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Introduction 
A hypothesis is a statement about a population parameter, and. the two 

complementary hypotheses in a hypothesis testing problem are called the 
null hypothesis and the alternative hypothesis. They are denoted by Ho and 
H 17 respectively. 

If 8 denotes a population parameter, the general format of the null and 
alternative hypotheses is Ho : 8 E 8o and H1 : 8 E 88 where 8o is some 
subset of the parameter space and 88 is its complement. Typically, a hy­
pothesis test is specified in terms of a test statistic W(X1, ... , Xn) = W(X), 
a function of the sample. For example, a test might specify that Ho is to be 
rejected if X, the sample mean, is greater than 3. In this case W(X) =X 
is the test statistic and the rejection region is {(x1, ... , xn): x > 3}. 

Constructing Tests . 
· There are many methods of deriving test statistics for a hypothesis test, 

a few of which follow: 

1. Likelihood Ratio Tests 

The likelihood ratio method of hypothesis testing is related to the 
maximum likelihood estimators discussed in the article on point and 
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interval estimation. Given a likelihood function L(Ojx), the likelihood 
ratio ·test statistic for testing Ho: (} E So versus H1: 0 E eg is 

supL(Ojx) 

(1) .X( ) So 
x = -su-=-p-L-( 9-lx-)" 

e 

A likelihood ratio test (LRT) is any test that has a rejection region of 
the form {x: .X(x) D c}, where cis any number satisfying 0 D c D 1. 

If we interpret the likelihood function as measuring how likely the 
values of(} are, then we see that the LRT is comparing the plausibility 
of the (} values in the null hypothesis to those in the alternative. Small .. 
values of the LRT statistic are interpreted as being evidence against · 
Ho and lead to rejection of Ho. 

If the null hypothesis consists of a single value 90, and the alternative is 
everything else, then the LRT statistic is simply .X= L(00 ix)/L(Oix), 
where 0 is the MLE of 0. 

Example Let X 1, ... ,Xn be a random sample from a N(O, 1) popu­
lation. The LRT statistic for testing Ho: (} = 00 versus H1 : (} =f. 90 

is 

If T(X) is a sufficient statistic for (} then, as with maximum likelihood 
estimators, the LRT statistic is a function ofT. That is; .X(x) depends 
on x only through T(x) 

2. Bayesian Tests 

The Bayesian paradigm prescribes that the· sample information be 
combined with the prior information using Bayes' Theorem to ob­
tain the posterior distribution 7!'(0lx). All inferences about (}are now 
based on the posterior distribution. In a hypothesis testing problem, 
the posterior distribution may be used to calculate the probabilities 
that Ho and H1 are true. 

One way a Bayesian hypot4esis tester may choose to use the posterior 
distribution is to decide to accept Ho as true if ~ :~~~ i 2:: c for some 

0 . 

constant c, and to reject Ho otherwise. Equivalently, we can reject Ho 
if P(O E 83IX) is greater than a specified number. 
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Example Let X1, ... , Xn be iid N(O, o-2) and let the prior distribution 
on() be N(J.£,T2 ) where a 2 ,J.£, and T 2 are known. Consider testing 
Ho : () 0 Oo versus H1 : () > Oo where we decide to accept Ho if 
P(O E 8oiX) 2: P(() E 83IX). After some calculation, we find that 
Ho will be accepted as true if 

3. Union-Intersection and Intersection-Union Tests In some situations, 
tests for complicated null hypotheses can be developed from. tests for 
simpler null hypotheses. The union-intersection method of test con­
struction might be useful when the null hypothesis is conveniently 
expressed as an intersection, say Ho : (} E n-rEr 8-y, where r is an 
arbitrary index set. If tests are available for each of the problems of 
testing Ho-y: (} E 8-y versus H1-y: (} E 8~ where the rejection region for · 
the test of Ho-y is {x: T-y(x) E .R.y}, then the rejection region for the 
union-intersection test is 

U {x: T-y(x) E .R.y}. 
-rEr 

The rationale is that if any one of the hypotheses Ho-y is rejected, then 
H0 must also be rejected. 

A complementary method, the intersection-union method, may be 
useful if the null hypothesis is conveniently expressed as a union. 
Suppose we wish to test the null hypothesis Ho : (} E U-rEr 8-y, and 
{ x: T-y(x) E .R.y} is the rejection region for a test of Ho-y: (} E 8-y versus 
H~-y: (} E 8~. Then the rejection region for the intersection-union test 
of Ho versus H1 is · 
(2) n {x: T-y(x) E .R.y}. 

-rEr 
Ho is false if and only if all of the Ho-y are false, so Ho can be rejected 
if and only if each of the individual hypotheses Ho-y can be rejected. 

Example The topic of acceptance sampling provides an extremely 
useful application of an intersection-union test (see Berger 1982). 

In assessing the quality of upholstery fabric, standards dictate that 
parameters relating to strength and flammability must satisfy 01 > 50 
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pounds and 02 > .95, respectively. This results in the hypothesis test 

Ho: {01 0 50 or 02 0 .95} versus H1: {01 >50 and 02 > .95}, 

where a batch of material is acceptable only if H1 is accepted. 

If X1, ... , Xn are iid N(01·, a 2) and Y1, ... , Ym are iid Bernoulli(02), 
where Yi = 1 if the ith sample passes the flammability test, the rejec­
tion region for the intersection-union test is given by 

{ x- 50 m } 
( x, y) : 8 / .jii > t and ~ Yi > b . 

Thus the intersection-union test decides the product is acceptable, 
that is, H1 is true, if and only if it decides that each of the individual 
parameteJ:S meets its standard. 

There are many other methods available for constructing hypothesis 
tests, methods based on invariance, pivots, robust or large sample argu­
ments, to name a few. For more on hypothesis testing see Lehmann (1986). 

Evaluating Tests 
A hypothesis test of Ho : 0 E Go versus H1 : 0 E Gg might make one of 

two types of errors. If 0 E 8o but the hypothesis test incorrectly decides to 
reject H0 , then the test has made a 'Pype I Error. If, on the other hand, 
0 EGg but the test decides to accept Ho, a 'Pype II Error has been made. 

If R denotes the rejection region for a test, the power function is 

R X R = {probability of a Type I Error, 
o( E ) 1- the probability of a Type II Error, 

if(} EGo, 
if e EGg. 

A good test has power function near one for II!-OSt 0 E Gg and near zero 
for most (} E Go. 

Example Let X 1, ... , Xn be. a random sample from a N ( (}, a 2) population, 
a2 known. The likelihood ratio test of Ho: (} 0 Oo versus H1: 0 > Oo rejects 
Ho if (X- Oo)/(aj.jii) > c and has power function 

( Oo- (}) 
Po(XER)=P Z>c+a/Vfi, 

where Z is a standard normal random variable. 
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After a hypothesis test is done, the conclusions must be reported in 
some statistically meaningful ·way. One method of reporting the results of 
a hypothesis test is to report the size (sup8eao Po(X E R)), a, of the test 
used and the decision to reject Ho or accept Ho .. The size of the test carries 
important information. H a is small, the decision to reject Ho is fairly 
convincing, but if a is large, the decision to reject Ho is not very convincing 
because the test has a large probability of incorrectly making that decision. 

Another way of reporting the results of a hypothesis test, one that is 
data-dependent, is to report the p-value. Typically, not one but an entire 
class of tests are constructed, a different test being defined for each value of 

· a. The p-value for the sample point x is the smallest value of a for which 
this sample point will lead to rejection of Ho. 

Because rejection of Ho using a test with small size is m9re convincing 
evidence that H 1 is true than rejection of Ho with a test with large size, the 
interpretation of p-values goes in the same way. The smaller the p-value, 
the stronger the sample evidence that H1 is true. 

Many other types of evaluations of tests can be done. The theory of most 
powerful tests shows how to construct best tests under a variety of conditions 
(see Lehmann 1986 or Casella and Berger 1990, Chapter 8). Hypothesis tests 
can also be evaluated using risk functions, as in Hwang et al. (1992). 

Asymptotics 

For the LRT statistic (1), the following general theorem allows us to 
ensure construct a large sample test. 

Theorem 1 Let X11 ... , Xn be a random sample from a pdf or.pmf f(xjB). 
Under some regularity conditions1 on the model f(xjB), if 8 E 8o then the 
distribution of the statistic - 2log .X(X) converges to a chi squared distrib­
ution as the sample size n -+ oo. The degrees of freedom of the limiting 
distribution is the difference between the number of free parameters specified 
by (J E 9o and the number of free parameters specified by 8 E 8. 

Rejection of Ho: 8 E 8o for small values of .X(X) is equivalent to rejection 
for large values of -2log .X(X). Thus, 

Ho is rejected if and only if - 2log .X(X) ;:::: x~,a, 
1The "regularity conditions" are mainly concerned with the existence and behavior of 

the derivatives (with respect to the parameter) of the likelihood function, and the support 
of the distribution (it cannot depend on the parameter). See Lehmann (1986, Section 8.8) 
for precise conditions. 
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where v is the degrees of freedom specified in Theorem 1. 
Another large-sample test construction is based on asymptotic normality 

of a point estimator. Suppose· we wish to test a hypothesis about a real­
. valued parameter 0, and Wn = W(Xb ... , Xn) is a point estimator of 0, 
based on a sample of size n, that satisfies 

Wn-0 Z 
. --t ' 

lTn 

where u; is the variance of Wn and Z is a standard normal random variable. 
We now have the basis for an approximate test. For example, we could reject 
Ho : 0 0 Oo at level .05 if (Wn- Oo)/un > 1.645. 

In some instances, Un also depends on unknown parameters. In such 
a case, we look for an estimate Sn of Un with the property that un/ Sn 
converges in probability to one. Then, using Slutsky's Theorem (see Casella 
and Berger 1990, Section 5.3), we can deduce that (Wn-0)/Sn also converges 
in distribution to a standard normal distribution. A large-sample test may 
be based on this fact. Whether Un is estimated assuming()= Oo, or not, can 
lead to score and Wald tests, respectively. 
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