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ABSTRACT

The state of New York launched the 2015 New York State Energy Plan, which details

goals of reducing greenhouse gas emissions by increasing renewable energy generation to 50%

by 2030. To meet this energy demand, multiple large-scale solar energy facilities have been

proposed for construction by 2030. However, this requires abundant land use for solar site

establishment, creating a land use conflict with the surrounding vegetation and the environment.

This report details the preliminary effects that solar farms will have on nearby vegetation, such

as shading from solar panels. The subsequent study utilizes remote sensing in Google Earth

Engine, geospatial applications in QGIS, and statistical analysis in R to analyze satellite imagery

over New York State. Sentinel-2 land surface reflectance is processed to calculate normalized

difference vegetation index to determine a significant change pre- and post-construction of solar

farms. Results indicate that solar farms improve vegetation growth by providing shade and

pooling water during the summer growing seasons, yet reduces growth during other months.
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INTRODUCTION

On June 25th, 2015, New York State Governor Andrew M. Cuomo released the final

version of the 2015 New York State Energy Plan. It was created to set forth a vision for New

York’s energy future and lay out a clear roadmap to achieve the state’s 2014 Reforming the

Energy Vision (REV) goals. The Plan is centered on coordinating the efforts of state agencies to

improve market-driven adoption of clean energy technologies into statewide energy demand

budgets. It outlines initiatives, alongside private sector innovation and investment from REV,

that will place New York State on a path to achieve its clean energy goals (NYSERDA). These

goals are a 40% reduction in greenhouse gas emissions from 1990 levels, 50% of energy

generation from renewable energy sources such as solar and wind by 2030, and 600 trillion

British thermal unit (Btu) increase in statewide energy efficiency (Sen 2015).

The New York State Energy Research and Development Authority, or NYSERDA for

short, has overseen many renewable energy projects from the 2015 New York State Energy Plan

through government incentive programs. A majority of these programs are targeted towards

clean solar energy generation which supports the construction of recently proposed, large-scale

solar farms known as Tier 1 - New Renewables. While these solar energy facilities may help

NYS reach its ambitious goal of reaching 50% renewable energy generation by 2030, many solar

companies focus more on the aspect of novel energy production rather than how solar farm

construction will affect the nearby environment. Site selection, construction, and maintenance of

solar sites often neglect environmental ramifications as these sites compete with vegetation for

space and resources, creating a land-use conflict. Current societal concerns with vegetation cover

change from renewable energy development also focus on potential effects it may have on
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protected area conservation and endangered species. Abrupt changes, known as “breakpoints”, in

plant cover may have negative ramifications that affect habitat of wildlife, which may not adapt

quick enough to new conditions (Nghiem et al. 2019).

This report aims to develop a framework that can eventually predict the effects that solar

site selection and construction in New York State will have on nearby native vegetation. To study

this effect, it shall detail the use of geospatial analysis and remote sensing to compare pre- and

post-construction of multiple current operational solar farms, focusing on changes in normalized

difference vegetation index (NDVI). This report shall test the alternative hypothesis that solar

site establishment will decrease nearby vegetation health and greenness due solar panel shading

which inhibits plant accessibility to sunlight needed for photosynthesis.
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DATA AND METHODS

To scrutinize temporal differences in NDVI near the edge of a solar farm, annual

information that monitors vegetation cover breakpoints can be obtained through

biometeorological satellite data. A suitable spaceborn instrument for retrieving high resolution

NDVI data is the Harmonized Sentinel-2 MSI: Multispectral Instrument carried on the

Sentinel-2A optical imaging satellite from the European Space Agency’s Copernicus

Programme. This instrument provides imagery for a 10-day Bottom-Of-Atmosphere (BOA),

orthorectified surface reflectance through the Sentinel-2 Level-2A Collection 1 product. These

images include atmospheric correction of the absorbing and air molecule scattering (known as

Rayleigh scattering) for atmospheric gasses such as oxygen, ozone, aerosol particles, and water

vapor (Copernicus Sentinel-2, 2020-23). It can be used to calculate NDVI processed for opaque

and cirrus cloud-shadow masking and low cloud probability. Availability of continuous global

observations on a thrice a month basis since June 2015 makes this sensor versatile for many

smaller-scale vegetation and climate change studies.

The study domain includes aggregated data from seven of the first operational Tier-1

solar farms in the state of New York: Branscomb Solar, Darby Solar, ELP Stillwater Solar,

Grissom Solar, Pattersonville Solar, Puckett Solar, and Regan Solar. Developed by MN8 Energy

Operating Company LLC, these solar farms each have a nameplate capacity of 20 MWac and

altogether total to 3.6 km2/359.5 ha in area. They have been commissioned and built from

2020-2022 in Washington, Chenango, Saratoga, Schenectady, and Montgomery County. These

facilities were chosen since they are spatially-heterogeneous throughout New York State and

possess NDVI measurements one year before and after construction. Information of these solar
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farms is complemented by data from NYSERDA, which denotes over 200 complete or under

development large-scale renewable energy projects reported since 2004 (State of New York).

To conduct this study, a shapefile for each of the seven Tier-1 solar facilities was created

then merged in QGIS version 3.30.0 - Hertogenbosch, an open-source geographic information

system application, to establish the boundaries of the property, aggregating to a sample size of 29

solar panel collections. The independent variable is solar farm establishment and the dependent

variable is NDVI. Seven shapefiles encompassing a total of 29 nearby, randomly-selected

grassfields were also made to be treated as a control variable due to its similar vegetation cover.

These shapefiles are then imported to Google Earth Engine1234567, a cloud-based catalog of

satellite imagery and geospatial data sets, for determining the location needed to compare

changes in NDVI before and after establishment. A low cloud probability of less than 20%,

alongside an opaque and cirrus cloud-shadow mask, are used on Sentinel-2A surface reflectance

to filter for clear weather condition imagery over the study domain. To compare pre-construction

(2019-2021) and post-construction (2021-2023) changes, average NDVI is then calculated from

the surface reflectance during 3 four-month periods (January-April, May-August, &

September-December) for 2019-2023. These images are exported as .tif raster data back to QGIS

and reprojected to EPSG: 3857 - WGS 84/Pseudo-Mercator, where each post-construction,

four-month NDVI is subtracted from their respective pre-construction measurements through

QGIS’ Raster Calculator. Figure 1 below shows normal distribution pixel frequency histograms

for this difference in NDVI from 2019-21 to 2021-23, which is required to conduct paired t-tests.

7 Regan Solar - GEE code: https://code.earthengine.google.com/e90e128395c5752284ae53b43927200e
6 Puckett Solar - GEE code: https://code.earthengine.google.com/e18525be75718568bbcd3ceee9cdfa6c
5 Pattersonville Solar - GEE code: https://code.earthengine.google.com/e372525b8082ade639b4f7f9481fcfa4
4 Grissom Solar - GEE code: https://code.earthengine.google.com/bb359fa3bbe8bde7a09ca4a215d45ca7
3 ELP Stillwater Solar - GEE code: https://code.earthengine.google.com/66be3fc47897c37f83a780f387850b6f
2 Darby Solar - GEE code: https://code.earthengine.google.com/f85d8bc21faf4b136bf4b605d26032ac
1 Branscomb Solar - GEE code: https://code.earthengine.google.com/4285f41658355d010f4139ba75cf7480
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Grissom Solar

Jan-Apr 2021-23 Change May-Aug 2020-22 Change Sep-Dec 2020-22 Change

Pattersonville Solar

Jan-Apr 2019-21 Change May-Aug 2019-21 Change Sep-Dec 2019-21 Change

Puckett Solar

Jan-Apr 2020-22 Change May-Aug 2020-22 Change Sep-Dec 2019-21 Change
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Regan Solar

Jan-Apr 2021-23 Change May-Aug 2020-22 Change Sep-Dec 2020-22 Change

Figure 1. Pixel frequency histograms of differences in mean NDVI rasters during four-month periods
pre-construction for 2019-21 and post-construction for 2021-23 near each of the seven Tier-1 solar farms. Note that

each histogram roughly reflects a normal distribution needed for paired t-tests.

To quantify NDVI change along the solar farm edge, a multi-ring buffer (4 rings, 10

meters each) around each Tier-1 solar shapefile is created. The interior feature is then deleted,

which removes NDVI measurements on top of and 10 meters away from the solar panels. Due to

Sentinel-2A’s 10 meter spatial resolution, this is necessary to prevent accidentally measuring

NDVI on the built environment. The buffer is then dissolved to create a continuous 30 meter

buffer, which is a 10-40 meter distance from the edge of the solar panels. Zonal statistics, found

under ‘raster analysis’ in the processing toolbox of QGIS, extracts and averages NDVI within the

29 solar panel collections and 29 control grassfields during the 3 four-month periods pre- and

post-construction. Figure 2 below highlights the relative locations of each Tier-1 solar farm, the

10-40 meter buffer, and control grassfields. Figure 3 shows the spatial difference in pre- and

post-construction NDVI per four-month period for the two solar farms with the most solar

collections, Branscomb and ELP Stillwater Solar. The green areas represent an increase, red

areas represent a decrease, and white areas show insignificant changes in NDVI.
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Figure 2. Maps of the 29 solar panels collections at the Tier-1 solar farms (gray), the 10-40 meter buffer (pink), and
29 randomly-selected nearby grassfield control variables (light-green).
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Figure 3. Spatial distribution of NDVI changes for the 3 four-month periods pre- and post-construction. Green areas
are indicative of vegetation growth and health, while red areas are likely either energy or nutrient limited. Maps

highlight a general trend of decreasing NDVI except during the plant growing season observed May through August.

Multiple paired t-tests are conducted for the zonal statistics NDVI in R version 4.3.1, a

programming language for statistical computing and graphics8 (R Core Team & RStudio Team,

2023). Subsequent boxplots are created to visualize paired t-tests for both Tier-1 solar panels and

their respective control variables. Linear regression models are also used to determine the range

of and correlation between these average NDVI of the study area and control.

8 R code uploaded to GitHub here:
https://github.com/matthew-n-gee/NYSERDA-Tier-1-Solar-Farm-NDVI.git
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RESULTS

There are detected disparities in average NDVI between pre- and post-construction

vegetation along the edge of the solar facility that is not observed in the control grassfields. The

boxplots and paired t-tests shown below in Figure 4 note low p-values of 0.009548 and 6.851-6 in

the delta of average NDVI within the 30 meter solar edge for 2 four-month periods:

January-April and May-August. On the other hand, the paired t-tests for the

September-December solar edge NDVI, as well as all 3 four-month periods from

January-December for the control variable, have a higher p-value of 0.2481, 0.1028, 0.1724, and

0.109, respectively. Using a p-value less than 0.05 to reject the null hypothesis, all solar edge

data except the September-December period reflect a statistically significant difference in NDVI

before and after solar farm establishment, yet the control variable is not statistically significant.

Pre- vs. Post-Construction Change in NDVI

Jan-Apr: Solar Edge Jan-Apr: Control Grassfields
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May-Aug: Solar Edge May-Aug: Control Grassfields

Sep-Dec: Solar Edge Sep-Dec: Control Grassfields

Figure 4. Boxplots and paired t-tests used to detect change in paired pre-construction and post-construction NDVI.
Note that the solar panel collection edges (left) and control variable grassfields (right) undergo separate paired t-tests

per four-month period.
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Although the independent variable affects the dependent variable for 2 out of the 3

four-month periods in a statistically significant way, both periods’ mean difference is opposite to

one another directionally. A positive 0.004552373 mean difference for the January-April winter

months indicates an decrease in NDVI, while a negative -0.01200479 mean difference for the

May-August plant growing season indicates an increase in NDVI after solar farm establishment.

Linear regression models in Figure 5 further illustrate how NDVI does not differ much

between the independent and control variable pre-construction, yet overall declines for the

independent variable post-construction. All three models portray a lower NDVI range throughout

all solar edge samples (vertically in Figure 5) but a relatively constant NDVI range for the

control (horizontally in Figure 5), where no human development has occurred.
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Figure 5. Linear regression models illustrate solar edge and control grassfield NDVI measurements of all 29 solar
collections a year before (blue) and after (red) Tier-1 solar farms establishment per four-month period.
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DISCUSSION

The insignificant statistical difference for both September-December panel collection

edge and control NDVI could be due to factors other than solar site establishment, such as

general plant growth rate changes between years. However, data during January through August

suggests that solar panel establishment does impact vegetation health and greenness. The data

from January through April does corroborate my original hypothesis: solar site establishment

negatively affects vegetation health and greenness, as shown in a decreased NDVI, along the

solar panel perimeter. Solar panel shading restricts accessible light for leaf photosynthesis and

heat during cold winters that cause freezing and organismic tissue damage. The energy needed

for a plant to grow new tissue and keep tissues active during its lifespan through growth and

maintenance respiration is predicated on the plant energy balance, in which solar energy is stored

for food production. Shading from solar can disproportionately affect this energy amount, such

that survival will depend upon species shade tolerance.

In contrast, the increase in NDVI for the May-August growing season as seen in Figure 4

insinuates that solar sites can be beneficial to nearby vegetation growth. One likely explanation

is that shade from solar panels are able to protect the vegetation from extreme thermal

temperatures apparent during the summer growing months, reducing stress from desiccation.

These panels also help accumulate usable water for plants as precipitation runs off the panel

below.

This study does not fully support the initial hypothesis, yet does reflect the issue of

land-use conflict. A resolution to this is co-location, where a certain landscape integrates both

solar farms and vegetation together (Hernandez et al. 2019). Novel ideas in this field include
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agrivoltaics, in which vegetation is planted in the spaces between solar panels for shade and

increased access to water (Fiorelli et al. 2022). Future policy-making can benefit from

incorporating co-location.

While this study begins the framework for understanding the implications of solar farms

on vegetation, there are several limitations in this study that could skew the data. One

technological limitation includes limited access to data with finer spatial resolution than 10

meters. Lack of said precise data prevents the inclusion of module inter-row spacing

measurements in between solar panels, which are roughly 3 meters, into the study. Another

limitation is that due to how recent Tier-1’s have been built, post-construction data for many

Tier-1 solar farms spanning a year does not exist yet. Besides the seven involved in this study, a

majority of Tier-1’s are under development or still being planned, which therefore restricts the

ability to have a larger sample size. Lastly, this study does not account for other factors that

could be measured through remote sensing, such as land surface temperature or net ecosystem

productivity, because their geospatial data has a coarser spatial resolution. Thus, these less

detailed measurements cannot accurately quantify minute changes along the edges of solar

panels. However, accounting for and evaluating said factors, likely through in-situ sampling, is

likely necessary to comprehensively study the ecological effects of solar farm construction.
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CONCLUSION

The current process associated with solar energy development throughout New York

State has an immense impact on the vegetated biomes. The need for more land area to build

expansive solar facilities fosters land-use conflict with existing grasslands and forests. While this

research suggests that solar panel shading may be beneficial to nearby plants during the summer

growing season, future study into this topic may be necessary. Conversely, solar farms may prove

detrimental to plant growth during colder seasons possibly through being restricted by solar

panel shading. Moreover, solar facility establishment that prepares land with site bulldozing can

result in soil compaction that encourages nutrient runoff through weakening plant-soil infiltration

rates. Thus, more in-depth scrutiny of local climate and landscape topography may be necessary

to determine whether a vegetated area should be left undisturbed. Considering environmental

ramifications can assist in properly informing solar companies and stakeholders on site selection,

construction, and maintenance that is sustainable and long-lasting.
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