlag, 1980.

R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267-310, 1983.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

F. Neilson. The typed lambda-calculus with first-class processes. In PARLE89, Lec-
ture Notes in Computer Science 366, pages 357-373, 1989.

C. H. L. Ong. The Lazy Lambda Calculus: An Investigation into the Foundations of
Functional Programming. PhD thesis. Imperial College of Science and Technology.
1988.

G. D. Plotkin. Lecture notes on domain theory. The Pisa Notes.

G. D. Plotkin. A powerdomain construction. SIAM Journal of Computing, 5(3):452—
487, 1976.

J. H. Reppy. Synchronous operations as first-class values. In Pfo‘iedings of the SIG-
PLAN conference on Programming languaage design and implementation, 1988.

J. R. Russell. Full abstraction for nondeterministic dataflow networks. ’11.1 Proceedings
of the 30th Annual Symposium of Foundations of Computer Science, pages 170-177,
1989.

M. B. Smyth and G. D. Plotkin. The category theoretic solution of recursive domain
equations. Stam Journal of Computing, 11(4), 1982.

e

(@14



[22] B. Thomsen. A calculus of higher-order communicating systems. In Proceedings of
the Sizteenth Annual ACM Symposium on Principles of Programming Languages, 1988.

[23] C. P. Wadsworth. The relation between computational and denotational properties
for Scott’s Dy, models of the A-calculus. SIAM J. Computing, 5:488-521, 76.

[24] D. J. Walker. Bisimulation and divergence. In Third IEEE Symposium on Logic in
Computer Science, pages 186-192, 1988.

58



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif

