AN ALGORITHM FOR CHECKING PL/CV
ARITHMETIC INFERENCES
77-326

Tat-Hung Chan

Department of -Computer Science
Cornell University
Ithaca, N.Y. 14853

.

AN ALGORITHM FOR CHECKING PL/CV ARITHMETIC
INFERENCES
77-326

Tat-Hung Chan

Department of Computer Science
Cornell University

Ithaca, N.Y. 14853

Abstract:s This paper describeﬁ the operation and implementation of
the arithmetic proof rule for the quantifier free integer
arithmetic used in the PL/CV 2 program verification system. The
general arithmetic satisfiability problem underlying the rule is

shown to be NP complete.

This work was supported in part by NSF grants MCS 76-14293 and
MCS 75-09433.

$1 Introduction

.

Arithmetic operations constitute an indispénsible component of
algebraic computing languages. Consequently, arithmetic reasoning
plays a vital role in ;erification schemes for programs written in
these languages. The most indispensible type of arithmetic reasoning
lnvolves only the integers.

The PL/CV 2 verification system, Constable and O'Donnell [78],
and Constable and Johnson [78], provides an integer arithmetic which
is a fragyment of a constructive quantifier free theory of discrete
ordered intggraldomains,+ A verification rule, called the arithretic
rule, allows the conclusion of a disjunction of arithmetic relaticns
from a conjunction of arithmetic relations provided the disjunction
can be deduced from the conjunction in the underlying quantifier free
theory of arithmetic (in a restricted manner to be described later;.
This paper describes the operation and implementation of the arith-

metic rule.

The paper is organized as follows. Section 2 summarizes the
underlying arithmetic axioms and formulates the arithmetic rule in
terms of quantifier-free proofs using these axioms. Section 3 consic
the implementation of the rule, i.e. the question of how to verify
its applicability. This is essentially a proof existence problem,
which will be shown to be equivalent to the satisfiability problem

for a set of arithmetic relations over constants and monic linear

+ NAlthough the PL/CV 2 arithmetic theory is constructive (even
Intuitionistic), since we are dealing only with quantifier free
proofs involving computable relations, all the relevant results
from claassical logic remain applicable (sce Klecne [52)).

-2-

univariate polynomials. In proving this cquivalence, we shall
introduce the closely related problem of the satisfiability of

directed graphs with edges weighted by the integers, and make use of
the lemma that such a graph is satisfiable if and only if it contains
no cycle+of positive weight. Besides being a useful tool in the
theoretical discussion,- this graph-theoretic result will play an
important role in the actual implementation. 1In Section 4, we establish
the LP-completeness of the arithmetic satisfiability problem of Section
3. .The praoblem is then represented as a tree of directed, weighted
graphs, and an algorithm for its solution by searching for a satis-
fiable leaf is developed. Section 5 contains an account of the éctual
implementation of the arithmetic rule and some examples of its use,

We conclude with some remarks on possible extensions in Section 6.

+ In this paper, cycles and paths in directed graphs are undetstood
to be directed.

§2 The Arithmetic Rule

As mentioned above, PLCQ 2 admits four groups of arithmetic
axioms. These are
(1) the ring axioms,
(1I) the discrete linear order axioms,
(I11) the relation definition axioms, and
(IV) the monotonicity axioms.
Groups I axiomatizes the properties of the integers as a commutative
ring.(2,+,-,0,1i. Group II axiomatizes the properties of the
discrete lincar order "less than" (<), while G;oup IIl defines >,
< and » in terms of < and the logic connectives. Finally, Group IV
axioms allow the combination of two arithmetic relations by the

binary arithmetic operations; they are all varianté of the four basic

formas
(addition) X2y & z2w = X+22ytw
(subtraction) AZY & Z°W W X=ZTY-W

(multiplication) %20 & y2z = Xxy2x2

(factoring) x>0 & xy2xz = y22

A complete list of all the arithmetic axioms can be found in the append:

The arithmetic rule will be concerned only with arithmetic
propositions, which are quantifier-free propositions whose atoms are
arithmetic relations. Arithmetic relations in PLCV 2 are of the
form Tl p 12 , where 11 ,r2 are polynomial expressions ;n program
variables (possibly subscripted), logic variables, and function
designators+' and p is one of the six relational operators < 5, A,

2 and >. By repeated applications of the ring axioms, any polynomial

expression 1 can be proved equal to some polynomial of the form

+ For simplicity, this paper considers only expressions involving
simple variables. A discussion of subscripted variables and
function designators can be found in Constable and Johnson [78].

-4~
c+n (cy0), m, or c, where c is an integer constant and 7 is a constant-
free polynomial in some chosen canonical form. For appropriately
chosen canonical forms, the expression c+mw, 7 or c will also be the
canonical form of t. In the remainder of this section, we shall
consider two polynomial expressions to be the same if they have the
same canonical form.

Obviously, applications of the axioms of Groups I, II and III
can only prcduce conclusions involving the same constant-free poly-
nomials as occur in the antccedents. Applications of the monotoniéity
axioms introduce new constant-free polynomials in some, but not all,
cases. Pfominent among thosc which do not are the additions in
which one relation-has constant comparands, e.qg.

xzzy & 2>3 =»x2—2>y-3

In the remainder of this paper, we refer to such additions as trivial
ronotonicity, and all other applicatiohs of the monotonicity axioms

as nontrivial monotonicity.

Thus, a quantifier-free proof using only propositional caiculus,
the PL/C\2 equality axioms (reflexivity, symmetry, transitivity and
substitution of comparands+), the arithmetic axioms of the first
three groups and trivial monotonicity essentially involves only those
constant-free polynomials that occur in the antecedents, and is there=-
fore of limited complexity. We call such a proof a restricted

arithmetic proof. If we further restrict the hypothesis and the

+ This is a restriction of the substitution axiom which disallows
the substitution of only part of a comparand. For example, from
x*xey & x=2z it can justify z/xsy but not z#z+y.

-5~

conclusion to be, respectively, a conjunction and a disjunction of
arithmetic relations, then the decision problem for the existence
of a restricted arithmetic proof is reducible to an integer satis-
fiability problem, solvable by graph algorithms. This reduction, which
will be formulated and proved rigorously in the next section, is ex-
ploited in the design of the arithmetic verification rule, which is
intended to embody as many applications of the arithmetic axioms as
possible without rendering the validity checking (i.e. proof existence
problem impossible. Specifically, the arithmetic rule car be used
to justify the deduction of a conclusion C from a hypothesis H if and
only if
(1) H is a conjunction of arithmetic relations,
(2) C is a disjunction of arithmetic relations, and
(3) there exists a restricted arithmetic proof of ¢ from M, where

M is either H, or H enhanced by one application of nontrivial

monotonicity to be specified by the uéer.
In connection with nontrivial monotonicity, it should be noted that
factoring is achieved by "syntactic division”, i.e. in order to
divide out a factor x from a relation, the user must exhibit each
comparand explicitly as a product of two factors, one of which must
be x (unless the comparand is either 0, or is x itself). The effect
of this restriction is to shift the burden of bolynomial division from
the.verifier to the user. Also note that the set of constant-free
polynomials involved becomes fixed after the single application of
nontrivial monotonicity (if specified).

Examples. The argument

x+ty>z, 2x22 = 3x+y22z-1

-6=

can be justified by one invocation of the arithmetic rule, whereas

the argument
x>y, y>0, z>w, w>0 = xz>yw
requires three invocations:

z>w, w>0 = 2>0 (transitivity)
x>y, z>0 » xz>yz (multiplication by 2z)

z>w, y>0, xz>yz = xz>wy (multiplication by y followed
by transitivity).

§3 Reduction of the Validity Checking Problem.

The module of PLCV 2 which checks the applicability of thé
arithmetic rule to .a verification step is called the arithmetic
checker. Nontrivial monotonicity aside, its function is to decide
whether there exists a restricted arithmetic proof for a disjunction
cf arithretic relations C from a conjunction of arithmetic relations
H. For convenience, we shall abbreviate the term restricted arithmetic
proof to A-proof. Extending this terminology, we say that a broposition
Q is A-provable from a proposition P, denoted PPRQ, if there exists

an A-proof of Q from P, and that P is A-contradictory if a contradiction

(i.e. a proposition of the form QaaQ) is A-provable from P. We now
reduce the A-proof existence problem to an integer satisfiability

problem.

.

Th™1. Let P, Q be arithmetic propositions. Then PI—XQ <> PANQ is

A-contradictory.

Proof: Standard result in logic.
Thus it suffices for the arithmetic checker to decide whether the’

conjunction of relations HA?C is A-contradictory.

-7

Th™2., Let P be a conjunctioq of arithmetic relations, and let Pc
be the conjunction of the same relations with all comparands
converted to canonical form. Then P is A-contradictory <> Pc

is A-contradictory.

Proof: Follows from the fact that FFRPC and PCP_XP by propositional

calculus, the equaiity axioms and the ring axioms.

The next thecorem allows us to simplify the procblem by consider
the distinct constant-free polynomials in P. as "atomic™. Intuitive
this abstraction, whereby we ignore relations that may exist among
the constant-free polynomials by virtue of their internal structures
is allowable because A-proofs, being deprived of the use of nontrivi
monotonicity, are not powerful enough to exploit these structures
anyway. Note that, as mentioned in the previous section, it is
precisely this limitation of the power of A-proofs which makes their
existence problem easicr (yet still NP-complete,.as we shall see lat

Thus let Pc be a conjunction of arithmetic relations with
canonical form comparands, and let PA be PC with all distinct non-
zero constant-free parts of the comparands replaced by new, distinct

variables. For example, if PC is
142x = z+xy & =3-2x > -4+z+xy
then Py is .
l+u = v & =3+w > =4+v,
Then we have

Th™3. Pc is A-contradictory <o PA is A-contradictory.

-8-

Proof: ® e=" Take an A-proof of contradiction from PA‘ Replace all

occurrences in the proof of those variables that are in Py by their
corresponding constant-free polynomials, and leave occurrences of

variables that arc not in P, unchanged. The result is a proof in

which justification by the arithmetic and equality axioms and by the
various rules of inference remain valid, since the relevant structures of
the comparands and the propositional structures are left intact by

the replacements. The only change is that an appeal to Pp becomes

an appeal to PC. Since a contradiction in the old proof is transformed
to a contradiction in the new proof, we have shown that PC is A-

contradictory.

"= " Again we proceed by "proof-massaging”.

Take an A-proof of contradiction from PC' and compute the canonical,

form of each comparand. There are several possibilities for the

caronical form, and we transformthe comparands accordingly.

(Tl) The canonical form is ¢ for some integer c:
the original comparand is left unchanged.

(T2) The canonical form is n or c+nm where ¢ is an integer ¥ 0, and
n is the non-zcro constant-frece part of some comparand in Pc:
replace the comparand by Xy or c+xy where xq is the variable
corresponding to m.

(T3) The canonical form is m or c+m as in (T2) except that m is
not the constant-free part of any comparand in PC: replace
each occurrencé of any variable in the comparand by some fixed
variable y not in Pp-)

Note that both (T1) and (T3) leave the tree structure of thc.comparand

intact.

-9

We next manipulate the intermediate text resulting. from

comparand transformation into a valid A-proof from 2% This is

achieved by a tedious case analysis of the jusuification of each st¢

in the old proof. 1In the following analysis, x' denotcs the trans-

formation of comparand x.

(1)

(2)
(3)

Propositional calculus and equality axioms. The justificatio:

remains valid because if comparands x,y are identical, then s«

are x', Y', so that the structures of the arithmetic proposit

are

Appeal to P

preserved.

c* Transformed to an appeal to P,.

Arithmetic axioms.

(1)

(14)

(114)

" Ring axioms. The proposition is an equality, the two

sides of which necessarily have the same canonical form.
Hence either they both transform under (T2) to the same

new comparand, in which case the equality is an identity
justified by the reflexiviéy of equality, or they are le
unchanged except for possible replacement of variables u

(T1) or (T3), so that the original ring axiom still hold

Irreflexity, trichotomy, transitivity, and relation
definitions. The original justification remains valid
for the same reason as in (1)..

Discreteness (qx<y<x+l). Clearly the same transformatio
applies to both comparands x and x+l. If this transfor-
mation is (Tl) or (T3), then discreteness remains a vali
justification. It remains to consider transformation by
(T2). If x and x+1 transform to x; and l+x, for some

constant~-free polynomial 7 in PC’ insert in front of the

-10~

transformed proposition the steps
auUx, <y'< x"+1) discreteness

X 4l = 1+x" commutativity
If x and x+1 transform to -1+x" and X0 insert steps
1(-1+x"<y'< (~1+x")+1) discreteness

proof that‘(-1+x")+1-x" (by ring axioms & equality
: axioms)

Finally let x and x+1 transform to c+x1T and c+1 +x",
c/#0 or -1. 1Inscrt stcps

1(c+xﬂ<y'<(c+x")+1) discreteness

proof that (c+x_)+l=c+1 +x“(by ring axioms & equality
. v axioms)

In all three cases, use “"comparand substitution” as the

justification of the transformed step.

(iv) Trivial monotonicity. The proposition is in one of two

formats:

XPY A ZOW + X+Z T y+w or

KLY A ZOW * X+Z T Y+W A X+W V y+2z

where one of the antecedents, say zow, has constant
comparands. Thus we Know that z and w are left unchanged
(71), while x, x+z and x+w have the same constant-free
-part and so undergo similar transformation, and similarly
. for y, y+w and y+z. If neither x nor y is transformed by
(T2), then we know that the original justification remains
valid. Now suppose at least one of X,y is transformed by
(T2).. Then the original proposition is replaced by the .

sequence:

-1l

X'py'A zow + x'+z 1 y'+w (trivial monotonicity)

proof that §'+z-(x+z)' (if x transformed by (T2))

proof that y'+w=(y+w)' (if y transformed by (T2))

coel one

“x'py' A zow + (x+z)' T(y+w)' by comparand substitution.
Note that z'=z and w'=w since they are constants, and that
if x (respectively y) is not transformed by (T2), then
x'+z=(x+z)"' (respectively, y'+w=(y+w)') already.
Similarly for the sccond format.
Since contradictory propositions are transformed to contradictory
propoéitions, Py is A-contradictory.
So far, we have simplified the problem to deciding whether a
conjunction of arithmetic relations RlA"-ARm is A-contradictory,
) where each Ri has comparands of the form 0, ¢, x or c+x for some
nonzero constant ¢ and some variable x. From the distributive laws
for A and v, trivial monotonicity, and the A-provable equivalences:
x>y HA x>y+l,
x<y M, yax+l,
x=y H xxy A y2x,
X7y Fﬂh x2y+l v y2x+1, and
—~

X<y A Y2X,

it follows that RIA-.-ARm F4A slvszv”-vsn where each S¥ is a con-

junction of m' (m'2m) relations of the form

{1 = Grad

for variables x,y and constants c,d, d#b. Here, n-2k where k= numbe:

of ¥-relations among the Ri's. From this equivalence we immediately

obtain, by classical logic, the following lemmas:

-12-

Lemma 1; Rla...aﬁm is A-contradictory - <> Slv-v'vsn.is A-contraaictoty.
Lemma 2: RlA---ARn is unsatisfiable <> slv“-vsn is unsatisfiable.
The following are equally obvious:

Lemma 3: slv---vsn is A-contradictory < eac§ s1 is A-contradictory.
Lemma 4 Slv---vsn is unsatisfiable <¢ each S1 is unsatisfiable.

Thus, provided we can establish

Lemma S: Si is A-contradictory <> Si is unsatisfiable,

we have achieved the last step in our reduction:

Th™4

’

RyA** AR, is A-contradictory <> RyA--.AR, is unsatisfiable. -

Proof of Lemma 5: We prove thig lemma by introducing a directed,

weighted graph associated with Si. This graph will play an important
role in the satisfiability algorithm actually implemented. Thus let
G be a graph whose vertices are the variables in S1 plus an cxtra

vertex for 0 if there is any constant comparand. For each relation

G = frted

in si, there is an edge from x or 0 to 0 or y with weight ¢ or 0 or
d as the case may be. The weight of a path in this graph is the
algebraic sum of the weights of the edges in the path. A positive
cycle is a cycle with positive weight. A graph G is satisfiable if
there exists an assignment of integers u to the vertices u of -G,

such that for each edge u»v of weight m in G, we have uzv+m,

-13-

We now show that the following statements are equiwvalent:
(1) Si is A-contradictory, '
(2) S is unsatisfiable, *
(3) The graph associated with Si is unsatisfiable,

(4) The graph associated with Si has a positive cycle.

{l) = (2). Obvious.

(2) = (3). By a contrapositive proof. Suppose the associated gragh
is satisfiable. 1If there is no constant comparand in Si, the same
assignments to the variables as to their corresponding vertices

satisfy S;- Otherwise there is a 0 vertex in the graph. Assigning

x-0 to the yariable x satisfies Si.
(3) = (4). We use induction to prove the contrapositive assertion.
It is clear that a graph with one vertex and no positive cycles
(equivalently, no positive edges) can be satisfied by any intecer
whatsoever. For the inductive step, we employ the "elimination of:
variables" technique of Kuhn [56] and King [69]. Thus take a

graph G with no positive cycles. Let G have k>l vertices, and choes
a vertex w. Let G' be the graph obtained from G by

1) removing w and all edges incident on w,

2) adding, for cach pair of edges in G of the form u-w of weigh
and w+v of weight k, where u#w, v#w, a new edge u-v of weich
2+k. (The number of edyes added = in-degree of w ~ out-degre
of w, assuming there is no loop on w in G.)

Obviously, since G does not have a positive cycle, ncither does G'.
By the inductive hypothesis, we can assign intcgers to G' satisfying
the inequalities associated with its edges, including those edges of

G not incident on w. It remains to extend this by assigning a

value to w so that all edgyes of G incident on w are satisfied also.

-14-

If G has no edge of the type usw for uyw, or of the type w+v for

v#w, we need only assign w sufficiently large,. or small, respectively.
If G has cdges of both types, then the edges added in step 2) in the
construction of G' will quarantec that the upper and lower bounds on
w defined by the edges incident on w and by the assignments to G'

will leave a nonempty interval from which to make an assignment For

w. Formally, let

r=max{v+k |wsv is an edge of weight k in G, v#w}

M=min{u-1|u-w is an edge of weight % in G, u#wl}.
Then M:zm. For otherwise m-M, and there exist edges in G

u+w of weight 2, u#w,

w+v of weight k, v?w,
such that m=v+k, M=u-{. By construction, we know that G' has an
edge u+v of weight f+k, so U2v+(L+k). But m>M = v+k>u-L = V+(L+k)>u,
which is a contradiction. Thus let w be any integer in the nonempty
interval [m,M]. Then for each edge u+w of weight £, U-22Maw = U2w+L,
Similarly for edges w+v. Hence all edges of G are satisfied, since
any locp on w must have nonpositive weight and is trivially satisfied.
(4) = (1). The positive cycle obviously mirrors an A-proof of an
acsertion of the form x-x+c or 0-c, where c-0. So x>x or 0>0
follows by transitivity (after applying trivial monotonicity in the
first case). But we have Ix>x, 10>0 by irreflexity, and hence an

A-proof of contradiction.

54 The Satisfiability Problem

By the reduction of the last section, we have simplified the task

-]S=-

of the arithmetic checker ta one of deciding the satisfiability of a
set of arithmetic relations whose comparands are either constants or
monic linear univariatec polynomials (x or x+c). We can further
restrict the problem to one in which all the Eomparands are monic

linear univariate polynomials, by introducing a new variable x, and

0
changing constant comparands ¢ to Xg (if c=0) or Xgtc (if c#0).

- This transformation certainly preserves the satisfiability property
of the set of arithmetic relations.

As shown in the previous section, we can replace a conjunction
of relations other than #-relations by an equivalent conjunction of
relations of the form ‘x2y[+c]. Clearly each #-relation can also be
put into the form x#y([+c]). Once again, we formulate the problem in
‘terms of the satisfiability of a weighted directed graph, but in a
slightly different manner than in the previous section. As before,
the variables are the vertices, and the 2-relations provide the
weighted, directed edges. However, we now leave the #-relations as
additional constraints on the integer assignments. In comparison
with the previous approach, we see that a graph satisfiability
problem with k ¢-constraints is in fact cquivalent to 2k problens
without such constraints. This exponential proliferation of un-
constrained problems leads us to suspect that the constrained proble
would be much harder than the unconstrained problem. Theorems 1 anc
2,below reinforce this suspicion.

Consider a weighted, directed graph G whose vertices are numberc
from 1 to say, n. The edge weights are (finite) integers, which are
augmented by {-=,+=} so that we can talk about general maximum path

weights. The resulting algebraic structure is the closed semiring

(=&=*, -=, 0, max, +)

-16~

where Z*=2 y {'--,«-},

max is the sémiring addition, corresponding to weight max-
imization over a set of paths, with identity == for the
maximum over an empty set, and
+ is the semiring multiplication, corresponding to path con-
catenation, with identity 0 for the null (or O0-edge) path.
Formally, we require =-w+x=-» for all x, consistent with our inter-
pretation of concatenation for + and disconnection for -»., We also
extend the <-relation to Z* by requiring
- < X for all x#-~

¥ =0 for all x#g+»

0 if x<0
Also x*= {+» 4if %>0.

As in Algorithm 5.5 (computation of costs between vertices) of AHU
[74), let ij denote the maximum weight of paths from i to j without
rassing through (i.e. entering and leaving) vertices numbered higher
than k. If there is no such path, C§j= -=; if the weights of such
paths are unbounded from the abévc, C§j=+m; in all other cases Ctj is
finite. Clearly ng#+m for all i,j. We shall show that AHU Algorithm
5.5 can be modified to discover a positive cycle if there is one, and
to compute the C?j values (which are necessarily <+«) otherwise. It

will be seen that += nced never enter into the computation.

k

Thm 1 (1) G has a‘positive cycle <= Cii

>0 for some i,k.

(2) Suppose C?iso for all i, for all k<k0 for some ko.

Then C§j<+w for all 1,3 and all kako.

=17~

‘"Proof: (1) is obvious.

(2) We know that ng <+o%/i,j. Then using
X k-1 k-1 k=1*
Cij max(cij 0 cik + Ckk + C

k-1

xj

k=-1%*

and the fact that Ckk

=0 for all ksko, we can show

by induction that C§j<+m for all k, 0<ksko.

‘ Corollary: The unconstrained graph satisfiability problem is sol-at

in 0(n3) time.

Proof: The existence of positive cycles can be detected by the
following modified version of AHU ([74) Algorithm 5.5, which also

computes the maximum path weights C;j if no positive cycle is foun<

s 0
Initialize Aij to Cij ’
poscylce := false;
for k := 1 to n while <9poscycle do
begin for i:=1 to n while iposcycle do
begin for j:=1 to n do
Bij:=max(Aij ’ Aik + Akj);
poscycle := (Bii>0)

copy Bij to Aij for all 4,3

We have assumed that the integer arithmetic works properly for
2 u {-=}. Th™ 1 guarantees that +» will not be encountered, and

that the program is correct.

Th™ 2: The constrained graph satisfiability problem is NP-hard.

-18-

Proof: By a reduction of the k-colorability problem. Given a
connected, undirected graph G and an integer k, we construct a
weighted, directed graph G' whose vertices are those of G plus a
new vertex VO' For each vertex J of G, introduce edges v*vo,r

Vo v of weights 1 and -~k respectively for G'. For each edge (u,v)
of G, introduce a constraint u#v. The resulting constrained problem
is satisfiable if and only if G is k-colorable. For connected
graphs G, the reduction can be done in polynomial time. Since the
k-colorazility problem for connected graphs is NP-hard, so is the

constrained satisfiability problem.

Corollarv: The constrained satisfiability problem for. strongly

ccnnected graphs is NP-hard.
Proof: The proof of the theorem also proves this corollary.

The next observation allows us to break the problem into sub-
problems defined by the strongly connected components (SCCs) of the
g:aph,iand to ignore inter-SCC edges and constraints. The constraints
retained, i.e. those which relate pairs of (not necessarily distinct)

vertices both inside the same SCC, are called the internal constraints

¢of their respective SCCs.

Th™3 A directed, weighted graph G with constraints is satisfiable <>

each SCC, together with its internal‘:constraints, is satisfiable.

?roof: "= " is obvious.

" =" First make satisfying assignments to each SCC separately.
Y

+ : .
Then consider the quotient graph H = G modulo SCCs, i.e. the vertices

+ Also known as the condensation of G.

-19-

of H_ate the SCCs of G, and for every pair of SCCs U, V of G, there
is an edge U+V in H if and only if there exist vertices u, Q of G
such that ueU, veV, and there is an edge u+v in G. Clearly H is a da
so we can do a topological sort on it. Now visit the SCCs in the
reverse of the topological order. For each SCC, add an appropriate
constant to the assignments of all its vertices so as to satisfy all
the inter-SCC edges and constraints involving it and some previously

visited SCC.

Th™4 The constrained graph satisfiability problem is in NP, and

hence is NP-complete.

Proof: For each constraint xy¥y, guess x>y or x<y and add edge to
graph accordingly. After making guesses for all constraints (in
nondeterministic linear time), run the O(na) time algorithm of the
corollary to Th™ on the unconstrained augmented graph to determine
its satisfiability. The original constrained graph is satisfiable
if and only if the augmented graph for some sct of guesses for the
constraint§ is satisfiable. Hence the problem is solvable in non-
deterministic 0(n3) time. In conjunction with Th™2 this proves NP- .

completcness.

Corollary: The constrained problem for strongly connected graphs is

NP-complete.
Proof: By Thm 4, and the corollary to Thmz.

Thus the constrained satisfiability problem for strongly connect
graphs is a member of a class of problems which are solvable in

exponential time, but for which no polynomial time algorithm has yet

-20~
been de&ised. Thé exponential time algorithm in this case can bex
derived from the equivalence of the constrained problem to an ex-
ponential number of unconstrained problems cach solvable in polynomial
time. As shown in Section 3, this equivalence is obtained by replacing
each constraint x#y+c with x>y+c v x<y+c, the exponential explosion
arising from the binary choice of each disjunction. However, notice
that if more than one constraints relate the séme pair of variables,
say x#y#cl peoes x%y#cr , for r>1, and c1<c2<...<cr , then many of
the resulting unconstrained problems are trivially unsatisfiable,
namely, those for which the choices for the disjunctions result in
Xey+c, and x>y+cj for some i<j. A more efficient approach makes use
of the following equivalence instead:

(*) xfy+c1 Aeeoh x;!y+cr

2 oNaytoy v (x‘y+cl A x<y+c2) Veoo '
v x>y+c‘r
For a problem with Fyr TgreeesTy constraints relating k different pairs
of vertices, this algcrnative approach gives rise to (1+rl)(1+r2)...
(1+rk) unconstrained problems. It is easy to show that for all positive
integers TyoeeerEy, we have
Tyteeotrg
(1+r1)(1*r2)...(1+rk) s 2
with equality holding if and only if r1=r2=...-tk-l. Thus there is a
uniform, but not nccessarily positive, economy, which roughly increasecs
with the difference (r1+...+rk)-k.
The problem now becomes one of searching a tree of weighted,

directed graphs for a satisfiable leaf graph. At the root of this

tree is the oriqinal graph. The other levels of the tree arc defined by

the distinct (unordered) pairs of vertices that are constrained by one

-2]l-

or more ¥-relations. Suppose there are k levels, represented by the

A N ey

1<ic<k lsjsri

constraints:

where ri>0 for all i, and ci,j<ci,j+1 for all i,3 such that lsj<ri.

By equation (*), these k levels of constraints are equivalent to a

c¢onjunction of k disjunctions,
/\ (VAR
1sisk Osjst1
where Pi,o denotes xi<yi+ci,1
Pi,j denotes xi>yi+c1,j A xi<yi+c1’j’1

for 0<j<ri

and P denotes xi>yi+c

i,ry i,ry°

In terms of satisfiability, we have the.equivalences

2 ygExgtlzcy)

[

-

o
L

Pi,j H xizyi+(ci'j+1) A yizxi+(-c1'j+1+1)
for 0<j<ri
and Pi,rl = xizyi+(°i,ri+l)'
This shows that each pi,j represents one or two edges. For each d=],

2,...y Or k, we can rewrite the conjunction of the first d disjunctio

above as an equivalent disjunctive normal form

(P AP AcooA P
Osjlsrl,...,Ode:rd 1.3y 2.3, d'jd)

22~
Each disjunct P AeseA P defines a node at depth d of the tree.
l,jl 4,34

The graph of this node is obtained by adding the edges represented by
the disjunct to the root graph. Its father is the node defined by the
Acc.A P

disjunct P in the disjunctive normal form for the

1::,1 d-l'jd—l

first d-1 levels. Thus the graph of every node other than the root is

obtained by adding one or two edqges to the graph of its father.

To search this tree for a satisfiable leaf graph, we employ a
recursive depth-first traversal algorithm. Since the descendants of
a node with an unsatisfiable graph all have unsatisfiable graphs,
there is no need to search the subtree rooted at such a node. How-
ever, in order to exploit this fact, we need to be able to decide
which of the sons of a node with a satisfiable graph also have satis-
fiable grpahs. Suppose the node is at depth d-1 with graph Gfi-l’ The
ccastraints corresponding to depth d relate vertices x4 and Ya+ Let
the maximum path weights in Gd-l from X4 to Yq and from Yq to X4 be

a,5 respectively. Since C is satisfiable, by Th™ 3.4, a+b=0,

- d-1
or*s-b, and these weights define lower and upper bounds for the
difference X3~Yqr i.e. xXq~Yg € [a,-b]. Similarly, Pd,j defines bounds

for X3=Yq?

a,0 = Xg~¥q ¢ (==.cq,;)

P H 0<j<r

a,j Xq~Yq € (cd,j'cd,j*"l) a

Pa,rg ¥ *a7¥a ¢ Ca,ry*)

The sons of the node have graphs obtained by addinq‘the edges representing
these intervals to Gd-l’ Obviously, if the interval defined by Pd,j

is disjoint from [a,-b], then the graph of the corresponding son is

[,

-23-

unsatisfiable. This happens if either the interval is itself empty,
i.e. b<j<rd and cd,j’cd,j+1'l’ or if it is entirely to the left or
right of [a,=-b]. On the other hand, we shall prove that if this inte
is not disjoint'from [a,-b], then the graph of the corresponding son
is satisfiable, and hence a candidate for recursive search. Along wi
the proof, we shall exhibit an (O(nz)) algorithm to update the
maximum path weight matrix of a graph to reflect the addition of a
new edge. First we present some notation.

We shall be concerncd with a stronqly connected, directed graph
G whose edges are weighted by the integers. A simple path in G is a
pathbwhich enters and leaves any vertex at most once, so that a cycle
is a closed simple path. For a path p in G, we denote its weight by
wp. Also let mxy denote the maximum path weight from vertex x to

vertex y, i.e. mxy-C2y where n is the number of vertices in G.

Lemma l: Suppose G has no positive cycle. Then for any path p from
vertex x to vertex y, there exists a simple path q from x to y such

that w_sw_. ~
at Wp¥q

Proof: By induction on the length of path p, using the fact that

rcmoval of any cyclo from a path does not decrease the weight.
Lemma 2: mxy<+m for all vertices x,y in G < G has no positive cycle.

Proof: " «" By lemma 1, all paths from x to y have weights dominated

by the weights of the finitely many simple paths among them.

"= " Agsume G has a positive cycle p through vertex x. Then mxx-+w

by concatenating p to itself arbitrarily many times.

-24~

Lemma 3: If G has ho positive cycle, then for any pair of vertices x,y,

there is a simple path from x to y such that wp=mx

Proof: By lemma 2, mxy<+w, so there exists a path q from x to y such
that wq=mxy. ‘By lemma 1, there is a simple path p from x to y such
that w_tw = . ini s

p-Ygq mxy But by definition, wp mxy also.
Lerma 4: Suppose G has no positive cycle. Let x,y be vertices
in G, let edge e from x to y of weight Ve be an edge not in G,

and let G' be the graph obtained by adding e to G. Then
G' has a positive cycle <> we+myx>0.
where L denotes the maximum path weights in G.) .

Proof: " <« ™ is obvious.

" = " Assume G' has a positive cycle p. If p does not contain e
at all, then G has a positive cycle, contrary to assumption.

Hence p contains e, but only once since p is simple. Thus p can be
decomposed into a path q from y to x that lics completely in G,

and the edge e, with

- + > 0.
wp Yo wq 0

But q is a path in G = qumyx
o "e‘myx 2 we+wq >0

™S Let G, e, G', Moy be as in lemma 4. Let m'uv denote maximum

path weights in G'. Suppose G' has no positive cycle. Then for all

vertices u,v, .

m' - max(mu +w_+m

uv x e 'yv'muv)‘

-25-

Proof: Since muv' mux+we+myv are both weights of paths from u to v

1] . ’
in G', they are both dominated by m uv* Hence m pvzmax(mux+we

+myv,m
On the other hand, since G' has no positive cycle, by lemma 3 there

is a simple path p from u to v such that m'uv=wp. If p does not

contain e then p is in G =-wp:muv. If p contains e, it contains e

exactly once because it is simple. So p can be decomposed into a
path q from u to x, the edge e from x to y, and a path r from y to

v, where all edges of q, r are in G. Hence

=w_+w_+
w Wq e W,

P r

where w_sm w_sm .
€ q ux ' "rTlyv

*e W_Sm 4w _4m .
* P ux e yv

! mw < +wW_+
In either case, m uv™p max(mux Wotm . m).

yv’ Tuv
Corollary: (Maximum path weight update).. Assumptions as in Th™S.
m'ov " max(m‘ux+we+myv, mo) (1)
- mux(mux+we+m'yv, mo) (2)
- max(m'ux+we+m'yv, muv) (3)

Proof: We first prove (3).

By Th"S, m'“v-max(mux+we+myv, m“v) . Aalso by Th"s, mxysm'xy for all

X,Y, 80

sm' and m__sm'
Pux ux vy vy

, m_)

KX ' < ' +w +m"
m uv max (m ux we m vy uv

-26-

Hcwever, Rov m'ux+we*m'vy are both weights of paths from u to v
in G', so by definition

m' xmax(m' _+w_+m' .
uv (ux*Ye'™ vy ' muv) also

(1) and (2) are proved similarly.

Th™s gives us an.oknz) algorithm for updating a maximum path
weight matrix; its corollary allows us to perform the update in
situ. However, we only need to do the update when the new graph
has no positive cycle. The next result allows us to decide when

this condition holds.

Th™6 Suppose G has no positive cycle. Let x,y be distinct vertices

such that mxy=a, myx=b. We know that a+bs<0, or as-b, and that G is

satisfiable (by Th™ 3.4). Then for any c such that ascs-b, there is

an assignment which satisfies G and the additional relation x=y+c.

Proof: It suffices to show that the graph G", obtained by adding
edges p from x to y of weight ¢ and q from y to x of weight -c to

G, has no positive cycle. First add p to G to obtain G'. Let

.
® ¢ v

- ' m'u denote the maximum path weights in G, G', G"

v

respectively. Now G has no positive cycle, and c+myx-c+b50 since

cs-b, so we know that G' has no positive cycle by lemma 4. Then

Th™s is applicable, and

m'xy=max(mxx+c+myy ' mxy)
=max (0+c+0,a)=c.

Next add q to G' to obtain G" Again G' has no positive cycle, and -

(-c)+m'__=-c+c=0 = G" has no positive cycle.
Xy

-27-

s. By -Th™ 3.4, G" is satisfiable.

Th™ 6 completes the justification of our criterion for deciding
the satisfiability of the graph of a son from the maximum path weights

of the father's graph and the edges added for the son. We now state

the recursive traversal algorithm in pidgin Algol:

boolean procedure nodesat (maxwt,d):;

integer array maxwt(n,n); integer d;

comment maxwt is max path weight matrix of father,
d is depth of sons, ’

n = no. of vertices in graph, a global parameter,
2 = no. of levels of constraints;

begin integer array newmaxwt(n,n); integer a,b;

nodesat := false; .
let x,y be vertices related by level d constraints;
let level 4 constraints be x#y+cl,...,x#y+ct, c1<...<cr;

a := maxwt(x,y); b := maxwt(y,x):
for each of the intervals (-*,cl), (cl,cz),L..,(cr,+w)
while anodesat do
if interval not disjoint from [a,-b] then do
if d=2-1 then nodesat := true

else do compute ncwmaxwt from maxwt and from edges
defining the interval, using Thm S5 and
its corollary;

nodesat := nodesat (newmaxwt, d+l)

od
end nodesat;
In connection with the computation of newmaxwt, note that for the
first edge defining an interval, Th™ 5 suffices since we do not

disturb the original maximum path weights in maxwt, but for. the

-28=

second- edge (if interval is finite) we have to use the corollary
Th™ 5 so that we can justify updating newmaxwt in situ.
The main program is:

Run the algorithm in the corollary to Th™ 1 to compute
max path weights of original graph in array A (setting poscycle);

f Yposcycle then do

sort the #-relations into k levels;
poscycle = nodesat(A,l)

od:

$S. Implementation

An arithmetic checker for PLCV 2 has been implemented in PL/T
(Optimizing Compiler) using the procedures described above. This !
checker functions as an independent module of the verifier, which
invokes it to decide the validity of arithmetic arguments embedded in
correctness proofs. The assertions in thesc arguments are passecd to
the checker as strings of encoded operators and operands in prefix
form. Tho checker converts the operands, recursively, into their
canonical form representations. We adopt a linked list of terms as
our canonical form for a polynomial. Each term consists of a product
of variables, represented as an ordered string of the encoded variables,
and an associated integer coefficient. The linked list is sorted in
the lexicographic order of the product strings of variables of the
terms. This implies that the terms are ordered in increasing total

degrees; in particular, any nonzero constant term always occurs at the

head of the list, so that a canonical form polynomial can be easily

-29-

separated into the canonical forms of its constant and constant-free
parts. In the computer program, these polynomials are constructed f:
the PL/I based structures and pointers. Operations on polynomials
make use of standard merge-add techniques.

After all hypotheses (including those obtained by applications
of nontrivial monotonicity) and conclusions have been set up in
qanonical form, we negate the conclusions, and substitute new distinc
variables for distinct constant-free polynomials as justified by
Thm 3.3. The proccdurcs of Scction 4 are then applied to decide the
satisfiability of the system. We summarize the steps involved:

(1) Construct directed, weighted graph from the relations other
than #-relations. The graph is represented as a matrix in which eact
entry contains the weight of the edge directed from the vertex of the
row to the vertex of the column. An entry corresponding to an actua!
edge of the graph is significant; all other entries are insignifican
and set to -». The significant entries of each row, equivalently the
edges cmanating from the corresponding vertex, are linked into a lis
to‘facilitate graph manipulations.

(2) The graph is separated into its SCCs by a depth first search.
(3) For each SCC, we compute the maximum path weight matrix, and
then apply the nodesat algorithm of the last section to this matrix
and the sorted internal #-constraints. As soon as an SCC is found
to be unsatisfiable, we terminate with an affirmative answer; other-
wise .the system is satisfiable, and the original argument is not
justifiable by the arithmetic rule.

We conclude this description with the following remarks. First
of all, a relation involving the same variable on both sides is

equivalent to a relation with constant comparands, and hence either

-30-

always true or always false. In the former case, the relation is

redundant; in the latter case, the system is trivially contradictory.
Seccondly, the complexity of the decision problem clearly in-

creases with the dimension, i.e. the number of distinct variables,

of the system of inequalities. It is therefore to our advantage to

reduce the dimension whenever possible. Such an opportunity arises
when an equality relating two different variables is detected.
Obviously, one variable can be expressed in terms of the other through-
out the system, thereby decrcasing the dimension by 1. Since such
a substitution might give rise to more equalities, in fact we group
variables related by equalities into equivalence classes using the
union-find algorithm (AHU[74], Algorithm 4.3) with weighted edges.
when all equalities have been processed, we pick a representative
from each equivalence class, and substitute it for each non-represen=
tative of the same class with an appropriate constant displacemént.
Note that an equality can be implied by a pair of inequaiities (e.g.
%zy+c and yzx-c). The checker looks for both explicit and implicit
equalities. These substitutions are allowable because A-proofs can
make use of comparand substitution and trivial monotonicity.
Following are some examples of the use of the arithmetic rule.

Example 1

x-1<y & y<x+l .
H: } & x-1<z & z<x+l
& y-=12z & z<y+l

C: XxX=y vy=zZ VvV z=X
Intuitively, if three integers x,y,z differ from each other by at
most 1, then they cannot be all distinct. This inference is just-.

ifiable by the arithmetic rule, and we sketch an outline of an A-proof

-3]l=

of contradiction from HANC:

(1)
(2)

(3)
(4)
(5)
(6)
(7)

(8)

(9)

(10)
(11)
(12)
(13)

(14)

(15)

x-1y & y x+l1

y=x-1

y#x

y=x

y=x=-1 v y=x+1

z=x-1 v z=x+1

y=2-1 v y=z+l

[y=x=-1
&[z=x-1

[y=x-1
v[y=x~-1
Viy=x+l
V[y=x+1

v
v

&
&
&
&

yrx+1]
z=x+1]

z=x-1)
z=x+1]
z=x-1)
z=x+1]

(y=2z) v (z=y+2)

(y=2z) v (z=y+2)

y#2

z=y+2 V y=2+2

[z=y+2
&y=2-1

[z=y+2
viz=y+2
viy=2z+2
viy=2z+2

v y=z+2]

v

&
&
&
&

y=2z+1]

y=z-1]
y=2z+1]
y=z-1]
y=z+1]

y=x+1

v (y=2+42) v (y=2)

v (y=2+2)

(z=z+l) v (z2=2z+3)
v(z+2=2=1l) Vv (z2+2=z+l1)
Contradiction

H

A-provable from (1)
(use lemma x<y ++ x+lsy)

2C

(2) & (3)

similar proof as for (4)
similar proof as for (94)

(@) & (5)

distributive law, (7)

A-provable from (8)
(use trivial monotonicity
& equality) .

(9)

\C
(10) & (11)
(6) & (12)

distributive law, (13)

A-provable from (14) (use
trivial monotonicity &
equality)

-32-

Example 2

H: xlzxz-l xszx6 x82x9-1
X92X4 Xg2Xq Xg2X) g
x3zx4-1 x7zx5-1 xlozxe-l
Xg2%)
x55x2+10 x7$x3¢700 x85x6+52
x95x4+33 xlosx1+58 xlosx7-580

X =X ¥ X3mxg=l ¥ Xg=xg Vo Xgmxg
C: .
v x3+1=x9 v xlo-xg-l

This inference is invalid. To see this, notice that the SCCs are
{xl,xz,x3,x4}, {x5,xg,x5} ana (¥8,x9,x10), so that the last 6 hypothesis
relations can be ignored. The negated conclusion 3C gives 6 internal
constraints. Clearly, the SCCs and their respective internal constraints

can be individually satisfied by

x1=0, xz-l, x3=0, x4=0,
x5-1, x6-0, x7-0,

x8=0, x9=0, x10=0
Hence, H & °C is satisfied by, for instance,

x1-2000, x,=2001, x3-2000, x,=2000,

4
x5=1001, x6=1000, x7=1000,

x8=0, x9=0, X, ~=0.

10

S0 HEAC

-33-

C: 2sx v x<0
This is valid and ic justifiable by the arithmetic rule because it

involves only one application of nontrivial monotonicity - factoring

(1) x<x® & x#0

(2) l<x v 1>x factoring, (1)
(3) l<x v Ozx (2)

(4) x#0 (1)

(5) (l<x v 02x) & x#0 (3) & (4)

(6) (l<x & x#0) v (02x A x#0) Distributive law, (5)
(7) l<x v 0>x
(8) 2sx v 0>x
Notice that actually x<x2=>x#0, but this fact is not A-provable.
The arithmetic checker was tested (stand-alone) on the above
examples. It gave the correct answers, using 0.36 CPU seconds for

execution and 150K bytes of storage.
§6. Conclusion

We have taken an arithmetic proof system.designed for PLCV 2
and have shown that it is at least possible to verify proofs in this
system by implementing a proof-checker for it. The fact that the
algorithm used has an exponential time complexity nced not bother
us unduly, as arithmetic arguments that occur in program verificatic

can be expected to romain within reasonable size limits. It is more

-34-

iTportant to be able to construct proofs casily in the system; this
remains to be seen until PLCV 2 becomes fully operational. We mention
several extensions that have been considered.

Currently, the checker can only verify the inference of a given
conclusion from given hypotheses. Since the truth of these hypotheses
must have been established by preceding argquments or by assumption,
and since PLCV 2 maintains a table of all such established assertions,
it is theoretically possible to omit the specification of the hypotheses.
Hcwever, unless we are willing to try all possible subsets of the
established quantifier-free assertions, we must be able to select,
on the basis of the structure of the conclusion and of any nontrivial

monotonicity operator, those assertions that could possibly participate

in the argurent as hypotheses. UInfortunately, the transitivity of
the order relation and the combinations and cancellations of terms

that occur in polynomial arithmetic render such a backward selection

extremely difficult.

As mentioned in Section 2, to apply factoring the uscr has to
present the factors of the comparands to the checker. Since the
cormon factor is specified (in the "non-zero condition"), the checker
could perform the factorization by dividing it into the comparands.
we have chosen not to implement polynomial division because we do -
not consider this facility to be worth the additional complexity in
code and data representation that it necessitates. Nevertheless,
the current version of the checker relaxes the requirements of explicit
factorization for a comparand that is either zero or is the common
factor, and it should be equally easy to do the same for cases in

which the common factor is a constant.

Finally, it is possible, and probably desirable, to extend the

proof system by adding new axioms. For instance, consider the proof

With the current system, this proof requires two invocations of the
arithmetic rule, because the multiplications of x by itself for the
cases x<0 and x>0 use different nontrivial monotonicity axioms:

x>0 & x>0 = x2>0

and xX<0 & x<0 = x2>0.

(Note that in general, x#0 and y#0 only allow us to conclude xy#0).
Adding a "squaring axiom" will remove the awkwardness in this case,

and other extensions may suggest themselves when the system ccmes

'into use.

Acknowlcdgements. The author is indebted to R. L. Constable,

S. D. Johnson, and M. J. 0O'Donnell for many helpful suggestions.

-36-

Bibliography

Aho, A.V., J.E. Hopcroft, and J.D. Ullman (AHU) [74). The Design
and Analysis of Computer Algorithms, Addison-Wesley, Reading,
Massachusetts.

Constable, R.L. and M.J. O'Donnell [78]. A Programming Logic,
wWinthrop, Cambridge, 1978.

Constable, R.L. and S.D. Johnson [78]. Program Verification Reference
“anuazl with User's Guide to PL/CV 2. Department of Computer
Science, Cornell University, 1978.

King, J.C. [69]. "A program verifier", Ph.D. Thesis, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, Pa.

Kleene, S.C. [52]. Introduction to Metamathematics, D. Van Nostrand
Corpany Inc., Princeton, N.J.

Kuhn, H.W. [56)]. "Solvability and consistency for linear equations
ard inegualities"”, American Math. Monthly, 63, April 1956.

-37-

Appendix Arithmetic Axioms for PLCV 2

(1) Ring axioms and the definition of minus,-.

For all integers x,y,z
(1) xty=y+x '
xXty=y*x
(11) (x+y)+z=x+(y+2z)
(X*y) *z=x® (y*z)
(111) x*(y+z)=x*y+x*z
(iv) x+0=x
(v) x*1=x
(vi) x+(-x)=0

(vii) x-y=x+(-y)

(2) Discrete linear order
For all integers x,y,2

(L) © =x<x)

(11) x<y Vv y<x v x=y

(141) x<y & y<z = x<z

(1v) S(x<y<x+l)

commutativity

associativity

distributivity

additive identity
multiplicative identity
additive inverse

subtraction

irreflexivity
trichotomy
transitivity

discreteness

(3) Definitions of order reclations and incquality

For all integers x,y,z
(1) 'xsy o> x<y v x=y
(11) x>y = y<x
(111) xzy < x>y v x=y

~38~

(4) Monotonicity of + and *
For all integers w,X,Y,2
(1) X2y & 22W 2 X+z2y+w monotonicity of +
1f z,w are constants, this is called an instance of trivial
monotonicity.
(ii) XY & 27W % X=2'y-W monotonicity of -
If z and w are constants, this is called an instance of

trivial monotonicity.

(iii) x20 & y22 = x*y2x*z monotonicity of *

(iv) x>0 & x*y>x*z » y> 2z cancellation (factoring)

To make the proof system more powerful, many variants of the above
axioms are inéorporated into the arithmetic proof rule. These vgriants,
mcdulo the ring axioms, are given in the following tables, in which

each entry contains the conclusion from the hypotheses corresponding

to its row and column.

Addition Zow z2W z=w z#w

x>y X+z2y+w+2 X+z2y+w+l xX+zry+w+l)K:
& x+tw2y+z+1l

x2y X+22y+w+l X+Z2y+w X+2z2y+w X .

& xtway+z

x=y X+22y+w+l X+z2y+w X+Z=y+w X+zZFy+w
& y+zzx+w+l & y+zax+w & Xtw=y+z & Xtwiy+z

Ay X | X x+zy+w | X

[. & x+wiy+z

-39-

Subtraction
Z>W z2w Z=w 27w
x>y X-w2y=-2z+2 X-w2y=-2z+1 X-wly-z+1l
x-z2y-w+l ><r
X2y X-w2y=-z+1 X-W2y=-2 X-W2y=-2)K:
X=22y=-W
Xmy X=w>ry=-2z+1 X=W>y=2 X=wey=~2 X-wWAy=-2
& y-w2x-z+l & y-w2x=-2 Y-W=X-2Z & X-2fy-w
xAy Y >< X=wiy-2z X
X=ZFy=-w
Multiplication
y2z y>z y=z y¥z
x>0 Xy2 Xz XY>X2Z Xy=X2z Xy#xz
x20 Xy2X2z Xy2xz XY=X2 ;&(l
x=0 XY=X2 XY=XZ Xy=Xz - XY=X2Z
& xy=0 & xy=0 & xy=0 & xy=0
xs0 Xysxz XYysSXz XY=XZ ;X(
x<0 XysxXz Xy<xz XYy=X2Z Xy#x2z
x#0 >< xy#xz Xy=x2z xy#xz

Cancellation (factoring)

-40-

xnyz XY2XZ Xy=X2Z Xy¥xz
»>0 y>z y2z y=2z ‘y#z
x<0 y<z ysz y=z y#z
x#0 y#z >< y=z y#z

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif

