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ABSTRACT 

A single hidden layer artificial neural network (ANN) model was developed to estimate 
simultaneously two mechanization indicators, Mechanization Index (MI) and Machinery Energy 
Ratio (MER), used to characterize a group of farms in a target farming region. Values of the two 
mechanization indicators could be obtained without direct calculation of their equations by using 
the ANN model. To develop the model, data representative of a developing farming system in 
Mexico were obtained from farmers, local makers of agricultural machinery, researchers and 
government officials, as well as from relevant databases. A wide range of variables of farming 
activities were examined, and from these, 11 were used as input variables for the model. The 
values of the model’s outputs correlated well (Pearson’s= 0.963 and 0.947 for MI and MER 
respectively) with actual, calculated values, indicating that the model is valid. Sensitivity 
analyses were also conducted to investigate the effects of each input item on the output values. 
Since the ANN model can predict two mechanization indicators for a target farming system, it 
could be a good tool for appraising mechanization of regional farms. Also it overcomes some of 
the limitations of using as inputs simple data available from local databases that may contain 
errors. 
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1. INTRODUCTION 

In order to maximize the efficacy of introducing agricultural technology to farms in a target 
region, the farming system of the region should be first characterized, especially to identify 
possible resource constraints and to capture the diversity of farming systems (Sims, 1987; 
Collado and Calderón, 2000; Oida, 2000). Monitoring the mechanization status in the target 
region, in combination with other agronomic indicators such as productivity potential (García et 
al., 2005), would afford a better assessment of the sustainability of the farming system. 
 
Therefore, the purpose of this study was to develop an artificial neural network (ANN) model to 
predict mechanization indicators based on energy consumption, using as inputs to the model 
simple data available from local databases. 
 
The sample farming area selected for the study was 1306 ha representing the target farming 
system in central Mexico. The mechanization indicators, Mechanization Index (MI) and 
Machinery Energy Ratio (MER), were chosen because they would allow us to identify which 
farming systems in the region would benefit from mechanization and to estimate the intensity of 
mechanization as part of an agricultural modernization program. The ANN model gives estimates 
of the mechanization indicators using limited data available from the target region, without the 
need to calculate them directly, which would require more data. The model is based on statistical 
analyses of actual data, and enables us to distinguish between necessary and unnecessary items 
of raw data. A fundamental hypothesis of this study is that it is feasible to train an ANN model to 
establish a non-explicit function, which corresponds to the ANN network itself, between a 
selected set of simple inputs, such as farm size, and number of tractors owned, and two 
mechanization indicators as the outputs. 
 
 The potential practical application of this work consists on mapping the proposed mechanization 
indicators for a much wider area without direct calculations. Further analysis based on the 
interrelation between the produced data with complementary parameters already available in 
local databases, would contribute to assess the mechanization status in the region. 

2. DATA SOURCE AND PROCESSING 

A target farming area was selected by taking into account previous research experience and 
advice from experts in the region (CIMMYT INIFAP 2000 database; Collado and Calderón, 
2000; and INIFAP Bajio Research Station, personal communication, Celaya Guanajuato México, 
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August 2004). The selected region is located in the Mexican central state of Guanajuato, between 
19o 55' 05" and 21o 51' 49" North latitude, and between 99o 41' 04" and 102o 05' 11" West 
longitude, in the Rural Development Districts V and III. Its total cropping area is 295326 ha. 
(available at URL: http://www.oeidrus.guanajuato.gob.mx/ubis. In Spanish). 
 
The prevailing farming system in the region of study is characterized by the use of tractors as 
main power source, as encouraged by the government in response to the restriction of timeliness 
of seasonal farm works and labor shortage trends. Land tenure varies from 1 to 30 ha per farmer. 
The main crops are: Maize, Beans, Wheat, Sorghum and Barley; it is a common practice the 
rotation of crops from season to season exchanging sites. This system is applied mainly under 
reliable rain-fed conditions in places with even topography and free of stones. 
 
The data used in this study were compiled for 102 farms representative of the entire 48284 farm 
households (or production units, as defined by The National Institute of Statistics, Geography, 
and Computation. URL: http://www.inegi.gob.mx/est/default.aspx?c=4346) practicing the target 
farming system in the region. 
 
The data consist of 250 items for each farm, in the following 6 categories: 
Social issues: farmer age, school years, migrating family members (if any). 
Asset: farm size (three ownership types, established with different crops), machinery commonly 
used (units, type, model), tractors (model, ownership type). 
 
Farming strategies: land source (leased, owned), straw management, crops (type, cropping area), 
farming method (type of tillage operation, sequence, time). 
 
Production factors: working hours, inputs for crop production (seeds, agrochemicals, fertilizers, 
etc.), animal traction (type, time). 
 
Finance: unitary costs for crop production, source of finance. 
 
Policy support: subsidizing source, technical assistance if any. 
 
To simplify the modeling process, we made the following assumptions: 
a) Crops of the same type were managed in the same way. 
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b) Technical machinery parameters, such as power rate, were constant among similar types of 
machine. 
c) Each individual farmer makes his or her own decisions about the distribution of resources and 
capital for crop production. 
d)  A two wheel drive tractor with 50 kW rated power and weight of 2550 kg consuming 16 litres 
of diesel fuel per hour as found by the National Standardization Centre of Agricultural 
Machinery (CENEMA, 2004) was set as a standard as suggested by expert researchers in the 
region and subsequently confirmed in-situ (Collado M.; Arévalo A. INIFAP’s researcher, 
interviewed by author, Celaya Guanajuato México, August 2004). 
 
To assess the technological status and the agricultural production strategies, the farming system 
was analyzed according to its energy input-output flow using the methods as in Rydberg and 
Jansen (2002); Collado and Calderón (2000); and Chandra (1998). This approach distinguished 
the energy source type: renewable versus non-renewable. 
 
The values of input energy from the amounts of seeds, fertilizers, agrochemicals, animal traction 
and hand-labor were computed using unitary literature values as in Collado et al.(2000), Rydberg 
and Jansen (2002) and Chandra (1998). The chosen values for the present analysis are shown in 
Table 1. 
 
Table 1. Unitary values selected for input-output energy flow calculations  

Inputs (MJ/kg) Outputs (MJ/kg) 
Nitrogen fertilizer 65  Maize 16 
Phosphate fertilizer 15  Wheat 14 
Potassium fertilizers 10   Barley 15 
Agrochemicals 135  Beans 14 
Cereal seeds 25   Sorghum 14 
Seeds from local source 3  Cereals 15 
Labor 2 MJ/hr Vegetables 1 
Animal traction (Mules) 4  MJ/hr Husk 14 
Fuel (Diesel) and Oils 56  MJ/litre Straw 12 
Farm implements 80    
Machinery fabrication 160    
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Similarly, overall output energy was the summation of crop yield produced and straw energy 
values. In the case of machinery input energy for crop production; fixed components such as 
machine mass and storage facility, as well as variable components such as fuel and energy due to 
tractor traction invested during the working hours, were computed separately. 
 
Technical information on the type of machinery found in this region, such as fuel consumption 
and power rate, was obtained from the National Standardization Centre of Agricultural 
Machinery (CENEMA, 2004). 

3. INPUT AND OUTPUT PARAMETERS 
Based on their availability and how representative they were of all the data, 42 continuous and 
categorical input items were chosen as the first candidate set of the input items. Underlying 
distributions were uniform, representativeness was checked and data sets with 5% or more of 
data points missing were rejected. The mean, variance, Pearson’s correlation coefficient, and 
other statistics of the items are shown in Table 2 (Columns market “a subscript” refers to the 
range of data that enhances the network forecasting capability as discussed in section 6.1).  
 
Because the items have different scales, the data were normalized into the range of 0.1 to 0.9 to 
maintain the neural network sensitivity as per Drummond et al., 2003; Abdullakasim et al., 2005; 
Zhang et al., 1998; Prosperi M., personal communication, Kyoto Japan, October 2004. Outliers 
and collinear values in the scatter plots of the 42 candidate variables were rejected, and the 
scatter plots redrawn and reexamined to identify superfluous items. Finally, based on the 
responses of the ANN model, 11 input parameters that produced outputs which correlated well 
with the calculated outputs and a wide range of response values of the model’s outputs were 
selected. 
 
Table 3 shows the selected parameters fed into the ANN model during the training process. 
These items represent key factors (finances, assets and farming strategies) of the farming system 
and were identified as factors in the mechanization status. They produced superior performance 
during the teaching process. Another advantage is that data on these items are generally available 
in local databases. 
 
Based on the general concept of mechanization (Sims, 1987) and the structure of ANN models, 
two mechanization indicators, which are functions of finance, asset, farming strategies and 
production factors, were chosen. The indicators are included in Tables 2 and 3, and are defined 
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mathematically as equations 1 and 2 in the following section. The ANN model was trained to 
output these indicators from the data of the 11 input parameters. The validity of the model was 
checked by comparing its output values with those calculated using equations 1 and 2. 
 
Table 2. Descriptive statistics of selected items in the faming system 

 
Note: “a subscript” denotes the range of data that enhances the network forecasting capability as 
discussed in section 6.1. 
 

Table 3. Input and output parameters to train the ANN model 
Item Variable name Source Variable type and units 
INPUTS 
1 Total farm land ownership Data-set entry Continuous (ha) 
2 Number of crops Data-set entry Discrete (natural number) 
3 Tractor units ownership Data-set entry Discrete (natural number) 
4 Labor intensity Computed from data-set Continuous (base on 

working hours per cropping 
season) 5 Animal traction intensity Computed from data-set 

6 Number of tillage 
operations Data-set entry Discrete (natural number) 

7 Straw management Data-set entry Continuous (base on 
percentage burned) 

8 Benefit / Cost ratio Computed from data-set Continuous (unit-less) 
9 Technical assistance Data-set entry Dichotomy 
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10 Land tenure Data-set entry 
Ejidos (ownership by 
government type), Hired, 
Private 

11 Support from migration Data-set entry Dichotomy 
OUTPUTS 
A Mechanization Index Computed from data-set Continuous (unit-less) 
B Machinery Energy Ratio Computed from data-set Continuous (unit-less) 

4. DEFINITIONS OF MECHANIZATION INDEX AND MACHINERY ENERGY RATIO 

4.1 Mechanization Index 

))TL)(LM((M=MI (a)i)(a,av

n

=i
i)e(a, //

1
∑

                                                                                     (1) 

where: 
MI = Mechanization Index for the production unit ‘a’ 
Me(a,i) = Overall input energy due to machinery for crop ‘i’ in the production unit ‘a’ 
Mav = Regional-average energy due to machinery 
L(a,i) = Land area cultivated with crop ‘i’ in the production unit ‘a’ 
TL(a) = Total farm land ownership of the production unit ‘a’ 
 
This index proposed by Andrade and Jenkins (2003) is an indication of the amount of machinery 
a given farmer uses for farm work compared with the average in the region. 
 
The second term includes a ratio between the land area cultivated with different crops and the 
total land ownership. This term was introduced because it reflects the importance of land demand 
for cultivation. 
4.2 Machinery Energy Ratio 

∑
n

=i
i)e(a,i)e(a, )T(M=MER

1
/

                                                                                                       (2) 

where: 
MER = Ratio between machinery energy and total input energy 
Te(a,i) = Total input energy (from: labor, machine, seed, fertilizers, agrochemicals, animals) for 
the production of the crop ‘i’ in the production unit ‘a’. 
 
This ratio, as described by Collado and Calderón (2000), indicates the investment in machinery 
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energy in comparison with the other input energy sources required for crop production. The ratio 
is useful for comparing the contributions of mechanization among the individual farms. 

5. ARTIFICIAL NEURAL NETWORK MODEL 

The ANN model was calibrated using the Stuttgart Neural Network Simulator (SNNS) software 
package (SNNS Group, 1997). During the calibration process, 30 architecture combinations were 
trained. Variations of the backpropagation learning algorithm were applied. As presented by 
Zhang et al. (1998), the square error of the estimates between the observed and actual output is 
fed-back through the network causing changes of the weights, with the purpose of preventing 
that the same error will happen again. Batch-backpropagation provided smooth curves, with 
results generally better than those of the other training backpropagation methods. At this stage, 
results from cross-validation analysis in relation to network size and number of training cycles 
were analyzed to select the best combination to keep the model simple, as described in the 
following sections. 
 
5.1 Split-Sample Validation Technique 
 
At this stage, data sets of 96 farm patterns or production units samples, each containing the 11 
inputs and the two outputs, were collated as described in Section 3 above. The reference values 
of the two outputs were calculated from equations 1 and 2, and are compared below with the 
outputs of the model. The ANN model was trained, tested and validated using the split-sample 
validation technique described by Zhang et al. (1998) and the SNNS Group (1997). The data sets 
of the 96 farm patterns were divided randomly into three subsets, containing 54 patterns for 
training, 20 patterns for testing and 22 patterns for the validation phase. The number of the 
patterns in the training subset was set to about 60% of the total data, as per Zhang et al. (1998). 
Extraction of the training subset was repeated several times at random to check the quality of the 
trained networks generated, as indicated by high R2 values and a wide range of outputs. 
 
5.2 Number Of Hidden Units 
 
To determine the optimal architecture of the ANN, the architectures of networks with hidden 
units ranging from one to 30 were trained, tested and validated. This process was conducted by 
the split-sample validation technique. The validation subset contained 22 patterns, selected as 
described above, that were not used in the training and testing phases. This subset was used to 
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test the correlation between the values of the outputs given by the ANN model and those 
calculated from equations 1 and 2. 
 
Network architectures with hidden units ranging from one to 30 were simultaneously trained and 
tested with the respective subsets. The learning (training) process was "early-halted" at the 
80000th interaction when the squared summed error for the testing subset reached its minimum 
value (Zhang et al., 1998; SNNS Group, 1997).  
 
The accuracy of the ANN model was validated using the validation data set. Figure 1 shows the 
correlation between the model’s outputs and calculated outputs. Networks containing 2 to 8 
hidden units showed better performance. A single hidden layer with two neuron units was 
selected for our model because the number of hidden units should be as few as possible (Zhang 
et al., 1998; SNNS Group, 1997). An ANN architecture with fewer hidden layers can avoid over-
fitting problems observed during the trial-and-error procedure. Consequently, our model’s 
structure was determined as 11:2:2, inputs/hidden units/outputs respectively. The generalization 
error of this architecture, in other words, the recorded values of the squared summed error 
calculated on the training and the verification sets during the learning monitoring was equal to 
0.55. The best correlation coefficient between the output of the ANN model and actual value of 
the indicators was 0.9 for the Machinery Energy Ratio and 0.93 for the Mechanization Index as 
shown in Figure 1. 
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Figure 1. Correlations between the ANN model’s outputs and calculated outputs for each number 
of hidden units 

Note: columns with no sign were not validated. 

6. RESULTS AND DISCUSSION 

6.1 Residuals Validation And Reconsideration Of The Target Farming System 

Figure 2 shows the residuals and relative errors of the two output indicators for each validation 
pattern, obtained by comparing the outputs of the model and the outputs calculated using 
equations 1 and 2. 
 
The full data set (96 patterns) was also tested for the residuals and relative errors. Data patterns 
that generated residuals greater than ±0.025 and relative errors greater than ±0.15 for both the MI 
and MER were rejected from the original data set in order to determine a boundary which 
represents the applicable range of the ANN model. Rejecting such data patterns enhances the 
network forecasting capability. 
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The remaining, representative values of the items that redefine our target farming system are 
given in Table 2 (see columns 1a, 2a, 4a to 7a, 10a, 11a, and 12a). The rejected data sets were 
regarded as those that could be analyzed under different farming systems. 

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
-0.60
-0.50
-0.40
-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30
0.40
0.50

MI relat ive error
MER relat ive error

Va lida t ion pa t te r ns

R
e

la
ti

v
e 

er
ro

r

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
-0.15

-0.13

-0.10

-0.08

-0.05

-0.03

0.00

0.03

0.05

0.08

0.10

MI residual value
MER residual value

Va lida t ion pa t te r ns

R
es

id
u

al
 v

a
lu

e

Figure 2. Residuals and relative errors of the validation set. 
 
6.2 Sensitivity Analysis 
In order to assess the predictive ability and validity of the developed ANN model, two sensitivity 
analyses were examined. In each case, the robustness and sensitivity of the model were 
determined by examining and comparing the outputs produced during the validation stage with 
the calculated values. 
 
In the first approach, the ANN model was trained by withdrawing each input item one at a time 
while not changing any of the other items for every pattern. The resulted normalized output 
values, presented in Figure 3, followed a linear trend on small scatter of points close to the 
diagonal line, indicating that the ANN model is a good predictor of the output when the number 
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of items is restricted and outliers are rejected from the data set of each item. 
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Figure 3. Predicted outputs trend while withdrawing each selected input. 
 
In the second approach, the validity of the developed ANN model was assessed by observing 
how the model’s outputs changed with a change in a selected input item. Pattern No. 42 (in 
Figure 4) was chosen as a standard because it produced a range of output values that, from the 
residuals validation method described above, were representative of all the data patterns. Figure 
4 shows these patterns sorted for clarity. 
 
In the case of pattern No. 42, all but one of the input variables that were continuous were fixed to 
their original values as used for training, while a set of artificial normalized data between 0 and 1 
in 5% increments was generated for the selected input that was not fixed. For each selected input 
item, these generated artificial patterns were validated by the previously trained ANN with two 
hidden units in a single layer. 
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For the categorical inputs, the analysis was conducted as follows: For each of the 22 units of the 
validation set, one of the categorical input items was selected. The values of the selected 
categorical inputs were artificially generated (items 9, 10 and 11 in Table 3). The effect of 
changing one value of the selected categorical input on the output value was examined. 
This process was repeated until the model response was tested for all the input variables. The 
subsequent discussion on the effect and degree of contribution introduced by the artificial 
variations of the inputs to the ANN model was based on the observed forecasted trend of the 
output as well as observed general farming system performance. 
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Figure 4.Candidates for standard pattern selection. 

6.3 Continuous Inputs 
Figures 5 and 6 show the relationship between the predicted mechanization indicators and the 
fluctuation of the continuous inputs. The amount that each input item contributes to the ANN 
model can be obtained from these figures. The effects of each input item on the output trend and 
observed facts in an actual situation in the target region are discussed in this section. 
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Figure 5. Effect of incremental increases in continuous inputs on the Mechanization Index. 
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Figure 6. Effect of incremental increases in continuous inputs on the Machinery Energy Ratio.
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Figure 7. Actual total farm land ownership and mechanization indicators. 
Artificial increments in the input Total Farm Land Ownership produced a reverse trend effect in 
both mechanization indicators. To clarify this point Figure 7 is presented to show the actual farm 
data patterns and corresponding Mechanization Indicators. However, no clear relationship was 
found in this graph. 
 
The input Number of Crops affects mainly the MER (compare Figures 5 and 6). In reality, the 
production of the most common crops (wheat and sorghum) was more mechanized than the 
production of maize, beans and vegetables which are optional crops in this region. This means 
that introducing additional optional crops would require greater amount of seeds, agrochemicals 
and fertilizers but not much additional machinery use. The output of the model reflects this 
situation. 
 
As shown in Figure 5 and 6, the input Tractor Units Ownership contributes more to the MER 
than it does to the MI. Since tractors are the main power source in this farming system, Tractor 
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Units Ownership directly increases mechanization intensity in comparison to farms where 
tractors are hired. 
 
In Figure 5, the input Labor Intensity has the most significant effect on the outputs of this model, 
especially for the MI. Hand-labor is applied basically in two fashions in the target region. Firstly, 
it performs simple tasks such as weed control which introduces a peak on the labor demand trend 
often not available. Therefore, this situation is observed as the first stage for improving 
mechanization status by means of introducing appropriate machinery. The second case is that the 
hand-labor is also applied intensively for calibration, operation and assistance during the 
mechanized farming tasks. Consequently, from this point of view, we recommend better practical 
technical training for mechanized farm work in order to improve efficiency of machinery use. 
Animal Traction Intensity makes a significant contribution, as it reduces both indicators. This is 
simply because farms not applying tractor energy much depend on animal traction. As animal 
traction requires less energy than does a mechanized farming using the tractor, it will be 
advantageous in certain situations, and some farms should consider animal traction for tasks such 
as weeding which require little power, which are also the most time demanding tasks. 
The Number of Tillage Operations bears little sensitivity to the ANN model. However, 
considering that the most repetitive and highly power consuming farming tasks in order of 
importance were harrowing, disc ploughing and surface leveling, introducing a new factor on 
tillage effectiveness or “quality” would improve the capability of the analysis while applying the 
ANN model. 
 
Straw Management represents a similar marginal decreasing effect on both mechanization 
indicators. However, at the farm level it implies (besides feeding for livestock) incorporation into 
the field for soil improvement as well as to protect the soil surface against wind and water 
erosion. Introducing this input into the ANN model leads a reduction in tillage techniques which 
in turn diminish the MI (see Figure 5). 
 
Benefit-Cost Ratio presents high reverse trend effect on significance for the MER. This result is 
related to the analysis of the input Number of Crops mentioned above, that the most popular 
crops in the region such as wheat and sorghum require more hours of machine work than do the 
less common crops such as maize. In contrast, the Benefit-Cost ratio on producing maize was the 
highest in the farming system under study. 
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6.4 Categorical Inputs 
 
Figure 8 shows how modifying the categorical inputs affect the ANN model’s outputs. The graph 
was created by changing the value of one of the selected categorical inputs (items 9, 10 and 11 in 
Table 3) in the 22 units in the validation set, while keeping the values of the other input items 
unchanged. 
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Figure 8. Effect of change in categorical inputs on the mechanization indicators. 
 
Technical Assistance Availability increases the MI, and to a lesser degree, the MER, as shown in 
Figure 8. 
 
Land Tenure, in the case of Ejidos (ownership by government type, scored 1), had a negative 
impact on the MI, but a positive impact on the MER, compared to Private Ownership type 
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(scored 3). This suggests that Ejido ownership discourages machinery enhancement. Similarly, 
Hiring Farm (scored 2) introduces a negative impact for both indicators. Consequently this 
confirms that the privately owned farms favor tractors use. 
 
Support from Migration (scored 1) means direct external financial support from family members 
who have migrated. This input was included to the ANN model because it was common in the 
region. As shown in Figure 8, it increases the MER. However, an opposite non rational effect is 
observed for the MI. This result implies that, with the support from migrating family members, 
the farmers could hire machinery more and that this type of farm was not mechanized by the 
tractor much. 
 

7. CONCLUSION 
The developed ANN model predicted well the two mechanization indicators, Mechanization 
Index and Machinery Energy Ratio, for the farms in the study area in Mexico, since the 
correlation between the model’s outputs, i.e. predicted values, and the calculated values of the 
indicators was quite strong according to the results after the validation phase (22 cases), as 
described in section 5.2 above (Pearson’s=0.963 and 0.947; R2=0.93 and 0.90 for MI and MER 
respectively). Furthermore, the developed Mechanization Indicators would provide sufficient 
information to identify the target farming system as well as to assess their mechanization status. 
The model is based on a single hidden layer artificial neural network. It has 11 input items, 2 
hidden units, and the 2 output units. During the simulation process, the model was sensitive 
enough while predicting information which agrees well with the observed performance of the 
target farming system. Therefore, each of the 11 selected input variables contributed the 
improvement in the performance of the ANN. 
 
The wide range of the actual output values for the Mechanization Index and Machinery Energy 
Ratio (0.078 to 3.83, 0.483 to 0.726 respectively) in the studied farming system suggests that this 
ANN model may be applied to other regions in the country with conditions similar to those in 
this study. 
 
We recommend that the ANN model is tested using specific inputs from different farming 
systems in other regions of the country, especially where the tractor type described in this study 
is not the main power source. We also recommend analyzing the impact of Tillage Operations on 
the model by introducing a factor that appraises efficiency on the use of energy and appropriate 



19 

____________________________________________________________________________ 
A. Aragón-Ramírez, A. Oida , H. Nakashima, J. Miyasaka, and K. Ohdoi.“Mechanization Index 
and Machinery Energy Ratio Assessment by means of an Artificial Neural Network: a Mexican 
Case Study”. Agricultural Engineering International: the CIGR EJournal.  Manuscript PM 07 
002. Vol. IX. May, 2007 

land cultivation. 
 
Further practical application of this work consists on generating a map of mechanization(In 
Spanish) indicators for a much wider area. Analyzing the interrelation between this baseline data, 
in conjunction with available farm monitor reports could allow between others: resolving 
indications of average effectiveness of energy conversion, to identify priority areas to replace 
obsolete agricultural machinery, as well as, to asses the suitability of introducing new tractor 
units in the region. 
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