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Abstract

An efficient experimental method for identifying an appropriate response
surface model for a simulation is presented. This technique can be used for
globally identifying which factors in a simulation that have a significant
influence on the output. The experiments are run in the frequency domain. A
simulation model is run with input fact rs that oscillate at different
frequencies during a run. The function 1 f -. ¢+ a response surface model for
the simulation is indicated by the frecueu.y spectrum of the output process.
The statistical significance of each term in a prospective response surface
model can be independently measured. ond‘tions zre given for which the
frequency domain approach is equivalent to ranking terms in a response surface
model by their correlation with the output. Frequency domain simulation
experiments typically will require many fewer computer runs than conventional
run-oriented simulation experiments.
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1. INTRODUCTION TO FREQUENCY DOMAIN EXPERIMENTS:

A feature of simulated systems is that one has complete control over the
input factors. Frequency domain experiments exploit this feature. In a
frequency domain experiment values for continuous factors are varied during a
run according to sinusoidal oscillations. Different frequencies are assigned
té each factor. If the simulation response is sensitive to changes in a
particular factor, then oscillating that factor induces predictable
oscillations in the response. Varying the values of unimportant factors does
not alter the response. The spectrum of the simulation output measures the
relative strength of these oscillations. Spectral analysis of the simulation
output permits one to identify an appropriate polynomial model for the
simulation output as a function of the input levels over some experimental
region. Such a model is called a simulation response surface regression
model or meta-model. Ru.sp-ase aurfacé model identification using frequency
domain methods will tygicaliy require far fewer runs of the simulation model
than would be necessary in a conventional run-oriented experimental
approach.

In this paper no distinction is made between simulation model parameters
and factors; both can be treated in much the same manner in simulation
experiments. All of the inputs to a simulation are generically referred to
as input factors.

Simulation response surface models are high-level mathematical
relationships that aid in a global understanding of the complex relationships
between the inputs and the output of a simulation program. By far the most
common simulation response surface model is a polynomial that expresses the
expected output as a weighted sum of products of powers of the input levels.

The value of such response surface models is well established (see for



example [Kleijnen, et al., 1979]).

A practical use of response surface models is to guide in the design of
conventional run-oriented simulation experiments by screening out
insignificant input factors or ‘identifying importanf interactions between
factors. Input factors that are not in any significant terms might be
excluded from further experiments. The designs chosen for these conventional
experiments should ndt confound the estimators of coefficients of significant
terms. For example, if a particular product of factors is shown to be
significant in the response model, it would not be advisable to employ a
fractional factorial design with this product as the defining interaction. A
response surface model can also help focus data collection efforts on the
estimation of input parameters and guide in the application of variance
reductioﬁ techniques such as correlation induction
[Schruben and Margolin, 1978]. A direct application of the experimental
technique presented in this paper is global simulation sensitivity analysis.
This techniue complements available techniques for local simulation
sensitivity analysis via response gradient estimation (see for example
[Suri, 1983]).

There are two basic tasks in simulation response surface modeling.
First, the functional form of an adequate response surface model must be
identified. Second, the coefficients of the response surface model must be
estimated. This paper focuses on the identification of the appropriate
functional form of a response surface model. Only after a response surface
model is identified can an experiment be properly designed to estimate the
values of its coefficients. As often as not the experimenter must rely on
both extensive experimentation and intuition in selecting an adequate

response surface model.



In this article the situation where there is a scalar response and the
controllable input factors are continuous is considered. The remainder of
this article is organized as follows. The response surface model
identification problem is formulated and the theoretical justification for
frequency domain simulation experiments are presented in Section 2. 1In
Seétions 3 and 4 the design of frequency domain experiments in a simulation
program is motivated and discussed. A method for statistically analyzing
such experiments is given in Section 5. In Section 6 an explicit, easily
implemented procedure for frequency domain response surface model
identification is presented. Section 7 contains several examples that
illustrate the application of ;he method. The final section contains some
conclusions and suggestions for running frequency domain simulation
experiments.

2. PROBLE}: JTaikmon[:

Concider a simulation program with p continuous input factors, X5
Xoseees xp. We wish to identify significant terms in a polynomial model of
the expected response, E[y], as a function of the x's. Specifically, we
‘consider as prospective response surface models the class of all k-order

polynomials given by

q
Ely] = Byt E B.T..
Here
E[y] is the expected simulation response,

Tj is a term in the k-order polynomial, i.e., a particular

product of non-negative integer powers of the input
factors, where the sum og.ghe exponents is not greater
than k, (e.g. if k=7, x x, is such a term).

8j is the coefficient for term Tj, and



q is the number of potential terms in the prospective model.
Each term in this polynomial is a candidate for inclusion in a simulation
response surface model. Our objective is to select the set of terms (Tj's)
that have coefficients (5j’s) that are significantly different from zero. Ve
assume that the experimenter knows nothing about the response surface except
an upper bound on the order, k, of the approximating polynomial. A check for
lack-of-fit of any model in the class of k-order polynomials is available and

is discussed later in this article.

2.1 Qualitative Analysis of Frequency Domain Experiments:

Before discussing frequency domain simulation experiments in detail, the
concept is illustrated by qualitatively examining a '"black box'" system. The
simulation output sequence at time t, y(t), is a function of four input
processeas, xl(t), xz(t), xs(t), and 14(t). and a stochastic input process,

e(t). . Suppose, unknown to the experimenter, the response is given by,

y(t) = x (t-5)

+ x?(t~5)

+ % (xp(t-1) + x,(t-2)  + x,(t-3))

+-513- (p(t=1) x5(t-1) + x,(-2) x3(t-2) + x,(t-3) x,(t-3) )
+ e(t).

Here &(t) 1is the first order auto-regressive noise process given by
e(t) = .6e(t-1) + .8e(t) with e(t) independently sampled from a standard

normal distribution. The response contains five-period lags of Xy and
2 . .
Xy three-period moving averages of X5 and XoXgs and auto-regressive



noise. The response is independent of Xy- Time lags in the response are
reflected as phase shifts in the frequency domain. These lags should have no
effect since the frequency spectrum is insensitive to phase shifts. A

response surface model identification procedure should indicate that X5

2

X5 Xos and XoXg are the only important terms in the response surface

model.

A ffequency domain response surface model identification experiment
requires at least two runs of the simulation, a control run and a signal
run. For this example, the run lengths (denoted by n) were 300 observations
of y(t).

A control run is just a conventional simulation run with the input
factors held constant at their nominal values. The control run identifies
natural cycles in the response. The three hundred control! run observations
were used to estimate the output frequency spectrum. The spectrum estimator
for the control run is the control spectrum and is denoted C(w).

In a signal run the input factors vary according to sinusoidal
oscillations during the run. The frequency assigned to a particular input
factor in a signal run is called its driving frequency. In this example the
four input factors were oscillated at frequencies of .06, .20, .29, and .39
cycles per time unit, respectively. This set of driving frequencies
distinguishes all potential terms in the prospective second order response
surface model (driving frequency selection is discussed in Section 4). The
values of the input processes at time t are given by Xl(t) = cos(Rn(.06)t),
xz(t) = cos(Rr(.20)t) x3(t) = cos(Rn(.29)t), and x4(t) = cos(Rn(.39)t). The
spectrum estimator for the signal run is the signal spectrum denoted as
£5(w).

The spectral signal-to-noise ratio, R(w) = fs(w)/fc(w), is the basis



for the analysis of the experiments described in this paper. Figure 1 is a
plot of the log of R(w). There is a peak at the frequency .06., which is the
oscillation frequency of the factor Xy This peak indicates that the
response is, in part, a linear function of Xy- Similarly, the peak at a
frequency of .20 indicates the presence of a linear term for Xg- The peak at
the frequency .12, twice the oscillation frequency of X5 indicates that a
quadratic term in Xy is present. (A rule for identifying the '"indicator
frequencies' for different terms in the response surface model is given in
Section 4.) The remaining peaks are at frequencies of .09 and .49 (the sum
and difference of the oscillation frequencies of X, and x3). These peaks
indicate that the interaction term X5Xg is present. The true response
surface model, containing the terms Xy Xa» x?, and XoXgs is easily
identified.

An important practical point concerns the sampling of the input and
output time series and their relationship. The index, t, was called ""time"
in the above example. Depending on the application this index could
represent different quantities. Frequencies are expressed in this paper in
cycles per time unit; a more descriptive measure of frequency would be in
cycles per output observation. For example, in a simulated queueing system
where the output is some function of customer delays an appropriate index
would count the customers as they enter the system. The index, t, would then
be the customer arrival sequence number. The input processes for the signal
run would oscillate with this index, not, say, with simulated clock time.
Frequency domain simulation experiments of complex computer systems have been
successfully run indexing the input and output series by job number [Sargent,
1985]. Specifically: for a computer network where job delays are measured,

an input factor xj might be a parameter of some processing time



distribution. The nominal value for xj is given as . For the signal run,
the processing time for the tth job would be generated using a parameter
value given by u + ajc?s(ZKth) where wj is the driving frequency assigned to
input factor xj and aj is its amplitude. Similarly, the time between job
arrivals would be generated using a parameter that oscillates with job
arrival sequence number. Before computing the output sample spectrum, the
output series of job delay times must be ordered in the job arrival sequence
number. This is because in a complex network jobs may exit the system in a
different order than that in which they entered the system. Keeping a common
index for driving oscillations and output analysis is important.

Although it is not central to the ideas presented in this article, it is
worth noting that common pseudo-random number streams were used in the
previous example for both the signal run and the control run. This results
in a reduction in the variance of the estimated signal-to-noise ratio, R(w).
This variance reduction technique appears to be very helpful in frequency

domain experiments.

2.2. Theoretical Requirements for Frequency Domain Experiments:

Frequency spectra are defined only for stationary stochastic processes.
Depending on how the simulation run is initialized and termiﬁated, an
assumption of stationarity may or may not be justifiable. For instance,
there may be an-initial transient early in a run if the initial conditions
are far from typical. Fortunately, an initial transient. in the output
process does not appear to cause any practical problems with the methodology
presented in this paper. In fact, the examples presented in Section 7
involve short runs of transient simulations (sometimes called 'terminating"

simulations in the literature) where no initial warm-up period is used. The



frequency domain approach was quite effective in identifying an appropriate
response surface model for these simulations. In the limited empirical
studies done to date, frequency domain response model identification appears
to be equally effective for both transient and stationary simulations. This
phenomenon can be explained by noting that initial transients in a simulation
output series appear in the frequency domain as paftially completed cycles at
very low frequencies. These cycles can be viewed as naturally occurring low-
frequency components of a stationary stochastic process. In the time domain
this is equivalent to modeling a transient as a sum of small pieces of
orthogonal sinusoids with very long periods. The analysis is done using
spectral ratios where ''true" spectra values (including those at low frequency
components due to transients) cancel out of statistics used to detect the
significance of terms in the response surface model.

In order for the frequency douw»in :;prcach to be used to identify a

model for a system, the system must have:

1. parameter settings that can be changed during an experimental trial.

2. a response that can be observed at periodic intervals.

3. ~a response that can be adequately modeled as a time-invariant linear
combination of products of powers of the factors. That is: Given

p factors observed at equally spaced intervals
xi(t) for i=1,...,p, t = 1,2,...,n,

we can form q polynomial terms by taking products of powers of the

factors
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a. .
T(8) = xi(t)lJ for j=1....,q and

[}

i=1

aij some non-negative integer.

The response is modeled as a time-invariant linear combination

(filter) of these terms and noise that is independent of the

factors,

q «©

Such a system can be studied as a ''black box'" with two types of input
factors: xi(t), which may change during au experimentél trial, and random
noise, £(t). Whatever series of values are assigned to the factors, th rule
for forming the response remains unchanged because the system is
deterministic. A simulation computer program is an important special c¢l-_s
of systems where the frequency domain approaéh is applicable. Simulation
computer programs are almost always time invariant and deterministic; the
computational rules do not change during execution of the program. These
programs can be written to vary factor settings during a run and to
periodically sample the response. If the response can be modeled as a
polynomial function of the factors (at least in the region of interest), then
all three requirements are met and the frequency domain approach should
identify a response model.

3. MOTIVATION FOR THE FREQUENCY DOMAIN APPROACH

The frequency domain approach to simulation sensitivity analysis has two

major advantages. First, several input factors can be studied in the same
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run. Second, non-linear effects, such as products of integer powers of the
input factors, can be detected with no additional experimentation.

In frequency domain experiments, frequency bands rather than simulation
runs are the experimental units. Each run of the simulation provides a large
number of essentially independent frequency bands. The experiment is
designed so that each term in a prospective response surface model is
assigned to a distinct set of frequency bands; many factors can be studied at
once. The advantage of this property can be demonstrated with a simple
system for which the response is a linear function of one factor with added
noise (a special case of Equation 1).

Denote the linear system by

@

y(t) = £ hk x(t-k) + e(t)
k=-o
where y(t), x(t), hk’ and £(t) are as defined earlier. The response

spectrum fy(w) and the factor spectrum fx(w) are related by

£,(0) = Gz(w)fx(w) + £ _(w) (2)

where G(w) 1is the gain. The gain function describes how the linear system
amplifies or attenuates oscillations at different frequencies. The gain is
zero and there is no oscillation-induced peak if the response does not depend
on the factor. Suppose the factor oscillates with amplitude « and
frequency w; x(t) = « cos(2nwt + &) where & is the phase shift. The factor
spectrum has a peak at « independent of &. The response spectrum, defined
by equation 2, also has a peak at w, scaled by the gain, and masked by the

noise. A response spectrum peak at  is evidence that the factor affects
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the response; no peak is evidence that it does not. If e(t) is a white noise
process, then fe(w) is constant for all @ and in theory no masking should
occur. In practice, however, the sample spectrum computed from a particular
realization of £(t) is not necessarily constant. In addition, £(t) may not
be a white noise process, and so may not have a constant spectrum. In
Section 2 the example process was a linear system with an added
autoregressive noise process, i.e. the noise spectrum was not constant for
that example.

Consider next a multiple-factor linear systiem

o
. kz—o hikxi(t—k) + e(t)

y(t) =
1

Mo

Here the response spectrum and the factor spectra, fx (w), are related by
i

Mo

fy(w) =

EICEORMCORERD | (3)

1
where each Gi(w) is the gain for oscillations of X, - Suppose each factor

X, oscillates at the frequency ©y
xi(t)l = o cos(enuit + éi). (4

Then the factor spectrum fx (w) has a peak at w5 . If Gi(wi) is not
i

zero, the response spectrum has a peak at w, - A response spectrum peak at
W) is evidence that X; affects the response; no peak is evidence that it
does not. One of course cannot guarantee that the gain might not be zero;

however, it is extremely unlikely in practice that the finite set of discrete
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driving frequencies used will contain a frequency with zero gain (this can be
argued to be an event with zero probability). In Section 4.3 we offer

several practical approachs for dealing with the problem of non-uniform system

gain.

3.1 Higher Order Terms in the Response Surface Model:

A second advantage of frequency domain simulation experiments is that
high order terms in a response surface model can be identified without
additional runs of the simulation program. This is due to the fact that
products of factors in a response model become sums of frequencies in the
frequency domain. The presence of a high order term or factor interaction in
a general polynomial‘response surface is equivalent a set of additional
linear pseudo-factors for the model. Therefore, the input-output spectrum
relationships applicable to linear response surfaces are also aprlicable to
general polynomial response surfaces. Every potential term in tﬁe
prospective polynomial response sufface model is some product ofwiﬁtegral
powers of the input factors. Each product of powers of oscillating input
factors will itself oscillate. The frequencies of these oscillations are
called the indicator frequency set for a potential term in the response
surface model. The linear pseudo-factors equivalent to a high order response
surface term each oscillate at one of the frequencies in the indicator
frequency set for that term; a term's indicator frequencies are the ""driving
frequencies’ for the equivalent linear pseudo-factors. Linear inputs and
outputs oscillate at the same frequencies (see [Chatfield, 1984], Chapter
9). Thus changes in the response spectrum at frequencies in a high order
term’'s indicator frequency set indicate that the term should be included in

the response surface model.
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Indicator frequencies are easily computed from the oscillation
frequencies of the individual input factors. The computations are based on
elementary trigonometric identities. For example, suppose X and xj are
input factors with driving frequencies 0, and wj; that 1is,

xi(t) = aicos(ZRQit) and xj(t) = mjcos(ZKth). The quadratic term x?(t)
can be expressed

2 2
«; cos (2nwit)

I

x5(t)

m?(l + cos(2n(2ui)t))

Ml Ol

a? cos(Rn(0)t) + % a? cos(2n(2wi)t).

The presence of x?(t) in the response model itz indicated by peaks in the
response spectrum at the indicator frequer-ies 0 and Zwi. Thus the set of
indicator frequencies for the term x? is e, Zuii.

The product xixj can be expressed

"

™

i
ol

o (cos 2n(wi+wj)t + cos 2n(wi~mj)t).

The presence of xixj in the response model is indicated by peaks in the
response spectrum at both wi+wj and ui-“j' Thus the set of indicator
frequencies for the term x.x. is jw.+0., w.-0.}.
i7j 1 ] 1]
Sets of indicator frequencies for all high-order polynomial terms in the
prospective response model can be similarly established using elementary
trigonometric identities. These sets are given by the following indicator

frequency rule.

Rule: The set of indicator frequencies for the term




p ..
T.= il xilJ
J i=1
is the direct sum of the sets
= - cseees—a. .0.5. 5
S, §aijwi, (aij 2)&1, . a13Q1§ ( )

The direct sum of sets is formed by taking all combinations of one element
from each set and adding. This rule extends the results in [Cukier et al,
1973] which apply frequency domain experiments to fit planar response surface
models to chemical reactions but does not consider powers or interactions of

the input factors.

3.2 Spectrum Amplification, Correlations, and Model Coefficients:
The heights of spectrum peaks are related to the coefficients of the

linear response model

p
Ely] = Bgt I Bx,.

Consider the relationship between the response spectrum and the factor
spectra in a multiple-factor linear system with added noise, a system

~ represented by equation 3. The gain Gi(w) is scaled by the coefficient
B, so define the standardized gain function gi(w) = Gi(w)/ﬁi. The input
factor xi(t) oscillates as a sinusoid with amplitude ai and frequency

Q- Thus, the input factor spectrum is given by fX (w) = a?s(ui) where
i

s(wi) is the spectrum of a sinusoid with frequency w, and amplitude 1;
s(wi) has a sharp peak at N and is zero elsewhere. Substituting these

expressions into equation 3 gives,
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Mo

£,(0) = ;sf g§<u)a§s(ui) + (0.

i=1

For pufely mathematical reasons, the phase angles (in equation 4) of all
driving frequencies can be assumed to be uniformly distributea between O
and 2n; phase angle has no effect on the frequency spectrum. All driving
frequencies are assumed to be Fourier frequencies (frequencies that are
multiples of 1/n). Fourier driving frequencies should be used in

applications. The variance of each linear term in the meta-model is

R

where

The correlation between input factor values is zero when Fourier frequencies
are used. The correlation between the output sequence, y(t), and the

input sequence, xi(t), for (t =1,...,n), is
Py = Bicxi/gy'

Substituting ﬁhe above into the general response relationship of

expression (3) yields,

2
f =
y(w) 20&

Mo

Py £3(w) (e + ().

i=1

This equation states that the height of the output spectrum peak at .
i
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is scaled by Zoipfgi(u). The relative heights are proportional to
p?g?(w). If gi(w) is constant then the heights of the output spectrum

peaks are proportional to p?. This result is stated as a lemma.

Lemma: If the standardized gain gi(w) is constant for every X and o,

then ranking the factors according to the heights of their output spectrum
peaks is equivalent to ranking the factors according to the magnitudes of

their correlations with the response.

Dividing the heights of the peaks by the square of the driving
amplitudes compensates for possible differences in these amplitudes. These

are proportional to

2
zazp?g?(u) 20 p?g?(u)
yri®i y i®i 2 2
) = 5 = Bz (0).
o, 20
i X.

1

If the gain is constant, then these are proportional to B?. Thus we have

the following corrolary

Corrolary: If the standardized gain gi(u) is constant for every X5 and
@, then ranking the factors according to the heights of their peaks divided
by the squares of their driving oscillation amplitudes is equivalent to

ranking the factors according to the magnitudes of their coefficients.

As shown in Section 3.1, a general pelynomial term in the response
surface model is equivalent in the frequency domain to a set of linear
pseudo-factors each oscillating at the term's indicator frequencies.
Therefore, with suitable modifications (scaling by the driving amplitutes of

the equivalent linear pseudo-factors) the above analysis can be applied to



17

rankings of general response surface model terms.

4. DESIGNING FREQUENCY DOMAIN EXPERIMENTS:

There are three steps to designing a frequency domain simulation

experiment:

1) The selection of a set of driving frequencies for the input
factors,

2) The determination of the amplitudes of the driving frequencies,
and

3) The assignment of driving frequencies to each input factor.

4.1 Selection of Factor Driving Frequencies:

Frequencies that are used to drive oscillations of the input factors in
a frequency domain simulation experiment have upper and lower bounds. ‘When
the simulation ouvtput consists of a finite-length, discrete-indexed time
series (as i3 the case for most discrete event simulation programs), the
spectrum canno. be estimated at all frequencies. The lowest detectable
frequency will complete cne full cycle during the simulation run. The n
observations in the simulation output series cannot be used to accurately
estimate spectrum components at frequencies below 1/n cycles per
observation. The highest detectable frequency completes one-half cycle per
observation. Higher frequencies cannot be observed directly, but instead
appear as frequencies between zero and one-half. This phenomenon, known as
aliasing, is described by Bloomfield (1976). Let w° denote the fractional
part of |w|. If 0 g w° < .5, then the observed alias frequency for w is w’.
If .5 ¢ 0w <1, then the observed alias frequency for w is 1-w’. The effects
of aliasing must be considered in the simulation experiments proposed in this
article.

Partial confounding of indicator frequencies may occur if driving

frequencies are selected carelessly. For example, suppose the frequencies
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w1=.3 and w2=.4 cycles per time unit are assigned to input factors Xy
and Xg - If the interaction X X, were present in the response surface model
it would be indicated by response oscillations at the indicator frequencies
of §.1,-.1,.7,-.7% which alias to the observable frequency set §.1,.3%. A
spike in the output spectrum at a frequency of .3 cycles per observation
indicates the presence of both the linear term, Xy and in part the presence
of the interaction term, X Xos in the response model. The selection of
driving frequencies for the input factors can easily be made to avoid such
confounding.

Independent spectrum estimates for different indicator frequencies is
desirable, so indicator frequencies should be as widely separated as possible
in the interval (0,1/2]. The frequency selection problem depends on the
number of input factors and the list of terms in the prospective response
model. The problem of selecting driving frequencies can be formulated as a
mixed integer linear program {Cogliano, 1982]. However, frequency selection
is’not criticgl. Term indicator frequencies and their aliases should be at
least one bandwidth apart. The selection of bandwidth is under the control
of the experimenter and will be discussed in Section 5 of this paper. If

bandwidth is decreased the same estimator precision can be obtained by

increasing the run length.

4.2 Amplitudes for the Driving Frequencies:
As with classical experimental designs, the experimenter must specify a
range of values for each input factor. The experimental region takes the

form of a p-dimensional rectangle,

$Gryheeeax ) |Ly € % € U3 (6)
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The oscillation amplitudes affect the size of changes in the response
spectrum. The height of the response spectrum is directly proportional to
the height of the input spectrum at the same frequency, and the height of the
input spectrum is scaled by the square of the oscillation amplitude. If the
amplitudes are too small, the oscillation effects can be difficult to
detect. If the amplitudes are too large, the input factor values can exceed
the range for which the simulation model makes sense, or for which the
response surface can be fit by a polynomial of the assumed order. Detection
of this lack of fit is discussed later in this article. Amplitudes are
chosen so that each input factor varies over its whole range of values. For

example, the value for input factor X5 at simulated time t is

1 y- (
(Ui+Li) + 5 (Ui Li) cos(2nwit). , (7

ol

x;(t) =

:«3. Assignment of Driving Frequencies to Factors:

A potential problem with the frequency domain approach is gain. Gain
describes how a system amplifies or attenuates input oscillations at each
frequency. Systems sometimes have the effect of filtering out particular
types of variability. A low-pass filter, such as an exponentially-smoothed
average, suppresses high frequencies. A high-pass filter, such as a period-
to-period difference, suppresses low frequencies. Parameters and terms might
appear to be more or less important depending ﬁpon their assigned frequencies
of oscillation. If the gain lowers the spectrum at one of the indicator
frequencies, an important term in the response model might be overlooked.

One way to deal with gain is to estimate it. Gain can be estimated by

driving each input factor with white noise (that is, with a sequence of

independent, identically-distributed values) and estimating the response

spectrum. This approach requires additional simulation runs and is
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complicated by the possible interaction between input factor and frequency;
for example, the system might act as a low-pass filter for one input factor
and as a high-pass filter for another. This approach is discussed in
Schruben and Cogliano [1981].

A more systematic approach is to treat gain as an unknown nuisance
factor and bléck on it. A few independently seeded simulation runs can be
made, changing between runs the input factor assigned to each driving
frequency. A Latin square design can be used to assign each input factor to
each driving frequency.

Because response spectrum peaks can occur regardless of whether the
input factors oscillate, one must determiAe whether the peaks result from
induced input factor oscillations or from natural conditions. For this
purpose the concept of a control frequency is introduced. A contrcl
frequency determines tle level of the response spectrum under natural
conditions. A control frequency is not assigned during a runm; no input
factor oscillations occur and no response spectrum changes are expected at a
control frequency. The output spectrum at a control frequency estimates the
natural or.background level of the response spectrum. This allows one to
make statistical inferences about whether or not response spectrum peaks are
induced by input factor oscillations.

Thg design of Figure 2 uses three driving frequencies for a model with
two input factors. Each driving frequency serves as the control frequency
for one of the runs. This provides a standard for comparing respoﬁse
spectrum peaks at that frequency. VWith one control frequency per run, a
Latin square design requires p+l1 runs to study p input factors. This
design has considerably fewer runs than are'required by most conventional

run-oriented designs.
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In the terminology of experimental design, the factors represent
treatments, the frequency bands represent random block effects, and gain is
analogous to an interaction beﬁween the factors and the frequency bands. The
possible presence of system gain deserves further consideration because Latin
square experimental designs confound interactions with main gffects. In
these designs there are three main effects: a factor effect, a frequency band
effect, and a run effect. These effects are confounded as follows: the
factor effect is confounded with the band-run interaction and the three-way
factor-band-run interaction, the band effect is counfounded with the factor-
run interaction and the three-way interaction, and the run effect is
confounded with the factor-band interaction (gain) and the three-way
interaction. Independently seeded runs of the same simulation program imply
that there are no main effect or interactions involving runs. In the absence
of band-run and three-way interactions, the factor effect can be observed
without confounding. The gain effect can also be observed without
confounding.

Not all Latin square designs are equally suited for frequency domain
experiments. A Latin square design assigns driving frequencies to the
various input factors in the simulation. Implicit in thisbassignment is the
determination of indicator frequencies for each of the high-order terms in
the response model. Some Latin square designs assign the same frequencies
repeatedly to a particular interaction, while other Latin square designs
assign a greater variety of frequencies to interactions. A variety of
frequencies should be assigned because it makes the blocking scheme more
effective (this is discussed in Cogliano, [1982]).

Before running a full Latin square experiment like that just described,

the experimenter should make a pair of runs assigning driving frequencies
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from the interval (0,.25] for the first run and from the interval (.25, .5)
for the second run. The sets of term indicator frequencies from the two runs
should be disjoint. Spectrum estimates for unused frequencies from one run
can serve'as the control spectrum for the other run. Spectral ratios, R(w),
can be computed as described in Section 2. If the runs are independently
seeded then one can test the statistical significance of terms in the meta-
model (see Section 5). Using common random number streams for the pair of
runs sharpens the contrasts by reducing the variance of the spectral ratios.
However, a conventional statistical analysis of spectral ratios from runs
using common random number streams is not valid. Nevertheless, a qualitative
screening of factors can be extremely valuable.

S. ANALYSIS OF FREQUENCY DOMAIN EXPERIMENTS

The response from a simulation run is often a time series, denoted by
y(1),...,y(n). The frequency spect:rum measures the relative strength of
sinusoidal oscillations in a time series. In the examples to be presented in
Section 7 we estimate the frequency spectrum with the sample spectrum

[Bloomfield, 1976] given by

m

f(w) = = xkckcos(ank) 0 < lal % (8)
k=-m
with the usual autocovariance estimators given by
g ik - _
¢ = 7 .2 Q) -GG+ -y)  if 0< k < (n-1)
t=1
and Cp = C_p if -(n-1) < k < 0.

We use the weights (called the Tukey lag window of size m) given by
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M = % (1 + cos nk/m), for Iki £ m.

The Tukey window is used here because it is well known and has desirable
statistical properties such as consistency. Other windows such as the Parzen
window might be used as well. More important than the window type is the
truncation point, m [Jenkins and Watts, 1968]. There is a trade-off in
truncation point selection. A small value of m gives an estimator with high
precision (low variance), and a large value of m gives an estimator with high
resolution (small bandwidth). The bandwidth of the Tukey window is 4/3m (see
Jenkins and Watts, 1968, p. 255). Following Jenkins and Watts (1968, pg.

286) we will treat spectral estimators that are at least one band width apart
as approximately independent.

Lack of fit by any polynomial function ~f order less than or equal to
that of the prospective response surface model (1) is indicated by
significant output spectrum peaks at frequencies that are not indicator
frequencies for terms in the prospective response model. Instead of using the
full frequency spectrum in the analysis, a harmonic analysis at only the
indicator frequencies for terms in the prospective response surface model can
be performed. However, estimating the full spectrum provides the lack of fit
check for any model in the class of prospective response surface models.

Statistical analysis of response spectrum changes uses the fact that
(8n/3m) (f(w)/f(w)) has an approximate chi-square distribution with
v = 8n/3m degrees of freedom [Jenkins and Watts, 1968, Sec. 6.4.2]. Here
f(w) 1is the true spectrum at © and f(w) is its estimator. This
approximate result has been shown to be quite good even for short time series
[Neave, 1972].

Consider the situation in which there are several independently seeded
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runs of the simulation experiment. The minimum number of runs is two. The

statistical analysis proceeds in nested steps:

1. For each potential response surface model term Tj: compile the list

of its indicator frequencies wl,wz,...,ukj.

2. For each indicator frequency ©i5s compute the output spectrum
estimates, ?1(ui), cens fr(wi) , for each of the r runs of the
simulation experiment where W is an indicator frequency for term Tj.
(In practice there would probably be only one such run). Compute also
the output spectrum estimates [fcl(wi), cees fcs(mi)] for each of
the s runs in the experiment, wlere 9y is not an indicator frequency for
any term in the prospective response surface model. The superscript, c,
on these estimators indicates that these are -considered "control”
estimates. Since runs are independently seeded, and spectrum estimators
that are more than one frequency bandwidth apart are approximately
independent, the spectrum estimators are considered independent. Under
the hypothesis that the term Tj should not be included in the response
surface model, the true value for the spectrum at W, is constant in all
the above runs. This true spectrum value will cancel out of the

spectral ratio,

1 o4
= z f. (0)
vroLy 3
Pi(o;) = L (9)
;é z f? (wi)
j=1

which is the ratio of two approximately independent chi—sq&are random
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variables each divided by their degrees of freedom (the quantity v was
defined earlier and depends on the lag window used in spectrum
estimation). Therefore, Fj(wi) can be considered as having a F
distribution with vr and vs degrees of freedom. Let pj(wi) denote the
observed significanqe level of Fj(wi). This value is the probability

that an er vs

>

distributed random variable exceeds Fj(wi).

3. Combine the significance levels for all indicator frequencies for the
term T.. A description and comparison of several methods of combining
significance levels from independent tests is given in Rosenthal,

(1978). In the examples in Section 7 we used Fisher's method to compute

the combined significance level given by the quantity,

k. .
pj = Prob.3X > -2 s log p(wi)§> {19)
i=1 .

where X has a chi-square distribution with Ekj degrees of freedom and
§ui; i= 1,2,...,kj§ is the set of indicator frequencies for term, Tj.
A low combined significance level (say pj* < .1) is evidence that term
Tj should be included in the response surface model. That is, the
hypothesis that there is no amplification at indicator frequencies for

the response model term, Tj, is rejected at the pj level of

significance.

The power of the above test for a particular term in the prospective
response surface meta-model increases as the driving frequency amplitude
=

increases. Comparing pj values for different terms is similar to comparing

the significance of regression coefficients when the ranges of the
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independent variables are different. Comparisons of pj values are
appropriate only over the experimental region given by expression (3).

If one is primarily concerned with failing to detect a term in the
response surface model, then all runs in the experiment should be made with
common random number streams. When common streams are used the pj*'s should
be regarded as only qualitative measures of a term’'s significance since
independently seeded runs are necessary to justify the assumption that the
spectral ratios will have an F distribution.

6. EXPERIMENTAL PROCEDURE FOR META-MODEL IDENTIFICATION:

The following steps summarize the frequency domain approach to
simulation sensitivity analysis.

STEP 1: Select a range of interest (expression 6) for each continuous
input factor. The larger the region, the more power there is to
detect input factor effects.

STEP 2: Select p+1 driving frequencies between 0 and,/l/z.
Determine the principal aliases of the indicator frequencies
(expression 5) for each term in the prospective response model.
Compute the minimum spacing, b, between these frequencies, this
will be the bandwidth necessary for the spectral estimators. Some
effort should be made to select driving frequencies that maximize
this spacing.

STEP 3: Choose a window truncation point m and a run length n such
that m > 4/3b. Chatfield (1984, pg. 141) recommends that n be
roughly (m/Z)z. Empirical work with this method suggests that n
be large enough to include at least 10 full cycles of the lowest
term indicator frequency. The larger the value of n the smaller

the variance of the spectral estimators. For simulation models the
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run lergths typically can be made quite large for very little
marginal increase in the experimental cost. For terminating
simulations where the run length cannot be controlled, several
independently seeded replications can be run and their spectra
averaged across the replicates to reduce estimator variance.

STEP 4: Run p+1 independently seeded replications of the simulation
program using a Latin square design to assign input factors to
driving frequencies as in Section 4.3. For each run the input
factors oscillate according to expression (7).

STEP 5: Compute the sample spectrum (expression 8) for each response
series.

STEP 6: Compute the spectrum ratios (exprescion 9) ~ and the combined
significance level (expression 10® to evaluate each term for
inclusion in the prospective simulat. n response surface model.

7. QUANTITATIVE ANALYSIS OF FREQUENCY DOMAIH'EX’ERIME&TS:

Two detailed simulation response surface model identification studies
are presented in order to illustrate the procedure presented in the previous
section. The first example is an M/M/1 queue and the second is a more

complex model of an inventory system with repairable items.

7.1. Example: A Single-Server Queue

Jobs arrive at a single service center according to a Poisson process
with an arrival rate of X\ = .8. Service times are exponentially distributed
with a mean of 1/p = 1. Service is given on a first-come-first-served
basis. The system starts empty and the performance measure is the average
waiting times of the first 300 jobs. The goal of the simulation study is to

identify a response model of at most second order consisting of perhaps
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linear terms (» and y), quadratic terms (Xz and p ), and the

interaction term (Mp). The next paragraphs illustrate how the steps of the

frequency

Step

domain procedure were followed.

1. The ranges of interest for the input factors were taken to be

XNE §.8+/- .43 and p € §1.0 +/- .43. Note that the queue is non-

Step

Step

Step

Step

stationary and the mean for the first n=300 jobs is transient
(therefore the restriction X\ < Q is not required).

2. The three driving frequencies selected were W, = .11, w, = .18,
and Wy = .43 cycles per job. These driving frequencies achieve a
maximal spacing between all term indicator frequencies for a
prospective second order response surface model. The resulting
term indicator frequencies (after aliasing) were §.11,.18,.43} for
the linear terms, §.22,.36,.14% for the quadratic terms, and
$07,.29,.32,.46,.25,.39,.00,.50? for the two-way interaction
terms. The minimum spacing between these frequencies is b = .03.
3. The window truncation point was chosen to be m = 100, equal
to one-third the number of observations in the output series. The
resulting bandwidth is 1.33/m = .0133 which is considerably less
than the minimum spacing between indicator frequencies. This
permits treating the spectrum estimators for different indicator
frequencies as being essentially independent.

4. Three independently seeded runs of the simulation were made.
The input factors were assigned to the driving frequencies
according to the Latin square design in Figure 2. For each run the
waiting times of the first 300 jobs were collected.

3. The output series sample spectrum for each run was estimated

using expression (8).
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Step 6. The combined significance level of each term, p , was
rcomputed as described in Section 5. A summary of these
calculations is given in Table 1.

For comparison with conventional run-oriented designs, a 10-run response
surface experiment (four corner points plus a four-pointed star plus two
center points) was conducted. The same experimental region was used as for
the frequency domain experiment. The experimental design is given in the
left three columns and the experimental results are given in the rightmost
column of Table 2. All possible second-order polynomial regression models
were fit to the output. Terms were entered into tpe regression model in the
order of their overall significance levels for the frequency domain
experiment as given in the rightmost column of Table 1. Table 3 shows the
fraction of the response variability, Rz, [Draper and Smith, 1966]
explained by the sequence of re ression models. There are other measures of
the goodness of a regression morel; however, Rg is one of the more commonly
accepted measures. The first three regression models were the best (highest
Ra) one-variable, two-variable, and three-variable regression models. These
best models had R2 values equal to .513, .694, and .865 respectively .

The frequency domain approach workea very well here. It identified with
three runs the bhest second-order polynomial regression models that could be

found with the output from a 10-run conventional simulation experiment.

7.2. Example: An Inventory System with Repairable Items

Our second example is an inventory system with fepairable items. The
system consists of a supply facility and a repair facility. Items are
demanded according to a Poisson process with a mean of 15 items per day.

Items are returned for repair according to a Poisson process with a mean of 6
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items per day. Repair times are geometrically distributed with a mean of 3
days. After being repaired, items are placed in inventory. VWhenever the
inventory position (defined as the number of items in supply, in repair, or
on order) reaches or falls below 36 items at the end of a day, an additional
lot of 24 items is ordered. The lot arrives in 3 days. Excess demand that
cannot be filled immediately is backordered. At the end of each day a holding
cost of $1 is assessed for each item in supply and a backorder cost of $5 is
assessed for each item backordered. Placing an order costs $10. The
inventory system is pictured in Figure 3.

The goal of the study is to assess the sensitivity of the operating
costs to three input factors: the demand rate X, the return rate Y, and
the mean repair time r. VWe are interested in identifying the significant
terms in a second-order polinomial regression model of the operating costs.
The potential terms in the regression model are the linear terms (X, Y,

2, and rz), and the interaction

and 1), the quadratic terms (Az, A

terms (MY, ar, and Yr). The next paragraphs give the computational

details of the procedure of Section 6.

Step 1: The ranges of interest for each input factor was arbitrarily

chosen to be between two-thirds and four-thirds of its mean value.
That is, A ranged between 10 and 20, Y between 4 and 8, and r
between 2 and 4.

1= .06, wz = .20,

wa = .29, and w, = .39. The resulting indicator frequencies were

$.06,.20,.29,.39¢ for the linear terms, $.12,.40,.42,.22% for the

Step 2: The four driving frequencies selected were w

quadratic terms, and §.14, .26, .23, .35, .33, .45, .09, .49, .19,
.41, .10, .32% for the interaction terms. The minimum spacing

between the indicator frequencies was .01.
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Step 3: A window truncation point of m=100 and a run length of
n=300 days were chosen. The resulting bandwidth allows us to
treat the spectral estimates at each of the term indicator
frequencies as independent. Simulated clock time (measured in days)
was the index for the driving frequencies and output in this
example. A series of 300 daily operating costs was recorded from
each run.

Step 4: Four independently-seeded runs of the simulation model were
made. The input factors were assigned to the driving frequencies
according to the Latin square design of Table 4. The resulting
indicator frequency assignments are given in Table 5. To cover the
experimental region, each input factor oscillated at its assigned
driving frequency with an amplitude of one-third of its mean
valie. No warm-up period was used.

Step 5: The response spectrum was computed for the operating cost
series from each of the four runs. The spectrum estimates at the
indicator frequencies are arranged into two-way layouts by term and
frequency in Table 6a, 6b, and 6ec.

Step 6: Table 7 presents the analysis of the spectral estimates. For
each term several F-ratios were computed by dividing the spectral
estimates from Table 6 in a term's row by the corresponding
spectral estimates in the control row. For example, the four F-
ratios for X\ were computed as follows: 20.389 = 4873/239, 5.445 =
893/164, 1.331 = 173/130, and 2.944 = 683/232. For cells with more
than one entry, such as those in the interaction table, the entries
were averaged over the degrees of freedom. For example, the first

F-ratio for AY was computed as
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385
(291+158)

1.715 = 1

2
This F-ratio has eight and sixteen degrees of freedom. The
remaining columns in Table 7 show the significance level from the
2

independent experiments, the degrees of freedom for this X

statistic and the resulting overall significance levels (p 's).

For comparison, a conventional 3:3 complete factorial run-oriented
simulation experiment was conducted and regression models fit to the
results. The corner points of the factorial design corresponded to the
extreme points of the sinusoidal oscillations of the input faétors. That is,
we used the same experimental region as for the frequency domain experiment.
The experimental design is given in the left four columns and the the results
of the experiment are given the right most column of Table 8.

All possible second-order polynomial regression models were fit to the
results in Table 8. Terms were entered into the regression model in the
order of their significance levels in the frequency domain experiment
indicated in the rightmost column of Table 7. The order of significance for
the terms is X, ir, xz, r and XAY. Table 9 shows the proportion of
response variability explained by the sequence of regression models. The
four terms with the highest overall significance in the frequency domain
experiment provide a regression model which explains virtually all of the
response variability (R2 = .98). For comparison, a regression model
including all nine potential terms explains only slightly more of the
response variability.

The frequency domain experiment worked very well here for model

identification. . It identified with 4 runs the same model that a complete

factorial experiment identified with 27 runs.
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8. CONCLUDING REMARKS

4 frequency domain experimental method for selecting a simulation
response surface model has been presented. A limited comparison of this
technique with conventional run—oriented simulation experiments was made. In
each case the polynomial model selected was identical to the one selected
using a conventional design for the simulation runs. Conventional simulation
experiments however typically require many more runs of the simulation. The
examples in the introduction and in Section 7 are typical of our experiences
with the frequency approach. The experiments reported here involved only a
few short runs. Only when very small driving amplitudes were used were the
results unsatisfactory. The relative efficiency of the frequency domain
approach as compared to conventional experimental methods increases with the
~umber of input factors. The full potential of this approach i3 better
app.reciated in large scale simulation experiments. Simulation practitioners
sheyld consider frequency domain responsé surface model identification as a
means of quickly focusing their attention on important input factors.
Initially the two (commonly seeded) runs required for a qualitative analysis

like that for the example in Section 2.1 should be made.
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Figure 1

Spectral Ratio from the Model Identification [xemple
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Figure 2

Assignment of Parameter Driving
Frequencies for the Queue Simulation

Driving Frequency

.11 .18 .43
1 by Tl *
Run P H * X
Number
3 * b it

* denotes a frequency not used in a run,
i.e. a control frequency



TABLE 1

Results of the Sensitivity Experiment for the Queue Simulation

b3
Model| INDICATOR F,(w;) | DEGREES OF|p(@;) | COMBINED |2 gegrees|P
Term | FREQUENCIES FREEDOM 2 vaLUES|of frecdom
T ®, FOR F_(@.)
3 1 b | 1
A 0.110 2.523 | 8, 8 0.106 | 11.127 b .08
0.180 3.606 | 8, 8 0. 045
0. 430 0.2y | 8, 8 0. 811
u 0.110 3.211 | 8, 8 0.060 | 15.111 6 02
0. 180 B 440 | 8, 8 0. 026
0. 430 1.345 | 8, 8 0. 342
A2 0. 220 0.818 | 8, 8 0. 609 6. 128 b a5
0. 360 2.563 | 8, 8 0. 102
0. 140 0.611 | 8, 8 0. 750
2 0. 220 o.710 | 8, 8 0.681 | 10.628 6 .10
0. 360 ».458 | 8, 8 0. 025
0. 140 1.510 | 8, 8 0. 286
AU 0. 070 0.760 | 8, 16 |0.642 | 10.680 12 >.5
0. 290 1.020 | 8, 16 |o.u5u
0. 320 0.850 | 8, 16 |0.576
0. 460 1.033 | 8, 16 0. 452
0. 250 0.878 | 8, 16 |0.558
0. 390 2.000 | 8, 16 |0.113




TABLE 2

Results of Response Surface
Experiment for the Queue Simulation

Run b 1 Average Wait
1 1.0 1.2 3.646
2 .6 1.2 .822
3 .6 .8 3.525
4 1.0 .8 51.592
5 1.2 1.0 36.893
6 .8 1.4 .970
7 -4 1.0 .614
8 .8 .6 79.741
9 .8 1.0 2.735

10 .8 1.0 3.7583




Table 3

Sequence of Regression Models for Queue Experiment

Terms in Regression Model EE

H .513

M) .694

u,x,pz .865

MNP .903
2 .R

Had, A, 00 .975



Figure 3

An Inventory System with Returns
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’ Table 4

Latin Square Design for Inventory Experiment

Driving Frequency
.06 .20 .29 .39

1] * py Y r

2l r * b Y Y

31 Y r * X

41 N Y r *

* denotes a frequency not used in a
run, i.e. a control frequency

Table 5

Indicator Frequency Assignments for Inventory Experiment

-06 .20 .29 .39 .12 .40 .42 .22 .14 .26 .35 oo .93 .45 .09 .49 .19 .41 .10 .32

1 = A Y r * ATy r2 * * * * * * XY XY Ar Ar

Yr

Yr

Run

AT Ar Yr Yr * * * *

Y

Y

3 Y r * by Y r * by Yr Yr * * AY Ay * * AT AT

*

41 N\ Y r * by Y by * AY AY Ar A % * Yr Yr * *




TABLE 6
Spectral Estimates for the Inventory Simulation

Table b-a: Linear Effects
Frequency
. 06 .20 . 29 . 39

Control 239 164 130 232
X 4873 893 173 683
Y 203 233 106 298
r 560 129 362 293

Table b-b: Quadratic Effects
Frequency
.06 .20 . 29 . 39

Control 80 408 411 170
A2 1725 | 635 | 96 | 68
y? 202 | 501.| 185 | 202
r? 93 | 514 | 184 | 99

Table b-b: Interaction Effects
Frequency

A4 .26 .23 .35 .33 .45 .09 .49 .19 .41 .10 .32

comtrol |¥55 1433 | 93 | 39 |92 399 | 140 |34 | 136 |o0e |00|179

Ay 385 | 381 36 166 |231 |259 220| 96
Ap 281 [102 146 418
509 [140 133 | 248

yr - [128 | 70 192 | b6 | 366 |106 400| 76




TABLE 7

Results of the Sensitivity Experiment for the Inventory Simulation

r X
Model| INDICATOR ‘Fj(mi) DEGREES OF| p(@;) | COMBINED |, ? gegrees|”
Term | FREQUENCIES FREEDOM <2 VALUES|of frecdom

T @, FOR F.(.)

J 1 3 i

A 06 20. 389 8,8 _001| 29.677 8 . 001
20 5. 445 01y
.29 1.331 . 347
.39 2. 944 . 074

y 06 0. 849 8,8 .589| 6.365 8 5.5
20 1. 421 315
" 29 0.815 611
.39 1. 284 . 366

r .06 2. 343 8,8 _125| 11.983 8 .20
20 0. 787 629
.29 2. 785 085
.39 1.263 . 374

A2 12 21.563 8,8 _001| 16.697 8 .05
30 1.556 273
32 0. 234 972
22 0. 400 892

y? 12 2. 900 8,8 C077|  9.121 8 > 5
.40 1. 228 - 389
42 0. 448 862
22 1.188 106

R _..._..i..

rl 12 1.163 5, 8 .18 1u.s528 ) 3.5
40 1. 260 . 375
42 0. 448 . 862
22 0. 582 . 770

Ay 18 1.715 8,16 _170| 18.814 16 .30
.26 3. 591 011
.33 0. 353 . 930
.45 0. 489 . 847
.09 1.213 . 352
.49 1.036 . 450
10 1. 007 468
.32 0. 828 . 591

Ar .23 5.435 16,16 _001| 18.810 8 025
- 35 1. 603 177
19 0. 779 . 689
Y 0. 794 675

yr 11 0. 570 8,16 _788| 14.067 16 5.5
26 0. 660 719
.33 1.882 .13
.45 0. 194 . 987
.09 1. 921 127
49 0. 4214 . 890
10 1.831 14y
.32 0. 655 . 723




Table 8

Complete Factorial Design and Results

Parameter Settings

Average (daily

Run by Y r Response cost)
1 10 4 2 27.603
2 10 4 3 23.813
3 10 4 4 20.327
4 10 6 2 28.463
5 10 6 3 R2.633
6 10 6 4 18.277
7 10 8 2 31.630
8 10 8 3 23.753
9 10 8 4 17.020

10 15 4 2 23.760

11 15 4 3 26.930

12 15 4 4 33.683

i3 15 6 2 21.967

14 15 6 3 25.237

15 15 6 4 37.240

16 15 8 2 R0.767

17 15 8 3 R3.270

18 15 8 4 40.297

19 20 4 2 59.347

R0 20 4 3 73.937

R1 20 4 4 92.410

2 20 6 2 50.793

_3 20 6 3 72.643

24 20 6 4 99.227

25 20 8 P 43.993

26 20 8 3 71.597

27 R0 8 4 109.043




Table 9

Results of the Regression Study

Terms in Regression Model Rz

Y .622

A, AT .753

MM N2 .895
2

AAr,A,T .980

X,Xr,xz,r,XY .980

X,Y,P,XZ,YZ»PZ,XY,Xr,Yr .987 (maximum)






