SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853-7501

TECHNICAL REPORT NO. 823

September 1988

A PRICE-DIRECTED APPROACH
TO REAL-TIME SCHEDULING
OF PRODUCTION OPERATIONS

by

R. Roundy, W. Maxwell, Y. Herer
S. Tayur and A. Getzler

This research was supported by NSF Grants ECS—8404641 and DMC—8451984, and also
by AT&T Information Systems and DuPont Corporation.

Abstract

Most past approaches to job shop scheduling are either highly myopic, or
they are unable to adapt effectively to the stream of unforeseen disruptions
that characterizes almost all manufacturing systems. We propose a two-
module scheduling system that is both robust and non-myopic. Periodically
a Planning Module develops a global view of what is likely to happen in
the facility over the next one to four weeks. It then passes information
down to the Dispatching Module. The Dispatching Module is based on
microprocessors that are located on the factory floor. Whenever a machine
is about to become idle, a fast optimization algorithm is run on the closest
microprocessor to decide which job should be done next. The data provided
by the Planning Module allows this decision to be made in a non-myopic
manner.

1 Introduction

We consider the problem of job shop scheduling. A typical job shop consists
of several machines. Each machine is capable of performing a variety of
operations, but machines can perform only one operation at a time. New
jobs arrive at various times. Each job consists of a sequence of operations
which are to be performed on different machines. We assume that the
operations corresponding to a job must be performed in a predetermined
sequence, and that each operation must be performed on a predetermined
machine. When all of the prescribed operations on a job are completed,
the job leaves the shop.

Associated with each job is a weight and a due date. Our task is to
schedule the operations over time so as to minimize the total (weighted)
tardiness. If a job is not completed by its due date, a penalty is imposed
which is proportional to its weight and to the tardiness of the job.Thus, if
a job has a weight w and is tardy by k days, the weighted tardiness penalty
incurred is wk.

What we have described so far is a simplified version of a very common
type of manufacturing system. However in the real world, many compli-
cations not addressed by the classical model are present and are highly
significant. The most important of these are the variability of the process-
ing times, machine breakdowns and other unforeseen disruptions.

Most past research on job shop scheduling can be divided into two cat-
egories: combinatorial optimization and dispatching rules. Much effort has
been expended in the area of combinatorial optimization, but the success
has been limited. Fast polynomial-time algorithms have been developed for
a few simple problems, but most problems with direct real-world applica-
tions have been shown to be NP-Hard. Algorithms have been developed
for solving some NP-Hard scheduling problems. These problems typically
model systems with special structure, and the algorithms are limited to
very small data sets (by industrial standards) because of high run times.

Combinatorial optimization algorithms produce pre-determined sched-
ules that are laid out for the entire shop over a fixed planning horizon.
Pre-computed, feasible schedules are valuable. They are a useful tool for
supporting short-term planning decisions, such as short-term manpower
planning and inventory management. They are also useful as a target and

1

as a yardstick by which actual performance can be evaluated.

However pre-computed schedules do not adequately provide support
for the actual sequencing and scheduling decisions that need to be made.
Pre-computed schedules are insufficiently robust. Unforeseen delays and
disruptions make them infeasible almost as soon as they are created. It
is not realistic to compute a new schedule every time a disruption occurs
because the run times of the algorithms and the frequency of disruptions
are both high, and because up-to-date information on the current status
of the entire factory would have to be gathered after every disruption.
Since frequent disruptions occur in virtually all manufacturing systems, a
practical scheduling method should be flexible to accommodate them.

Research in the second category focuses on determining the effective-
ness of various dispatching rules under different measures of performance.
Dispatching rules always yield an implementable schedule, regardless of un-
foreseen delays and other problems that arise during the course of a work-
day. The computations required are very simple and very little information
is required to make a decision. However, dispatching rules are myopic in
both space and time i.e., an individual machine has no information regard-
ing the current needs of other machines or what is likely to happen in the
near future. Hence decisions are made on very limited information and
overall efficiency is sacrificed.

We believe that it is time to re-think what a scheduling system should
accomplish. In our opinion a scheduling system should produce pre-compu-
ted, feasible schedules to support the short-term planning functions such as
the ones decribed above. However it should also provide real-time decision
support to the workers on the factory floor who ultimately make the actual
sequencing decisions. It should base its recommendations on information
reflecting what is probably going on elsewhere in the factory, and on what
is likely to occur in the future.

We propose a two-module approach that seeks to address these needs.
The Planning Module consists of a computation that attempts to get an
accurate global view of what is likely to happen in the shop over the next
one to four weeks. This module is run periodically on a mainframe, say once
per day or once per week. It is also run when there is a major disruption.
Its outputs are:

1. A detailed schedule for the next 1-4 weeks, used to support short term
planning functions with regard to overtime, subcontracting, shipping
schedules, raw material delivery, etc.

2. Information to be passed to the Dispatching Module in the form of
costs associated with performing a given operation at a given time.

The Dispatching Module is based on microprocessors which are physically
located on the factory floor. Whenever a machine is about to become idle,
a fast optimization algorithm is run on the nearest of these microprocessors
to determine which operation should be performed next. This algorithm
uses up-to-the-minute local information, such as the current status of the
machine and which operations are currently available for processing. It
also uses the costs passed from the Planning Module, which enable it to
anticipate the future consequences of the decision currently being made.
The Dispatching Module is an on-line decision support system. The process
of selecting the next job to be worked on is interactive. The algorithm
may report several near optimal solutions, and it may evaluate suggestions
made by the worker. The Dispatching Module also periodically provides
information on the current status of the factory to the Planning Module.

The advantages of the two module approach are clear. All the decisions
are made interactively. They are based on current local information and on
data computed by the Planning Module which takes into account what is
probably happening elsewhere in the factory and what is likely to happen
in the future. Minor disruptions or delays do not pose a problem as the
schedules produced are always implementable. If there is a major disrup-
tion, the Planning Module computation is rerun. Up-to-date information
on the status of the factory is gathered by the microprocessors of the Dis-
patching Module and communicated to the mainframe. The mainframe
then generates a new set of costs that take the nature of disruption into
account. Thus, in this two-module approach the decisions taken are not
myopic and they always produce an implementable schedule. In this way,
the flexibility of dispatching rules can be retained without ignoring the goal
of global efficiency in the job shop.

There clearly is a need for an approach which is both robust and non-
myopic. We are aware of three other current research efforts that address
this need. [Birge and Dempster 87] and [Bean et al. 87] consider systems

3

with multiple jobs, each of which requires only one operation. There are
multiple machines and jobs have alternative routings. For example, it may
be possible to process a given job on either machine A or machine B, and
the processing time of the job may be machine dependent. They propose
that a pre-planned schedule be computed, and that when disruptions force
deviations from the pre-planned schedule, that a computation be performed
to decide how to merge back into the pre-planned schedule at some future
date. Two heuristics are presented.

[Gallego 88a] and [Gallego 88b] considers a version of the Economic Lot
Scheduling Problem, in which several products with constant demands are
produced on a single machine. The machine can produce only one product
at a time, and there are setup costs and setup times. Gallego’s approach
is similar to Birge in that there is a pre-planned schedule that one would
ideally like to follow, and when disruptions occur one computes an optimal
transition from an arbitrary starting point to the pre-planned schedule. In
Gallego’s model the pre-planned schedule is cyclic and the time horizon is
infinite.

[Morton et al. 86] and [Morton et al. 88] discuss an evolving cost based
method of scheduling called Patriarch. Patriarch is designed to support
planning decisions as well as scheduling decisions. The underlying philos-
ophy in their approach has many similarities to this work, although the
research was done independently. The basic idea behind their approach
is that using a machine in any time period costs an amount that is de-
pendent on the status of the factory. The goal is to schedule jobs on the
machines based on the machine usage costs, the tardiness costs and interest
on delayed scheduling costs. They calculate costs based on the following
assumptions:

1. Material, labor, and machine costs are incurred only when the job
has begun processing.

2. Extra direct holding costs are incurred if the job is done early.
3. The loss of interest on revenues received for late jobs is a real cost.

4. NPV is the only true objective function for a firm; other views taken
are too simple, o r are trying to avoid the real problem of estimating
the ‘cost’ of tardiness.

The effect of assumptions 1 and 2 is to create an incentive to defer produc-
tion.

By contrast, our main goal is to provide a real-time support system
for scheduling decisions. We view our system as supporting planning func-
tions, such as manpower management and raw material acquisition, only in
feedback mode. Therefore we make the following assumptions about costs.

1. Material acquisition and manpower allocation have already taken
place, and interest on the direct machine usage costs does not create
a significant incentive to defer production.

2'. Extra direct holding costs which are incurred if a job is done early
are small.

The impact of these assumptions is to remove the incentive to idle a machine
when there is work it could be doing.

Another major difference in the approach of [Morton et al. 86] and
[Morton er al. 88] and our approach is in the method used for computation
of machine usage costs. They estimate machine usage costs be simulating
the factory until a busy period ends, and using the schedule generated to
determine the costs. The simulations are rerun until a satisfactory set of
costs is obtained. Our approach, described in section 2 below, is consider-
ably different. However, early on we experimented with an approach which
is similar in spirit to theirs. This approach was tested on a subset of the
data sets used in stage one of our computational tests. We compared these
results with those obtained from using the proposed two module approach
and the latter were found to be superior. The superiority was especially
evident with longer time horizons and scattered due dates which are more
representative of the real world. For this reason we abandoned this ap-
proach.

In this study, we have primarily concentrated on testing our two-module
concept. The key questions that need to be considered are:

1. What data need to be passed to the lower-tier from the top-tier?
2. What algorithms should be used in the two modules?

3. How should we measure the effectiveness of the algorithms and of this
approach?

The costs that we are passing down from the Planning Module to the Dis-
patching Module are the estimated cost of completing an operation at a
given time. We have also decided what algorithms are to be used in the
Planning and Dispatching Modules. The focus of our research is on vali-
dating the two module concept. Consequently we have not yet attempted
to make our algorithms and data structures computationally efficient.

The paper is organized as follows: In section 2, our assumptions about
the factory are formally stated and the Planning Module is discussed. The
weighted tardiness problem is formulated as an integer programming prob-
lem (IP). We dualize selected constraints of the above mentioned IP. Any
feasible solution to the Lagrangian relaxation of the IP is a valid lower
bound for the IP. The lower bound is improved by using standard subgra-
dient optimization procedures. The values of the Lagrangian dual variables
have an intuitive meaning. They correspond to machine ‘prices’ -the cost
of using a machine at a given time. These machine prices are used to com-
pute the cost of completing an operation at a given time. These operation
costs are passed down to the Dispatching Module. The Dispatching Mod-
ule is discussed in section 3. Section 4 describes the computational tests
performed and the extremely encouraging results obtained.

2 The Planning Module
2.1 The Job Shop

Our factory consists of M machines, each capable of performing a variety
of operations, but each machine can perform only one operation at a time.
Preemption is not allowed. There are n jobs in the shop, all available for
immediate processing. Each job j consists of o; operations which must
be performed in a specified order: 1,2...0;. Thus, the sequence is serial
and fixed. Operation i of job j must beperformed on machine m;;. The
machines on which the operations are to be performed are pre-determined.
The processing times are variable; we assume that the processing time for
operation i of job j is a uniformly distributed random variable with mean
pji. Each job j has a due date d;. A penalty is imposed if a job is not
completed by its due date. If job j is tardy by k days, the penalty imposed

is kw;. Given a schedule, the sum total of this tardiness penalty over all
jobs is called the total weighted tardiness of the schedule. Our task is to
find a schedule that has a low value of the total weighted tardiness.

2.2 Formulation of the weighted tardiness problem

We now formulate the job shop scheduling problem as an integer program-
ming problem. This formulation is the basis of the Planning Module, but
it is not used in the Dispatching Module.

In this formulation we assume that the processing times are determin-
istic with a value equal to the expected processing time. However, in con-
ducting our simulation of the overall system, we have allowed for variability
in the processing times. Furthermore, we assume in this formulation that
time is discrete, and that T is the last time period in the horizon. The
objective is to minimize the total weighted tardiness.

The integer programming formulation (P) of the job shop scheduling
problem given below is due to [Pritsker and Watters 68]. A more compact
formulation is available [Pritsker et al. 69], but (P) has structure which can
be exploited to our advantage. We will dualize some of the constraints of
(P) to obtain a Lagrangian relaxation of (P). The Lagrangian relaxation of
(P) can be decomposed into n independent sub-problems, one for each job.
These sub-problems are the duals of minimum flow problems with special
structure. This structure enables us to solve them in linear time using a
special purpose algorithm.

Let X ;; bea variable such thatX;;, = 1 if operation i of job j has started
by time t, and X ;i = O otherwise. We formulate the integer programming
problem with the following constraints:

1. Once started an operation remains started in all subsequent time
periods.

X1 2 Xjir 1<j<nl1<i<o,1<t<T. (1)
2. An operation cannot start until its predecessor is completed.

Xj,i,t*Pj,s 2 Xj,i+l,t 1€£j<nl1<i<o,pists T. (2

3. At most one job can be done on a particular machine in a given time
period.

YV machines m,
" Z_ }(inz —Xjig—p;) S 1{ 1<t<T. (3)
swmji=m

Recall tha a cost of w; is incurred for each time period after d; during which
job j has not been completed. Thus our objective function is the following:

minimize », w; Y, (1—Xjo.).
J

1>d;j =pj,o;

Therefore, the problem of choosing an optimal schedule is

(P) maximize > w; ., Xjo.— 2 wi(T —dj +pj,)
i

j > d) -Pj"’j

such that (1), (2), and (3) hold, and X ;; € {0,1}V j,i,r.

2.3 Dualization

Note that the objective function of (P) can be restated as
maximize Y, >, > (WjiX i) — 2, wi(T —dj +pj.;)
it j
where w;; = wj ifi = o; and ¢t > d; = Pj.g;» and wj;; = 0 otherwise.

Further, note that the second term is constant. Dualizing the machine
capacity constraint (3) with Lagrangian multipliers A,,;, we get:

(Pﬁv) maxj‘mize ZZZ[(lmig,t-ij,; _'/q'mj,-,t +wjlt)let]
i it
+ 2 wi(—T +dj = o)) + 2 2 Ami
j m

such that

Xjiu—Xjiz+150 VvJj,i,z, (1)
Xj,i+l,t _Xj,i,t—p_,',' <0 Vj,i,t, (2)
X €{0,1} YV Jj,i,t. (4)

Note that (P3) can be decomposed by job into # independent sub-problems,
one for each job. The sub-problem corresponding to job j is (P;). Drop-
ping the job subscript j, (Ps;) can be written as:

(P2j) maximize 3, 3 [(Amitp; = Amit +Wie)X ir]
i1
such that
Xil —Xi,l+l <0 Vi:ts (1,)
XH..]’; —.Xi,t"'Pi S O ‘V' i,t, (21)
X, € {0,1} Vit &)

Observing that the constraints in (P;) are dual network flow constraints
we can replace (P3;) by its linear relaxation. Therefore, (4’) can be replaced
by:

X <1 Vit 3
XixZO Vi,t (6)

By repeated application of (1) and (2), we see that X r < 1 yields (5).
Thus, we can replace (5) by:

Xir<l (7)

After replacing (4') in (Py;) by (6) and (7), only one constraint of (Pj;)
has a non-zero right hand side. The dual to (Pj;) is therefore a max-flow
problem on a network. The topology of the network is illustrated in Figure
1. There is a sink node o. There is also a node for each (i,z) pair. There
are three sets of (directed) arcs. The first set of arcs connects (i,#) to
(i, +1) for all i and all r < T. The second set of arcs connects (i,z) to
(i —1,t —p;—y) for alli > 1 and ¢t —p;—; = 0. The third set of arcs is not
shown in Figure 1; it connects each of the nodes (i,z) to the sink node o.
This is a network with very special structure which enables us to develop a
special purpose algorithm that solves the max-flow problem in linear time.

9

Figure 1: Network Topology.

[L1p—{12P{1,3{1,4»{1,56P—{1,6»{1,7}»1,8]

Operations

2 [2’1i2’2§:’3<:’4§:)5<&6§\2’7i’8l
3 [31p—{32p—{3.3{3.41{35P13,6»{3,7]>3.8]

AR

4 [41p{42P{4,3P{4, 44,5 {4,647 >14.8]

1 2 3 4 5 6 7 8

Time Periods

A detailed formulation of the problem and the algorithm that solves it are
presented in Appendix B.

Observe that for every set of Lagrangian multipliers A, the sum of
the solutions to (P,j) can be used to obtain a lower bound on the optimal
cost, or equivantly, an upper bound on the optimal profit in (P). We use
standard subgradient optimization procedures to select values of A, that
improve the lower bound. We use a geometrically decreasing step size with
ratio .975 and stop when the step size drops below machine precision. This
procedure yields a constant number of iterations. This is probably not the
most effecient search procedure, but as stated earlier we are not after an
efficient implementation, but rather trying to test the performance of the
two module approach. The lower bound itself is of secondary importance
to us. In addition to the lower bound, two very useful pieces of information
are obtained from the above computations. The first is the set of A’s. Recall
that the lambda’s are the Lagrangian variables that we used to dualize the
machine capacity constraints. Therefore, intuitively they correspond to
machine prices. Thus, A4,,, can be thought of as the price of using machine
m in time period z. The second piece of information is obtained when we
solve the maxflow problems. Recall that an optimal solution to a maxflow
problem also yields a minimum cut. These cuts are useful. They correspond
to the X variables of (P,;) and (P). For problem (P;;), the nodes that are
to the right of (respectively, to the left of) the cut correspond to pairs (i, ¢)
such that operation i of job j has (respectively, has not) started by time z.

2.4 Costs passed down to the Dispatching Module

Once a satisfactory set of machine prices A is obtained, a cost function
for completing a given operation at a given time is generated. These cost
functions are passed down to the Dispatching Module. Whenever a machine
becomes idle, a one-machine scheduling problem based on these functions
is solved to decide which operation should be performed next.

The cost function is calculated as follows: let C;;, be the estimated cost
of completing operation i of job j at time z. Recalling that o; is the final
operation of job j, we have

10

Ciopt = 20 Amyos twit—d)" (8)
[=Pj,o; <S5
where AT = max{A,0}. The intuition behind (8) is as follows: The cost of
completing the final operation at time ¢ comes from two sources. The first
term corresponds to the cost of using machine m;, for the time periods
t — pj,o; + 1 through 7. Recall from the previous section that A4, is an
estimate of the value of time on machine m at time z. The second term is
the tardiness penalty that is imposed if the job is tardy.
Recall that when we solved the maxflow problem corresponding to job
j, we obtained a cut that partitioned the nodes of the network. The nodes
to the right of the cut correspond to the pairs (i,¢) such that operation i
of job j has started by time ¢, i.e. X;i=1. The node (i,z;;) is the node
corresponding to operation i of job j immediately to the right of the cut,
ie Xji.,=1and X;u=0V t< zj;. Intuitively, this means that according
to the Planning Module operation i of job j is not likely to start before
time zj;. For operations i < o0; of job j, we compute Cj; as follows:

CJ"" = Z)”"Jhs + Cj»i‘*‘l,(max{zj,iﬂ,f}+Pj,r+1) (9

t—pji<sSt

The cost of completing operation i of job j at time ¢ comes from two
sources. The first term is the machine usage cost. The logic behind the
second term is as follows: completing operation i of job j at time t means
that the earliest j is available for the next operation is at time ¢. Recall
from our discussion above that operation i + 1 of job j is not likely to
start before time z;;+; . Thus, we estimate that the starting time for
operation i + 1 is max(z;+1,t), and that operation i + 1 will complete at
time max(zj,i+1,t)+pj,‘-+1.

Since the machine prices A are not monotone, C;;; may not be monotone
in ¢. This can cause an operation to be delayed even when the operation is
available for processing and the machine is idle. According to our modeling
assumptions this is clearly not desirable. Therefore, we impose monotonic-
ity on Cji. This is done as follows:

* fusnd .
Cfu = 2z Ciis

Now C, is a non-decreasing step function of time. The values of C/;, V j, i, ¢

are passed down to the Dispatching module.

11

3 The Dispatching Module

3.1 Introduction

All the computations described above are performed on a mainframe com-
puter and constitute the Planning Module. These computations are per-
formed periodically (once a day, weekly) or when there is a major disrup-
tion on the factory floor. The costs computed in the Planning Module are
passed down to the Dispatching Module. The Dispatching Module is based
on microprocessors located on the factory floor. When a machine is about
to finish its current operation, the operator at this machine has to decide
which one of the jobs available at his machine is to be processed next. The
operator provides local information regarding which jobs are available to
choose from to the microprocessor. Algorithms based on the microproces-
sor use this local information and the costs passed down from the Planning
Module to provide decision support for the worker in determining which
job should be processed next on the machine. Thus, the decisions are made
interactively and in real time. The schedule thus generated is always im-
plementable because it uses up-to-the minute local information, and it is
non-myopic in space and in time because it is guided by the costs passed
down from the Planning Module.

The Dispatching Module solves a one-machine scheduling problem, us-
ing only the jobs that are currently available for processing. It recommends
the first job in the sequence for immediate processing. If the worker sug-
gests that a different job, job A, be done next, the Dispatching Module
computes a schedule in which A is the first job, and compares the cost of
this schedule to the cost of the schedule it computed. We now describe the
one-machine scheduling problem that the Dispatching Module solves, and
the algorithm used to solve it.

3.2 The One-Machine Scheduling problem

The scheduling problem solved by the Dispatching Module is the following.
We are given a machine and k jobs that need to be processed on this
machine. Only one job can be processed at a time, and all jobs have
to be processed. Pre-emption is not allowed. Associated with each job

12

J; are processing times p; = 0 and a non-decreasing cost function C;(z)
which represents the cost incurred if job J; finishes at time t. We want
to find a sequence of the jobs J(),J) -..J) that minimizes the total cost
Cr= Z’f C.(z;), where t; is the completion time of job i. In the context of
our two-module approach to job shop scheduling the jobs to be processed
are those currently available for processing at a given machine at a given
point in time, and the cost functions C;(¢) are the functions C;, computed
in section 2.4.

Several special cases of this problem have been extensively studied
[Lawler er al. 82] and [Lenstra and Rinnooy Kan 84]. The best known of
these is the weighted tardiness problem, in which C;(t) = w;.max{0,t —d;}
[Lawler 71] showed that the weighted tardiness problem is unary NP-Hard.
Numerous branch and bound algorithms, dynamic programming algorithms
and heuristics have been proposed for this problem [Lawler er al. 82] and
[Lenstra and Rinnooy Kan 84].

We propose a simple heuristic for solving this problem. It is similar
in spirit to the heuristic of [Vepsalainen and Morton 87]. The weight of a
job is a measure of its urgency. Let 0 < p < 1 and g = 1 —p. Note that
Ci(s +pi +1) — Ci(s + p;) = 0 is the cost of delaying a job i scheduled to
start at time s by one time unit. At time ¢, we estimate the weight of job
i to be:

Ci(r) = ZﬁpS(cxs +t4pi+1)—Ci(s +1+pi)

5=

prC(s+t+p,+1)

s=0
The parameter p determins how much weight we give to future information.
Based on the formula for C;(z), the average look-ahead time is 3524 00° = 5—.

We suggest setting % =gp &p= % where p is the average process-
ing time of the jobs to be processed. In our experiments and those of
[Vepsalainen and Morton 87] & = 2.25 worked well.

If we are trying to decide which of a given set of jobs to schedule next
on a given machine at a given time ¢, we select the job j for which Eiﬂ
is maximal. If we want a complete schedule for a number of jobs on a
single machine, we obtain it by applying this rule repeatedly each time the
machine becomes idle.

13

This approach does not always produce schedules which are locally op-
timal. We experimented with three approaches for solving the one-machine
problem: The simple procedure described above, the simple procedure fol-
lowed by a sequence of adjacent pairwise interchanges to achieve local opti-
mality, and the optimal solution (computed by dynamic programming). In
the context of our two-module approach to job shop scheduling, when there
was randomness in the processing times, the first of these rules exhibited
the best performance. Therefore it was chosen.

4 Computational Results

The performance of the one-machine heuristic and the two-module ap-
proach developed above was compared to a number of existing heuristics.
The comparison was done by randomly generating a number of data sets.
Each data set contains routing information of the jobs, expected process-
ing times of the operations, and the due dates of each of the jobs. The
data sets generated had different numbers of jobs, different numbers of ma-
chines, different due date characteristics (loose(L), tight(T), clustered(C),
scattered(S)), and had different routing characteristics (flowshop(F), job-
shop(J)). The number of operations per job was set equal to the number of
machines and each job visited each machine exactly once. The due dates
were selected from a uniform distribution with mean and variance depen-
dent on the size and other characteristics of the data set. The weights w;
were all set equal to one. For all data sets, the time horizon was large
enuogh so that all jobs were completed before time T. We used p = -1—_%%
where o = 2.25.

Table 1 shows the different data sets that were generated. Nine different
sizes of data sets were considered. For each size, the data sets were divided
into eight categories: LCF, TCF, LSF, TSF, LCJ, TCJ, TSJ, LSJ. The
explanation is as follows: L and T stand for loose and tight due dates re-
spectively; C and S stand for clustered and scattered due date respectively;
and F and J stand for flow and job shop configurations respectively. Thus
LSJ means that the data set represents a job shop with jobs that usually
have loose and scattered due dates.

Our simulations can be divided into two categories: deterministic and

14

stochastic. For each data set, the planning module is executed first using
routing information and expected processing times to generate the costs.
These costs are used in both the deterministic and stochastic simulations.
In deterministic simulations, the true processing times of the operations
are assumed fixed at their expected values. In stochastic simulations true
operation times are generated from an uniform distribution whose mean is
the expected processing time of that operation. Four levels of variability
were considered: level 1 = +20%, level 2 = £40%, level 3 = + 60%, and
level 4 = +80% of the mean processing times.

The performance measures obtained above were compared against six
existing heuristics: FIFO, least slack, least number of operations remaining,
SPT, random ordering, and a rule based on [Vepsalainen and Morton 871}
This was done as follows: For each data set deterministic simulations were
performed first, one using each of the six heuristics. The heuristic amongst
the six above that yeilded the lowest weighted tardiness is called the ‘best
heuristic’ for this data set. This ‘best heuristic’ is used in stochastic simula-
tions and the tardiness compared to our two module approach. The reason
behind this comparison procedure is bassed the rationale that the dispatch-
ing rule to be used on the shop floor is decided prior to the true occurance of
the events. Therefore, although some heuristic might outperform the ‘best
heuristic’ in some cases of stochastic simulations it is not valid to perform
stochastic simulations at each variability level for each of the six heuristics
and then compare the results with our two module approach.

Our simulation study was divided into two stages. In the first stage,
only data sets of sizes 1-6 were considered. Six replications were performed
for each combination of parameters. Thus, in this stage a total of (6x8x6
=) 288 data sets were generated and tested. For each of these data sets
eighty-one simulations were performed: one deterministic simulation, and
twenty stochastic simulations for each of the four levels of variability in
processing times. In this stage our approach was compared with all six
heuristics mentioned above and the ‘best heuristic’. The results are shown
in Tables 2 and 3. Because of space considerations only the best of the
competing heuristics are shown.

In the second stage, investigations were focused on determining the
performance of our approach as the length of the time horizon increases
and the variability of the true processing time increases. Sizes 1,4,7,8,

15

and 9 were used. Six replications were generated for each combination of
parameters, but only scattered due dates were used. This is because we
felt that scattered due dates, especially in the problems with longer time
horizons, were more representative of the real world. Thus a total of 5x4x6
= 120 data sets were generated and tested.

For each of the 120 data sets used in stage two, eighty-one simulations
were run: One deterministic simulation, and twenty replications for each
of the four different levels of variability in the stochastic simulations. The
results from the computational study are shown in tables 4 and 5. Because
of space considerations only the best of the competing heuristics are shown.

Our two level approach performed very well in all categories and was
significantly superior to all other heuristics. We briefly summarize the
results.

1. As the number of machines and number of jobs increased, our two-
level approach increased its superiority over the other heuristics. This
is extremely encouraging as this indicates that our approach is less
myopic and takes a global viewpoint. In the real world, the problems
sizes are usually very large, and this makes our approach far more
attractive to use.

2. Although our two level approach uniformly out-performed the other
heuristics, it did particularly well when the due dates were loose
and/or scattered. This is also encouraging because in practice the
due dates are typically not clustered.

3. Our two level heuristic did equally well in both the flow shop and the
job shop categories.

4. As the variability in true processing times increased, we observe that
the relative superiority of our approach drops. However, even at
+80% variation, our approach was significantly better than the oth-
ers. The decrease in relative performance can easily be explained:
as the randomness increases the mean processing times used in the
Planning and Scheduling Module becomes less reliable.

16

Size | Machines | Jobs

1 6 6

2 9 9

3 12 12

4 6 18

5 9 27

6 12 36

7 6 30

8 6 42

9 6 54

Table 1
Category | CMU | SPT | LSlack | Best Heur | Two-Module
ratio | ratio | ratio ratio average
Total 1.24 | 1.23 | 1.38 1.15 340
Sizel 1.03 | 1.03 | 1.26 1.06 59
Size2 1.07 | 1.08 | 1.31 1.06 94
Size3 1.12 | 1.13 | 1.26 1.07 182
Size4 1.22 | 1.21 1.43 1.14 257
Size5 1.32 | 1.30 | 145 1.20 439
Size6 1.25 | 1.25 1.38 1.16 1008
Loose 1.48 | 146 | 1.48 1.26 199
Tight 1.14 | 1.13 | 1.34 1.11 481
Clustered | 1.14 | 1.12 | 1.46 1.11 351
Scattered | 1.34 | 1.35 | 1.30 1.20 329
Flow 1.22 | 1.18 | 1.40 1.15 415
Job 1.26 | 1.30 | 1.34 1.15 265
LevelO 135 | 1.34 | 1.47 1.20 283
Levell 1.28 | 1.27 | 1.38 1.16 311
Level2 1.24 | 1.23 | 1.37 1.15 333
Level3 1.20 | 1.19 | 1.36 1.14 366
Leveld 1.16 | 1.16 | 1.35 1.12 407
Table 2

Average Two-Module Cost

17

Ratio of Average Heuristic Cost to Average Two Module Cost, and

Category | CMU | SPT | LSlack | Best Heur
Total 24 25 15 31
Sizel 42 42 23 44
Size2 38 37 22 43
Size3 27 29 21 38
Sized 15 17 11 25
Size5 11 14 8 19
Size6 9 10 5 14
Loose 19 21 19 29
Tight 28 29 11 32
Clustered 28 31 10 32
Scattered 19 19 20 29
Flow 21 24 9 27
Job 26 26 21 34
LevelO 13 14 7 26
Levell 19 21 12 26
Level2 24 25 16 30
Level3 29 30 19 33
Leveld 33 34 21 38
Table 3

Percentage of times Heuristic beat Two-Module Approach

18

Category | CMU | SPT | LSlack | Best Heur | Two-Module
ratio | ratio | ratio ratio average
Total 1.93 | 1.89 | 1.43 1.37 422
Sizel 1.02 | 1.03 | 1.16 1.04 613
Size4 1.28 | 1.29 | 1.32 1.16 257
Size7 229 | 234 | 1.53 1.49 230
Sized 2,11 | 2.02 | 1.52 1.43 555
Size9 1.97 | 1.92 | 141 1.39 1007
Loose 3.04 | 294 | 1.57 1.54 206
Tight 1.57 | 1.55 | 1.39 1.32 637
Flow 1.71 | 1.58 | 1.52 1.42 532
Job 231 | 241 1.27 1.28 312
Level0 2.27 | 2.21 1.52 1.45 340
Levell 2,10 | 2.04 | 1.44 1.40 376
Level2 1.96 | 1.91 | 1.42 1.37 412
Level3 1.81 | 1.78 1.41 1.35 461
Level4 1.68 | 1.65 | 1.41 1.33 521
Table 4

Ratio of Average Heuristic Cost to Average Two Module Cost, and
Average Two-Module Cost

19

Category | CMU | SPT | LSlack | Best Heur
Total 11 11 17 22
Sizel 44 43 29 48
Size4 10 11 19 26
Size7 0.7 1.2 16 16
Size8 0.4 1.0 11 11
Size9 0.2 0.6 10 10
Loose 9 8 22 25
Tight 13 15 12 19
Flow 10 11 8 14
Job 12 12 26 31
LevelO 7 8 8 19
Levell 10 10 14 18
Level2 11 11 19 22
Level3 13 13 21 24
Level4 14 15 24 28
Table 5

Percentage of times Heuristic beats Two-Module Approach

5 Conclusions

Our goal in this research was to test our two-module concept. The compu-
tational results herein clearly indicate that the two-module approach gives
much better results than existing dispatching rules. However, the data
structures and the algorithms used in this exploratory research are too in-
efficient for immediate implementation. Our next step is to develop efficient
data structures and algorithms.

6 Appendix: The Max Flow Algorithm

In this appendix we formulate the dual of (Ps;) as a max flow problem. We
observe that the network has a special structure. We give a fast alogorithm
for solving it, prove that the algorithm produces an optimal solution, and
analyze its running time.

20

The dual of (Py;) is
(Dyj) maximize z;7
such that

Vit = Vigm1 F Vi = Yidrgap —Zie = Ay Vit
Vg, ..>. O V i, t,

Yi 20 v i9t9
Zit 20 V (iyt) ‘7-‘é (13T)’
21T <0
where A iy = —Am, i4p; T Am; 0 —wi V i,t. The variables vy, yir, zir, and zi7

correspond respectively to constraints (1°), (2°), (6), and (7).

The constraints of (D,;) define a network G. There is a node in G
corresponding to each operation - time period pair. They are designated
{G,0): 1< i<1,1<t< T} wherel = 0;. G also has a source node 0.
The set of arcs is {(i,£) » (i,t+1): 1< i<I,1<t< T}u {1 -
G—1,t—pi_): 1<i<I,p1<t<T}u{o—>G,0:12i<1,1%
t £ T}. We denote the flow on arc ¢ — (i,¢) by zi. The flow along every
arc is constrained to be nonnegative with the exception of arc o — (1,T),
whose flow is constrained to be nonpositive. Our objective is to maximize
z1r, or, equivalently, to minimize —z7. A is the net supply at node (i,).
A negative net supply is interpreted as a demand. (Figure 1).

Solving the max flow problem also yields the minimum cut. The rela-
tionship between the cuts and the start times of the operations (min {z: x;
= 1}) was discussed in section 2.3. The minimal cut will satisfy (1) and (2)
because the arcs (i,z) — (i — 1,z —p;—1) and (i,t) — (i, + 1) have infinite
capacity. Therefore the minimal cut in the network of Figure 1 will run
from the upper left to the lower right.

We are now ready to give an algorithm that solves (D;;). It is convenient
to re-index the time subscripts. We will use (i, — X;.;p;) to denote node
(i,t). Therefore arcs go from node (i,s) to node (i,s + 1) and from node
(i,s) tonode (i — 1,s).

We refer to the arcs (i,s) — (i,s + 1) as “time arcs” and to the arcs
(i,s) — (i —1,s) as “operation arcs”. The intuition behind the algorithm
is as follows: the variables v;; represent the flow out of node (i,s) along

21

time arcs, and the variables y;; represent the flow out of node (i,s) along
operation arcs. The variables z;, (i,5) # (1,T) can be thought of as the
unsatisfied demand at node (i, s), while A ;; is the initial net supply at node
(i,s). —zi7 is the excess supply that flows out of the network. Thus, the
objective of the max flow alogorithm is to minimize the excess supply that
flows out of the network by using the supplies at nodes (i,#), Ay > O to
meet demands at nodes (k,s), Axs < O to the greatest extent possible.
The following algorithm solves (Dy;).

THE FLOW ALGORITHM

Step 1 (Initialize). Set v, =0, y;, =0, z;; = —A; V i,t, and set
V={@G,t):1<i<I,1<t<T}

Step 2 (Find a node (i,t) with a supply). If V = @ then stop.
Otherwise choose the (i,z) € V such that for all other (k,s) € V, either
t<sort=sand k > i. Remove (i,?) from V. If z;; 2 O then go to Step
2. Otherwise set ¢ = i and go to Step 3.

Step 3 (Try to use the supply at (i,t) in {(q,t): i > q}). Set
g=g—1.1Ifg< lorifg> 1and vy > O, then go to Step 4. Ifg= 1
and z, < 0 then mark arc (¢ + 1,t) — (g, 1), and go to Step 3. Otherwise
augument the flow around the simple cycle o — (i,t) - (i —1,¢) = ... >
(¢,t) > o by 6 = min (—zi,z4) > O units, and mark arc (g+1,1) = (q,1).
After the augmentation, if z;, = O then the supply at (i,?) is exhausted, so
go to Step 2. If z;; < 0 then z,; = 0. Go to Step 3.

Step 4 (Pass the excess supply at (i,t) to (i,t+1)). If z < T then
augument the flow around the simple cycle ¢ — (i,t) = (i, +1) = o by
—z; > 0 units, mark the arc (i,z) = (i,t+1),and gotoStep 2. If t =T
then augument the flow around the simple cycle 6 — (i,T) = (i —1,T) —
... > (1,T) > o by —z;; > 0 units and mark the arcs (¢,T) = (¢ —1,T),
1< g< i. Then go to Step 2.

Note that every arc not adjacent to o that has positive flow is marked.
Lemma .1 T he flow computed by the algorithm is feasible.

Proof. We must show that (1) is satisfied, that v, y; =2 0 for all i,¢,
that z;, 2 O for all (i,z) # (1,T), and that z;r < 0. Initially all of these

22

conditions except the last two are satisfied. By induction on the iterations
of Step 3 and Step 4, it is easily shown that they are still satisfied when
the algorithm terminates.

With regard to the sign of z;, (i,#) # (1,T) it is clear that z;; =2 0 when
the iteration of Steps 2 through 4 for (i,z) ends. It is also clear that after
that time the value of z;; will change only if it is strictly positive, and that
it cannot become negative. Thus z; = 0 when the algorithm terminates.
Since Ar = A, r 20, z;7 starts out nonpositive and becomes more and
more negative as the algorithm progresses. QED.

Lemma .2 If (k,t) — (k,t+ 1) is marked and q < k then there is an i,
g < i < k such that (i,t) — (i,t + 1) is marked and (j,t) = (G — 1,¢) is
marked for all i 2 j > q.

Proof. The result clearly holds if £ = 1. Steps 3 and 4 imply that if it is
true for all Kk < m then it is true for m. QED.

Let G, be the subnetwork of G with node set {(i,s): 1< i< [, 1<
s<t}andarcset {(i,s) 2 (—1,8): 1<i<I,1<s< 1}V {@s) >
(,s+1):1<isI,1<s<t}

Lemma .3 If (k,s) — (i,t) is an unmarked arc in G, , then (k,s) is not
connected to any node in the set {(n,t): 1 < n < i} by a path consisting
entirely of marked arcs in G,.

Proof. By the topology of G,, (k,s) and (n,t) can only be connected by a
path of marked arcs in G, if there is a node (k,r) such that both (k +1,r)
— (k,r) and (k,r) = (k,r + 1) are marked. But by Steps 3 and 4, if (k,r)
— (k,r + 1) is marked then (k +1,r) — (k,r) will not be marked. QED.

Let N be the set of nodes that are connected to (1,T) by a path of
marked arcs, and let N be its complement. We will show that (N,N) is a
cutset of minimal capacity.

Lemma .4 If (k,t) € N then (i,t) € N for all i < k. If in addition t < T
then (k,t+1) € N and (j,t) = (j,t+1) is marked for some j 2 k.

23

Proof. The hypothesis holds for r = T by Step 4. Assume it holds for +1,
and let (k,z) € N and 1 £ n < k. We will show that (n,t) € N. If (k,t) —
(k,t + 1) is marked then (k,z+ 1) € N. If (k,t) — (k,t+ 1) is unmarked,
Lemma B.3 implies that the path of marked arcs that connects (k,z) to
o must pass along (j,¢) — (j,z + 1) for some j > k. By the induction
hypothesis (k,z+ 1) isin N.

If(i,z) > (i—1,t) is marked for alln < i £ k then (n,t) € N. Otherwise
Lemma B.2 implies that (n,?) is connected to (i,z+1) by a path of marked
arcs for some n < i < k. By the induction hypothesis (i,z + 1) isin N, so
(n,t) € N. QED.

Lemma .5 If (i,t) € N then z;; = 0.

Proof. Steps 3 and 4 imply that if (k,¢) — (k,z+1) is marked then z,, = 0
for all g £ k. The result now follows from Lemma B.4. QED.

Theorem T he Flow Algorithm solves (P).

Proof. Lemma B.4 implies that the only arc that leads out of N is (1,7)
— 0. Therefore the capacity of the cutset (N ,1\7) is ZunenAi. Lemma
B.S5 implies that all arcs connecting N and N have zero flow except zir, SO
zir = Zunen A QED.

Example: LetI =2, T = 3,
A =0,A1=2A13=0,
Ay =—=2,Apn==-3,Ap=—1

B WA WARW

Steps Augmenting Path Flow Marked Arcs
2,1)—(1,1)
c—-(2,1)-22)->0 2 2,1H)—(2,2)
o—(2,2)-(1,2) >0 2 (2,2)-(1,2)
o—(2,2)->(23)>0 3 (2,2)—(2,3)
(2,3)—(1,3)
o—-(23)-(1,3)>0 4 (2,3)—(1,3)

24

Zir = —4, N = 0.

Let z/* be the optimal flow —z;r from the subproblem (D;;). We define

f(/’t) = ZZ”’ +ZW}'(~'T +dj _pj)oj) -+ Zzl"ﬂ‘
i mo

J

For every A, f (1) is an upper bound on the optimal solution to (P), or
equivalently, —f (1) is a lower bound on the optimal cost. To get the best
possible bound, we must solve (D)

(D) minimize f (1)
subject toA 20.

(D) can be solved using standard subgradient optimization techniques.
f is evaluated by solving (P3). A subgradient of f at A is given by

of (A)
almt

=3 > Xjiwp —Xju)+1 V 1Sm<M,1<:<T

J mji

where X solves (P3), and M is the number of machines in the shop.

References

[Bean et al. 87] Bean, J., J. Birge, J, Mittenthal and C. Noon, “Matchup
Scheduling with Multiple Resources, Release Dates and Dis-
ruptions”, Working Paper, Department of Industrial and Op-
erations Engineering, The University of Michigan, Ann Arbor,
MI, July 1987.

[Birge and Dempster 87] Birge, J. and M. Dempster, “Optimality Condi-
tions for Match-UP strategies in Stochastic Scheduling and
Related Dynamic Stochastic Optimization Problems”, Work-
ing Paper, Department of Industrial and Operations Engineer-
ing, The University of Michigan, Ann Arbor, MI, June 1987.

[Gallego 88a] Gallego, G., “Linear Control Policies for Scheduling a Sin-
gle Facility After An Initial Disruption”, Tech. Report No.

25

770, School of Operations Research and Industrial Engineer-
ing, Cornell University, Ithaca, NY, January 1988.

[Gallego 88b] Gallego, G., “Produce-Up-To Policies for Scheduling a Sin-
gle Facility After An Initial Disruption”, Tech. Report No.
771, School of Operations Research and Industrial Engineer-
ing, Cornell University, Ithaca, NY, January 1988.

[Lawler 71] Lawler, E., “A Pseudopolynomial Algorithm for Sequencing
Jobs to Minimize Total Tardiness”, Annals of Discrete Math-
ematics, 1971, 331-342.

[Lawler er al. 82] Lawler, E., J. Lenstra and A. Rinnooy Kan, “Recent
Developments in Deterministic Sequencing and Scheduling:
A Survey” In M. Dempster et al. (eds.), Deterministic and
Stochastic Scheduling, D. Reidel Publishing Company, 1982

[Lenstra and Rinnooy Kan 84] Lenstra, J. and A. Rinnooy Kan, “Schedul-
ing Theory Since 1981: An Annotated Bibliography” In
M. O’hEigeartaigh, J Lenstra and A. Rinnooy Kan (Eds.)
Combinatorial Optimization: Annotated Bibliographies, Wi-
ley, Chichester, 1984.

[Lawler 71] Lawler, E., “A Pseudopolynomial Algorithm for Sequencing
Jobs to Minimize Total Tardiness”, Annals of Discrete Math-
ematics, 1971, 331-342.

[Morton et al. 86] Morton, T., S. Lawrence, S. Rajagopalan and S. Kekre,
“MRP-STAR PATRIARCH’s Planning Module”, Working Pa-
per, Graduate School of Industrial Administration, Carnegie
Mellon University, Pittsburgh, PA, December 1986.

[Morton et al. 88] Morton, T., S. Lawrence, S. Rajagopalan, and S. Kekre,
“SCHED-STAR A Price-Based Shop Scheduling Module”,
Working Paper, Graduate School of Industrial Administra-
tion, Carnegie Mellon University, Pittsburgh, PA, February
1988.

26

[Pritsker and Watters 68] Pritsker, A. and L. Watters, “A Zero-One Pro-
gramming Approach to Scheduling with Limited Resources”,
The RAND Corporation, RM-5561-PR, January 1968.

[Pritsker er al. 69] Pritsker, A., L. Watters and P. Wolfe, “Multiproject
Scheduling with Limited Resources: A Zero-One Program-

ming Approach”, Managment Science: Theory 16 (1969) 1
(Sept.), 93-108

[Vepsalainen and Morton 87] Vepsalainen, A., T. Morton, “Priority Rules
For Job Shops With Weighted Tardiness Costs”, Management
Science, 33 (1987) 8 (August), 1035-1047

27

