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Abstract

Weakly consistent data stores have become popular because they enable highly available, scalable
distributed applications. However, some data needs strong consistency. For applications that mix ac-
cesses to strongly and weakly consistent data, programmers must currently choose between bad perfor-
mance and possible data corruption. We instead introduce a safe mixed-consistency programming model
in which programmers choose the consistency level on a per-object basis. Further, they can use atomic,
isolated transactions to access both strongly consistent (e.g., linearizable) data and weakly consistent
(e.g., causally consistent) data within the same transaction. Compile-time checking ensures that mixing
consistency levels is safe: the guarantees of each object’s consistency level are enforced. Programmers
avoid being locked into one consistency level; they can make an application-specific tradeoff between
performance and consistency. We have implemented this programming model as part of a new system
called MyriaStore. MyriaStore demonstrates that safe mixed consistency can be implemented on top of
off-the-shelf data stores with their own native, distinct consistency guarantees. Our performance mea-
surements demonstrate that significant performance improvements can be obtained for geodistributed
applications that need strong consistency for some critical operations but that also need the high perfor-
mance and low latency possible with causally consistent data.

1 Introduction

Atomic, serializable transactions offer programmers strong guarantees that enable simpler reasoning and
simpler code. However, these transactions cannot be efficiently implemented for geographically replicated
data, because the overhead of coordinating distant replicas is unacceptably high. Unfortunately, replication
is essential for low-latency data access in applications with global scale. Consequently, there has been a
proliferation of data stores offering weak consistency (e.g., MongoDB [23], Redis [4], Cassandra [15], and
Riak [14]).

While each such system is well suited to certain tasks, many applications have state that benefits from
the guarantees of strong consistency. For such applications, a commonly used strategy is to use weakly
consistent storage systems only for the operations for which they are optimized, and to keep critical data on
safer data stores that offer stronger guarantees. For example, Netflix uses an eventually consistent data store
to track video playback position, but stores more sensitive information in a durable, strongly consistent data
store [22]. Many other modern geodistributed applications have similarly come to rely on ad-hoc mixing of
multiple databases and other data stores that make distinct assumptions about consistency, availability, and
other core system properties.

Unfortunately, this common strategy has a significant cost. Programmers must reason not only about
the individual guarantees of their backing data stores (already challenging), but also about the emergent
behavior when data from these stores mixes. And if a programmer needs to update state on two different
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stores atomically, they’re stuck; even if both stores fully support atomic transactions, there’s no easy way to
coordinate atomic actions across them.

In this paper, we contribute a new mixed-consistency programming model that simplifies the process of
programming against multiple data stores with heterogeneous consistency guarantees. This programming
model is implemented by our system MyriaStore. MyriaStore provides a small, unified API and expressive
embedded transactions language against which application programmers can write multi-store applications
with atomic transactions. Crucially, data stores can still expose specialized operations specific to that store
directly to application programmers.

MyriaStore’s core guarantee is one of safety. When application code interacts with strong objects (ob-
jects stored on strong data stores), MyriaStore provides the semantic guarantees of strong consistency; sim-
ilarly, when code interacts with weak objects, MyriaStore preserves the low latency and high throughput
possible with weak consistency. Application code can use both strong and weak operations and even mix
them in the same transaction. Nevertheless, strong operations retain all the guarantees of strong consis-
tency, while all operations retain the guarantees of weak consistency. And transactions are truly atomic: no
operations inside a transaction become visible outside the transaction until all operations do.

MyriaStore enforces these properties with two new mechanisms. First, at compile time, its new trans-
actions language uses information flow control to ensure that the consistency of strong data is never com-
promised. Second, at run time, a novel, lightweight dependency tracking system handles the interactions
between data from different consistency levels. MyriaStore also leverages information flow analysis to auto-
matically split transactions across the data stores being used, in a way that preserves atomicity and isolation
of the transactions.

MyriaStore provides an API and transactions language for accessing data but it is not a data store.
Instead, applications are built using multiple existing backing stores, each offering its own native consistency
guarantees—which MyriaStore leverages. In fact, legacy applications can continue to operate unmodified
in parallel with MyriaStore applications while using the same backing stores, with the same interfaces,
guarantees and performance characteristics they have always enjoyed. Thus, existing data need not be moved
or modified; using the same stores, MyriaStore applications gain the ability to execute mixed-consistency
transactions with strong semantic guarantees.

2 Motivation

Modern applications need to operate on data at multiple levels of consistency. But simultaneously program-
ming against both weak and strong data is currently both ad hoc and error-prone.

2.1 Strong and weak consistency models

A consistency model imposes constraints on the order in which a system’s users can observe updates to
system state; in other words, it says what values should be returned by get(x) when others are calling
put(x,v).

Consistency models are usually defined in terms of the possible schedules they permit. A schedule is
just a log of system state events; it records the start time and completion time of every get() and put()
call. For example, the relaxed consistency model of C11 [3] only permits schedules in which each call to
get(x) returns a value v supplied by some call to put(x,v).

Recent literature has featured a variety of “weak” or “eventual” consistency models [20, 8, 15, 23, 5]
whose common idea is that if the system is left alone, every call to get(x) eventually returns the same value
v, from some previous call put(x, v). Meanwhile, those same papers also refer to a notion of “strong”

2



consistency; the details vary here too, but the basic idea is that any call to get(x) should return whatever
was stored during the most recent call to put() on x.

What “strong” consistency means also varies in the literature. In this paper, when we refer to a “strong”
consistency model in the context of operations, we are referring to linearizability [12]. When we speak of
a “strong” consistency model in the context of transactions, we are referring to strict serializability [24],
which is linearizability at the level of transactions. By a “weak” consistency model, we mean a model that
provides fewer guarantees (allows more schedules) than linearizability.

A weak consistency model of particular interest is causal consistency as defined by Lloyd et al. [20].
Informally, causal consistency enforces observed orderings; after a client reads some value x, that client now
sees only values for any variables y that are at least as new as the values of y read by the writer of x. Causal
consistency rules out observations that violate causality, but it does not, in general, require that clients see
the most up-to-date values of variables. This helps performance because variables can be replicated with
low coordination between replicas.

2.2 A running example

As an example of an application that needs mixed consistency, suppose that we are trying to build a scalable
group messaging service we’ll call Message Groups.

This service allows users to join groups and to post messages to all members of any group they have
joined. Low-latency communication is key to a good user experience, so application servers are deployed
across the world, and key data is replicated across these servers.

Communication latency between these servers—even that arising from speed-of-light delays—means
that it is infeasible to keep the replicated data strongly consistent. Fortunately, there is no need to enforce
a global, total order on displayed messages. It is only necessary to respect causality, so that messages and
responses to those messages appear in the correct order. Since causal consistency suffices for storing users’
inboxes, this data is georeplicated onto servers providing causal consistency.

However, strong consistency is needed for other data of this application. The membership of users in
various groups should be consistent worldwide, so that all servers agree on who is supposed to receive which
messages. Therefore, the set of members of each group is placed at a data store supporting linearizable
transactions, which ensure serializability and external consistency.

Causal consistency and linearizability are well-defined consistency levels, but trying to mix these levels
in the same application can break the guarantees that both levels claim to offer.

2.3 Mixing consistency breaks strong consistency

Suppose we run a spam-fighting contest to advertise Message Groups. We divide all the users into two
teams; team A needs to send all the spam they find to mailbox a, and team B needs to send all the spam they
find to mailbox b. The first team to find 1,000,000 spam messages is declared the winner.

To implement this contest, we extend the existing transaction for delivering mail with a few lines of
code:

// inside the mail delivery transaction
if (a.inbox.size() >= 1000000 &&

b.inbox.size() < 1000000) {
declare_winner(a);

} else
if (a.inbox.size() < 1000000 &&

b.inbox.size() >= 1000000) {
declare_winner(b);

}
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Confident that our code is correct, we ship it off to the application servers, where it awaits the first team
to hit 1,000,000 messages. To our surprise, the next day we discover that the code has not declared a single
winner; rather, the winner keeps switching between a and b!

The problem is that to avoid slowing down the core functionality of message delivery, the data used
in the guard condition (i.e., the inbox sizes) are and should be stored with causal consistency. But the
function declare_winner() manipulates data with linearizable consistency; and since the guard is eval-
uated with weak consistency, nothing guarantees that declare_winner() is invoked only once. Function
declare_winner() itself, existing in a purely linearizable regime, is not designed to deal with the potential
for multiple re-executions. In fact, every single message receipt to either team could cause the winner to
switch.

The essential mistake is that weak data (the inbox size) influences strong data (the declared winner).
The code of declare_winner() must handle the potential errors from weak consistency, even if it does not
itself access weak objects. If this strong code is not programmed defensively, the influence of weak data
may invalidate assumptions made by strong code. Allowing weakly consistent data to influence the control
flow of the program, even within a linearizable transaction, can effectively downgrade the isolation level of
the entire transaction. MyriaStore detects this problem at compile time and disallows code like this in which
weak data corrupts strong consistency.

2.4 The need for mixed-consistency transactions

The example of the previous subsection has a second problem; within a single transaction, we are attempting
to manipulate data from separate, mutually-unaware datastores operating independent transaction mecha-
nisms. Without the technology of MyriaStore, we have no reason to expect the result of this execution to be
atomic, isolated, or even complete.

To see the pitfalls inherent to this naive mixture, consider how Message Groups might implement mes-
sage delivery. We have a strongly consistent list of members named members to whom we want to deliver a
message post. The programmer might naturally write this code:

for (member : members)
member.inbox.insert(post);

However, this simple loop does not deal with concurrent modification to the data. What happens if the
members list, or a certain user’s inbox, changes during the loop? The set of users who receive the message
might not be consistent with the expected set of recipients; the loop might accidentally post to someone, or
might miss someone it was supposed to post to.

Clearly some form of concurrency control is needed. In the distributed setting, the usual solution would
be to perform the loop inside an atomic transaction that isolates this code from concurrent modifications.
Unfortunately, the list of members is stored at a stronger consistency level than each member’s inbox,
making this a mixed-consistency transaction that is not supported by any current system.

A simple-minded way to performing the loop in a transaction is to upgrade all user inboxes to the same
strong store that is used for the members, but this incurs an unacceptable performance cost.

Alternatively, assuming we have a causal store such as Eiger [21] that supports atomic transactions, we
could start transactions simultaneously on both the strong and causal stores. But the implicit interactions
between these transactions could create bugs. For example, if another process updates the membership list
while mail is being sent, this could cause the strong transaction to abort and roll back. Some users could
then receive the same message twice. We might think to fix this problem by adding a “delivered” flag to
each message, to be set when the message is sent. If the flag is strong, transaction rollback can reset its value
and messages will still be sent twice. If the flag is causal, the programmer has to be careful to update it only
at the end of the causal transaction, because causal updates will not be rolled back if the transaction retries,
leading to lost messages.
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As this example shows, even rather trivial code can require the implementer to reason very carefully
about the interactions between different consistency models in the presence of the possible failures. The
complexity of this reasoning can easily become overwhelming.

Therefore, we take a different approach: MyriaStore simplifies programmer reasoning by directly sup-
porting mixed-consistency transactions that provide atomicity and isolation. With mixed-consistency trans-
actions, the message-delivery example can be implemented efficiently by wrapping the two original two
lines of code in a transaction block. When combined with MyriaStore’s static consistency flow analysis, this
mechanism provides strong isolation and atomicity guarantees without requiring communication among the
underlying stores.

3 Programming Model

Because MyriaStore is intended to support a variety of underlying data stores, including key–value stores,
databases, and file systems, it offers a single common API and embedded transaction language for accessing
data stores. The safety of transactions expressed in its transaction language can then be checked in a uniform
way for all data stores.

3.1 MyriaStore API

The API boils down data access to three common operations: creating data objects, retrieving object data,
and modifying data objects. Data objects are accessed via handles that serve as capabilities for data access.
How these component abstractions are implemented depends on the underlying store. For example, for a
key–value store, the data objects are key–value pairs, whereas for a file system, the objects are files.

In MyriaStore, the object that permits access to data is a handle. In user code, handles are opaque,
lightweight objects that support a get() and a put() operation. They are instance of class Handle, a
wrapper type tagged with the consistency level at which data is stored, the access permissions of that data
(read-only, write-only, or read-write), and the type of the data:

class Handle<Level, Access, Type> {
Type get();
void put(Type);

};

To get a handle for a specific object, one must request it from a DataStore. The abstract class DataStore
provides a common interface that exposes the functionality of an underlying data store to client code. Its
interface is narrow; all a store needs to provide is a way to create an object, a way to retrieve an object by
name, a consistency level, a notion of time, and a way to begin a transaction:

class DataStore<Level level> {
TransactionContext begin_transaction();
Clock local_time(); //optional
Handle<level,all,T> newObject(Name, T value);
Handle<level,all,T> existingObject(Name);

};
class TransactionContext {

bool commit();
DataStore store();

};

This abstraction can be implemented in a variety of ways. For example, a file system can be used as a
backing store by using file descriptors as handles and by implementing get() with read() and put() with
write().
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MyriaStore only requires a data store to provide the get() and put() operations on its data objects,
but existing data stores often natively provide additional operations that do not fit into the simple get/put
model. Therefore, MyriaStore allows implementations of DataStore to export additional operations to
clients. Additional operations are declared by the DataStore class like methods that can be safely called
from within a transaction. For example, this declaration of a MyriaStore interface for a SQL database pro-
vides an additional operation named PreparedStatement, allowing clients to submit prepared statements
to the database:

class SQLDataStore {
...
class SQLHandle : public Handle<...> {...}
void Operation(PreparedStatement) (SQLHandle h,

string prepared) {
connection.prepared(prepared,h.sqlID);

}
};

3.2 Consistency as information flow

Recall the buggy promotional-campaign code from section 2.2. MyriaStore prevents writing such code by
expressing transactions in an embedded transactions language called MTL (for MyriaStore Transactions
Language). Using MTL, applications can perform gets, puts, and store-defined operations on MyriaStore
object handles, with the familiar assurances of transactional semantics. Crucially, when those assurances
are just not possible, as in the promotional campaign, MyriaStore produces a static compiler error.

The insight behind preventing code from violating consistency guarantees is to treat consistency as a
form of integrity [2] and to use an integrity information-flow type system to outlaw bad programs.

In an information-flow type system [25], values are associated with a label drawn from a lattice. The
key guarantee of these type systems is noninterference [9]: values associated with labels lower in the lattice
cannot influence actions with labels higher in the lattice. In the case of MyriaStore, the lattice elements
are consistency models, and values are labeled according to the Level annotation on handles. Once the
promotional campaign pseudocode is annotated with such labels, the problem becomes apparent:

// inside the mail delivery transaction
if (a.inbox<weak>.size() >= 1000000 &&

b.inbox<weak>.size() < 1000000) {
declare_winner<strong>(a);

} else
if (a.inbox<weak>.size() < 1000000 &&

b.inbox<weak>.size() >= 1000000) {
declare_winner<strong>(b);

}

This transaction creates a banned information flow from the inbox size (weak) to the declare_winner()
function, which must be strong. MTL catches such invalid flows statically and rejects the unsafe transaction.

It should be noted that the labels on the above example are written out for clarity, but as discussed in the
next section, explicit labels are not required in MTL transactions.

3.3 MTL by example

MTL is an expressive embedded language for implementing mixed-consistency transactions, implemented
in C++. We explain its features by walking through the actual MTL implementation of the Message Groups
application (Figure 1).

6



1 struct post {
2 std::string str;
3 }
4
5 struct user {
6 remote_set<Level::causal,
7 Handle<Level::causal, post> > inbox;
8
9 static set<post> get_posts(Handle<user> _this) {

10 TRANSACTION(
11 let_remote(usr) = _this IN (
12 let_remote(inbox) = $(usr,inbox) IN (
13 return inbox)));
14 }
15 };
16
17 using MemberList =
18 RemoteList<user,
19 Level::strong,
20 Level::causal>;
21
22 struct room {
23 MemberList members;
24
25 void add_post(Handle<post> pst) {
26 TRANSACTION(
27 let(hd) = members IN (
28 WHILE (isValid(hd)) DO (
29 let_remote(hd_contents) = hd IN (
30 let_remote(hd_value) = $(hd_contents,val) IN (
31 do_op(Insert,$(hd_value,inbox),pst),
32 hd = $(tmp,next)))));
33 }
34
35 void add_member(user usr) {
36 TRANSACTION(
37 members = MemberList(usr, members));
38 }
39 };

Figure 1: MTL implementation of Message Groups

Much of this code should look familiar to a C++ programmer; outside transaction blocks, it merely
declares structs that contain library types, including two MTL library types (remote_set and RemoteList).

At the heart of MTL are transaction blocks, signified by the syntax TRANSACTION(...). MTL trans-
actions are expressive—for example, they can contain loops—but they provide the standard guarantees of
atomicity and isolation. In particular, all transaction effects become visible at once, and the transaction itself
operates against a stable snapshot of the underlying storage systems.

Code inside transaction blocks is expressed using a syntax that is constrained by the implementation
of MTL using C++ macros and templates. The syntax of MTL transactions is defined in figure 2, but its
meaning is perhaps best explained using the example code.

Consider the TRANSACTION(...) block in function get_posts. Its purpose is simple: given a handle for
a user object, it retrieves that user’s inbox. It uses two MTL constructs: remote binding and field referencing.
In MTL, the remote binding let_remote(x) = e IN (stmt) evaluates the expression e to obtain a handle,
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Stmt→ . . .
| Stmt, Stmt
| let_remote (Id) = Expr IN (Stmt)
| let (Id) = Expr IN (Stmt)
| WHILE ( Expr) DO (Stmt)
| IF ( Expr) THEN (Stmt)
| Id = Expr
| do op(Operation, Expr∗)

Expr→ . . .
| Expr 〈BinaryOp〉 Expr
| 〈UnaryOp〉 Expr
| isValid(Expr)
| $(Id,Id)

Figure 2: MTL syntax

dereferences it by fetching the associated object from the remote store, and then makes that object available
in stmt under the name x. It’s analogous to the C++ statement {T &x = *e; stmt} except that e evaluates
to a handle to a remote object, which is analogous to a C++ pointer. The syntax $(usr,inbox) simply
means an access to field inbox in object usr, like writing usr.inbox in C++.

The transaction in function add_post is more interesting. It introduces four new MTL constructs: simple
let-binding, assignment, WHILE-loops, and do_op, and one MTL library function: isValid(e).

A let-binding let(x) = e IN (stmt) merely binds the result of the expression e to the name x in
stmt. In contrast to let_remote, it does not dereference handles. It’s analogous to the C++ statement
{T x = e; stmt}.

The variables introduced by let_remote and let are mutable, and their values can be changed by
assignment statements of the form x = e. If x was bound via let, the expression x = e simply replaces
the value at x with the result of e, but if x was bound by let_remote, the result of e overwrites the previous
value of x at the underlying data store.

Key to the expressive power of MTL is its support for loops. The loop WHILE(e) DO (stmt) behaves
precisely as one would expect; at each iteration of the loop, the condition e is evaluated; if true, stmt is
re-executed.

Finally, the construct do_op(Name, args . . .) allows a transaction to invoke a custom operation Name
that is provided by a data store. For example, the code of add_post uses the “Insert” operation of the
underlying causal store to efficiently insert elements into a remote causal set. It is the job of that causal store
to ensure that Insert operations from different clients are merged with causal consistency.

3.4 Statically checking consistency labels

As discussed earlier, consistency is enforced in MTL by statically checking information flow. Static check-
ing is enforced using a largely standard type system for static information flow [25]. Figure 3 gives selected
typing rules for MTL. Each expression is assigned a consistency label ` that reflects the weakest consistency
of any information used to compute the expression. The root of static checking is the consistency labels on
MTL handles, which derive from their data stores. All other labels are automatically inferred from the code
of the transaction itself. Updates to variables are only permitted when the new value has a consistency label
at least as strong as the variable’s current label.

A consistency label is also associated with the program counter within the transaction. This program
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` Handle〈`〉 : `
Γ; pc ` e : `1 Γ; pc : e′ : `2 ` = min(pc, `1, `2)

Γ; pc ` e 〈BinaryOp〉 e′ : `

Γ; pc ` e : `1 ` = min(pc, `1)

Γ; pc ` $(e, f) : `

∀e′ ∈ (e...) : e′ : ` min(pc, `) = `

Γ; pc ` do_op(Name, e...)

Γ; pc ` e : ` min(pc, `) = pc

Γ; pc ` id = e

Γ; pc ` e : pc Γ; pc ` stmt

Γ; pc ` WHILE (e) DO (stmt)

Figure 3: Selected typing rules for MTL

counter label, determined by uses of control constructs such as IF and WHILE, keeps track of code whose
execution depends on weakly consistent information. In the information-flow literature, such flows via
program control are known as implicit flows. The example code of section 2.2 is a case where such implicit
flows need to be controlled to prevent inconsistency. Within the contexts guarded by weakly consistent
expressions, strongly consistent data may not be updated, as in the unsafe call to declare_winner() in the
example code.

3.5 Transaction splitting

The strict information-flow discipline of MTL prevents all operations at consistency level l from depending
on any operation at consistency lower than l. This independence implies that transactions can be partitioned
into phases corresponding to the consistency level of their operations.

The most significant challenge in splitting a cross-store transaction is control-flow dependence across
data stores. For example, a while loop with a strongly consistent guard can have a body that contains
both strong and weak operations. In fact, such a loop can be found in figure 1 at lines 28–32. Given two
consistency levels, the entire while loop must run twice; in the first execution, the loop executes all strong
statements within it; on the second execution, only the weak statements are executed, potentially using
results computed by the strong statements.

To understand the semantics of transaction splitting, we can imagine the following process. Before
executing a transaction, we first allocate an empty buffer. During the strong pass of the transaction, whenever
we encounter a causal statement, we simply copy that statement into the buffer. If that causal statement
depends on a strong expression, we evaluate the strong expression and replace it with the result. Once the
strong pass is complete, this buffer will contain a valid, purely causal transaction. We next evaluate this
residual causal transaction, and commit both.

In this way, MyriaStore is able to preserve the expected semantics of interleaved execution. Another
benefit of transaction splitting is that it allows data stores which do not permit dynamic transactions, such
as H-store [13] and Eiger [21], to nonetheless participate in MyriaStore cross-store transactions.

4 Enforcing consistency across stores

Recall that section 2.2 presented example code containing two major kinds of errors. MTL’s information-
flow checking prevents the first kind, in which transaction consistency was unintentionally downgraded.
What has not yet been explained is how prevent the second kind of error, by coordinating mixed-consistency
transactions while respecting the consistency guarantees of the underlying data stores.
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Indeed, even if one uses two distinct systems that provide the same consistency guarantee, the combined
system may provide a much weaker guarantee, or even no guarantee at all. The problem of compositionality
of consistency models has been well studied [12], but current state-of-the-art systems still rely on the end
user to determine if a consistency model is compositional, with what it composes, and how to use it safely
alongside models with which it does not compose [27]. With MyriaStore, we aim to remove this complexity;
rather than have to guess at the semantics of cross-store interactions, users are offered a sound consistency
guarantee derived from the consistency of the underlying stores.

4.1 Defining mixed consistency

To offer a consistency guarantee, we need to know what the semantics of cross-store transactions should be.
What exactly is meant by mixed consistency?

As described earlier, we want to enforce causal consistency for all objects stored with at least causal
guarantees, and we want to enforce linearizability for all objects stored with at least linearizable guarantees.

This idea generalizes; given a target consistency model and a set of operations, we can always project
the operations onto the model by selecting all operations involving objects that are stored with at least the
guarantees of the target model. We can then ask if the result of that projection is consistent with respect to
the target model.

Using this idea, we define mixed consistency. We say that a sequence of operations O exhibits mixed
consistency if, for all consistency models M , the projection of O onto M satisfies the requirements of M .
With mixed consistency, we now have a concrete answer to the expected consistency of arbitrarily mixed
transactions—even when working with mixed transactions over incomparable consistency models.1

To enforce these guarantees in practice, MyriaStore needs to build on guarantees offered by non-
compositional consistency models. While there are many non-compositional consistency models available
in the literature today, recent work has identified variants of causal consistency as providing the strongest
possible consistency guarantees while still permitting disconnected operation [1]; indeed, causal consistency
already implies many useful programming properties required by weaker models. For this reason, the Myr-
iaStore protocol upgrades all cross-store operations to causal consistency when the weakest store supports
causal consistency.

Further, we want transactions to be atomic, so their effects are either entirely visible or entirely invisible
to other transactions.

4.2 Causal ordering violations

MyriaStore relies on each underlying data store to enforce guarantees on its own objects, but adds its own
lightweight tracking mechanism for operations that reference objects across multiple data stores. Since the
information flow checking prevents strong operations from depending on weak operations, linearizability is
not threatened by mixed-consistency transactions. The key challenge is rather to ensure that causal consis-
tency holds even when causal operations depend on lineariable operations.

Consider the following example of a causal ordering violation that we would like MyriaStore to prevent.
We have two clients C1 and C2 running a MyriaStore application, and both clients perform transactions
against the same two data stores. One data store, S, stores its objects with linearizable consistency; the other
data store, W , is widely replicated as servers W1, W2, etc. for high performance, but stores objects with
only causal consistency.

Client C1 starts executing first. To begin, C1 creates the causal object ow at the replica of W called W1.
In the next transaction, C1 creates the object os at store S. Object os contains a reference to ow.

1 Consistency models form a lattice [27], so there is always some minimum consistency model onto which we can project all
operations.

10



Figure 4: The gray boxes labeled with clients C1 and C2 contain three different timelines; the blue timeline
corresponds to events as observed by the client, the red timeline indicates when data at S became available to
the client, and the orange timeline indicates when data at W became available to the client. In this scenario,
we observe that data at S becomes available to both clients simultaneously, while data written to W by C1

can be delayed before it becomes available at W for C2.

Figure 5: In this scenario, the tombstone does not become available for a very long time. Rather than wait,
the client takes advantage of fetches a copy directly from a client that already has the necessary update.

Now client C2 begins executing. It starts by reading os from S, and then tries to follow the reference
to ow at W . Unfortunately, the nearest replica W2 has not yet learned of the creation of ow, so C2 cannot
find ow. This is a violation of causality; the creation of ow preceded the creation of os, so causal consistency
requires that ow become visible no later than os.

4.3 Tombstones

To resolve such a violation of causality, there are two approaches: to slow down the propagation of os so
that it arrives no earlier than ow, or to speed up the propagation of ow so that it arrives no later than os. In
fact, MyriaStore takes both approaches, which we describe in turn.

Delaying causal reads with tombstones In the first approach, MyriaStore slows down os by blocking
reads at C2, as illustrated in figure 4. When C1 attempts to perform a write operation on os at S, MyriaStore
accompanies this operation with a tombstone value. This value is simply a unique, randomly generated
nonce n. MyriaStore then additionally writes the tombstone to W . When C2 subsequently attempts to read
os, MyriaStore checks for an accompanying tombstone. When it finds that n accompanies os, MyriaStore
knows that there might be some causal operation that has not yet reached C2. It knows too that whoever
wrote n to S must have also written n to W ; by the guarantees of causal consistency, if C2 can see n at W ,
it knows that every operation casually preceding n is also available at W . Thus, C2 attempts to read n from
W , blocking the read of os until n is found. Because W was trusted to guarantee causal consistency and the
write of n to W happened after the write of ow to W , once n is available, ow will also be available.

Expediting causal propagation Slowing down an operation on its own is a sound but rather draconian
way to resolve consistency violations. The second approach, therefore, is to speed up propagation of ow. To
do this, clients propagate causal updates without involving the causal store.

To allow this, we slightly alter the sequence of events discussed earlier, as shown in figure 5.
When C1 writes its tombstone, instead of simply writing a random value, MyriaStore writes the pair
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(nonce, ip address). C1 additionally remembers the state of all values it has read up to this point, including
the tombstone, in a tracking set.

When C2 reads n, it finds this (nonce, ip address) pair, giving it the information to contact C1 directly.
C2 then contacts C1 to retrieve the relevant tracking set. This set contains all the objects upon which os
depends, so C2 can safely proceed with reading os.

MyriaStore does not rely on this client-side propagation for correctness. This is important because C1

may be unreachable, unwilling to cooperate, or untrustworthy. In these situations, C2 simply has to wait for
its local causal replica W2 to catch up. However, client-side propagation seems quite applicable to the target
domain, since clients that frequently share data are likely to be application servers running in the same trust
domain, or even on the same network, so they have ready access to each other.

4.4 Making tombstones practical

While the protocol in the previous section is clearly sound, it raises some concerns for performance: lin-
earizable writes become available only after the propagation delay of the underlying causal store, and the
size of the tracking set used for client-side propagation can grow without bound. To address these concerns,
there is a key observation: a client does not need to remember past versions of objects that are already
available system-wide. In particular, if every client has seen all updates to some variable, there is no longer
any cause to keep it in a tracking set or to retrieve it via client-side propagation. To exploit this observation,
we need a mechanism to determine which objects are sufficiently old that everyone has heard about them; a
global time, which everyone has reached, allowing garbage collection of updates from before that time.

It is an old result that tracking the dependencies on a set of k objects requires a vector clock with k − 1
entries; thus, stores which support causal consistency must somehow be tracking this information for all
operations [16]. Indeed, this assumption is proven true in practice; causally consistent systems such as
COPS, Eiger, 2-master PostgreSQL, and Bolt-on all either use these vector clocks directly or are easily
modified to employ them [21, 20, 1].

To take advantage of this information, MyriaStore deploys a lightweight worker that periodically polls
causal replicas and learns the most up-to-date object available at that replica. From all these collected
vector clocks, the worker computes a new global-min time, by taking the minimum of each entry across
all collected vector clocks. The global-min time will be as recent as possible while still being older than
all collected clocks. The worker periodically broadcasts this time to all MyriaStore clients. Whenever a
MyriaStore client receives a new minimum time, it discards all objects in its tracking set which are from
before this time.

As the evaluation section shows, the tombstone protocol, with the global-min optimization, allows Myr-
iaStore to perform well under heavy load from applications in the target domain.

4.5 Formal Algorithm Code

ONSTRONGWRITE

1 check tracking set
2 if tracking set non-empty
3 then update global-min
4 if tracking set still non-empty
5 then generate random nonce n
6 write (n, ip addr) to strong store
7 write n to causal store
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ONCAUSALWRITE

1 add object to tracking set
2 delete object from remote-tracking set, if present

ONCAUSALREAD

1 if object present in remote-tracking set
2 then if object is older than version in remote-tracking set
3 then Add version from remote-tracking set to tracking set
4 Return version in remote-tracking set
5 else
6 Delete object from remote-tracking set
7 add retrieved version to tracking set
8 else add object to tracking set

ONSTRONGREAD

1 Check if (n, ip addr) exists for this object
2 if so
3 then check if n is available at causal store or is remembered
4 while n is not available or remembered
5 do request remote-tracking set from ip addr
6 if remote-tracking set received
7 then remember n
8 break

ONUPDATEGLOBALMIN

1 remote objects from tracking set if behind global min

PERIODICALLY

1 update global-min
2 for each remembered n
3 do if n is available at causal store
4 then remove n from remembered

5 Implementation

MyriaStore has been implemented as five separate C++14 components: the core library, MTL, the tracking
mechanism, support utilities, and the SQL datastore interfaces. The core library of MyriaStore, covering
Handle interfaces, Datastore interfaces, and Operations, consists of approximately 2,300 lines of C++14
code, while MTL requires an additional 3,300. The tracking mechanism, which implements the algorithm
from section 4, requires about 1,000 lines of c++14 code. The support utilities, including many compile-time
template libraries, are about 3,500 lines of code.

Finally the SQL interface, implementing both a linearizable and causal interface to PostgreSQL, requires
about 1,100 lines of code.

To simplify implementation, the current MyriaStore prototype supports working with up to two stores
simultaneously in an MTL transaction. While applications involving more than two underlying data stores
are increasingly the norm, many transactions in these multi-store systems only require transactions across
objects in two stores, and thus would be a good match for MyriaStore even in its current prototype.
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5.1 MTL

We implemented MTL as a DSL embedded into modern C++. The MTL language is written in pure C++14
templates, and can be compiled using any C++14-compliant compiler (for example, clang 3.7). We took
this approach to follow the language-as-a-library paradigm; to use MTL in existing C++ projects, all one
must do is #include the MyriaStore libraries. In order to achieve the semantics of variable bindings with
type inference and information-flow enforcement in pure C++, MyriaStore makes heavy use of expression
templates and introduces a novel scope-mangling technique by which we use CPP macros to convert let-
binding statements into a pseudo-CPS format.

5.2 Implementing transaction splitting

Section 3.4 presented the semantics of transaction splitting intuitively, as being equivalent to copying code
from strong executions to weak ones. This semantics did not correspond to a realistic implementation,
however; the real implementation takes a different approach.

In order to cope with the interleaving of strong and weak operations, MyriaStore employs the well-
known technique of static single-assignment, implemented via a novel mechanism called indexed looping
[6]. Each syntactic occurrence of an expression in an MTL program is associated with two tags: a static tag
indicating where in the MTL program the expression occurs, and a dynamic tag which counts the number of
times that syntactic occurrence of the expression is accessed. Program execution is divided into one pass per
consistency level. During the program pass for level l, when an expression or statement is encountered, MTL
first determines if the expression or statement should run at level l. If so, MTL creates a new dynamic tag
for that expression (by incrementing the old dynamic tag if available), and associates the result of running
this expression with the pair of its static tag and new dynamic tag. When MTL encounters an item which
does not execute at l, it checks to determine when the item should execute. If the item should execute after
l, MTL recursively checks its subexpressions, and eventually moves on. If the item should execute before
l, MTL checks if this is the first time it has encountered this item in the current pass. If it is, MTL retrieves
the value associated with that item at dynamic tag 0. If this is not the first time, MTL retrieves the value
associated with that item at the dynamic tag one greater than the previous time MTL visited this item2. In
order to carry out transaction splitting in a database which does not permit a client to inspect a transaction’s
state before commit, these indexed states would need to be created at the remote database and retrieved from
the database at the end of each pass. The current prototype does not handle this use case.

6 Evaluation

We use the MyriaStore implementation to model the intended application domain: user-facing application
servers that share one linearizable and one causally consistent underlying storage systems, where the ap-
plication servers are geographically distant from the linearizable storage system. We believe this closely
mirrors reality; weakly consistent storage servers can be relatively close to application servers because they
are able to withstand high latencies during replication and can therefore be separated geographically; lin-
earizable data stores are more often housed within a single datacenter, because latencies encountered during
replication have an outsized impact on their overall performance.

In this setting, we explore several key questions regarding the performance of MyriaStore:
2it will never be the case that MyriaStore “runs out” of dynamic tags; to do so would imply that MyriaStore was executing a

loop whose loop guard is encountered more times than some elements of its body. As information flow requires the loop guard to
execute during the first phase of this loop’s visitation, this would imply that MTL managed to accidentally skip certain statements
in the loop during an earlier execution. This is impossible.
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Figure 6: Experimental setup, including latencies between system elements

• Do mixed-consistency transactions, as promised, offer better performance than running similarly
atomic transactions with strong consistency?

• What overhead is added by the tracking mechanism used to ensure that consistency guarantees are
preserved when different consistency levels are combined?

• On what kinds of workloads does this mechanism work well or poorly? In particular, what is the
performance impact of having different mixtures of strong and weak transactions?

6.1 Experimental setup

To test the performance of MyriaStore in practice, we created the configuration illustrated in figure 6. In
this configuration, 250 logically separate application servers (represented by the black towers) each main-
tain connections to causally consistent (blue) and serializable (black) databases. Links between application
servers and the serializable database experience a round-trip latency of 85ms±10ms; links between appli-
cation servers and the causally consistent databases experience a round-trip latency of 5ms. Latency to the
causal system was set by measuring ping times between an Internet2-connected university and its nearest
datacenter; latency to the linearizable system was set by measuring ping times between Internet2-connected
universities on the east and west coast of the United States. In both cases, latency simulations are provided
by the netem kernel module on Linux 3.17. We employ 5 separate physical machines, each hosting 50
separate application server instances.

For driving load to application servers, we adopted a semi-open world model of events, with delay
between events following the usual exponential distribution.

Using PostgreSQL as a backing store Our causal and linearizable data stores are both backed by Post-
greSQL 9.4 running on dedicated machines. These PostgreSQL instances are configured with a maximum
of 2010 connections, 128 MB of shared buffers, and with both fsync and full_page_writes disabled
to improve performance; the rest of PostgreSQL’s configuration parameters are left at their default values.
These PostgreSQL instances consist of only two tables; one table associates integral values with integral
keys and version numbers; the other table associates binary blobs with integral keys and version numbers.
Any integral type is mapped to a row in the first table; all other types are mapped to a row in the second table.
SQL queries over these tables are naive updates, selects, and increments (for the integral table). Because
we use PostgreSQL as a key–value store, we do not believe that SQL-specific performance concerns such
as query optimization or parse time have any significant impact on our results.

When running as a linearizable store, PostgreSQL is put in a “normal” operating mode with a single
master per object and the SERIALIZABLE transaction isolation level. The coding overhead required to create
this interface was pleasantly small; about 180 lines of C++ code, mostly for registering prepared statements.

Configuring PostgreSQL as a causally consistent store proved more challenging. Our approach is to run
PostgreSQL via logical BDR (bi-directional replication), in which multiple PostgreSQL instances accept
writes to the same tables and asynchronously propagate those updates to each other PostgreSQL instance.
Each instance runs transactions at the “repeatable read” isolation level, corresponding to the guarantees of
Snapshot Isolation. To enforce an ordering on operations occurring at distinct database instances, we use a
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vector clock as a version number for each row in these tables. A stored PL/pgSQL operation updates these
version numbers upon row modification. All told, these mechanisms were implemented in 1,000 lines of
C++ and about 100 lines of PL/pgSQL.

Snapshot Isolation in PostgreSQL in turn enforces the guarantees of causal consistency; within a single
session, all reads will reflect data no older than the previous transactions’ reads, and each transaction can
see the modifications made by all previous transactions from this session. Finally, in order to enforce a
notion of ordering for operations occurring at separate database instances, we associate a vector-clock as
a version number for each row in these tables, using a stored PL/pgSQL operation to update these version
numbers upon row modification. These vector-clock version numbers form a partial order consistent with
causal consistency, and have been the basis for enforcing causal consistency in past work [cite bolt-on causal
consistency]. Several application servers are associated with a single element of this vector; we say that all
MyriaStore clients which share an entry in the vector-clock are in the same “causal group.” All elements of
the same causal group communicate with a single BDR instance to allow for safe use of their shared entry
in the vector-clock.

In order to avoid merge conflicts during replication, each logically separate instance of the BDR database
has an associated index value. Every object in each table is then stored once for each index value. Updates
to a BDR replica include this index value, causing every BDR instance to write to a disjoint subset of the
rows in each table. Reads are performed by reducing over all rows with the same key, regardless of their
index value, to produce an aggregate response. For efficiency, this aggregation is carried out by a PL/pgSQL
stored procedure and occurs automatically during replication.

6.2 Benchmarks

We could find no existing benchmarks for mixed-consistency transactional systems. To test MyriaStore,
we developed two new benchmarks intended to represent the emerging mixed-consistency landscape. The
first is a simple, fully synthetic benchmark that mixes read-only transactions that reference single rows from
the integral-types table, and read-write transactions that read and increment values in the integral-types
table. Objects referenced during read operations are selected from a Zipf distribution over 400,000 names;
objects referenced during write operations are selected from a uniform distribution over the same names.
The second benchmark is the Message Groups example discussed in section 2.2. Its three main transactions
appear verbatim in figure 1. In this benchmark, the inbox we check for messages is drawn from a ZipF
distribution, and the group to which a message is posted is selected from a uniform distribution.

The synthetic benchmark has the attractive property that it offers several different tuning parameters that
allow us to explore the space of workloads. Before using it, we assessed the value of measurements made on
the synthetic benchmark, by comparing its results against the more complex Message Groups benchmark.
When running the Message Groups benchmark, we considered each individual store operation to be an
“event,” and only considered configurations in which users repeatedly post the same message to groups of
size one. This configuration was chosen to provide maximum control over which operations write, read, are
strong, or are causal. When running the synthetic benchmark in a similar configuration, we find that results
from the synthetic benchmark (figure 7) closely match the performance results from Message Groups, as
desired.

6.3 Results

Speedup relative to strong consistency The most important question for MyriaStore performance is
whether mixed-consistency transactions offer a speedup compared to the simple alternative of running
transactions entirely with strong consistency. As shown in figure 8, we compared the maximum achiev-
able throughput of these two configurations over a range of workloads. In part (a), we see that for identical
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Figure 7: The Message Groups program and the synthetic benchmark running in similar configurations. In
both, 95% of operations are reads and 25% of operations are strong. Specifically, 24% of the operations are
group membership checks, 1% of the operations are group joins, 71% of the operations retrieve a message
from an inbox, and 4% of the operations are message posts. Users always join the same group or post the
same message, so group and inbox size do not grow with time.

workloads, the maximum throughput is improved by making even a small (2̃0%) fraction of transaction
operations causally consistent – and as the share of causal operations grows, the performance improves.
Additionally, we observe that the speedup obtained by using the close, causal stores is roughly linear in the
share of causal transactions. This result is in line with expectations: as fewer transactions incur high latency
and serializable ordering, performance should increase.

Below 40% strong, MyriaStore’s total maximum throughput always measures above 2,500 opera-
tions/second; thus, the observed improvement is not simply a matter of available hardware resources.

Overhead of tracking Now that we have established that mixing causal and serializable operations in-
creases maximum throughput, we turn to the overheads incurred by the tracking algorithm as presented in
section 4.3. As seen in 8(a), the tracking mechanism has a noticeable, constant effect on the maximum
throughput of the system. The lower line in this figure should be read as a baseline for PostgreSQL itself;
there are no MyriaStore functions running during this test, with the MyriaStore API instead directly trans-
lated into prepared SQL statements. The difference in maximum throughput has a simple cause; as noted
in the discussion of the tracking algorithm, every attempt to read from a strong store must be accompanied
by an additional search for a “tombstone,” which would inform us that the strong object in question carries
causal dependencies. Though these tombstones are rare, the check itself increases load on the system.

Latency The tracking mechanism does have an effect on latency, especially because of design decisions
made for backward compatibility. Figure 9 shows the effect of the tracking mechanism on observed laten-
cies. Latencies are presented as a CDF collected from the system running at 80% of maximum throughput,
in a configuration in which where 95% of all operations are reads, 75% of all operations use the causal store,
and 25% of all operations use the strong store. We ran this test twice, once with the tracking system enabled,
and once without. Figure 9 (a) focuses on operations which only use the causal store. The red line on this
graph represents the data collected without the tracker running; the green and blue lines represent writes and
reads collected with the tracker running. As expected (section 4.3), the tracking mechanism adds essentially
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Figure 8: (a) maximum throughput as a function of strong mix for a 95% read workload. The red series
shows maximum achievable throughput without tracking; the blue series shows full tracking. (b) Maximum
throughput as a function of write share for a 75% causal workload.

no overhead to causal operations.
Figure 9(b) reports latencies for operations that utilize the strong store. Again, the red line represents all

strong operations running without tracking, the green line represents all strong writes running with tracking
enabled, and the blue line represents all strong reads running with tracking enabled. One might be surprised
that with the tracker, strong read operations are slower than strong write operations. This outcome is,
however, to be expected; as presented in Section 4.3, the tracker must check for a tombstone on every strong
read, while it only writes a tombstone on a few strong writes. In fact, if one looks closely at the green line,
one can observe the <5% of writes which do need to write a tombstone.

The latency results are a motivation to speed up strong reads so that their overhead is comparable to that
on strong writes. There are two obvious (but still unimplemented) approaches: first, bundling tombstones
with their strong objects, and second, parallelizing tombstone reads. We expect that the first approach
would improve strong read performance by a factor of two, but it does comes at a price: in order to bundle
a tombstone with the strong object itself, we would need to change the representation of data on the store,
breaking any legacy clients attempting to use the data. The second idea comes with no such caveats; fetching
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Figure 9: CDF plots for operation latency. (a) shows latencies for causal operations without the tracker
(red), and breaks out writes (green) and reads (blue) for latencies with the tracker. (b) shows latencies for
strong operations without the tracker (red), and breaks out writes (green) and reads (blue) for latencies with
the tracker.

the tombstone in parallel with the object itself would work just fine.
Figure 9 shows that a small fraction of strong reads experience much higher latency than normal, over

500ms. This effect results from the algorithm of Section 4.3. These operations encountered a tombstone
upon strong read, but were unable to find a matching tombstone in their nearby causal replica. This means
some updates were missed, so they attempt to fetch the missing updates directly from a different client
while, in parallel, rechecking a nearby causal replica for the missing tombstone. Eventually one of these
operations succeeds, and the strong read is allowed to complete. These operations are the only place where
cooperative caching is used, accounting for less than 0.25% of all strong reads.
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7 Related Work

7.1 Mixing consistency on a single system

Most work in the mixed-consistency space has focused on operations against a single distributed system.
Some systems [27, 18, 17, 11], and even SQL provide users with a language of constraints which they can
use to describe the invariants associated with their data and/or operations and in turn provide the weakest
consistency possible while still satisfying those constraints. These languages range in complexity from
simple annotations [18] to entire programming languages [27].

Much other single-store work has focused on providing single data stores which supply multiple consis-
tency levels, allowing users explicitly choose the consistency level associated with each operation or object
[23, 5, 15, 8, 18]. While this certainly allows programmers a level of control over the safety and speed
of their operations, these works make no guarantees about the interactions of their various consistency and
isolation models, making the job of programming against these systems just as difficult as programming
against multiple, single-consistency distributed stores. Indeed, MyriaStore chooses to treat such stores as
semantically separate distributed systems for the purposes of safety. A smaller set of work has focused on
providing similar tools for isolation levels across transactions [29].

Still more work focuses on automatically adjusting the consistency of operations without the need for
programmer annotations at all. These systems range from the actively unsafe [28] to the semantically lin-
earizable [19], with many in between [17, 30]. While this approach is significantly easier for the pro-
grammer to understand, it can often admit strange performance characteristics. For example, changing a
single transaction somewhere in the system can significantly affect the performance of unrelated transac-
tions [18, 30, 26].

This laudable work lies somewhat outside the scope of MyriaStore’s goals; we envision each of these
systems as one among many stores a programmer could use in a single MyriaStore application. Indeed, the
MyriaStore API is sufficiently minimal that these systems can expose any annotation-based functionality
directly to the user, allowing a seamless integration of the safety provided by these systems alongside the
cross-store safety and programmability made possible by MyriaStore.

7.2 Consistency across multiple systems

A much smaller body of work attempts to make the job of programming against multiple data stores easier.
The most obvious candidate is SQL, and the SQL compatibility libraries like JDBC and ODBC [10]. These
standardized languages attempt to provide a unified API for programming against every RDBMS; and while
each different database has its own unique implementation of the SQL standard, much of the language is
shared, making it easy to port simple code which ran against one RDBMS to run against a different one.
The SQL language itself is only aware of a single database system, leaving the work of coordinating actions
across multiple database systems up to the programmer. Additionally, issues of consistency and isolation
level are not addressed in SQL itself; rather, each underlying system determines which actions are safe.

7.3 Enhancing the consistency of existing systems

Beyond SQL, some existing work has focused on mechanisms which can upgrade the consistency guarantees
of weakly-consistent underlying stores [1]. Indeed, several previously-discussed projects [21, 27] use this
approach internally, adding consistency layers atop existing distributed systems like Cassandra.
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7.4 Enhancing performance of distributed systems

The mechanism for expediting propagation of causal updates can be seen as a form of cooperative
caching [7], though it is updates that are shared among clients rather than object states.

8 Conclusion

We have introduced a new programming model for writing modern geodistributed applications that need
to trade off performance and consistency. The mixed-consistency transaction model offered by MyriaStore
makes it possible for programmers to safely combine strongly and weakly consistent data in the same ap-
plication, with confidence that weakly consistent data does not corrupt the guarantees of strongly consistent
data. Appealingly, this model can be implemented in a backward-compatible way on top of existing data
stores that offer their own distinct consistency guarantees, without disrupting legacy applications that share
the same stores. The performance results suggest that for geodistributed applications, mixed-consistency
transaction allow programmers to achieve higher performance by using weakly consistent data in a selective
way.
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