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ABSTRACT

Through the use of complete sets of mutually orthogonal F-squares,
the concept of F-square geometries has been introduced. This follows
from the one-to-one correspondence of complete sets of mutually orthogonal
latin squares and projective geometry. The cases of n =3, 4, 5, and 6
as the order of the F-square are considered. The case for n = 3 is
completely resolved where it is shown that there is only one geometry,
the projective. The case for n = 4 is partially resolved and four
F-square geometrizs have been found. It is not known if there are more.
The case for n = 5 has not been investigated, but one geometry for the
complete set of orthogonal latin squares does exist. No one has as yet
found an F-square geometry for n = 6. A study of all F-square geometries

for these cases will be useful for considering other values of n.

* In the Mimeo Series of the Biometrics Unit, Cornell University, Ithaca,
New York, 14853.
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1. INIRODUCTION

It is well knb@ﬁ that for latin'squarés of order tﬁree,
(i) a complete set of orthogonal latin squares, denoted by OL(3,2)
exist, and S L

(ii) there is a single transformation set.
With the introduction and development of F-square design theory by Hedayat [1969]
and Hedayat and Seiden [1970] and from section XV of a paper by Federer et al.
[1971], where A. Hedayat shows the equivalence of various combinatorial systems
startinguuith an OL(n,n-1) set, the question arises as to the use‘gg F-square
design theory in a one-to-one correspondence with other combinatorial systems.

As a first step we shall look at all possible complete sets of F-squares. We

' shall ;vc"a‘ll each one an F-square geometry and shall be studying complete sets of

F-square geometries for n = 3, 4, 5, and 6. The case for n = 3 is vefﬁ“simple.

The case for n = 4 becomes considerably more difficult and the difficult&'increases

with n since the number of possible cases becomes increasingly large.

First of all, an F-square of order n with m symbols is denoted as
F(n; ll;'°',Nm)-square. The X& are integers and refer to the frequency of any

given symbol in a row or in a column. When the hi are ones, a latin.square of

. ol m L e e
order n is indicated. Also, izlx = n for any F-square. A set of t mutually

i
orthogonal F-squares with the same number, m, of symbols will be denoted as

“t

OF(n;hl,---,%m;t) to correspond to the notation OL(n,t) for t orthogonal latin

RN
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squares, I{ the number of symbols in the complete..set of orthogonal F-squares -

varies, then we use the notation
A

L OF(asdy, et N,)  forall A, el
i=l

oy

to indicate that there are Nii F-sqﬁare% ﬁith i symbols for each possible set

of My et

Note that there are. (n-1)? degrees of freedom associated with the row X -
column interaction and that these are: the only degrees of freedom available for

constructing Fe-squares. Im: an F-square with i- symbols there are (i-1) degrees
of freedom among the i symbols. Hence, Z N, X(l -1) = (n-1)® for all possible

sets of ki for a complete set of F-squares.

_ The idea of many complete sets fgr each n may be somewhat new for most
people, but a discussion for n = 3, h,\s,'gnd;6 below should clarify what is
meant by the complete set of F-square geometries of order n.
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2. THE CASE FOR n = 3

The possible sets of Ah,‘h=l,f",i = 3 in.an F(3;h1,-°~,ki)-square are
1,1,1 and 2,1. Note that 1,2 is merely a permutation of the set 2,1. A complete

set of orthogonal F(3;A.,"',ki)-squares is given by the terms of the summation

OF(3;2,1;,) + OF(3;1,1,1;K,) .

The possible values for N, and N, given that N1(2-1) + N2(3-l) = (3-1)® = 4 are:
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Nl . N2 F-square geometry given by
0 2 OL(3,2) set

e 1l does not exist

4 0 does not exist

The members of an OL(3,2) set are

A B ¢C a b c
Ll = B C A L? = c a b
C A B c a

A permutation of the last two rows of 12 produces Ll‘

The problemgof producing a complete set of orthogonal F-squares for Nl =2

x.

and N2 = 1 resolves itéélf if one is able to decompose & latin square of order

three into two orthogonal F(3;2,1)-squares. Hence, the following theorem:

Theorem 2,1. It is impossible to decompose a latin square of order three into

an orthogonal pair of F(3;2,1)-squares.

Proof. It is immaterial whether one uses 11 or 12 so we shall show that 12
cannot be decomposed into two orthogonal F(3;2,l)7sqpares. Consider the follow-

ing set of orthogonal single degree of freedom contrasts for a 3 X 3 sdﬁare:

Contrast
l. mean + + + 4+ + + o+ o+ o+
2. row 1 versus row 2 + + 4+ -~ - - 0 0 O
3. row 1l+2 vs. row 3 + + o+ o+ o+ + =2 -2 =2
L, col. 1 vs. col. 2 + -« 0 + - 0 + = O




e

5. columns 1+2 vs. 3 2 + -2 -+ + -2 + + 2
6. A versus B + - O’; - 0+ 0 + -
7. A +Bvs. C + + =2, + -2 + =2 + +
8. a+bwvs. ¢ + o+ -2 -2 + 4 + -2 +
9. unknown = (?) 11 2o 23 8y 8By 23 83 8y a33

Contrast 8 forms an F(3;2,l)f§quare if we put a symbol, say x, where the pluses
occur in the contrast, and a second symbol, isay ¥, where the minus two occurs.

This F-square follows as does the unknown 1n contrast 9:

Contrast 8 Contrast 9

x X ¥y aj1 #12. %13
y. X X 821 %2 83
X y x 1231 332_ a33

Note that for contrast 8 wve could havg taken a +. C vs. borb +ec vs. a to
obtain the F(3,2 l) -square and that these three ways. exhaust the p0881b111t1es
for forming F(3;2,1)-squares. Since the sum of the coeffic1ents must equal
zero and since the sum of products of coefficiénts in any two rows must be zero

the only possible valﬁés fbr the éis are given“belOW:H

all = 1 a12 = =1 al3 "' 0
a21 = 0 a22 = 1 a23 -1

= -1 A = 0 ) = 1 V
"1 °32 #33
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There is no way to form an F(3,2 l)-square from the above since there are three,
not two, coefficients, i.e., 1, -1, and O. Thus, the -complete set of F-squares

for N; = 2 and N, = 1 does not exist.

Consider now the case where N; = 4 and N, = 0. Since the orthogonal F(3;2,1)-
squares must be formed by contrasts of the form a + b versus c and A + B versus
C (or some permutation of the symbols), from the full set of 9 orthogonal con-
trasts, seven will be specified ‘as above.  The remaining cannot take on any other
values than +1, -1, and O as described above. Hénce, it is impossiblé to form
an OF(3;2,1;4) set, resulting in the following tﬁeorem:

¢

Theorem 2.2. The OF(3;2,1;4) set does not exist.

It is possible to form a pair of orthogonal F(3;2,l)-squares by taking one

square from Ll and one from 12 above. It is not possible to obtain more than two.

3. THE CASE FOR n = &

The possible configurations of the kh, h=1,***,i sk in F(4; ) 1 --,hi)-
: i
squares are: 1,1,1,1; 2,1,1; 2,2; and 3,l. Note that hzlhh = 4, A complete

set of mutually orthogonal F-squares of order 4 is indicated as follows:
OF (433,138, ) + OF(4;2,2;N,) + OF(4;2,1,1; Ng) + oF (4;1,1,1,1;N,) .

L
Subject to the constraint that ilei = (4-1)2 = 9, the possible values for the

Ni are given below:
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Gomplete set given by

=
=

- OL(k4,3)-set
.does not exist (see below)

o + O

‘does not exist'(sée below
given below '

does not exist (see below)
does not exist (sée Below)
does not exist (see beldw)

e

8
o3
Ly
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~Mandeli [1975]
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Hedayat, Raghavarao and Seiden [1975]
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3.1. Solution for Ny, = 2., PFor latin squares of order 4 there are two trans-

formation sets, one of which is mateless and one which can be used to construct

an OL(4,3) set such as the following:

A B C D a b ¢ d a B ¥
B A C D d ¢ b a Y & «
= C D A B e b a 4 ¢ =N 5 Y B
D C B A c d a b B a &

If a and a are setequaltoA bandBtoB,candytoC and d and & to D, one

‘ may observe that Ly and L3 can be converted 1nto Ll by a simple row permutat:.on
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of the last three rows:i In addition, it is known that any pair of orthogonal .
latin squares of order 4 can be extended to form an OL(%,3) set. Thus, any two

of Ll’ L2, or L_ may be used and the problem is to show how to decompose the

3

remaining latin square into combinations of F(4;2,1,1)-, F(4;2,2)-, and/or

F(4;3,1)-squares. Suppose that L. and L, are the latin squares in the set for

1 2

Ny, = 2. Then, our problem is to decompose L, into F-squares. The only F-squares

3
with two symbols that are possible are the F(4;3,1)-square and the F(4;2,2)-square.
The former implies the contrast 3o - B - ¥y - & and the lattgr implies the con-
trast @ + B - v ;4é.émong the four éym%ols. Note that althoﬁgh there are an
infinite number of sets of contrasts for n = 4, these two from Helmert poly-
nomials and from the 22 factorial are the only onés giving rise to F-squares.

Therefore, one needs only to investigate the following two cases to determine if

L3 can be decomposed into three F-squares with two symbols:

+ + + + + + + +
1 1 1 -3 + o+ e .
a, 8y a; ¢y ,?2" ¢y
bl b2 b3 b& dl .q? d3 dh =

For Ml’ note that

]
o

al ? a
|
al f a2 + §3 f 3au

+ a +a'+

2 3

L]
o
.

The only solution for a), is a), = 0, and if all 16 cells of a bk x 4 square are

used, one cannot form a F-square. Hence, M

b cannot be completed to form a set
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of three orthogonal F-squares with two symbols. Likewise, the same holds for the

bg coefficients.

In M2,
; + s + c3 te = 0
¢y + ey - c3 -c, = o .
Therefore,
¢y e, = 0 and c3 +tc, = 0

are solutions for these two conditions. ‘Possible solutions for ¢y and c, are

+1 and -1.0r O and O, or multiples thereof. Likewise, these are the possible

solutions for c,.and c), . Therefore, the possible sets of solutions are:

3

The first set does not produce F-squares, but the second one does. Hehce, the

only decomposition of L, into F-squares with two symbols is into three F(k;2,2)-

3

squares.

Now consider the decomposition of L

3

F-square with two symbols. First combine any two symbols of L3 into a single

into an F(4;2,1,1)-square plus an

symbol to form the F(h;e,l,l)-séuére;.e.g., let @ = 8 = a. Then, form the
contrast of 2a - B - ¥. The only contrast orthogonal to fhis contrast is B - Y.
The remaining orthogonal contrast would be @ versus the original 8. This last

contrast does not form an F-square.

Another way of looking at this problem probably could be using a result

due to S. S. ‘hrikhande (personal communication from A. Hedayat, 8/12/76).
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He showed that if a matrix contains the first 4t-2 rows of a Hadamard matrix
the only way to make this an orthogonal matrix is to complete the Hadamard
matrix. This implies the existence of F(4;2,2)-squares only. The above then

leads to the following theorem:

Theorem L4.1. The only decomposition of a latin square from the OL(L4,3) set

Ly

is into three F(L;2,2)-squares.

3.2. Solution for Ny = 1. Here one needs to consider the solution for a latin

square from the set OL(4,3) and a latin square from the other transformation set
which is an orthogonally matéless latin square. The only solution for the 16

cases is the one for which N = 1;”N3 =N, =0, and N, = 6. Mandeli [1975]) has
given the solution for both transformation sets. 'Ihe solution for the remainder

of the cases is an open problem,

3.3. Solution for Ny, = 0. Of the 29 possibilities for complete sets of F-squares

when N) = 0, only one has been solved,‘and that is for the OF(4;2,2,9) set. Some

decomposition and composition theorems are needed for these solutions.

L, THE CASE FOR n = 5

The possible configurations of the kh’ h=l,¢**,i =5 in F(S;hl,"',Ki) are:
1,1,1,1,1; 2,1,1,1; 2,2,1; 3,1,1; 4,1; and 3,2. Note that the hzl kh = 5,
Consider a complete set of mutually orthogonal F(5;kl,---,ki)-squares such that

v 2
there are N, of the i‘*" type and denoted as OF(5,k1,'~',A.;N.), where I N, (i-1)
i 1771 j=p 1
= (5-1)2 = 16, A complete set of mutually orthogonal F-squares will have the
: BRI AR e

following numbers of types: OF(5;3,2;N1) + 0F(534:15N2) + OF(5;3:1,15N3)

+ OF(5;2,2,1;N, ) +'OF(5;2,1,1,1;N5) + OF(5;1,1,1,1,1;N,). The possible values
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are:;

1

for the N.

Complete set given by

=t

2



N

oy .};g
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- 13 -

Q
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2,3

that exist should be obtainable

from the OL(5,4)-set

Those abové for N6
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® 2 2 1 o
3 1 1 ‘o 1o
¥ 0 1 0t LR
o 6 o0 o0
1 5 o o
2 4 [V
3 3 o] o]
Y 2 0 0
5.1 0 0
6 o o0 o0
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e

etc. for other conibinations of the N::L down to the last case where Nl = 16,

N, =N, = Nh = I\I5 = N6 = 0. Because of the very large number of céses, some

2 3 i o
decomposition and composition theorems are nseded to obtain the solution for
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classes rather than single cases. Note that if N6_2 2, the F-squares under
consideration must come from a decémposition_of latin squares from the OL(5,4)
set. For Ng = 1, there are two tr;nsformation sets, one of mateless latin
squares of order 5 and the other which is a member of am OL(5,4) set. Note
that only one case, i.e., for the OL(5,4) set, has been solved in the complete

set of F~-square geometries.

5. THE CASE FOR n = 6

No one has as yet obtained a complete set of orthogonal F(6;kl,°--,ki)-
squares, for i=2,3,***,6. The maximum number so far obtained is an OF(6;2,2,2;7)
+ OF(631,1,1,1,1,1;1) set. Two F(6;2,2,1,1)-squares, if orthogonal to the above,
would be needed to complete the set. Likewise, the addition of six OF(6;hl,h2)-
squares would also complete the set. Many such combinations are possible, but

so far a complete set of mutually orthogonal F-squares has not been obtained.

In this connection there are ten possible F-squares of order 6. These are:

F(6;5,1) F(6;3,2,1) F(6;2,1,1,1,1)
F(6;4,2) F(6;2,2,2) F(6;1,1,1,1,1,1)
F(6;3,3) F(6;3,1,1,1)

F(634,1,1) F(6;2,2,1,1)

A complete set should be obtainable as some combination of the following:

OF(6;5,1;N1) + OF(6;4,2;N2) + OF(6;3,3;N3) +:OF(6;h,l,l;Nh) + OF(6;3,2,1;N5)
+ OF(6;2,2,2;N¢) + OF(6;3,;?1,15N7) +?9F(6;2’2’1’1;N8> f'QF(6;2,1,l,l,l;N9)
+ OF(6;l,l,l,l,l,1;Nlo). 10

We know, for example, that N, must be one or zero
since no pair of orthogonal latin squares of order six is possible.
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10
In order to reduce. the possible combinations of Ni“such that 121 Ni(i—l)

= 25 = (6-1)2, same results of composition and decomposition would be desirable
to eliminate certain combinations of the Ni' For example, is it possible to
decompose a latin square of order six into one F(6;3,3)-square and two F(6;2,2,2)-

squares? One could do the following for a latin square of ‘order six:

"LS(6)
1-o01 2 - 00 3-11 b - 10 5 - 21 6-20
2 - 00 1 - 0L k- 10 3-11 6-20 | 5-21
3-11 b - 10 5 - 21 6 - 20 1-o01 2 - 00
L - 10 ’3 - 11 6 - 20 5-21 2 - 00 1-01
5.21 6 - 20 1-o01 2 - 00 3-11 k- 10
6 - 20 5-21 | 2-00 1-01 b-10 | 3-1

In the above the following représentation to a 2 x 3 factorial has been made:

Symbol in F(6;3,3)
1=01 3=11 5=21 1
2 =00 4 =10 6 = 20 0
Symbol in F(6;2,2,2) 0 1 2

Thus any 6 X 6 square can be decomposed, via 2 X 3 factorial representation,
into an F(6;3,3)-square ané an F(6;2,2,2)-square. But, can another square of
the latter type be formed from the interaction contrast coefficients? This

has not yet been done. It is, however, simple to form another F(6;2,2,2)-square
orthogonal to the previous two as follows: Form all possible tetrads in the

above 2 X 3 tahle; these are:



» , and .

~

Considering all interaction contrasts, we form an F(6;2,2,2)-square as below.

If in each pair of rows in the original latin square, we set the symbols as

follows:
Rows © Symbols
1&2 1&k =0 283=1 5&6 =2
3&4 186=0 2&65.=1 3&4 =2
5& 6 3&6=0 L &5 =1 l1e2=2

-

Although this procedure makes use of interaction contrasts, this is not a correct
. ! o -

decomposition of thé original latin square-ef-order six.

% .
)
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