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Abstract

Markov—modulated queueing systems are those in which the primary arrival and
service mechanisms are influenced by changes of phase in a secondary Markov process.
This influence may be external or internal, and may represent factors such as changes in
environment or service interruptions. An important example of such a model arises in
packet switching, where the calls generating packets are identified as customers being
served at an infinite server system. In this paper we first survey a number of different
models for Markov—modulated queueing systems. We then analyze a model in which
the workload process and the secondary process together constitute a Markov compound
Poisson process. We derive the properties of the waiting time, idle time and busy
period, using techniques based on infinitesimal generators. This model was first
investigated by G.J.K. Regterschot and J.H.A. de Smit using Wiener—Hopf techniques,

their primary interest being the queue—length and waiting time.

Keywords: Markov—modulated queues, changes of phase, Markov—additive process,
infinitesimal generators, waiting time, idle period, busy period, matriz—functional

equations.



1. Introduction. Markov—modulated queueing systems are those in which the principal
process of interest such as the queue—length or waiting time is influenced by a secondary
process which happens to be Markovian. Two different classes of models have been
studied in the literature. In the first of these the secondary process represents an
extraneous influence in the sense that the input process or service mechanism is subject
to changes caused by changes of state in the process. Such systems are special cases of
queues in random environment, the randomness being Markovian in nature (Eisen and
Tainiter [3], Neuts [7], Purdue [10], Yechiali and Naor [15]). A simple example of this
type is provided by a system in which the input may vary according to seasons, which is
a special case of the N—type input described by Ramaswami [11]. In the second class of
models the Markov process is actually a component of the queueing system under
consideration. A practical example of this type is the packet—switching model
investigated by Burman and Smith ([1], [2]), in which the input process in the single
server system studied is a non—homogeneous Poisson process with rate proportional to
the queue—length process of an infinite server queue. A second example is provided by
models with pre—emptive priorities, breakdowns and in general, service interruptions
(Mitrani and Avi—Itzhak [6], White and Christie [13]). Many of the models referred to
here may be charactérized as simple Markov—modulated systems giving rise to a
Markov—modulated birth and death process, described as follows. Let (Q,J) = {Q(t),

J(t), t > 0} be a Markov process on the state space N, x E, where N+ = {0,1,2,...}

+
and E is a countable set. Assume that

P{Q(t+h) =, J(t+h) = n|Q(t) =i, J(t) = m}

1
= a(i,m; j,n)h + o(h), (1)

where the transition rates a(i,m; jn) for (i,m) # (j,n) are given by



a(i,m; i+1,m) = A a(i,m; i—1,m) = e (i>0, meE)

im’
o . (2)
a(i,m;in) = Yoon (mmneE, i>0).
Here py =0 (m € E). Note that the rates a(i,m; i,n) do not depend on i,
indicating that the J—component of the process evolves by itself. We denote
b(i,m) = jzn a(i,m; j,n) = A T %m ™ Ymm (3)
where Vom = —ﬁ Von' If the steady state probabilities u(j,n) exist, they satisfy the
equations
b(jn)u(jn) = ¥ u(i,m)a(i,m; jn). (4)

i,m

In applications Q represents the queue—length in the system under consideration, while
J is the modulating Markov chain. The model represented by (Q,J) is versatile
enough to cover the case where J represents the extraneous influence or is a component
of the system itself. Some special cases are reviewed in section 2, the main topic of
study being the steady state distribution of (Q,J). Particularly interesting is the case

in which for m € E,

Here the arrivals form a Markov—modulated Poisson (or simply, a Markov—Poisson)
process, while the service is offered at an exponential rate that fluctuates with the state

of the underlying Markov chain (Purdue [10]). Neuts [7] investigates an extension of this



model in which the arrivals are Markov—Poisson, but the service time of a customer
depends only on the Markov state at the commencement of his service. In section 3 we
review the Neuts model in detail, and consider the busy period problem investigated by
him by postulating it as a problem involving the Markov—modulated branching process.
The class of Markov subordinators of which the Markov—Poisson is a member, is
reviewed in section 4.

Regterschot and de Smit [12] consider a queueing model that is identical with the
one studied by Neuts [7], with the exception that the service time of a customer depends
only on the Markov state at his arrival epoch. Using Wiener—Hopf techniques these
authors analyze the waiting time and queue—length processes. A more comprehensive
model of this type may be described as follows. Denote by {uk, k > 1} the sequence of
interarrival times, {vk, k > 1} the sequence of successive service times,

U =u +ug+ ..+, V. =v,+vg+ .. +v, (n>1) and U0=V0=0. In
addition, there is an underlying Markov chain J = {J_, n > 0} such that (U,V,J) =
{(U,,V,,J,), n 20} is defined on a given probability space. We assume that (U,V,J)
is a time—homogeneous Markov—renewal process (MRP) on the state space R +le +xE,

where R L= [0,0) and E is a countable set. Thus, for any Borel subset A of R

+ Ry
j,k € E, we have

P{(U s Vi) € A T =K | (ULVLI) (0<i <m)}
) (6)
=P{(U V) eA—(U_V ), I =k | I} as.

We shall denote by

Q{A}=P{(uyv) €A, Jy=k|Jy=3} (7)



the one—step transition distribution measure of the MRP under consideration. We are
thus assuming that each customer’s interarrival time and service time are jointly
dependent on the state of the Markov chain J at his arrival epoch and that the service
time is not influenced by subsequent changes of state in J.

A second model is obtained if we assume that the underlying Markov chain is
defined in continuous time, and the assumption (6) holds with J,, being the state of
this Markov chain at the epoch Un' This model is formally identical with the first,
except that the calculation of ij will depend on the evolution of the Markov chain

during the interval [U_,U_. ). Thusin the Regterschot—Smit [12] model the

n+l
transition distribution measure (7) is given by

ij{Cl><C2} = Ajk{cl}Bj{Cz}: (8)

where Bj is the service time distribution and j the computation of Ajk is based on
the assumption of Markov—Poisson arrivals.

Knessl, Matkowsky, Schuss and Tier [5] consider an M/G/1 queueing model
whose arrival rate and service time density depend on a two—state Markov chain
{J(t)}, which in turn depends on W(t), the residual workload in the system.
Specifically they assume that

P{an arrival during (t,t+h] | J(t) = j, W(t) = w}

= A(Wh + o(n) ©)

and, further, that the service time of a customer depends on the state of the process
{J(t),W(t)} at the time of his arrival. The dependence of the transition rates of the

J—chain on W(t) indicates a feedback mechanism that can be used to control W(t).



The dependence on W(t) indicates possibly discouraged arrivals or service demands,
while the dependence on J(t) may indicate two classes of arrivals with different service
requirements. The authors use singular perturbation methods to compute asymptotic
approximations to the stationary distribution of the workload and other quantities of
interest.

In this paper we investigate a single server queueing system where the customers
arrive in a Markov—modulated Poisson process, their service times having a distribution
depending on the state of the Markov chain at the time of arrival. The resulting
workload process is then Markov compound Poisson, as shown in section 5. the busy
period problem for this model is investigated in section 6, the result involving a certain
matrix—functional equation. The waiting time and idle time processes are studied in
section 7. In section 8 we consider the case where the underlying Markov chain has a
finite étate space. We establish the existence and uniqueness of the functional equation
obtained in section 6. The properties of this solution are then used to derive the limit

distribution of the waiting time and idle time processes.

2. Some simple Markov—modulated systems

(a) Markov—modulated M/M/1 queues. The earliest work on this class of models is

due to Eisen and Tainiter [3], who used the term stochastic variation to describe the
influence of J. Evidently unaware of this work, Yechiali and Naor [15] investigated the
same model, calling their system an M/M/1 queue with heterogeneous arrivals and
service. Here J is a two state Markov chain and the arrival and departure rates are

given by

}‘im=)‘m (i 20), HMm = Hm (2 1), Hom =0 (10)

for m = 0,1. Yechiali [14] formulated a special case of the (Q,J) process defined by



the parameters (2), with J defined over a finite state space. As a specific example, he
investigated the extension of the two state case (10) to the case where J has a finite
state space {0,1,...,N}, so that the parameters (10) are defined for m = 0,1,...,N.
Yechiali focussed on the solution of the steady state equations (4) which can be written

as

(2-1) (1, —A_2)U. (2) — 2 EO U_()v__ = p (1)U, (0)

. (1)
11
(n=0,1,2,..),
where U (z) = 2‘3’=0 u(j,n)zj (0 <z <1). Letting z- 1 in this we obtain
[11]
¥ U Vv, =0, (12)

m=j

which shows that the Um(l) are proportional to the steady state probabilities T of

the Markov chain J, as is to be expected. We shall take U_ (1) = «_. Next,

"m
summing (11) over n = 0,1,2,... we obtain

@® o
nio Un(z)(p,n—-)\nz) = HEO p,nUn(O).
Letting z-1 in this we obtain
. R w
p—A= g p,Up(0) 20 (13)

where



. m ®
A=Y A, b=Ymp. (14)
0 0

These may be viewed as the steady state values of the arrival and service rates. From
(13) we see that for the steady state distribution of the (Q,J) to exist, it is necessary
that A < fi. Closed form solutions of (11) are difficult to obtain even for the finite state
space case and Yechiali advocates the use of numerical methods to solve specific cases.
The busy period in this Markov—modulated system was investigated by Purdue
[10], who derived the equation (16) below and established the uniqueness of its solution.
The following approach is much simpler, being based on the fact that the busy period is
actually a first passage time of the underlying Markov—modulated birth and death
process. Denote by T_ the busy period initiated by r (> 1) customers and let T,=0.

For convenience we write J =T ;) (120). We have then the following.

Theorem 1. The process {(T_,J.), 120} is an MRP on the state space R, = E. For
0>0 let

~ 1 -~ ~
Qpa(® =Ele 53, =n|Ty=m], Q=(Q__() (15)
Then the matrix Q satisfies the equation

Al @ = [0+ Ay + )8 ~NQ+ (w8 )=0,  (16)

m mn

where N = (v ).

Proof: We identify Tr as T 10’ where the random variable TrS is the first passage

time of the Q—process from the state r to state s (r >s>0). We have



To= Tr,r_1 + Tr—-l,r——2 + ...+ Ty, sothat T -T T, It is easily

1+1,0 1,0 T r+lr
seen that {TI,J r} is an MRP. Let us denote its transition distribution as

QD) = P{T_<t,3, =0 I, = m}.

It is known that
¢ 4] _91_' R
b aQ D) =QF (r20),

with § defined by (15). Considering the epoch of the first jump in the (Q,J) process,

namely, an arrival, a departure or a transition in the J—process, we find that

t (At v

Q ( r)(t) = j e mm)sAmQIg;"'l)(t—s)ds

+ [ e (r 1)(t—s)ds

t——(A+u )s
+Zje m™mm

fom b Vi EQE;)(t—s)ds

Upon taking transforms in this and simplifying we arrive at the desired result (16). o

(b) Models with breakdowns. The model with parameters given by (10) is an extension
of the M/M/1 model with breakdowns, proposed by White and Christie [13]. Assume

that breakdowns of service mechanism occur in a Poisson process at a rate « and repair
times have exponential density with parameter 4. Let J(t) =1 or 0 according as the

service mechanism is working or under repair. If breakdowns occur whether service



mechanism is in progress or not, then it is seen that (Q,J) is a process of the type

described by (5) with

Ay=A1 =X pg=0, py=p (17)

and the transition rates of the Markov chain J given by Vip= & Vg = 8. If
breakdowns occur only when service is in progress, then the transition rates a(i,m;i,n)
depend on i and the process (Q,J) is not of the type described by (2) and is in fact
non—Markovian.

Mitrani and Avi—Itzhak [6] investigated an M/M/s queueing system with
parameters (A,u), where breakdowns of service mechanism at each counter occur in a
Poisson process at a rate «, while the repair times have exponential density with
parameter [, independently of the arrival process and service mechanisms at the other
counters. Clearly, the service rate offered by the system fluctuates with the number of
available (busy or idle) servers. Denotes by J(t) the number of available servers at

time t. Then (Q,J) is a process of the type defined by (2) with

Mim = Amy K = #min(im) (120,0<¢m<s) (18)

=(s-=m)f (0<m<s), v

mm—1 = M (1<m¢gs).

Vm,m—}—l

(c) Pre—emptive priorities. Consider a system with two (low and high) classes of

priorities, arriving in independent Poisson processes at rates )‘O and )\1, their service
times having exponential densities with parameters ko and Ky respectively. From
the point of view of low priority customers, the high priority customers’ presence

appears as a secondary factor affecting their service. If Q(t) and J(t) denote



10

respectively the low and high priority quene—lengths, then (Q,J) is a process of the
type described by (2) with

/\imzAO (i20,m>0), o = Ho (i21), p,im=0 (i20,m21)

(19)

v

m,m—}—l:)‘l (m>0), v =py (m21).

m,m—1

3. Single server queues with Markov—modulated Poisson arrivals. The input in the

model (a) of section 2 may be characterized as a Markov—modulated Poisson process:
that is, during a time—interval spent by the underlying Markov chain in state m,
customers arrive in a Poisson process at a rate Am (m = 0,1). The service times have
an exponential density whose parameter fluctuates with the state of the Markov chain.
As a partial generalization of this model, Neuts [7] proposed a single server model with
Markov—modulated Poisson arrivals and the service time of a customer depending only
on the Markov state at the commencement of his service, the successive service times
being conditionally independent, given the states of the Markov chain, and also
independent of the arrival process. In terms of concepts and techniques this paper
represents perhaps the most comprehensive investigation of a model of this type and the
significance of its results go beyond queueing theory. We review two important results
of this paper. Denote by A(t) the number of arrivals during the interval (0,t] and J(t)
the underlying Markov chain. The process {A(t),J(t)} is a Markov—Poisson process on
the state space Jff*_ x E, satisfying the following properties:

(i) For 0<t;<... <t (n>2) theincrements A(ty)— A(0),
A(tz) - A(tl),...,A(tn) e A(tn—l) are conditionally independent, given
J(O),J(tl),...,J(tn).
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(ii) The conditional distribution of A(tp) - A(tp—l)’ given J(t p——l) and

J (tp), depends only on tp - tp—l'

Without loss of generality we assume A(0) =0 and denote

Py (nit) = P{A(t) =n, J(t) =k | J(0) = j}. (20)

(iii) We have

ij(n;h) = ajk(n)h + o(h) (21)
where

ajj(l) = )\j’ ajk(O) = Vik (k # ), (22)

Vi being the transition rates of the J—chain.

Making additional regularity assumptions concerning the uniformity of the
transition rates (21) we find that

ij(n;t) = -\, ij(n;t) + )\kij(n—l;t) + Z?E ij(n;t)yék (23)
where ij = — Ek 4 ij' The solution of these equations can be expressed in terms of

the transforms

. ®
ij(s,z) = ni

Ly
t ~
Ozn (j) e’ Py (mt)dt, P = (Py(s,2)) (24)

(0<z<1, s>0).

We arrive at the following result, where ®(z) = (ij) - (l—z)()\jéjk).
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Theorem 2. For the Markov—Poisson process we have
P[sI —8(z)] = L. (25)
In particular if J is a finite Markov chain, then
P=[sI—2z)] " o (26)

In section 4 we shall review the class of Markov—additive processes with the
additive component having non—decreasing sample functions (Markov subordinators), of
which the process considered above is a special case.

We next review the busy period problem for the queueing system under
consideration. Let S_ denote the number of arrivals during r uninterrupted service
periods and J r the state of the Markov chain at the end of these r periods. Then it is

clear that {(S ) T2 0} is an MRP with the transition probabilities given by

qu(Il) = P{Sr+1 - SI‘ =, Jr+1 =k ‘ JI = .]}

(27)

O B

ij(n,v)Bj{dV},

where Bj is the distribution of a service time that commences when the Markov state is
j. Following the branching process analogy as in the standard case let us denote by
{S£t+1), J§t+1)} the MRP corresponding to the descendants of the t—th generation

(t > 0). Its transition probabilities are given by

ql({r)(n) _ P{S£t+1) ~n, J£t+1) —k | J(()1;4—1) ! (28)



13

where qgllc)(n) = jk(n) given by (27). It is known that for > 0
(2 aPms") = Q@) where Q@) =( 3 qg (") (0 <z<1) (29)
n=0 n=0

Finally, let us denote by Xt 41 the number of arrivals during the service time of
members of the t—th generation and J 41 the state of the Markov chain at the end of
this service completion. Then {(X,,J;), t 2 0} is a Markov—modulated branching
process. For this process the set {0} x E is absorbing in the sense that X =0,

J ;= k implies that Xt =0, J { = k for all t > 7. Absorption means extinction of the
population (end of the busy period). The number of generations before extinction is

given by

T = min{t: X, = 0} (30)

and the total progeny before extinction (total number of customers served during a busy
period) is given by XO +X + .+ XT—l‘ If we are interested in the duration of the
busy period, then we need only to replace the distribution Bj by e Bj{dv} in (27).
Below we give a somewhat more elaborate definition of the branching process and derive

the main results. We need the notion of a function of a matrix. Suppose

A(z) = (nEO Ajk(n)zn) (31)

where the power series converges for |z| <1, and B = (Bjk) is a complex matrix with

IIB|| <1, where
IBll = sup % |B.,|.
ik K
Then we define
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A(B) = (33 Ajy(a)(B") ) (32)

In applications, the elements of A and B are probability generating functions as in
(29) and the question of convergence is easily settled. We prefer the notation A o B

over A(B), so that we can write (31) as A(z) = A o (z]).

Definition 1. Given a family of random sequences {(Sgt), Jgt)), r>0} (t>1) onthe
state space Af}_ x E, we define a process {(Xt’ Jt)’ t >0} as follows: (XO, JO) is

given, and

Xy, = S>((Z+1)’ Jiyl= J)((:+1) (t 2 0). (33)

We assume that given {(Sg’r), JgT)), 0<r<X_,} (L<7<t), the family
{(Sgt"'l), J£t+1)), r > 0} depends only on J)((t) and is an MRP, with S(()H_l) = 0,
f-1
J SH'I) =J )((t) and the transition probabilities given by (28). The process
-1

(X,J) = {(Xt’ J.)} so defined is a Markov—modulated branching process.

Theorem 3. The Markov—modulated branching process (X,J) is a Markov process with

one—step transition probabilities given by

ij(r;n) = P{Xt+1 =n, Jt+1 =k l XO =T, JO = J} = q‘(jll;)(n)a (34)

where qgi)(n) is given by (28).
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Proof: For t>1 we have

P{X,  =mJ,  =k| Xy Iy, Xp, Tq5 s Xy 3}

t+1 t+1

_ t+1) _ (t+1) (1) 1(1) (t) (¢t
— p{s =n, J =k | X, I, s¢Padl) sl git)
X4 X4 070" "Xy " Xy X' X

- P{S)((:'H) =, J}((:+ Do x| s}((:zl, Jj(gzzl}

because of our assumptions. This establishes the Markov property. Moreover,

P{X, ,=n, Jt+1=k|Xt=I’Jr=j}

t+1

_ P{S§t+1) =n, J£t+1) —k| J(()t-{-l) =i} = qglr()(n)7

as desired. O

Theorem 4. For the process (X,J) let
F(I)(z)=(E[th- I, =k| X, =1, I, =j) (35)
t e’ 0=5 J7!
for r>0,t>0. Then
Fi(a) = [Fy ) (36)

where Fjy(z) = zI, F,(z) = Q(z) and in general

F,,(2) =F, oF(2). (37)
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Proof: We have

F§+%(z) zzP{x_uJ_ux—rJ = j}

X

Bz th I =k X =y I =1

t+1

= IZP{X; =y J=¢| Xy =1 J = j}HQ(2)g
v

= Fgf) o Q(z) (t>0).

Also, F{7(z) = 2" = (al)f = [F(2)] and F{D(z) = Q(2)f = [F,(2)[, s that (36) is

true for t = 0 and 1. Assume that (36) is true up to some t. Then
i@ =F o Q= [F, 0 Q = [F, @)
Thus (36) holds for all t > 0. Again
F{T)@) = BIP(X = v Jy= 21X =1 g =3}

X
t+s, _ _ _
Bl T3, =k X, = 3, =4

)l;zp{x =v, I, =] Xy=1, Jj=}F(2)]p
v

=F, o F (),

as was required to be proved. o
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Theorem 5. For 0 < w< 1 let

Xa+X +...+X
fjk(w) = E[w 0 T

Then £ = (¢ jk(W)) satisfies the matrix functional equation
f = WQ o f

Proof: For t>1, r>0, 0<w<1, 0<z<1 let

X\+X, 4. . +X X

Then proceeding as in the proof of Theorem 4 we obtain
G,E_f_%(w,z) = Ggr)(w,WQ).
We have G§r)(w,z) =wQ(z) = [Ggl)(vv,z)]r and by induction
a{D(w,2) = (6w (¢ 3 1).
Therefore it suffices to consider G i(wz) = Ggl)(w,z). It turns out that

GH_l(w,z) = wQ o G,(w,z).

p=k|Xg=1,J,=].

t .
z 5 ) =k|X,=1, Jy=].

(38)

(39)

(40)

(41)

(42)

(43)
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Now

X+ X+t Xy

Gt(w70)=E[W ) thoy Jt=k l X0=1: J0=j]

WX0+X1+"'+XT

= E| ; T<t, Jp=k | Xy=1, Jy=]

50 that

X +X,+...+X
lim G,(w,0) =E[w 0 1 T

t-w

Ip=k | X,=1, J;=1

= &%) (44)

From (43) we find that ( satisfies (39). o

In the case where J is a finite Markov chain, Neuts [7] has established the
existence and uniqueness of the solution of (39). The probability of ultimate extinction

is given by
P{T < o, JT =k | JO =j}= \lvi)lil— ka(W) = CJk (45)
where ¢ = (¢ jk) satisfies the equation

(=Qo( (46)

4. Markov subordinators. The Markov—modulated Poisson process described in

section 3 belongs to the class of Markov subordinators. The input process of the
queueing model investigated in this paper (see section 5), namely the
Markov—modulated compound Poisson process, also belongs to this class. In this section

we give a constructive definition of a Markov subordinator and describe its important
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properties. The presentation here follows Prabhu [9], who cites other relevant references
on Markov renewal theory and Markov—additive processes.

Let J = {J(t),t >0} bea time—homogeneous Markov chain on the state space
E, all of whose states are stable. Let Ty=0, T, (n > 1) the epochs of successive
jumps in J and denote J_ =J(T ) (n20). We define a sequence of continuous time
processes {Xr(ll), n > 1} and a sequence of random variables {Xl(lz), n> 1} as
follows:

(i) On {T <t<T = j}, X( )(7') is a subordinator with Lévy

n+1’

measure /i

(ii) Given Xlgll), Xrgz), J, (1¢m<n), J,, theincrement

X( 1 )(t) XI(I_H(Tn) and the random variables (XI(I_Q, Tn+1,
J

n

I, +1) depend only on

(i) Given 3, X{1)y ~x(1)(r ) ana x(2), T, 7, ) are

conditionally independent, with respective distribution measures

-J..8
e g M. ;
HJ{S,A} and e quMJk{A}ds (i#Kk) (47)

for any Borel subset A of R - Here the Mjk are concentrated on [0,0), while Hj is
concentrated on [0,0); qp are the transition rates of the J—process (j# k) and

Ek;éj Qi (0< g5 < o). Let

S,=0, S, = m=1[ x{Dr ) -x e+ x(2) @), (48)

From the above conditions it follows that {(S_,T ,J ), n> 0} is an MRP on the state

space R + R L E, whose transition distribution measure
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P{Sn 1 € dy, Tn+1edt,J =k}Sn=x,Tn=s,J = j}

+ n+l1 n

=Q jk{dy—x’ dt"s}
is given by
—q..t y
. =e Wq. St 2 {dy—=x} (j#k 49
Qldvt) =e Uagat ] HfuaMyfar) (41 (49)

and Qj = 0. We denote by Ujk{AxB} the Markov renewal measure associated with

this process, so that

w
Ujk{AxB} = nio P{(Sn,Tn) € AxB, J =k | Jp= i}- (50)
Let
L'=supT , L=sup§. (51)
n>0 n>0

We construct a process (X,J) = {(X(t), J(t)), t > 0} as follows:

{x), 30} = {8, + Xy —x{1)r ), 3} for T_ct<T

n+1 n+1 +1

(52)
= (L,A) for t> L’

where A is a point of compactification of the set E. It is easily seen that (X,J) isa
Markov additive process on the state space R +xE. We shall call it a Markov

subordinator. Let us denote by
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FadtiA} =P{X(t) € A, J(t) = k | J(0) = j} (53)

the transition distribution measure of this process. We have the following.

Theorem 6. We have

ot —qkk(t-—s)
ij{t;A} 2 (j)' (j)Ujk{dx,ds}e H, {t-s;A—x}, (54)

where the equality holds iff L = o a.s.
Proof: We have
ij{t;A} = P{X(t) € A, J(t) =k, T, >t | J(0) = j}6jk

+ X
leE

CO Yy

®
{) P{SledX,TledS,leglJon}.
P{X(t)EA,J(t):lelzx, lex, leg}

= {t;A}6. : F ; A—x}.
e HJ{t, }5Jk+ o (j)(j)QJZ{dx,ds} acdt—s; A—x}
Thus ij{t;A} satisfies the integral equation

ot
ij{t;A} = fjk{t;A} + EEE:E é (j)' Qje{dx,ds}Fek{t—s; A—x} (55)

where

—q..t
{4 — U HgitA o
A} =e VH{tA},
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We seek a solution of (55) for F ik such that for jk € E, a Borel subset A of R 4

ij is bounded over finite intervals, and for each t € R ij is bounded. The

+’
inequality (54) follows from the fact that the minimal solution of (55) is given by

)
€

ot

=[] Ug{xds}e H, {t—s; A—x}.
oo J

From Markov renewal theory we also know that this solution is unique iff L = w. O
If J is a finite Markov chain, then L = o a.s. and the solution of (55) is unique,

being given by

—qkk(t—-s)

ot
F. {t: = . - A=
Jk{t’A} ééUJk{dx,ds}e H, {t-s; A—x}. (56)

We can express this solution in terms of transforms as follows. For 6> 0 let

—Ox “Wjj( 0)

® ' B @ _hx .
é e Hj{t,dx} =e , (j) e Mjk{dx} = Mjk(e), (57)

where ¢ i is the Laplace exponent of the subordinator Xéll). Also, let
8(0) = (95(0)), where

ij( 0) = qjijk( 0) (k¢#J), QJJ(H) =95 ¢_]_](0) (58)
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We have then the following.

Theorem 7. Suppose that the J—chain is finite and for 4 > 0, s > 0 denote

—Ox—st

~ m ~ A~
. = - {t: = (F, . 59
FJk(S’ 6) (j) e FJk{t,dx}dt, F (F_]k(s’ 0) (59)

O B

Then
F = [sI—8(0)] " (60)

Proof: From (49) we obtain

— 3.
ij(ﬂ,s) = Z z € st ij{d}’:dt} = s_%lié;i‘)]'('yj .
Denoting
. oo —fy—st
Ujk(ﬁ,s) = (_g(j;e Ujk{dy,dt}

and Q = (Q jk( 0,5)), U= (Ujk(0,s)) we find from Markov renewal theory that
U= (I—Q)‘l. Now (56) gives

U.(0,s)
~ _ k b
Fals,0) "W

or
R ¥
F=U —%—m
[S"kk ]

Therefore
8. (0)

S (055 [ b~ S—:%‘W ] .

This leads to the desired result. o
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Example 1. (Markov—modulated simple Poisson process). Here Mjk{o} =1 and Hj

is an atomic measure with weight h j(n;t) at the atom n given by

hy(njt) = o (_A-IJI-?_ (n=0,1.2,..). (61)

With a slight change of notation we write

m —t4..
Y z"hnjt)=e ¢JJ(Z) (0<z<1) (62)
n=0 J

where ¢ JJ(z) )\J(l—»z) Also, let QJk(z) ik (k#j) and @ i J(z) Q= A+ AP
Finally, let

Pols2) = Z e B X0, 3(6) = k | 3(0) = jjat (63)

(s > 0). Then Theorem 7 gives F = (sI — é(z))—l, which agrees with Theorem 2. o

To understand the significance of the constructive definition of the process (X,J)
given above, it is instructive to derive its infinitesimal generator. For this purpose let
f(x,j) be a bounded function on R +xE such that for each fixed j, f is continuous and

has a bounded continuous derivative —gff . Then we have the following.

Theorem 8. The generator of the process (X,J) is given by .4 where

at=di G ] k) —Telgler) (64)
+ ki“] (f)_ [f(x+y.k) — f(X,j)]qjijk{dy}
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where dj > 0 is the drift and [l,j i the Lévy measure of the process XIS-H given
I =i

Proof: We have

Py dhidx} = (1 — ayjh)E{hidx} by, + ahMp {dx}(1=8) + o(h). (65)

Therefore

Loy T e k) — f(x,j)|F ., {h:d
BT i) (e IF ey}

o+
= b7 (1qyh) [ [feey.d) — )] {hedy}
0_

# B ag ] [cky ) = M ddy) + of)

o3
+ A+ kij {)_. [f(x+y,k) — f(x,_])]qjijk{dy} as h - 0+,

where uﬂo is the generator of the process XIE-H’ given by

o+
= Bt [ o) —laglar).

we are thus led to the desired result (64). o

Theorem 8 shows the presence of Markov—modulated jumps with distribution

qjijk in the additive component of the process (X,J), in addition to the jumps in the

: (1)
Lévy process XIl i1
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We need the following result for application to the queueing model investigated

in the next section.

Theorem 9. For fixed 0> 0 if

j‘é}% (qJJ + ¢JJ(0)) <w,

then
(E[e_ax(t); J(t) =k I J(O) — J]) —_ etQ(@)
where the matrix #(0) = (éjk( 0)) is given by (58).

Proof: Denote

P (:0) = B 36) = | 3(0) =

We have

P (t:0) 20, Py (0:0) = 6

o wr—0X(t .
J Pyt = Bl ® 30 =q¢1

Py (t+s; 0) = gleX0+8), 3(148) = k | 3(0) = j]

- 2 B = e 130) =3

g X ()XW, 5(445) = x | 3(t) = 4]

= ¥ P.(t;0)P p (s;0).

(66)

(67)

(68)
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Denoting P(t;4) = (ij(t;ﬁ)), we can write the last identity as
P(t+s; 6) = P(t;0)P(s;0). (69)

Thus the family {P(t;6), t > 0} of substochastic matrices forms a semigroup with the

norm

[Pl|=sup 2 [P, (t)] <1 (70)
j keE I

From (65) we find that

P (h0) = [ ¢ F. {h:dx
jk())"‘ée _]k{’ }

s (e Y 4 (106 g bV () + o
= jk(l—qjj Je + (1- jk)qjk jk( ) + o(h)

= 5jk(1‘qjjh_¢jjh) + (1—6jk)qjkhM jk({)) + o(h).

Therefore

5 P (h;0)—6,|=h|
ke K Jk

_ k§1 qjijk(é’) + qJJ + ¢JJ(0) + o(1) }

¢ n| 2 ag+ a0+ ol) } < 2R[A + o(1),

where sup (q.. + ¢..(0)) = A < . Thus
jeE 4 J

|P(h;0) —Ij| =sup X |Py (h;6) =6, | -0 as h-0.
j keE Y J
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From Hille and Phillips ([4], page 635) we find that P(t;0) = et'}(t), where #(0) is the

generator of the semigroup. Our calculations also show that & is given by (58). o

Example 2 (Markov—modulated compound Poisson process). Suppose that on

{Tngt<Tn+1,Jn

jumps occurring at a rate A j with distribution Bj' The Levy measure is then

=i}, X1(1—H is a compound Poisson process with drift dj >0 and

ujj{dx} = Aij{dx} and by Theorem 8 the generator of the process {X,J} is given by

= a9 10 T fetyd) — (DB Ady)
R ] (71)

@

ktj 0- I

(1) i g =\ —
Also, the Laplace exponent of X3 44 isgiven by ¢jj( =2 i A j¢j( 0) +d jﬂ, where
¢j is the Laplace transform of Bj‘ We have ¢ jj(0) <A j + dj0, so that if

.. . . 72
jf‘éﬁ(qn“ﬁdaa)“’ (72)

then the (66) is satisfied, and Theorem 9 holds with

§(0) = (qjijk(ﬂ) - (qJJ + )‘j - AJ@/)J(H) + dj(())‘Sj )

(73)
= Q(6) — A + A¥(6) — DO

where Q(6) has diagonal elements =4 and nondiagonal elements qjijk(ﬁ),
A= ().6. U = (9. . = (d.., ).
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5. Single server queues with Markov compound Poisson input. The queueing model

investigated in this paper may be characterized as one with Markov compound Poisson
input. This may be described as follows. There is an underlying Markov chain

J = {J(t), t > 0} on the state space E and with all states stable, such that during a
time—interval in which J(t) = j, customers arrive in a Poisson process at a rate )\j
(1< A ; < o) and their service times have a distribution B i Given the states of the
Markov chain, the service times are conditionally independent and also independent of
the arrival process. There is a single server and the queue discipline is first come, first
served.

Let A(t) denote the number of arrivals during a time—interval (0,t], and
ViV the successive service times. Then the total workload submitted to the server
during (0,t] is given by X(t) = Vit vyt ..+ VA(t) From Example 2 of section 4
we know that (X,J) = {X(t), J(t), t > 0} is a Markov compound Poisson process with
zero drift and no Markov—modulated jumps. The generator of the process given by (71)

reduces to

[¢4]

AMCel) = [ oty )~ DB} + 3 il = fxi) (74

where qg (k # j) are the transition rates of the J—chain. Let q; = D 4 9 We
denote by Q the generator matrix of the J—chain, with diagonal element —qjj and

non—diagonal elements % We shall assume that

sup (q:; + X)) < . (75)
jeE J J
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Then (72) is satisfied and (with a slight change of notation) we have for § >0

@l X®), 5y =k | 30) = = (76)
where

§(6) = —Q + A — A¥(0) (77)

asin (73) with A = (A jajk) and ¥(0) = (1,bj(0)5jk), wj being the Laplace transform of
the service time distribution Bj'
Let W(t) be the virtual waiting time in this model. As in the standard case,

W(t) satisfies the integral equation

t
W(t) = W(0) + X(t) —t + {) 1{W(s)=0}ds‘ (78)
Here the integral
t

represents the duration of the idle time during (0,t]. We shall also be interested in the

busy period initiated by a workload x > 0, which is denoted as T(x), where
T(x) = inf{t > 0: W(t) = 0} on {W(0) = x}. (80)
We need a new notion, which is an extension of the notion of function of a matrix

used in section 3. Suppose that for jk € E, Ajk{dx} is a probability distribution on
[0,0] and for 6> 0 let
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A(6) = (Z & fax). (81)

Now if —7 is the generator matrix of a semigroup of the type described in section 4,

then we define

Aon= (é ZEE A AT ) (82)

We investigate the busy period in section 6 and the waiting time and idle time in

section 7.

6. The busy period process. We shall call (T,J) = {T(x), J o T(x), x> 0} the busy
period process. Clearly, T(0) =0 a.s. We note that foreach je E, x> 0,

P{T(x) €R,,J o T(x) € E | J(0) = j} < 1, (83)

so that the distribution of {T(x), J o T(x)} has possibly an atom at (w,A). For the

busy period T, = T(v) initiated by a new arrival we denote

for any Borel subset A of R 4 and for s > 0

L) = Z G {dt}, T(s) = (T () (85)
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The distribution ij is concentrated on (0,m). For simplicity we shall attach the

atom at (w,A) to the distribution ij, with weight ij{m}, so that

k?j Gy d(00)} + G{(0l} = 1.

We have then the following.

(86)

Theorem 10. {T(x), J o T(x), x > 0} is a Markov compound Poisson process with unit

drift, whose generator is given by

. of  oF . .
Bi(4]) =z + é [f(t+s,]) — £(t,])]A;B {ds}

® N
) f(t+s,k) —1(t,j)]q., M.
# 2 L) ~ (g iy, (05
where
i.ﬁ. praned . . ~.~. = . .o
j J{S} AJGJ,]{dS} (0 <5< m), /\JBJ{m} AJGJJ{W}

and for k #j

qjijk{ds} = qjkeo{ds} + G jk{ds}.

€ being a measure concentrated at the origin.

(87)

(88)

(89)

Proof: Asin the standard case T(x+y)— T(x) has the same distribution as T(y) but

in our model T(x+y)— T(x) and T(y) are conditionally independent, given J(0) and

J o T(y). Therefore
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P{T(x+y) € A, Jo T(x+y) =k | T(x’), Jo T(x’) (0<x’ <x)}
= P{T(x+y) — T(x) € A~ T(x), I o T(cky) = k | J o T(x)}

= P{T(y) e A—T(x), Jo T(y) =k | J(0)} as.

This proves the Markov—additive property. Again, we have T(x) = x + T[X(x)] asin

the standard case. Therefore

P{T(h)e A, Jo T(h) =k | J(0) = j]

=P{h + T[X(h)] € A, Jo (h+ T[X(h)]) =k | J(0) = j}

= B L Fj{hanP(T() € Ak, Jo (4T()) =k | I) = )
= 2| FyhaylP{T) € Ach, T T(3) =k | 3(0) = £} (90)

where ij{t;A} is the distribution of (X,J). Now from (65) we obtain

ij{h;dx} = (l—qjjh)Hj{h;dx}6jk + qjkheo{dx}(l-—éjk) + o(h)
where
Hj{h;dx} =(1- /\jh)eo{dx} + )\thj{dx} + o(h).

Therefore

. : ={1—-Xh—q.. . 1
Fyelhidx} = (1- A — g h)e {dx} by, (91)

+ /\thj{dx}(Sjk + qjkheo{dx}(l-éjk) + o(h).
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Substituting (91) in (90) we find that

P{T(h) € A, Jo T(h) =k | J(0) = j}

The infinitesimal generator of the process is given by 3 where
1 o+
Bt = lim £ 3 [ {{(t+sk) - £(t,j)]
h-0 “keE 0—

. P{T(h) € ds, J o T(h) =k | J(0) = }.

Using (92) in this we find that 2 is indeed given by (87), as desired. o

Theorem 11. Under the condition (75) we have
(B0 30 7(x) = 1] 3(0) = ) = ) (93)
where the matrix 7 = 7(s) satisfies the matrix—functional equation
n=sl+ ®on (94)

Also
'=Vogq (95)
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Proof: From (88) and (89) we find that

Aj = /\jij{(O,w]}, qu = ij + ’\jij{(O:m)} (k ¥ J)

so that

o= % §u =q. 4+ A % G.{(0,0)}
Therefore

.+ X.=d..+ ). ¥ G. 2.G..{(0

— ..+ )\
Ui + 4

in view of (86). Thus Theorem 9 holds and from equation (73) of Example 2 we find

that the generator matrix is given by —n(s), where
n(s) =sI —Q + A — AT(s). (96)

However, we have

L3 (8) [ Bgav}B{EeTO), 5o T(v) =k | 3(0) = j
0o J

_ Z B{dv}(e V%)),

so that

(s) = (#y6) © (8) = ¥ o 7.
This gives (95) and consequently (96) reduces to
n=sl—-Q+A—-AVonp=sI+Po7

which is the desired result. O
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We have thus characterized (T,J) as a process rather than considering
{T(x), J o T(x)} merely as a pair of random variables for each x > 0. This
characterization is useful because of the following connection between the process and
I(t), the idle period. We note that I(t) is the local time at zero of the process {W(t)}
and in the standard case its right continuous inverse is the subordinator {T(x)}. In our
model, we need to consider {I(t), J(t)} and the corresponding subordinator is then

precisely (T,J). This observation leads to the following result, where we denote
C(t) = 1{W(t)=0} (97)
so that

()= ] s (62 T(x)20) (98)
T(x)

Theorem 12. For #> 0, s > 0 we have

(Z et Bl (t); 3(t) =k | W(0) = x, 3(0) = jldt)

= e M) ar + n(s)] (99)
Proof: The matrix element on the left side of (99) can be written as
®
B[ [0 3 = x| 3(0) = jat.
0

Now we carry out the transformation I(t) = 7. Then (98) gives t—T(x) = T(7) and

dI(t) = ¢(t)dt. Therefore the last expression becomes
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EZ [ST() =sT(T) =07, 5 o [T(x) + T(r)] = k | J(0) = fldr

= 3 BT, JoT) =2 30) =]
leE

. Z Be 05T, 70 T(r) =k | 3(0) = £)dr
- 2 (e*X??(S))J_ , Z (e"‘gT—T 77(8)) adr

=2 (&) L6 + (o)

This leads to the desired result (99). o

Corollary 1. For s > 0 we have
(Z eStP{W(L) = 0, 3(t) =k | W(0) =%, J(0) = j}dt) = ¢ X")p(s)™L. (200)

Proof: Letting 0-0 in (99) we obtain the desired result. o

7. The waiting time and idle time. The process {W(t), J(t)} is clearly a Markov

process on the state space R, x E, for which an integro—differential equation can be

+
derived as in the standard case. However, following Prabhu ([8], chapter 3), we can

investigate {W(t), I(t), J(t)} directly by using the integral equation (78). Details of
the derivation are left out as they follow closely those of the standard case. We denote
the net input as Y(t) = X(t) —t. Then {Y(t), J(t)} is a Markov additive process on

R x E, for which

(Ele Y0 3(t) = x | 3(0) = ) = HEO) (101)
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for 8> 0. We have the following.

Theorem 13. For 01 > 0, 02 >0, s >0 we have

Geime 1O T, 50k woy 2w 300) = a0
—le

={e 1 I—(6,+0,)e M) 0,1 4 n(s) 1YL — 0,1 + #(6,) (102)

Proof: From (78) we find that
-0 -0,
e 0T, s sk wo = 90 =3

= E[e—glx - Hly(t); I(t) =X | 3(0) = | — (6, +6,)

t —0,[Y(t) = Y(D)] - 0,I(r
-Eé[e iY(®) =) 2()C(T);J(t)=kIJ(O)———J']d’f-

Now, denoting the left side of (102) as a(x; 0;, 05, 5) = (ajk(x; 0;,05,5), we find that

—0.x o -0, Y
ajk(x; 0,,09,8) = e 1 é ¢St Ele 1 (t); J(t) =k | J(0) = jjdt
® —~S'r-—92I('r)
-(0;+0,) X | Ele ¢(7); I(r) = £ | J(0) = jldr -
leE O

?e“s(t"—T)E[e_el[Y(t)~Y(T)]; J(t=r) = k | J(0) = £]dt.

This leads to the desired result, in view of (101) and Theorem 12. o
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For the marginal processes (W,J) = {W(t), J(t)} and (I,J) = {I(t), J(t)} we

have the following.

Corollary 2. For 6> 0,s > 0 we have

(i) ( (f) et ™), 3(t) =k | W(0) = x, 3(0) = jldt)

= ™1 — g sy s — a1 + 3(0)] (103)

and
(i) ( (f) e[, 3(t) = k | W(0) = x, 3(0) = jldt)

= (1= 07N 4 e Y1 - )7 ey

8. The case of finite E. We shall now assume that E = {1,2,...,m}. Our first task is

to establish the existence and uniqueness of the matrix functional equation (94), namely
n=sl+do07n (s>0) (105)

Here 7(s) is the negative of the generator of a (strictly) substochastic matix, so for its
eigenvalues nr(s) we must have Re g I(s) >0 (r=1,2,..,m). We shall assume that
these eigenvalues are all distinct for s > 0. Actually, this assumption will always be
true except for countably many values of s> 0. Wé seek a solution of (105) that

belongs to the class of matrices so described.

Theorem 14. The matrix functional equation (105) has a unique solution, with

eigenvalues given by the roots with Re(d) > 0 of the equation
|sI— 6L+ &(0)| =0 (106)

and the corresponding eigenvectors also uniquely determined thereby.
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Proof: Denote f(x) = xI —&(x). We need to solve for the matrix X such that
foX =sL (107)

By assumption X has distinct eigenvalues x_ = xr(s) (r =1,2,...,m), so we have the

spectral representation

where Zr = Zr(s) is the idempotent matrix corresponding to the eigenvalue X, It can

be easily proven that

m
foX= % f(xr)Z
r=1 I

so that

m
sIl—foX= 3%

8T — £(x)IZ.

1

Since X satisfies (107) we must have

m
B sl 1)1, = 0.

Multiplying this identity by Zt we obtain

ST~ £(x,)]Z, = 0 (t = 12,...,m). (108)
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Since Z, is nonnull (being of rank one) we must have
|sI—1(x,)| =0 (t= 1,2,...,m).
This means that x, (t =1,2,...,m) are the roots of the equation
|sI—1(x)| =0

which reduces to (106). Our argument also shows that the Z, are also uniquely
determined. The desired result follows since a matrix is uniquely determined by its

eigenvalues and eigenvectors. o

We shall next investigate the limit behaviour of the processes (W,J) and (I,J).
For this purpose we shall assume that the J—chain is irreducible and aperiodic, with all
states persistent. Then a stationary distribution = = (7r1,7r2,...,7rm) exists, with the

properties
J J

m
.20, E7r.=1, 7Q =0 (109)
1

where Q is the generator matrix of the J—chain. We define the traffic intensity of the

system as p, where

m ®
p= % mp., with p.= A, [ vB.{dv}. (110)
1 JJ J Jog J
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Since Theorem 14 identifies the eigenvalues of 7(s) as the roots of the equation (106),
we have the following result due to Regterschot and de Smit ([12], Lemma 3.1), which

has been extended to the case p = 1.

Corollary 3. (i) If p < 1, then the matrix 7(0) has a simple eigenvalue nl(O) =0
and m—1 eigenvalues 7,(0), 773(0),...,77m(0), with Re 7.(0) >0 (r=23,..,m). If
p=1, then 7,(0)=0. If p>1, then Re n(0) >0 (r =1,2,...,m).

(ii) If p< 1, thenas s- 0+, nl(s) -0 and ni(s) - (l-p)_l. If p>1, then
as s - 0+, snr(s)_1 -0 (r=12,..,m). O

Remark 1. Denoting by Zr(s) the idempotent matrix corresponding to the eigenvalue

n.(s) we have the spectral representation for n(s):
m
n(s) = 21 n.(8)Z.(s) (s20), (111)
Ir=

where Z r(s) is of rank one. In the limit as s - 0+ this gives

()= 3 7.(0)2(0). (112)
r=1

Here for p <1, 7,(0) =0 by Corollary 3. To find Z,(0) we proceed as follows. For
t = 1, equation (108) gives

[sI — 771(5)1 + @(nl(s))]zl(s) = 0.

Letting s - 0+ in this we obtain for p <1

QZ,(0) =0 (113)
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since ®(0) = —Q. Again, the proof of Theorem 14 also shows that 771'1(0) is an
eigenvalue of fI — ®(4), where nf is the inverse function of 7;. The corresponding

idempotent matrix is Zl(n_l'l(ﬂ)). Therefore

Z, (7, ()01 — 2(6)] = 7, (0)Z, (7] (9)).

Letting 6- 0+ in this we find that for p < 1, by Corollary 3,
Z,(0)Q =0. (114)

Since Q is the generator of the Markov chain J = {J(t), t > 0}, which is stochastic,
equations (113)—(114) show that Z,(0) is the idempotent matrix corresponding to the

eigenvalue 0 of Q. The existence of the unique solution 7 in (109) implies that
2,0)=1 (p<1) (115)

where II is the matrix with m identical rows (7rl,7r2,...,7rm). o
Theorem 15. For each fixed x > 0 we have

P{T(x) €R,,JoT(x) €E | J(0)=j} =1 ifp <1 (116)

<1lifp>1.

Proof. Let e be the column vector with elements (1,1,...,1). Then Z,(0)e = e from
(115). For t # 1, since Zt(O)Zl(O) = 0, we obtain Zt(O)Zl(O)e =0 or Zt(O)e = 0.
Thus for p<1
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Z,(0)e =¢, Z,(0)e=0 (t = 2,3,...,m),

so that from (112),
m
n(0)e = g n(0)Z,(0)e = 0. (117)

Now letting s - 0+ in (93) we find that
(P{T(x) € R, I o T(x) =k | J(0) = j}) = ¢ 17, (118)

so that —7(0) is the generator matrix of the Markov chain {J o T(x), x> 0}. If p<1,
then (117) shows that this chain is stochastic. If p > 1, it is strictly substochastic, as
otherwise 7(0) will have an eigenvalue equal to 0, which is not the case, by Corollary 3.

Thus we arrive at the desired result, already anticipated in equation (83). o

Remark 2. The Markov chain {J o T(x), x > 0}, is subordinate to the original chain
J={J(t),t>0}. Hereas x-+wo, T(x)~ o a.s. and so it is easily seen that this
subordinate process has also a limit distribution, which we denote as T =

(%1’%2"“’%111)’ Now we have the representation

xn(0) _ B e‘X’?r(O)

ZI(O). (119)
r=1

In view of Corollary 3 we find from this that if p < 1,

lim e X0 = 7.(0) = 1. (120)

X
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However, this limit should be the matrix I with m identical rows (%1,%2,...,%m).

This shows that II = II. o

Remark 3. We have

sn(s) L= 3 F;?'s‘i Z(s)

=1

Applying Corollary 3 we find that

lim s77(s)_1 =(1-p)II if p<1
s-0+
(121)
=0 if p>1.

For m = 1 this agrees with the known result. o

The following result will be used in the derivation of limit results for (W,J) and
(1,J) processes. The existence of the limits follows as in the standard case (Prabhu [8],

chapter 3).

Theorem 16. We have

lim P{W(t) = 0, J(t) = k | W(0) = x, J(0) = j} (122)

= (1-—p)7rk if p<1

=0 if p>1.

Proof: By a Tauberian theorem the required limit equals the element of the matrix

lim @?J“kuyngu0=k|wmyngum=ﬁﬁ)
s-04+ O
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which by Corollary 1 equals

_ m  —x7,(s)
lim e—xn(s)sn(s) l_jim T e ° —'%s'f Z (s)-
s=0+ -0+ r=1 My

Applying Corollary 3 and (121) we find the limit as (1—p)IT if p <1 and =0 if

p > 1. This leads to the desired result. o

Theorem 17. As t - o, {W(t), J(t)} - (»,A) in distribution if p > 1; otherwise
{W(t), J(t)} » (W,J), where

Ele™™W; 5 = K)) = oa-p)alor - 3(O)] . (123)
Proof: From Corollary 2(i) we have

lim (B[, 3(t) = k | W(0) =%, 3(0) = )

t-w

—lim (s J ¢ SEEIVE), 5() = k | W(0) = x, J(0) = jldt)
s+04+ O

=lim (M sp(s)™). opam — a (o)
s—0+

where by (121) the limit is (1—p)II or 0 accordingas p <1 or p> 1. Thisis identical

with the desired result. o

Theorem 18. As t-w, {I(t), J(t)} - (v.A) in distribution if p < 1; otherwise
{1(t), 3(t)} » (7,J), where
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(P{I<y, T=Kk| W(©0) =x, J(0) = j}) = [[—e EFINOm, (124)

Proof: Using Corollary 2(ii) we find that

tim (B¢, 5(t) = % | W(0) = x, 3(0) = 1})

t—w

=lim (s

1 &), 51) =k | W(0) = x, 3(0) = Jldt)
s~0+ O

= {1- 0T (g1 4 o)} Lim  s(sI— Q)"
s=0+

where the limit equals II by our assumption. It remains to simplify the first matrix in

the last expression. We have

m —xn_(0
1M 4 (o) = 3 f1-e B )p—;imlzr(m

I

14 m
=1 T pixdy}z,0) (125)
0 r=1
where
~(x+y)n,(0)
pAx Oyl =1—e '
so that

?1 e [0,¥1}2,(0) = 1— & (IO,

In view of the proof of Theorem 15 the desired result thus follows. o
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Remark 4. The result (124) shows that the limit random variables Jand J are

conditionally independent, given W(0) and J(0). o
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