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Abstract

In this paper we describe a mathematical model and solution approach for
determining spare inventory levels for a multi-item, multi-indenture system of
recoverable items in which failed parts are removed according to a fixed cyclic
schedule. This model was motivated by NASA’s desire to better understand
and control maintenance costs associated with their future Reusable Launch
Vehicle (RLV) programs. Our model differs from existing recoverable part
models in two fundamental ways. First, the vast majority of existing recover-
able item models assume that part failure processes are Poisson or compound
Poisson. Our analyses have shown that this assumption is inappropriate for a
system characterized by a small number of flights (over the maximum repair
cycle time) that adhere to a fixed mission and maintenance pattern. Instead,
we use an explicit combinatorial model to capture part failures over time and
develop approximation methods based on this combinatorial model. Second,
instead of attempting to characterize stationary distributions and measures
for random points in time, the performance measures of interest in our model
correspond to specific points in time, namely, the points at which vehicles are
scheduled to have their maintenance completed (i.e., RLV due dates). By us-
ing the proposed combinatorial model and methods in lieu of a Poisson-based
model, NASA could reduce inventory investment levels by many millions of

dollars.



1 Introduction

Because of the enormous cost associated with space vehicle launch delays, the successful
operation of NASA’s Reusable Launch Vehicle (RLV) programs depends critically on
their ability to maintain an on-time launch schedule. While certain types of launch delays
cannot be avoided, such as weather-related delays, those that result from prolonged or
delayed vehicle maintenance are largely avoidable by investing properly in resources that
support the maintenance process.

In this paper, we examine the impact of part shortages on vehicle maintenance sched-
ules and describe a method for investing a given budget in spare parts inventory so as
to minimize this impact. We concern ourselves only with recoverable or repairable parts.
That is, parts that are either repaired in-house or sent to a contractor for repair when
they fail. Typically these are more complex, expensive parts, and maintaining excessive
inventory in these items can be both costly and wasteful.

There is no shortage of literature on repairable parts models. Within the realm of
multi-echelon models are numerous extensions and generalizations of the METRIC model
Sherbrooke (1968), a multi-item, multi-echelon inventory management system developed
for the United States Air Force in the late 1960s, and widely held to be the first practical
application of multi-echelon inventory theory. Although the list is far from exhaustive,
notable among the extentions of METRIC are Simon (1971), Muckstadt (1973), Shanker
(1981), Graves (1985), Moinzadeh and Lee (1986), Sherbrooke (1986), Lee and Moinzadeh
(1987), Svoronos and Zipkin (1991), and Wang et al. (2000).

Compared to their multi-echelon cousins, multi-indenture models have received rela-
tively little attention in the literature. Sherbrooke (1971) considers the single-base case
and describes a method for evaluating the expected number of vehicles that are not op-
erationally ready due to supply (NORS), but shows that the corresponding optimization
model is not tractible since the objective function is not separable. Using the Sherbrooke
(1971) model, Silver (1972) shows that the ready rate objective function is separable
in a special case, and uses a heuristic technique to develop a set of potential solutions

from the special case solution. Muckstadt (1973) presents MOD-METRIC, an extension



of the METRIC model that considers multi-indenture items within the multi-echelon
framework. Using ideas from Graves (1985), Sherbrooke (1986) shows that the accuracy
of multi-indenture models can be improved by assuming that the distribution of the num-
ber of top-level items in resupply is negative binomial instead of Poisson. Sherbroake
merges these ideas into the VARI-METRIC model Slay (1980) to arrive at an improved
multi-echelon, multi-indenture model.

The model and analysis we present in this paper differ from other multi-indenture
models in two fundamental ways. First, all of the aforementioned models assume that
part failure processes are Poisson or compound Poisson. This assumption is inappropri-
ate for a system characterized by a small number of flights that adhere to a fixed mission
and maintenance pattern, and using a Poisson model to plan spare parts inventory for
such a system can have costly consequences. In this paper, we use an explicit combinato-
rial model to capture part failures over time and develop approximation methods based
on this combinatorial model. Second, instead of attempting to characterize stationary
distributions and measures for a random point in time, the performance measures of
interest in our model correspond to specific points in time. That is, the points at which
vehicles are scheduled to have their maintenance completed (i.e., RLV due dates).

Like the models of Silver (1972), Muckstadt (1973), and Sherbrooke (1986), our model
considers two classes of recoverable parts: line replaceable units (LRUs), and shop re-
placeable units (SRUs). LRUs are modular assemblies (or subsystems) that are tested
in-place on an RLV during the inter-launch maintenance process. If an LRU fails its test,
the part is removed from the vehicle and replaced with a spare LRU (if one is available).
Meanwhile, the failed LRU enters a repair process in which the cause of its failure is
identified and remedied.

SRUs are components, or subassemblies, of LRUs. An LRU failure may be due to a
failure in one or more of its SRU components. During the LRU repair process, if an LRU
failure is determined to be the result of an SRU failure, then the failed SRU is removed
from the LRU and replaced with a spare SRU (if one is available). The failed SRU then
enters its own repair process. Components needed to repair SRUs are presumed to be

readily available and are not considered in our model.



While the availability of both LRUs and SRUs is vital to the maintenance process,
only a lack of LRUs can cause a delay in a vehicle maintenance schedule. A lack of SRU
components can delay the repair of one or more LRUs, but it does not necessarily cause
a schedule delay. For this reason, we define a backorder to be an unfulfilled order for an
LRU. A backorder is delay-causing if it still exists at end of the scheduled maintenance
period for the RLV. In these terms, we are interested in measuring the ezpected number
of delay-causing backorders at the end of a scheduled maintenance period.

In Section 2, we describe the framework upon which our model is based, including
the RLV ground maintenance process, and the repair processes for LRUs and SRUs. In
Section 3 we formulate our problem as a mathematical program and describe how an
optimal tradeoff curve can be computed in a straightforward manner. In Section 4 we
discuss methods for approximating the probabilities that are the key components of the
objective function. An example illustrating the differences between the approximation
methods is given in Section 5, along with a comparison of the resulting solutions with

those from a Poisson model. We briefly summarize our contributions in Section 6.

2 Modeling Framework

Unless otherwise stated, we will assume that all times and interval lengths are integer-

valued.

2.1 The RLV Ground Maintenance Process

We consider a scenario in which identical vehicles maintain a fixed mission pattern such
that successive vehicle missions are offset by - time units. Each vehicle returning from
a mission must undergo a fixed maintenance schedule before the vehicle can be prepared
to launch again. Maintenance cycles are scheduled to be 7 time units in length and are
also offset by ~ time units. See Figure 1.

On each RLV there is exactly one LRU of each type. For each LRU type [, the
maintenance schedule dictates a specific time §; (relative to the start of the maintenance

cycle) at which the LRU of type [ is checked for failure. See Figure 2. Welet =7 —§;
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Figure 1: The RLV Maintenance Process

denote the effective maximum maintenance schedule length for LRU type [. That is, the
time that elapses between the test of an LRU of type [ and the corresponding maintenance
schedule due date. Regardless of when the LRUs are checked during the maintenance
schedule, all failed LRUs must be replaced by the end of the maintenance schedule in
order to avoid a delay. It is at these due dates (iy+ 7 for i = 0, 1, 2, ...) that we are

interested in measuring backorders, since these are the points in time at which existing

backorders can become delay-causing.
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2.2 The LRU Repair Process

When an LRU fails, it is either sent away for repair, or it enters an in-house repair
process. In this section we describe the process for in-house repairs.

Recall that LRUs of type [ are checked for failure at times iy + 6,4 =0,1, 2, ....
Each LRU [ fails with probability p;, independent of any other LRU failures. If an LRU of
type [ fails, the failed LRU is removed from the vehicle and transported to its designated
repair site where it is queued for service. This transport time is denoted #n. Once at
the repair facility, the LRU waits in the repair queue for ¢; units of time before being
serviced. The LRU service process itself has two phases, failure diagnosis and repair.

During the failure diagnosis phase, which takes d; units of time, tests are performed
to determine the cause of the LRU failure. The failure may be the result of a failed SRU
component. If the needed SRU component is available in stock (or if no component is
needed), the LRU repair phase commences immediately. If the needed component is not
available, the LRU must wait until the component becomes available. This waiting time
is denoted w;. In this paper, we explicitly derive the distribution of w;.

During the repair phase, which takes r; units of time, any faulty SRU components
are replaced, and the LRU is prepared for subsequent use on a vehicle. Once an LRU
has been repaired, it is transported to a stock location where it is then available for use.
The time required to transport the repaired LRU from the repair facility to the stock
location is denoted ¢{"*.

Figure 3 depicts the entire LRU repair cycle. In our model, the repair cycle time for

a failed LRU of type [ is denoted C,.

2.3 The SRU Repair Process

As described above, SRU failures are detected during the LRU failure diagnosis phase.
Specifically, SRUs that are components of LRU type ! will have their failures detected at
times iy + & + C?, i =0, 1, 2, .... We assume that at most one SRU failure occurs for

each LRU failure.
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Figure 3: The LRU Repair Cycle

For a given RLV maintenance schedule, an SRU j fails with probability p;, indepen-
dent of other SRU failures that are not components of the same LRU. Given that LRU
fails, the probability that a component SRU j is the cause of the failure is p;/p;. When
an SRU failure is detected, the failed SRU undergoes a repair process similar to the LRU
repair process. The repair cycle time for a failed SRU of type j is denoted C'j and is

assumed to be constant in our model.

2.4 Repair Cycle Times

Figure 4 depicts some of the major factors that influence the various components of the
LRU repair cycle times. Note that SRU spare inventory levels and SRU repair cycle times
affect the LRU repair cycle times through the amount of waiting time they induce in the
process. The LRU repair cycle times, in turn, dictate the LRU spare inventory levels that
are necessary to avoid shortages. While our analysis of LRU repair cycle times is focused
solely on understanding the nature of the waiting times wy, it is extremely important to

understand how each resource (or lack thereof) contributes to the various components of
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repair cycle time. We examine our problem under the assumption that without investing
in SRU spare parts inventory, the LRU waiting times will constitute a significant fraction

of the LRU repair cycle time.

Repair Facility Location
Transport Method

Repair Capacity t

Product Design
Repair Technology ]
SRU
Repair
Cycle Time
SRU Spare
Inventory
Levels
¥ v v l v A 4
2 g 4 Wy 1 =
1 i i 1 i i |
iy + 8 iy +8,+CF w8+ G
f t f
Failed LRU? Failed SRU LRU{ available
rem oved from removed from for use

RLV LRU:

Figure 4: Factors Impacting LRU Repair Cycle Time

2.5 Counting Delay-Causing Backorders

Consider an LRU type ! and an arbitrary maintenance schedule due date T* = #*y + 7.
Suppose that backorders exist for LRUs of type [ at time T*. Not all of these backorders
are necessarily delay-causing, since there may be backorders that correspond to vehicles
whose due dates are later than T*. The backorders that are delay-causing at T™ are
precisely those that are associated with vehicles whose due dates are at or before T*.
Equivalently, the backorders for LRU type [ that are delay-causing at T™* are those that

were recognized at or before time T — 7;.



Let N, denote the number of LRUs of type l in the repair process at an arbitrary
maintenance schedule due date T* = i*y + T that entered the repair process at or before
time T* — 7. If there are s; spares of LRU type I, then there will be a delay-causing
backorder at maintenance due date T* if N; > s;. More specifically, if N; = s; + k, then
k vehicles will be delayed due to LRU type ! at time T*. The & delayed vehicles are
not necessarily the k vehicles that have most recently landed. Since backorders are filled
on a first-come, first-serve basis, and since we assume 1no cannibalization of parts, the k
delayed vehicles will be the ones having the k most recent test failures of LRU [.

Let D, be the number of delay-causing backorders for LRU type | at an arbitrary

maintenance schedule due date T*, so that
D= [Nl — Sl]+. (2.1)

Note that while D, is a function of s;, N; is not. However, N, does depend upon the stock

levels s; of SRUs that are components of LRU type [, since these stock levels affect w;.

3 Problem Formulation

We begin this section with a summary of modeling assumptions. We then define notation
for the parameters and variables that are key to the problem formulation. We conclude
the section by formulating our problem as a mathematical program and outlining a

practical solution approach.

3.1 Modeling Assumptions

In addition to the basic structure outlined in the preceding sections, we make the following
modeling assumptions about the recoverable parts, the failure processes, and the repair

processes:
1. Each RLV contains exactly one LRU of each type.

2. Bach LRU contains at most one SRU of each type.



10.

11.

12.

13.

14.

. Each SRU component is found in exactly one LRU type. LRUs do not share

common SRU components.

. Each LRU type is either repaired in-house or sent away for repair.

If an LRU type is sent away for repair, its constituent SRU types are also repaired

in the process. Hence, these SRU types are not considered in our model.

. All LRU and SRU failures are repairable.

In calculating the distributions of N; and Nj, we ignore the fact that there are a
finite number of physical vehicles in rotation. That is, we do not attempt to capture
the fact that if a backorder persists for too long, the vehicle cannot complete a

mission before its next scheduled maintenance cycle.

Each LRU of type ! fails with probability p;, independent of other LRU f{ailures.

. Each failed LRU contains at most one failed SRU component.

SRU failures are independent of each other across maintenance cycles. Each SRU
of type j fails with probability p;. The probability that SRU j € J; has failed given
that LRU [ has failed is p;/pi.

SRU repair cycle times C'j are known and constant.

For LRU types repaired in-house, all repair cycle time components except w; are

known and constant.

For LRU types sent away for repair, repair cycle times C, are are i.i.d. bounded

random variables with known distributions.

Backorders for the same LRU type are filled on a first-come, first-serve basis.

. LRUs in the repair process that are waiting for the same SRU type are allocated

SRUs on a first-come, first-serve basis.



3.2 Notation

Unless otherwise stated, we will use the following notation throughout this paper.

Sets

L - the set of LRU types, indexed by [,

J - the set of SRU types, indexed by 7, and

gy - the set of SRU types that are components of LRU type l.

Decision Variables

8 - the spare stock level of LRU type [,
S5 - the spare stock level of SRU type j, and
sy - the vector of spare stock levels of SRU types j € J,.

Independent Parameters
RLV Maintenance Process:
T - the scheduled length of an RLV maintenance cycle, and

vy - the time between the starts of consecutive RLV maintenance cycles.

LRU Repair Process:

& - the time from the start of an RLV maintenance schedule to the point at
which LRU type [ is checked,
T - the time from when LRU type ! is checked until the scheduled end of the

corresponding RLV maintenance cycle (i.e., 7 — ),

m - the failure probability of LRU type [,

o - the time to transport LRU type [ to its designated repair facility,

q - the repair queue time of LRU type [,

d; - the failure diagnosis time for LRU type [,

T - the repair time for LRU type [,

@ - the time to transport LRU type [ from its designated repair facility,

ct - the portion of the repair cycle time up to and including failure diagnosis

10
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for an LRU type [ that is repaired in-house (i.e., t" + ¢ + d;),

the portion of the repair cycle time that occurs after all needed SRU
components are available for an LRU type [ that is repaired in-house

(i.e., m + "),

the minimum repair cycle time for an LRU type [ that is repaired in-house
(ie., 8" + q + d +r + ™), and

the unit cost of LRU type L.

SRU Repair Process:

D
Pi/m

the failure probability of SRU type j,

the failure probability of SRU type j € J; given that an LRU of type !
has failed,

the repair cycle time for SRU type 7, and

the unit cost of SRU type j.

the target budget level.

Dependent Parameters

wj

wy

N

N;

the length of time a failed LRU of type [ needing SRU type j € J; waits

for SRU 7,

the length of time a failed LRU of type ! waits for needed SRU components,
the total repair cycle time for LRU type [ (i.e., C; + w; for in-house repairs),
the number of units of LRU type [ in the repair process at an arbitrary
maintenance schedule due date T* = i*y + 7 that entered the repair process
at or before time 1™ — 7,

the number of units of SRU type j € J; in the repair process at an

arbitrary failure diagnosis completion time T} = i’y + & + C}

for LRU type [, and
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D, - the number of delay-causing backorders for LRU type [ at an

arbitrary maintenance schedule due date T™.

3.3 Mathematical Formulation

In formulating our problem as a mathematical program, we have chosen the objective of
minimizing the total ezpected number of delay-causing backorders at an arbitrary main-
tenance schedule due date. Several alternative objectives are possible, many of which
are discussed at length in Sherbrooke (1971). As Sherbrooke points out, the expected
backorder criterion is sensitive to the duration of a stockout condition, not merely the
probability of one. Letting D;(s;, sj,) represent the ezpected number of backorders for
LRU type | at an arbitrary maintenance schedule due date, we have:

Disi, s5) = Y (k — s) Pr[N; = kls ], (3.1)

k>s;

where s;, denotes the set of stock levels s;,7 € J;. Given this definition, we state the

spare parts budget allocation problem (SPBAP) as:

(SPBAP) minimize > " Di(si,55) (3.2)
leL
subject to
Z 1S + Z C;8; < B (33)
leL jeJ
s, > 0 andinteger VIl € L, (3.4)
s; > 0 and integer Vj € J. (3.5)

Note that, for a firzed SRU spare parts strategy, 3.2 is discretely convex in s; for all
[ € L. Hence, if we fix an SRU spare parts strategy and replace the original target budget
B with the residual target budget B' = B — ¥_;n; C;5;, the problem can be solved for a
budget level
Be (B - %aixcl,B']

12



using straightforward marginal analysis. Unfortunately, 3.2 is not discretely convex in
sj, j € J. However, we can still construct a tradeoff curve for the problem by using a

semi-enumerative approach, which we describe next.

3.4 Solution Approach

Our solution approach is similar to that of MOD-METRIC Muckstadt (1973). Detailed,
step-by-step procedures are given in Caggiano and Muckstadt (2000). We provide a
descriptive overview here.

Our approach breaks the problem down by LRU family, where an LRU family [
consists of the LRU type ! and the SRU types j € J;. Note that LRU families are
disjoint, since SRU types are not shared across LRU types. Hence, the only spare stock
levels impacting the objective function term Di(s;, s;,) are s; and s;,7 € Ji. Conversely,
the spare stock levels s; and s;,j € J; only impact the term Di(s1,53,). Because of this
property, we can concentrate our efforts on understanding budget allocation tradeoffs
within each LRU family, and then put the pieces back together to arrive at a final
solution.

Specifically, for each LRU family, we construct an LRU family curve, T, depicting
the minimum D;(s;, s;,) that can be achieved at various family investment levels. That
s,

T = {(Bi. D}, & = (s},5%))i = 0,..on7;}
is a set of ny; points, ordered by increasing budget level, where each point ¢ corresponds
to a spare parts strategy S} for LRU family [, the budget B} required for this strategy,
and the expected delay-causing backorders for LRU type [, D}, achieved by this strategy.
Our LRU family curve construction is such that, when plotted, the points (B, D}),i =
0,...,ny; describe a discretely convex function.

The key to constructing an LRU family curve lies in understanding how various levels
of investment in the LRU family should be allocated among the LRU type [ and the
SRU types j € J;. We begin by constructing an SRU tradeoff curve, which depicts the

best performance that can be achieved at various investment levels if we invest in SRUs
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only, and then complete the process by using this information to evaluate spare level
combinations.

Recall that the sole purpose of holding spare inventory of an SRU type j € J, is to
decrease the waiting time component w; of the repair cycle time for LRU type [. In
Section 4, for each LRU type I, we formally introduce the variables w;,j € J;, where
w; denotes the waiting time that an LRU of type | experiences given that it requires an
SRU of type j to complete repair. Elw,|s;], the expected waiting time for SRU type j,
is a decreasing, discretely convex function in the spare level s;. Because this is true for
all j € J;, we can construct an SRU tradeoff curve using marginal analysis that depicts,
for a range of budget levels, the lowest possible value of E[w;|s;] that can be achieved,
where E[w;|sj] is the expected waiting time for SRU components experienced by a failed
LRU of type I. The constructed SRU tradeoff curve is discretely convex in the investment
level.

Once the SRU tradeoff curve is constructed, we use a semi-enumerative method to
construct the LRU family curve. This method considers a set of budget levels between 0
and B that are dense enough to ensure that all undominated points will be found. For
each budget level, the procedure evaluates all possible combinations of the LRU spare
level s; and the best complementary point on the SRU tradeoff curve to arrive at a single
undominated point on the LRU family curve. Once the set of undominated points has
been constructed, the procedure pares the curve points further by selecting those points
that are on the convex minorant of the set of undominated points. See Figure 5.

Given these convex LRU family curves as input, we use another marginal analysis
procedure to construct a final tradeoff curve for the entire problem. The main drawback
to this construction approach is that the final tradeoff curve does not contain a point
for every possible budget level, and the difference in budget level from one point to the
next on the final curve will be equal to the difference (in budget level) between two
consecutive points on one of the LRU family curves. Hence, if the LRU family curves
have large differences in budget level from point to point, the final tradeoff curve will
have large differences as well. Realistically, we expect the final tradeoff curves to be

reasonably dense relative to any practical target budget level B.
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Figure 5: An LRU Family Curve.
4 The Distribution of N,

Recall that NN, is the number of units of LRU type [ in the repair process at an arbitrary
maintenance schedule due date T* = i*v + 7 that entered the repair process at or before
time T* — 7.

We begin by reviewing a simple proof that N; has a binomial distribution when the
LRU repair cycle time C, is a known constant. We then characterize N, as the sum of
two independent random variables when C, is a bounded random variable. Using this
characterization, we derive the exact distribution of N, for those LRU types [ that are
sent away for repair, and we outline three approximation methods for those LRU types [
that are repaired in-house. All of the approximation methods for in-house repairs depend
on the waiting time w;, and we derive the exact distributions of w; and C’, as part of our

analysis.

4.1 The Distribution of N; When ¢, is Fixed

Suppose that for some LRU type [, C, is a known, fixed length of time. Then N, is
exactly the number of LRUs of type ! that entered the repair process in the time interval

(T*— G, T* —7). Any LRUs of type [ that entered the repair process at or before T* — C,



will have completed the process by T*, and any LRUs of type [ that entered the repair
process after T* — C, will still be in the repair process at T*.

If C, < 7y, then Pr[N; = 0] = 1, since every failure can be repaired before the end of
the same maintenance cycle. (Hence, it is not necessary to carry any spare inventory for

LRU L) If C, > 7, we can write
Cr=m+my+4&,

where my; and £, are unique nonnegative integers with &, < v. If & > 0, then exactly
17y + 1 tests of LRUs of type [ are conducted in the interval (I™* — G, T - 7). Iffé =0,
then exactly 17y tests of LRUs of type [ are conducted in this interval. Since LRUs of type
 fail independently of one another with probability p;, we have that N; ~ Bin(ry+1, D)
if £ > 0 and N, ~ Bin(y, p;) if € = 0. That is:

A 1 )
) ™t ) pF(L—p)™HF i > 0.
PI[NI = k[C[ =1+ myy+ éz] = iy )

) pR(L—p)™ " ,if & =0.

(4.1)

4.2 Characterizing N; When ¢, is a Random Variable

Now suppose that C, is a random variable whose distribution is known and bounded. In
this case, we can write:
A m R
Pr[C, < 7]+ S Prn+ky<Ci<n+(k+1)1]=1,
k=0

where 7 is the smallest nonnegative integer such that the sum is equal to 1. For purposes
of exposition, we will assume that Pr[C; < 7] = 0. (All of our analysis is easily extended
if Pr[C; < 1] > 0. See Caggiano and Muckstadt (2000) for details.) In this case, there
also exists a largest nonnegative integer m,; (where my < ;) such that

.nTl ~

> Prfn+ky<C <+ (k+1)y] =1 (4.2)

k=my
Given these integers, we can express V; as the sum of two random variables:

<my

Nl = l- + Nl>—m_l-,
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where le'r'n*l* denotes the number of units of LRU [ in the repair process at T* that entered
the repair process in the time interval [T* — (1, + myy), T* — 7], and Nf-nﬂ denotes the
number of units of LRU [ in the repair process at T* that entered the repair process in
the time interval [T* — (1, +m™my7y), T* — (1, +myy)). Note that these intervals are disjoint.
Since (1; + myy) is a strict lower bound on ¢, ngf—ni is simply the number of LRUs of
type [ that entered the repair process in the time interval [T* — (r,+myy), T* — 7). Thus,
since the LRU failure process is independent of the repair process, N,ST—n—’ and Nfﬁ are

independent, and

Pr[N, = k] = zkj Pr[N-™ = n| Pr[N,™ = (k — n)). (4.3)

n=0

So, to capture the distribution of N, it suffices to capture the distributions of N,ST-'- and
me. The former is easy, while the latter is difficult.
There are my + 1 points in the time interval [T* — (1, +my), T* — 7] at which LRUs

my

of type [ are checked for failure. Thus, NIS—* ~ Bin(m; + 1,p,), or:

m 1
PevEm = = (™) st - s (4.4)
Let I = {my +1, ..., M} denote the index set of checkpoints in the time interval

[T* — (1, +myy), T* — (1 + myy)). There are 7; — my checkpoints in this interval. At
any one checkpoint u € I, an LRU of type [ fails with probability p;, and the probability
that the repair cycle time will extend beyond T* is given by Pr[C; > 7 + uy]. While
this information is sufficient to compute the expected value of N, (see below), we need
more information to compute the distribution of N, since the latter depends upon the
joint distribution of the repair cycle times associated with the 72; — my; checkpoints in
[T* = (n+ ), T* = (1 + myY)).
The expected value of NV, is given by:

<

E[N] = E[N;™]+E[N™]

iy ~
= (ml + L)p + Z j o] PI‘[C[ > T+ k'y]

k:_r_n__;_—!—l
2y R
= p |(m+1)+ Z Pr[C, > 7+ k7] - (4.5)
k:ﬁ-}-l
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Note that 4.5 follows directly from Little’s Law Buzacott and Shanthikumar (1993).
Arrivals of LRU type [ to the repair process occur at a rate of p; per y-window, and the
term in large brackets is the expected number of y-windows beyond 7; that an LRU of
type | remains in the repair process.

In the sections that follow, we will derive exact and approximate distributions for

Nfﬂ in the context of our multi-indenture problem.

4.3 The Distribution of N, for LRU Types Sent Away for Repair

Recall that for LRU types sent away for repair, repair cycle times C, are assumed to be
i.i.d. bounded random variables with known distributions. Assuming that Pr[C’l <7]=0

and that m,; and 7 are defined as in 4.2, we have that:

PrN, 2 =k= S [pF[[PrCi>n+ uv]} [ II (1 —p Pr[C, > 7 +v'y]) ,
SCI:|S|=k uesS vel\S
(4.6)
where I = {m;+1, ..., T} denotes the index set of checkpoints in the time interval [T~ —
(1 +mpy), T* — (1 + myy)). Using Equations 4.4 and 4.6 for all relevant k, Equation 4.3
can be used to derive the exact distribution of N;.

Note that the computational time required to compute the probabilities in 4.6 for all
relevant k is O(2™). Clearly this approach is intractable for large values of 7;. However,
recall that this model is specifically intended for situations where 777 is small. Otherwise,
a model assuming a Poisson failure process is more appropriate. In NASA’s case, the
number of vehicle landings over the maximum repair cycle time for an LRU is currently

small and is expected to remain small for several years.

4.4 The Distribution of N; for LRU Types Repaired In-House

Recall that for LRU types [ repaired in-house, the repair cycle time C, = C; + w;, where
C, is a known constant and w; is the waiting time for SRU components. Since w; is a
function of the SRU spare levels s, the distribution of N, will also be a function of these

spare levels.
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First, we derive the distributions of w; and C,. We then outline three methods for
approximating the distribution of N; and discuss the advantages and disadvantages of

each method.

4.4.1 The Distributions of w; and C’l

Recall that LRUs of type [ are tested at times ¢y + §;, fori =0, 1, 2, .... If an LRU
failure occurs in a given cycle ¢, and the failure entails a failed SRU j € Jj, the failed
SRU will be removed from the LRU at time i’y + & + C? and replaced with a spare if
one 1s available.

We define N; to be the number of units of SRU type j € J, in the SRU repair process at
an arbitrary failure diagnosis completion time T} = i'y+ 8+ C? for LRU I (not including
the failed SRU that enters at time 7}). If N; < s;, then at least one spare SRU of type
j is available at this time and w; = 0 for the failed LRU needing the part. However, if
Nj; > s;, then no spares are available, and the failed LRU must wait to complete its repair
until an SRU j becomes available. Note from its definition that NV; is exactly the number
of SRUs of type j that entered the repair process in the time interval (7T} — éj,Tl’). It
C; < v, then Pr[N; = 0] = 1. Otherwise, we can write

Cj =m Y+ £, s
where m; and €; are unique nonnegative integers with €; < . From our discussion in
Section 4.1, it is immediate that N; ~ Bin(;, p;) if € > 0 and N; ~ Bin(n; — 1,p;)
if €5 = 0. That is:

'ni' Wi — o~
A ) kj) pi(1 —p)™ k ,if € > 0.
PI'[Nj = kIC] = ;7 +€j] = ’I’ﬁj -1 . - o (47)

For j € Ji, let w; denote the time that a failed LRU diagnosed at T must wait
for an SRU component, given that the diagnosis revealed a faulty SRU of type j. If
N; = sj+7—1, then the LRU will have to wait for the rth SRU of type j to complete its
repair, since 7 — 1 LRUs needing SRU type j are in line ahead of it at time T;. Thus, our
LRU will receive the SRU of type j that has been in the repair process the rth longest
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at time 7]. If the rth oldest outstanding failure of SRU type j was diagnosed at time
T} — (m; — k) for some k € [0,1,...,m;], then the waiting time w; = kv + €;. Note
that when s; = 0, the LRU will have to wait until its own faulty SRU can be repaired.
Hence, Prlw; = mjv + &j|s; = 0] = 1. When s; > m;, the LRU will never have to wait,
so Pr{w; = 0|s; > m;] = 1. The following theorem describes the distribution of w; in the

case that 0 < s; < my:

Theorem 1 Given a constant SRU repair cycle time C’j > v with the unique represen-
tation

éj=’l’ﬁj”y+éj, mj>0and ’)’>§j20,

if €; > 0, then the distribution of w;, for any 0 < s; < my, is given by:

§;~1 o R
Priw; =0ls;] = > (n;’) pi(1—py)™ 7k, (4.8)
k=0
m,-—k—l) 5; ks .
p (1 —p;)™ i for k=0,..,0m; —s;),
Prlw; = ky +¢jls;] = ( si—1 )7 ’ 7 31?9)
0 , for k> (m; — s;).
If €, =0, then the distribution of w;, for any 0 < s; < my, is given by:
T (i -1 k Aj—1—k
Prlw; = 0lsj] = ). ( " ) pi(1—py)™ 7, (4.10)
k=0

mj—k—l) . b .
p’ (1 —p;)™ i, for k=1,..,(m; —s;),
Prlw; = kv|s;] = ( sj—1 ! ! ’ (72‘11)

0 , for k> (m; — s;).
Proof. Since Pr[w; = 0] = Pr[N; < s;], 4.8 and 4.10 are immediate from 4.7. To see that
4.9 and 4.11 are true, note that when N; = s;+7—1, the rth oldest outstanding failure of
SRU type j at T} is the same as the s;th most recent failure of SRU type j, not including
the failure at 7}. Thus, the probability that w; = ky+¢; for any k € [1,...,m,] is precisely
the probability that the s;th most recent failure of SRU type j was diagnosed at time
T} — (m;—k)y. (If €; > 0, this is true for k£ = 0 as well.) For this to happen, we must have
exactly s; — 1 failures within the (ri; — k — 1) most recent checkpoints (not including T} )

and a failure on the (1; — k)th most recent checkpoint. There are (mg_’f; 1) ways that
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the former can happen (each occurring with probability p;j_l(l — p;)™i~%=%), and only
one way for the latter to happen (which occurs with probability p;). For k > (m; — s;),
there are fewer than s; checkpoints in the range [T} — (m; — k), T;), so it is impossible

for the s;th most recent failure to have occurred at T} — (m; — k)v. O

Since at most one SRU failure occurs per LRU failure, we have as an immediate

corollary to Theorem 1:

Corollary 1 Forany0<e <vy:

Prfw, =0|s;] = 1- }- Z p; (1 = Prfw; = 0lss]),

yj jed;
1 N
— > p; Priw; = ki + €jls],
i jed
Pr((k —1)y+e<w < ky+elsy] = for k=1,.., (mEaJ,_x(rﬁj —s;)+1),
JET

0, for k >I}fl€aﬁ((mj“‘3j)+1?

k Zf éjSE.

where k;. = (4.12)
k-1 if éj > E.
Also,
p.
Elwisy] = Y Elwjls]=F (4.13)
jET P

The expected values of w;,j € J; can be computed directly from their respective distri-
butions. However, the following representation, which can be derived using Little’s Law,

is in many instances computationally preferable:

€5 PI‘[NJ‘ > Sj] + l ti % (k- Sj) PI‘{NJ‘ = k]} , if&Aj > 0.
Efw;ls;] = (4.14)

mij—1
fyPr[Nj?_Sj]+l [ Z (k—sj)Pr[Nj=k]} ,if &= 0.

Now that we have the distribution of w;, the distribution of C, = C,+w, is immediate
since C; is a constant. However, we wish to represent the distribution of C, in the
~-window form of 4.2. We show how to do this for the case that C; > 7 and g =

(Cy — 7)divy > 0. (The other cases are similar).
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Writing C; = 7, + myy + &, where m; and ¢ are unique nonnegative integers and

0 < & < v, we can set my = m; and My = my + (max;e s, (n; — ;) +1) and conclude that:

iy ~
Z PI‘['T'; -+ k’y <C<mn+ (k -+ 1)’YISJI] = 1.

k=my
or, equivalently,
™y
S Prin+ (m+k)y < Cr <+ (mp+k+ylsg] = 1.
k=0

Using the fact that w; = C, — C,, we have:

~

Prr+myy < G <m+ (my+1)7]ss]
= Prlw; < (v —&)lsul

_ 1 Y p; Priw; < (v —e1)lsj]

D jed;
1 A~

T o [,Z p; Pr[w; = 0[s;] + Y.  piPrlw; =¢ls)]
P jed; jEJ;:0<éjS(")’—El)

Prifn+ (m+ky< C <n+(m+k+ 1)7vls)
= Prfk—1)y+(v—e&) <w < ky+ (v —&)lsal,
for k=1,.., (7 —m). (4.15)

Since (y — &,) < 7, the probabilities Pr[(k — 1)y + (y — &) <wi < kv + (v — &1)|ss] in
the last expression are given by 4.12 with ¢ set to (y — &).

For ease of exposition in the three methods described next, we will continue to assume
that < C, = 7 + myy + &, where my; and ¢, are unique nonnegative integers and

D<e <.

4.4.2 Approximating the Distribution of N, - Method 1

In this simple method, we minimize computation by assuming that w; = [Elwi|ss]]
for all failed LRUs of type [, so that C; = C; + [E[wi|sz]] is a constant. In terms of
the characterization of N; given in Section 4.2, this method is equivalent to Ny™ ~
Bin(n;, p;), where

i _{ (e + [Elwlsal)divy ,if (& + [Elwi]sy]])mody > 0.

(4.16)
(&1 + [Elw]sz]))divy = 1, if (&, + [E[wi|s;]])mody = 0.
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Hence, this method assumes that N; ~ Bin(m; + 1 + ny, p), where n; is given by 4.16.
The primary advantage of Method 1 is that E[w;|sj,] can be computed efficiently, and

hence, so can the distribution of N;. The obvious drawback is that Method 1 does not

account for the variability of w; at all. This can easily result in LRU family curve points ¢

with under- and overestimated values of Di. We will see an example of this in Section 5.

4.4.3 Approximating the Distribution of N; - Method 2

In Method 2, we compute the distribution of C, as in 4.15 and then use 4.6 to approx-
imate the distribution of Nfln—’. This method is only approximate since 4.6 assumes
independence of repair cycle times. For in-house repairs, LRU repair cycle times (specif-
ically, the waiting times w;) are not independent since LRUs of type [ that fail in close
proximity to one another will compete for the same set of spare SRUs. Computationally,
Method 2 is much less efficient than Method 1 since the distributions for wy, ¢y, and N,
must be recomputed each time any s;,j € J; is changed. As we shall see, however, the
computed distribution of N; under Method 2 incorporates the variability of w; and, in
general, results in backorder estimates and stock level solutions that are very close to

optimal.

4.4.4 Approximating the Distribution of N, - Method 3

In Method 3, we explicitly derive the distribution of Nfﬁ described in Section 4.2 for
the special case in which the SRU repair cycle times éj = m;y +€;,j € J; are all the
same for LRU type I. For ease of exposition, we will assume that ni; > 0 and £}, > 0,
where 5, and €3, denote the common parameters. We will also assume that €5, +¢&; > 7.
In this case, my = m; and 7 = my + (maxjey, (niy, — 85) + 1).

Recall that N,>Zﬂ denotes the number of units of LRU type [ in the repair process at
T* that entered the repair process in the time interval [T* — (7, +T7y), T* — (1 + myy)).
In our case, this is equivalent to the number of units of LRU type [ in the repair process
at T* that entered the repair process in the time interval [T* — (7 + Ty), T* — Cy).

Now, recall that for LRU type I, C; = Cf + Cf, where C? denotes the portion of

the repair cycle time that occurs up through the failure diagnosis completion, and C7’
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denotes the portion of the repair cycle time that occurs after all SRU components have
been received through the end of the cycle. (See Figure 3.) Thus, we can redefine N,>ﬁ
as the number of LRUs of type | that are awaiting SRU components at time T* — CP.

Since at most one SRU failure occurs per LRU failure, we have that:

N = Number of LRUs of type [ awaiting SRU j at T* — C7
L

Jjed

= ) [Number of SRUs of type j in repair at T* — C? in excess of s;]
Jjed

= [N — s, (4.17)
JEJ;

where Nj denotes the number of SRUs of type j in repair at time T* — C}. However, Nj
is also the number of SRUs of type j that entered the repair process in the time interval
(T*—-Cp - C’j, T* — Cf. Since éj = myvy + £}, and since SRUs of type j € J; potentially
enter the repair process at times iy + &, + C?, for i = 0, 1, ..., we must determine the
number of potential entrances in the time interval (I* — Cf — C;, T* — Cf]. A general
method for doing this is given in Caggiano and Muckstadt (2000). For the case we are
considering (i.e., C; > 7, &, > 0, and € + €; > ), there are (; + 1) potential entrances
in the time interval (T* — Cf — C;, T* — C¢].

Thus, for all j € J;, we have that N; ~ Bin(niy, + 1, p;), and the vector Nj, of
the number of each type of SRU j € J; in the repair process at time 7* — C? has a
multinomial distribution with ni; + 1 trials and |J;| + 1 categories (one for each SRU
J € J; and one for the case that no SRU fails). Indexing the SRU types j € J; with (1,
2, ..., |Ji]), define the sets

e {(al’“z’ vayp) € 2 (X ay) Sy +1and Ylay - 5] = k}_
jed; jeg;

Using these sets, we can characterize the distribution of Nfﬂ as follows:

jeJ;

Pr[N,;™ = k] = Pr LZ [N; — 5]t = k}

(mig +1)! Y (i3, + =T, ¢ a5)
= S pipgl (L= p) N
(m,.-.,g;:l)eAk arleeap ((my, + 1) = Yjey, a5)! 7] & j

(4.18)
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The advantage of Method 3 over the others is that it captures the exact distribution
of N, (i.e., without assuming independence of the repair cycle times C; from cycle to
cycle). However, the sets Ay are difficult to characterize, and computing the distribution
of Nfﬁ using 4.18 is computationally undesirable if either |Jj| or ni;, is large. While
we have assumed throughout this paper that ni;, is reasonably small, we have not made

any assumptions about the size of the sets Jj.

5 Comparison of Models

In this section we compare the LRU family curves obtained using the three methods
outlined in the previous section with the LRU family curve obtained using a comparative
Poisson model.

There are many ways that one could construct a comparative model based on a
Poisson failure process. In order to have a fair comparison, we felt that the model should

have at least the following properties:
e Failures of LRU type ! occur according to a Poisson process with mean A; = p; /7.
e Failures of SRU type j occur according to a Poisson process with mean A; = p;/~.

¢ An LRU of type [ that fails at time ¢t must be replaced by time ¢ 4+ 7; in order to

avoid a delay-causing backorder.

A commonly used model assumes that the distribution of N; is Poisson, and Sherbrooke
has given an expression for the expected value of N, in the case that backorders cause
vehicle delays immediately Sherbrooke (1986). Using the above properties in conjunction

with this expression, it is not hard to derive the following results:

e For each LRU type [ with outsourced repair and a repair cycle time distribution
such that Pr[C;, < 7] = 0, the distribution of N; is Poisson with mean E[N}] =
M (E[Cy] — 7)) Feeney and Sherbrooke (1966).



e For each LRU type [ repaired in-house having C; > 7, the distribution of N; has

mean

M(Cr—m)+ D[ (k— s5) Pr[N; = K], (5.1)

J€Jdy k>s;

where N; has a Poisson distribution with mean A;C; Sherbrooke (1986).

Hence, for our comparative model, we assume that N; has a Poisson distribution with a

mean given by 5.1.

Table 1: Example Problem Data

RLV LRU SRU1 SRU2
Y 10 D1 0.5 D; 0.1 04
30 |n 25 |C; 56 56

¢ 1000

For ease of exposition we consider a single LRU family with two SRU components.
The problem data are given in Table 1. (Examples containing multiple LRUs are illus-
trated in Caggiano and Muckstadt (2000)). Figures 7 and 8 show different portions of
the LRU family curves resulting from Methods 1, 2, 3, and the Poisson model. Figure 6
gives the corresponding curve point information for each method. Method 3 gives exact
values for the expected number of delay-causing backorders (denoted by E[D] in the ta-
bles), and hence provides a basis of comparison for the other methods. While we were
able to supply the optimal tradeoff curve for this small example, Method 3’s compli-
cated characterization of N; makes computation of the distribution extremely difficult in
general.

There are several important observations. First, the Method 1 curve illustrates the
danger of ignoring the variability of w; in the N; computation. For instance, the solution
at the 3900 level claims that no delays will occur if the (2, 1, 4) stock level strategy is

followed. Clearly this is not the case.
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Figure 6: LRU Family Curve Points
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Second, the tail points of the curves are particularly important in NASA’s case since
these are the points that correspond to the low E[D] values that will be desirable for each
LRU family. Not only does the Poisson model predict E[D] values that are much higher
than the true E[D] values for its curve point stock levels, but the stock levels themselves
differ dramatically from the optimal levels. The implication of using the Poisson model
is that NASA’s inventory investment could be substantially higher than necessary as well
as allocated in a suboptimal way.

Finally, we note that the curves in this example are representative of what we have
typically encountered during our experimentation. Collectively, our analyses suggest that
Method 2 is far superior to Method 1 and the comparative Poisson model, both in terms

of estimating E[D] and in terms of allocation.

6 Conclusions

In this paper, we developed a mathematical model and a solution approach for determin-
ing and evaluating spare LRU and SRU stock levels when part failures occur according to
a fixed cyclic schedule. We presented three methods for approximating the distribution
of the number of relevant LRUs in repair at an RLV due date and compared the solution
curves obtained using these methods with the solution curve from a comparative Poisson
model. Our analyses show that there is ample justification for using a combinatorial
model in lieu of a Poisson model when the number of maintenance cycle starts over the
LRU repair cycle time is small. Specifically, the Poisson model underestimates the ex-
pected shortages for low levels of investment while dramatically overestimating expected
shortages in the range of performance that would be desired in practice. For the NASA
environment in particular, this could result in expending many millions of dollars in
spare parts inventory needlessly. Our proposed Method 2 produces solutions that are far

superior without excessive computational effort.
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