
JOINT DENSITY-FUNCTIONAL THEORY AND ITS

APPLICATION TO SYSTEMS IN SOLUTION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Sahak A. Petrosyan

August 2006



c© 2006 Sahak A. Petrosyan

ALL RIGHTS RESERVED



JOINT DENSITY-FUNCTIONAL THEORY AND ITS APPLICATION TO

SYSTEMS IN SOLUTION

Sahak A. Petrosyan, Ph.D.

Cornell University 2006

The physics of solvation, the interaction of water with solutes, plays a central role

in chemistry and biochemistry, and it is essential for the very existence of life.

Despite the central importance of water and the advent of the quantum theory

early in the twentieth century, the link between the fundamental laws of physics

and the observable properties of water remain poorly understood to this day. The

central goal of this thesis is to develop a new formalism and framework to make the

study of systems (solutes or surfaces) in contact with liquid water as practical and

accurate as standard electronic structure calculations without the need for explicit

averaging over large ensembles of configurations of water molecules.

The thesis introduces a new form of density functional theory for the ab initio

description of electronic systems in contact with a molecular liquid environment.

This theory rigorously joins an electron density-functional for the electrons of a so-

lute with a classical density-functional theory for the liquid into a single variational

principle for the free energy of the combined system.

Using the new form of density-functional theory for the ab initio description of

electronic systems in contact with a molecular liquid environment, the thesis then

presents the first detailed study of the impact of a solvent on the surface chemistry

of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum,



we predict that the presence of water has little impact on the adsorption of chloride

ions to the oxygen-terminated surface but has a dramatic effect on the binding of

hydrogen to that surface.

The thesis then presents a density-functional theory for water which gives rea-

sonable agreement with molecular dynamics simulation data for the solvation of

hard spheres in water and sufficient agreement with experimental data for hydra-

tion of inert gas atoms.

By combining the previous ideas, the last study in the thesis presents a model

density functional which includes a description of the coupling of the solvent to

the electrons of the solute through a pseudopotential without any empirical fitting

of parameters to solvation data.
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3.5 Contour level (0.68 e−/Å3) of the sum of probability densities from
the highest energy shoulder of the oxygen 2p band, side view ([0001]
direction runs vertically up the page): up spin (black surface), and
down spin (white surface). Locations of atomic layers are indicated
as in Figure 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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Chapter 1

Introduction

The physics of solvation, the interaction of water with solutes, plays a central role

in chemistry and biochemistry, and is essential for the very existence of life. As

early as the fourth century BC, water was identified by the Greek philosopher

Empedocles as one of the four classical elements needed to understand the world

ab initio, directly from first principles. Despite the central importance of water

and the advent of the quantum theory early in the twentieth century, the link

between the fundamental laws of physics and the observable properties of water

remain poorly understood to this day. The reason for this can be traced to the

famous statement of Paul Dirac[1]

The underlying physical laws necessary for the mathematical theory

of a large part of physics and the whole of chemistry are thus com-

pletely known, and the difficulty is only that the exact application of

these laws leads to equations much to complicated to be soluble. It

therefore becomes desirable that approximate practical methods of ap-

plying quantum mechanics should be developed, which can lead to an

explanation of the main features of complex atomic systems without

too much computation.

Fortunately, in large measure, this prediction has proved true, and there has

been tremendous progress since 1929 in explaining chemistry from fundamental

physics. To Dirac’s credit, much of this progress has come not from directly solving

the equations which Dirac had in mind, but from formulating new approximate

equations from the fundamental laws, particularly in the form of density functional

1
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theory, for which Walter Kohn was awarded the Nobel prize in 1998.

The density-functional approach has been applied successfully to a wide range

of problems in physical chemistry ranging from plasticity, diffusion and surface re-

construction to melting and chemical reactions [2]. Despite this progress, ab initio

understanding of solvation remains out of reach — largely because the liquid state

of water can only be understood quantitatively by computing an ensemble of a

large number of water molecules in a large number of different configurations. For

instance, a recent report [3] of a density-functional calculation with a modest num-

ber of 512 molecules required use of the fastest publicly disclosed supercomputing

cluster in the world as of June 2006. The central goal of this thesis is to develop a

new formalism and framework to make the study of systems (solutes or surfaces)

in contact with liquid water as practical and accurate as standard electronic struc-

ture calculations without the need for explicit averaging over large ensembles of

configurations of large numbers of water molecules.

The remainder of this introduction reviews the basic theories used in the the-

sis, Hohenberg-Kohn-Sham density functional theory for electronic systems (Sec-

tion 1.1) and the so-called “classical” density-functional theory of liquids (Sec-

tion 1.2). In this thesis, we write “classical” in quotation marks because the

classical density-functional theory of liquids applies to classical as well as quantum

liquids and has been applied successfully, for example, to liquid helium [4]. This

distinction is important because the zero point motion of the protons in water is

thought to be an important aspect of the underlying physics of the liquid [5].

Chapter 2 introduces a new form of density-functional theory for the ab initio

description of electronic systems in contact with a molecular liquid environment.

This theory rigorously joins an electron density-functional for the electrons of a
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Figure 1.1: A schematic view of the minimization procedure and the breakdown

of the final free energy functional A. Ni is the solvent nuclear density, n is the

system electron density, V is the electrostatic field created by solute nuclei.

solute with a classical density-functional theory for the liquid into a single varia-

tional principle for the free energy of the combined system. The theorem that we

prove shows that the thermodynamics of a system and its electrons (the solute)

in equilibrium with a liquid environment (the solvent) can be described rigorously

in terms of a joint density-functional theory (JDFT) between the electrons in the

system and the molecules comprising the solvent. The physics of the equilibrium

between the solute and solvent (cavity formation, dielectric screening, dispersion,

and repulsion) are then all determined in a single variational principle. While this

new theory is rigorous and exact in principle, like electron density-functional the-

ory, it introduces an unknown functional which must be approximated in order for

calculations to be performed.
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Figure 1.1 shows a sketch of the overall system. The final free energy functional

A is written as a sum of three terms AKS, Alq and U . AKS[n(r)] is standard univer-

sal Kohn-Sham electron-density functional of the explicit system when in isolation,

Alq[{Ni(r)}] is the “classical” density functional for the liquid solvent environment

when in isolation, and U [n(r), {Ni(r)}, V (r)] describes the coupling between the

solute and the solvent. In these terms, n(r) represents the electron density associ-

ated with the explicit system, {Ni(r)} represents the molecular density associated

with the solvent environment, and V (r) represents the electrostatic potential from

the nuclei of the explicit system. Note that here we do not attempt to separate

the Hamiltonian of the combined system into an explicit system Hamiltonian, an

environment Hamiltonian, and coupling Hamiltonian. We do not attempt this be-

cause, as described in Section 1.1 below, the fundamental indistinguishability of

the electrons makes such a separation less than straightforward. While the issue

of indistinguishability is less severe in the density-functional level, there remain a

few subtleties. For instance, the electron density n(r) “associated with the explicit

system” cannot be uniquely defined. Mathematically, this simply means that,

while the minimum value of AKS[n(r)] + Alq[{Ni(r)}] + U [n(r), {Ni(r)}, V (r)] is

well defined, many possible n(r) lead to the minimum value. Chapter 2 discusses

this point in detail.

Chapter 3 then presents our first, very simple model form for the unknown

functional, which we call the local dielectric approximation. We show that, even

with this very simple model and a single fit parameter, the theory produces results

which agree well with the current state-of-the-art in solvation quantum chemistry,

dielectric cavity calculations, which employ a large number of fit parameters. En-

couraged by the apparent success of the model in giving reliable energies, Chapter 3
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then applies the resulting approach to the first detailed study of the impact of a

solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel

alloys. In comparison to a vacuum, the new model predicts that the presence of

water has little impact on the adsorption of chloride ions to the oxygen-terminated

surface but has a dramatic effect on the binding of hydrogen to that surface. These

results indicate that the dielectric screening properties of water are important to

the passivating effects of the oxygen-terminated surface.

Although we find the aforementioned agreement with quantum chemistry di-

electric cavity calculations quite encouraging, one should not take the fact that we

require only a single fit parameter to imply that the model captures all of the es-

sential underlying physics. Among the weak points of this first, very simple model

are that it ignores (a) the effects of forming a cavity in the fluid, (b) the energet-

ics associated with the short-range repulsive interactions which ultimately lead to

such cavity formation, (c) the fact that the dielectric response of the environment

is in general non-local in space. The subsequent chapters of the thesis represent a

first attempt at addressing these weaknesses.

To address cavity effects, Chapter 4 advances the state of the art for function-

als of liquid water by itself, a necessary ingredient to address the cavitation effects

mentioned above. This chapter introduces a new computationally efficient classi-

cal density-functional theory for water, which gives relatively accurate cavitation

energies (20% error in the worst case) and attempts to apply it to the challeng-

ing problem of the hydration of inert gas atoms. We find encouraging agreement

(at the level of 0.1 eV) for the solvation of inert gas atoms in water, but clearly

more work is needed. In particular, some way of addressing the orientation of the

molecules in a computationally efficient manner is sorely needed.
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To address short-range interactions between solute and solvent and to explore

the importance of non-local dielectric effects, Chapter 5 presents an approximate

density-functional theory which includes, in addition to a description of cavitation

effects through a classical density-functional theory, a description of dielectric ef-

fects through a model non-local polarizability and a description of the coupling

of the solvent to the electrons of the solute through a pseudopotential. Without

any empirical fitting of parameters to solvation data, this theory predicts solvation

energies at least as well as state-of-the-art quantum-chemical cavity approaches,

which do employ such fitting. Once again, while we feel that this agreement

without fit parameters strongly suggests that joint density-functional theory is a

promising avenue to understand the physics of solvation at a quantitative level,

one should not take the lack of fit parameters to imply that we have captured all

of the underlying physics. The resulting approximate functional clearly involves

significant modeling of effects, particularly dielectric screening. Chapter 4 then

concludes the thesis with some suggestions of directions for future research which

would capture much more of the underlying physics.

1.1 Electron density-functional theory

The many-body time-dependent Schrödinger equation (with relativistic correc-

tions) captures the physics of a large number of problems in the electronic structure

of matter. In most cases, however, one is concerned with atoms and molecules

without time dependent interactions, so we may focus on the time-independent

Schrödinger equation. For an isolated N -electron atomic or molecular system in

the Born-Oppenheimer non-relativistic approximation, this equation is

ĤΨ = EΨ, (1.1)
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where E is the electronic energy, Ψ = Ψ(x1,x2, ...,xN) is the (fully antisymmetric)

wave function, and Ĥ is the Hamiltonian operator,

Ĥ =
N
∑

i=1

(−1

2
∇2

i ) +
N
∑

i=1

υ(ri) +
N
∑

i<j

1

rij

+
∑

α<β

ZαZβ

Rαβ

(1.2)

in which

v(ri) = −
∑

α

Zα

riα

(1.3)

is the external potential acting on electron i, the potential due to nuclei of charges

Zα at distances riα from the electrons. The coordinates xi of electron i comprise

space coordinates ri and spin coordinates si. When additional fields are present,

of course, (1.3) contains extra terms.

We may write (1.2) more compactly as

Ĥ = T̂ + V̂ne + V̂ee + V̂nn (1.4)

where

T̂ =
N
∑

i=1

(−1

2
∇2

i ) (1.5)

is the kinetic energy operator,

V̂ne =
N
∑

i=1

v(ri) (1.6)

is the electron-nucleus attraction energy operator,

V̂ee =
N
∑

i<j

1

rij

(1.7)

is the electron-electron repulsion energy operator, and

V̂nn =
∑

α<β

ZαZβ

Rαβ

(1.8)

is the the nucleus-nucleus repulsion energy. In the Born-Oppenheimer approxima-

tion it is immaterial whether one solves (1.1) for E without Vnn term and adds
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Vnn afterward, or includes Vnn in the definition of Ĥ. In the treatment of infinite

solids or liquids, however, it is important to keep in mind that thermodynamic

limit exists only for charge neutral systems [6].

In the context of an explicit system in contact with an environment, one could

imagine separating the total Hamiltonian into a system part Hsys = T +Vnn+Vne+

Vee, an environment part Henv = T ′ + Vn′n′ + Vn′e′ + Ve′e′ , and an interaction part

Hint = Vnn′+Vne′+Vn′e+Vee′ , where the terms are written just as above, but with T ,

n, e referring to the electron kinetic energy, the nuclei and electrons of the explicit

system and T ′, n′ and e′ referring to the respective quantities of the environment.

However, separating terms directly like this is not sensible because the electrons

are indistinguishable. One would be tempted to write T ′ = −1
2

∑

i′ ∇2
i′ , where i′

ranges over only the electrons of the environment, but indistinguishability forbids

such a distinction. To see that such an operator does not belong properly to the

Hilbert space of fully antisymmetric wave functions, we note that, without some

additional assumptions, there is no way to write an expression for T ′ in second

quantized notation. On the other hand, it is always mathematically possible to

write the total electron density as a sum of two densities, each integrating to the

number of electrons we ascribe to the system and the environment, respectively.

The latter is the approach we take in Chapter 2, where we discuss in depth the

subtleties associated with such apportionment of the electron densities.

When a system is in the state Ψ, which may or may not satisfy (1.1), the

average of many measurements of the energy is given by the formula

E[Ψ] =
< Ψ|Ĥ|Ψ >

< Ψ|Ψ >
(1.9)

where

< Ψ|Ĥ|Ψ >=

∫

Ψ∗ĤΨdx (1.10)
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Since, furthermore, each particular measurement of the energy gives one of the

eigenvalues of Ĥ, we immediately have

E[Ψ] ≥ E0 (1.11)

The energy computed from a guessed Ψ is an upper bound to the true ground-state

energy E0. Full minimization of the functional E[Ψ] with respect to all allowed N -

electron wave functions will give the true ground state Ψ0 and energy E[Ψ0] = E0;

that is,

E0 = min
Ψ

E[Ψ] (1.12)

Eq. (1.9) tells us that the ground state energy can be found by minimizing

< Ψ|Ĥ|Ψ > over all normalized, antisymmetric N -particle wave functions,

E = min
Ψ

< Ψ|Ĥ|Ψ > . (1.13)

Following Levy [7], we now separate the minimization of Eq. (1.13) into two

steps. First we consider all wave functions Ψ which yield a given density n(r), and

minimize over those wave functions,

min
Ψ→n

< Ψ|Ĥ|Ψ >= min
Ψ→n

< Ψ|T̂ + V̂ee|Ψ > +

∫

d3rv(r)n(r), (1.14)

where we have exploited the fact that all wave functions that yield the same n(r)

also yield the same < Ψ|V̂ne|Ψ >. Then we define the universal functional,

F [n] = min
Ψ→n

< Ψ|T̂ + V̂ee|Ψ > . (1.15)

Finally we minimize over all N -electron densities n(r),

E = min
n

Ev[n] = min
n

{

F [n] +

∫

d3rv(r)n(r)

}

, (1.16)
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where of course v(r) is held fixed during the minimization. The minimizing density

is then the ground state density. Equation (1.16) is known as Hohenberg-Kohn [8]

theorem and is at the foundation of density-functional theory.

In order for the functional F [n] to be defined via Eq. (1.15) for some density

n(r), there must be at least one wave function Ψ which yields that density n(r).

This means that the functional F [n] is defined for any density n(r) which can be

obtained from some antisymmetric wave function. Density functions satisfying this

condition are called N -representable. It can be proved [9] that a density n(r) is

N -representable if n(r) ≥ 0 and
∫

n(r)dr = N .

For a system of non-interacting electrons V̂ee of Eq. (1.7) vanishes, so F [n] of

Eq. (1.15) reduces to

Ts[n] = min
Ψ→n

< Ψ|T̂ |Ψ >=< Φmin|T̂ |Φmin > (1.17)

where the minimizing wave function Φmin for a given density will be a single Slater

determinant or a linear combination of some N orbitals φi(r). Now we approximate

the electron-electron interaction V̂ee term as

U [n] =

∫∫

1

2

n(r)n(r′)

|r − r′|

and define exchange-correlation energy functional Fxc[n] by

F [n] = Ts[n] + U [n] + Fxc[n]

The Lagrange multiplier equations corresponding to the minimization in Eq. (1.16)

can now be written as

{

−1

2
∇2 + v(~r) +

∫

n(~r)

|~r − ~r′|dr′ +
δFxc[n]

δn(~r)

}

φi(r) = ǫiφi(r). (1.18)

Equations (1.18) are called Kohn-Sham [10] equations and φi(r) are called Kohn-

Sham orbitals.
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Fxc[n] is not known exactly and has to be approximated in practice. Develop-

ment of approximate exchange-correlation functionals is an active area of research

today [11, 12]. The simplest approximation is the local density approximation

(LDA) [10], where Fxc[n(r)] is approximated as

FLDA
xc [n(r)] =

∫

fxc(n(~r))d~r

where fxc(n) is the exchange-correlation energy density of a uniform electron gas of

density n. For spin polarized systems local spin density approximation (LSDA) [13]

is very popular in solid state physics

FLSDA
xc [n↑, n↓] =

∫

fxc(n↑(~r), n↓(~r))d~r

where fxc(n↑, n↓) is the known [14] exchange-correlation energy density for an

electron gas of uniform spin densities (n↑, n↓). In this thesis we use the local

spin density approximation for the electron density-functional exchange-correlation

term.

More recently generalized gradient approximations (GGA’s) [11, 12] have be-

come popular in quantum chemistry,

FGGA
xc [n↑, n↓] =

∫

fxc(n↑, n↓,∇n↑,∇n↓)d~r

fxc(n↑, n↓) in LSDA is uniquely defined in a sense that a uniform electron gas with

n↑, n↓ exists. In that sense, fex(n↑, n↓,∇n↑,∇n↓) is not uniquely defined [15] and

a number of different approximations have been proposed [11, 12, 16, 17, 18] for it.

Electron density-functional theory is a mature field of condensed matter physics

and is widely used in physics, chemistry, engineering and biology, with a large

number of reviews and textbooks available [19, 20, 21, 22, 23, 24].
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1.2 Classical density functional theory of liquids

The partition function for a classical liquid of N particles in canonical ensemble is

Z =
1

N !

(

m

2πh̄2β

)3N/2

ZN

where

ZN =

∫

e−βV (~r1,~r2,...,~rN )d~r1d~r2...d~rN

where β = 1/kT and the Helmholtz free energy is written as

F = −kT log Z

Even if we assume that the interaction energy can be written as a sum of

pairwise potentials,

V (~r1, ~r2, ..., ~rN ) =
∑

i6=j

V (~ri − ~rj),

the partition function

ZN =

∫

e−β
P

i6=j V (~ri−~rj)d~r1d~r2...d~rN

is very difficult to evaluate. For any nontrivial V (~r), no analytical solution is

known, not even for the case of the hard sphere liquid, where

ZN =

∫

|~ri−~rj |>d

1d~r1d~r2...d~rN .

(Here, d is the hard-sphere diameter.)

Because of these difficulties, numerical methods are very important in the study

of liquids. The numerical methods are divided in two broad classes. In the first

class, each particle is treated individually and statistical averages are done by

using either Monte Carlo integration methods or molecular dynamics averages.

The second class treats liquid as a continuum medium of density n(~r)

n(~r) =
1

ZN

∫

e−βV (~r,~r2,...,~rN )d~r2...d~rN
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Continuum theories of liquids were put on a rigorous footing with the in-

troduction of classical density-functional theory [25], which follows from Mer-

min’s [26] generalization of electron density-functional theory for finite temper-

atures. Application and development of classical density functional theory has

blossomed over the last decade. It has seen application in such diverse areas

as the study of lattice gasses and adsorption [27, 28, 29, 30, 31], freezing and

other phase transitions [32, 33, 34, 35, 36] solid-liquid and liquid-liquid inter-

faces [37, 38, 39, 40, 41, 42, 43, 44, 45, 46], and polymers [47, 42]. There have

been a number of recent reviews [48, 49, 50, 51] and books [52, 53, 54] on the

subject as well. The development of this theory proceeds as follows.

In the grand canonical ensemble the equilibrium probability density p0 for N

neutral particles is given by

p0(~r1, ~r2, ..., ~rN ) =
1

Z
e−β(V (~r1,~r2,...,~rN )+vext(~r1)+...+vext(~rN )−µN)

where µ is the chemical potential and vext(~r) is the external potential.

If we define the functional

Ω[p] = Trclp(H − µN + β−1 log p),

where H = V (~r1, ~r2, ..., ~rN )+ vext(~r1)+ ...+ vext(~rN) is the N particle Hamiltonian

and

Trcl =
∞
∑

N=0

1

h3NN !

∫

d~r1d~r2...d~rN

∫

d~p1d~p2...d~pN ,

analogously to the Hohenberg-Kohn theorem, one can prove [26] that minp Ω[p] is

achieved at p = p0 and Ω[p0] = −kT log Z = Ω0.

The construction of a density-functional theory by constrained search is now
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straightforward,

Ω0 = Ω[p0] = min
p

Trclp(H − µN + β−1 log p) = (1.19)

min
n(~r)

(

min
p−>n(~r)

Trclp(V + β−1 log p) +

∫

(vext(~r) − µ)n(~r)d~r

)

. (1.20)

Defining,

F [n(~r)] = min
p−>n(~r)

Trclp(V + β−1 log p),

we obtain

Ω0 = min
n(~r)

(

F [n(~r)] +

∫

(vext(~r) − µ)n(~r)d~r

)

. (1.21)

For interacting systems F [n(~r)] is not known and has to be approximated. The

form the non-interacting liquid (ideal gas) is known,

Fid[n(~r)] = kT

∫

d~rn(~r)(ln(λ3n(~r)) − 1),

where λ = (h2β/2mπ)1/2. Note that Fid[n(~r)] is a purely local functional of den-

sity. Because the interactions in interacting systems generally have a characteristic

length scale, fluctuations in the limit of high spatial frequencies do not couple to

the enthalpy but only to the entropy, so that Fid[n(~r)] captures the effects of the

high spatial frequency fluctuations. Thus, the fully interacting functional is cus-

tomarily written as

F [n(~r)] = Fid[n(~r)] + Fex[n(~r)].

Here, Fex[n(~r)], formally defined as F [n(~r)] − Fid[n(~r)], does not couple to high

frequency fluctuations so that, for instance, δ2Fex[n]/δn(~r1)δn(~r2) is continuous as

~r1 → ~r2.

In analogy with electronic density-functionals, one can write for Fex[n(~r)] a

local density approximation (LDA), with or without gradient corrections,

Fex[n(~r)] =

∫

d~r
(

f0(~r) + χ(~r)(∇n(~r))2
)

.
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However, since most liquids are very strongly correlated, neither local or gradient

approximation methods prove to be very accurate.

To address the above difficulty, a broad class of “weighted” density approxima-

tions [55, 56] for the functional has been used successfully to predict properties of

hard sphere liquids and others. In these approximations

Fex[n] =

∫

d~rn(~r)Ψ(n̄(~r))

where

n̄(~r) =

∫

d~r′w(~r − ~r′; ñ(~r))n(~r′)

Two physically acceptable choices for ñ(~r) are ñ(~r) = n0 or ñ(~r) = n̄(~r). For either

choice, Curtin and Ashcroft [57] present an equation for w(~r−~r′) whose solution en-

sures that the theory reproduces the two-point correlation function in the uniform

liquid, either only for the density n0 or for all densities, respectively. For liquids

with attractive interactions in general and for water in particular, these equations

are known not to allow appropriate solutions [58, 57]. This difficulty can be re-

moved by considering higher order correlations [59]. However, such correlations

increase the computational complexity significantly and the required experimental

information may not be available. This thesis explores the alternative route of

staying with two particle correlations but exploring new functional forms. In par-

ticular, Chapter 4 of this thesis introduces a closely related form for Fex[n], which

we show always allows solutions of the equation for w(~r − ~r′). This form is

Fex[n] =

∫

d~rfex(n̄(~r))

where

n̄(~r) =

∫

d~r′w(~r − ~r; n0)n(~r′).
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Chapter 2

Joint Density-Functional Theory

In this chapter we introduce a new form of density functional theory for the ab

initio description of electronic systems in contact with a molecular liquid environ-

ment. This theory rigorously joins an electron density-functional for the electrons

of a solute with a classical density-functional theory for the liquid into a single

variational principle for the free energy of the combined system. The theorem that

we prove shows that the thermodynamics of a system and its electrons (solute)

in equilibrium with a liquid environment (solvent) can be described rigorously in

terms of a joint density-functional theory (JDFT) between the electrons in the

system and the molecules comprising the solvent. The physics of the equilibrium

between a solute and a solvent (cavity formation, dielectric screening, dispersion

and repulsion) are then all determined in a single variational principle. Main-

taining the first principles nature of density-functional theory, this new approach

requires no artificial separation of contributions, no ad hoc definitions of cavity

shapes, and no empirical fitting of parameters to experimental solvation energies.

A straightforward combination of Mermin’s non-zero temperature formula-

tion of density-functional theory[1] with Capitani et al.’s extensions of the zero-

temperature theory to include nuclear degrees of freedom[2] leads to the following,

exact variational principle for the total thermodynamic free energy of an electron-

nuclear system in a fixed external electrostatic potential V (r)

A = min
nt(r),{Ni(r)}

{

F [nt(r), {Ni(r)}] + (2.1)

∫

d3r V (r)

(

∑

i

ZiNi(r) − nt(r)

)}

,

19
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where nt(r) is the thermally and quantum mechanically averaged total single-

particle number density of electrons, Ni(r) is the likewise averaged density of the

nuclear species i (of atomic number Zi), and F is a universal functional. (Here,

as throughout this work, we employ atomic units, in which Planck’s constant

and the mass and charge of the electron all have value unity, h̄ = me = e =

1.) The universality properties of the functional F may be seen directly from its

construction within Levy’s constrained search procedure[3],

F [nt(r), {Ni(r)}] ≡ (2.2)

min
ρ̂→[nt(r),{Ni(r)}]

Tr
(

ρ̂Ĥ + kBT ρ̂ ln ρ̂
)

,

where kBT is the thermal energy, Ĥ represents all interactions among and the ki-

netic energy of the electrons and nuclei, ρ̂ is the full quantum-mechanical density

matrix for the electron and nuclear degrees of freedom, and the minimization is

carried out over only those ρ̂ which lead to the given densities nt(r) and {Ni(r)}.

From this construction it is clear that F , like Ĥ from which it derives, is indepen-

dent of the external potential V (r) and depends only upon the identities of the

nuclear species i (and, implicitly, upon the temperature T ), as Capitani et al.[2]

found previously for the case of T = 0.

To employ the variational principle Eq. (2.1) in the study of a system to be

treated explicitly in contact with a solvent environment, we take the nuclear species

i to be those comprising the environment (solvent) and the potential V (r) in

Eq. (2.1) to be that arising from the nuclei of the explicit system (solute),

V (r) ≡
∑

I

ZI/|r − RI |, (2.3)

which we take to sit at fixed locations RI with atomic numbers ZI . Note that,

although we employ a Born-Oppenheimer approximation for the nuclei of the ex-
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plicit system, at this stage the treatment of the nuclear species of the environment

in Eq. (2.2) is fully quantum mechanical. Thus, Eqs. (2.1,2.2) account for all zero-

point motion effects associated with lighter nuclear species in the solvent, such as

may be associated with the protons in liquid water or with the helium atoms in

superfluid helium when used as a solvent.

Although Eqs. (2.1, 2.2) give a rigorous continuum treatment of the environ-

ment nuclei, the variational principle Eq. (2.1) is ultimately impracticable because

it requires explicit treatment of all of the electrons, including those associated

with the environment. We thus “integrate out” the electrons associated with the

environment by writing nt(r) = n(r) + ne(r), where ne(r) is the electron density

associated with the environment and n(r) is the electron density associated with

the system in contact with that environment. We then perform the minimization

over all allowable ne(r), and finally perform the minimization over all allowable

n(r). For this purpose, we define the sets of allowable nt(r), ne(r) and n(r) to be

all N-representable functions satisfying the criteria of Gilbert[4] and integrating to

the appropriate number of electrons for the respective system. Because all thus

defined nt(r) can be constructed as the sum of some allowable ne(r) and some

allowable n(r) and because all such allowable ne(r) and n(r) sum to an allowable

nt(r), this procedure is guaranteed to recover the final free energy in Eq. (2.1).

Thus, we have

A = min
n(r),{Ni(r)}

{

A[n(r), {Ni(r)}, V (r)] (2.4)

−
∫

d3r V (r)n(r)

}
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where V (r) is defined above in Eq. (2.3) and where

A[n(r), {Ni(r)}, V (r)] ≡ (2.5)

min
ne(r)

{

F [n(r) + ne(r), {Ni(r)}]

+

∫

d3r V (r)

(

∑

i

ZiNi(r) − ne(r)

)}

is universal in the sense that its functional form, like F from which it derives,

depends only on the nature of the solvent and, implicitly, the temperature, and

that its dependence on the solute is only through the electrostatic potential of

the nuclei in V (r). The choice to separate the interaction −
∫

d3r V (r)n(r) in

Eq. (2.4) from the definition of A minimizes the interactions which the unknown

functional A must describe, easing the task of finding good approximations. Note,

for instance, that with this choice, V (r) in Eq. (2.5) now couples to a neutral charge

distribution, thereby minimizing to the greatest extent possible the dependence of

A on V (r). All of our systems and subsystems are always charge neutral which is a

necessary and sufficient condition for a system to have a thermodynamic limit [5].

Eq. (2.4) gives the exact free energy and exact configuration of the solvent

{Ni(r)}. However, care must be taken in the interpretation of the n(r) which yield

the minimum value. The indistinguishability of electrons implies that there can

be no fundamentally meaningful assignment of electrons as belonging either to the

environment or to the system, and thus no exact formulation can give a unique

result for n(r) without some additional prescription. Indeed, for the exact {Ni(r)}

and any n(r) which integrates to the correct number of electrons and is everywhere

less than the exact solution nt(r) so that ne(r) = nt(r) − n(r) is allowable in the

above sense, the minimization in Eq. (2.5) will find ne(r) = nt(r) − n(r) and thus

ultimately produce the exact value for A. There is thus a large set of n(r) which
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yield the minimum value in Eq. (2.4), and the variational principle embodied in

Eqs. (2.4,2.5) satisfies the fundamental condition of not enforcing any particular,

arbitrary decomposition of the total electron density into solvent and environment

contributions.

In practice, however, we expect approximations to Eq. (2.5) to break the above

degeneracy and to pick out a unique solution. The standard pseudopotential

method, which replaces the effects of the nuclei and (relatively) inert core electrons

of a solid or molecule with an effective or “pseudo-” potential[6], is in fact an ex-

ample of an approximation which tracks only a portion of the total electron density

and provides results approaching chemical accuracy while suffering no pathologies

related to the underlying degeneracy of an apportionment of electrons between two

subsystems.

The existence and reliability of so-called “molecular pseudopotential” Hamil-

tonians [7, 8, 9] implies the existence of reliable approximations to Eq. (2.5) which

pick out a unique solution for n(r). Such pseudopotential Hamiltonians replace

the effects of the nuclei and electrons of a collection of molecules on the electrons

of an external system (solute) with an effective potential V{Ri}(r), which depends

explicitly on the locations of the molecular nuclei {Ri}. Such Hamiltonians have

proved to be quite accurate. Using them, for instance, Vaidehi et al. find the sol-

vation energy of Li+ to within 0.6 kcal/mole, and Kim, Park and co-workers find

results for total energies with an accuracy acceptable for the study of the problem

of an excess electron solvated in water.

Formulating the exact thermodynamics of such Hamiltonians with the same

approach that leads to Eq. (2.1) gives directly the principle in Eq. (2.4), but now
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with

A[n(r), {Ni(r)}, V (r)] ≡ (2.6)

min
ρ̂→[n(r),{Ni(r)}]

Tr
(

ρ̂Ĥ{Ri},{RI} + kBT ρ̂ ln ρ̂
)

,

where n(r) represents the electron density associated with the solute alone and

Ĥ{Ri},{RI} represents the internal electron gas Hamiltonian for the solvent elec-

trons alone, the interaction of these electrons with the molecular pseudopotential

V{Ri}(r) and a model potential function U({Ri}, {RI}) describing the interactions

among the environment molecules and the interaction between those molecules

and the nuclei of the solute through the electrostatic potential V (r) defined in

Eq. (2.3). Because the electrons have been already apportioned between the solute

and the solvent during the construction of Ĥ{Ri},{RI}, the functional A in Eq. (2.6)

represents an example of an approximation to Eq. (2.5) which is both reliable

and free of any potentially pathological issues associated with degenerate solutions

for n(r). With the functional dependence of A established in Eq. (2.4), we next

separate out known components and leave an unknown part to be approximated,

A[n(r), {Ni(r)}, V (r)] ≡ AKS[n(r)]

+ Alq[{Ni(r)}] + U [n(r), {Ni(r)}, V (r)], (2.7)

where AKS[n(r)] is standard universal Kohn-Sham electron-density functional of

the explicit system when in isolation, Alq[{Ni(r)}] is the “classical” density func-

tional for the liquid solvent environment when in isolation, and U [n(r), {Ni(r)}, V (r)],

defined formally and exactly as the difference between the exact functional and

the sum of the two former functionals, is a new functional describing the cou-

pling between the systems. The new functional U [n(r), N(r), V (r)] has the same

universality properties as the functional A from which it derives.
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Chapter 3

Joint Density-Functional Theory: Ab

Initio Study of Cr2O3 Surface Chemistry

in Solution

Ab initio calculations have shed light on many physicochemical questions, including

chemical reactions in solution and chemical reactions at surfaces [1, 2, 3]. Although

computational chemistry is now able to provide not only qualitative but also quan-

titative insights into surface chemistry [2], so far these studies have been limited

to reactions in a vacuum, even though, experimentally, these reactions often occur

in solvent environments. A fundamental roadblock to ab initio study of surface

reactions in solution is that current continuum approaches do not sit on a firm

theoretical foundation.

Using the new form of density-functional theory for the ab initio description of

electronic systems in contact with a molecular liquid environment introduced in

Chapter 2, we present a detailed study of the impact of a solvent on the surface

chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to

a vacuum, we predict that the presence of water has little impact on the adsorption

of chloride ions to the oxygen-terminated surface but has a dramatic effect on the

binding of hydrogen to that surface. These results indicate that the dielectric

screening properties of water, which arise from reorientation of dipole moments

on water molecules around the charged particle, are important to the passivating

effects of the oxygen-terminated surface.

26
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3.1 Introduction

Each year, corrosion costs the United States $276 billion, [4] approximately 3.1%

of the gross domestic product, and many approaches have been used to understand

and model this complex process [5, 6, 7]. High-performance stainless steel alloys

contain chromium resulting in the formation of a Cr2O3 passivating surface layer,

which provides corrosion resistance. Even with this layer, such alloys are suscep-

tible to breakdown in acidic, chlorine-containing, aqueous environments,[8, 9] the

study of which demands simultaneous treatment of surfaces, reactants and the

aqueous dielectric environment. Direct experiments are difficult, and although ab

initio calculations have a history of answering many such questions, to date they

have not been able to address the effect of the solvent on surface reactions. Alavi et

al.,[10] for instance, have studied the adsorption of HCl on single-crystal α-Al2O3

(0001) surfaces and calculated adsorption energies as a function of surface coverage

within density-functional theory, but all of their results are obtained in a vacuum

environment.

Previous studies of Cr2O3 have been limited to pure surfaces in vacuum [11],

an unrealistic environment for the study of corrosion. These studies indicated that

the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LU-

MOs) are localized on the chromium ions, suggesting that the oxygen-terminated

surface could provide a stable barrier against acidic chlorinated environments if the

surface oxygen layer could be prevented from reacting with species in the solution.

In this chapter we put forth evidence to support the novel hypothesis that the di-

electric screening effects associated with an aqueous environment actually prevent

the formation of bonds with aqueous species such as protons, thereby rendering

the oxygen-terminated surface virtually nonreactive.
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Models for calculating solvation energies from continuum dielectric theory[12]

have been applied to single molecules or activated complexes but not to molecules

adsorbed on surfaces, perhaps because such methods are generally applied to

molecules. Here, we build an approach to ab initio calculations in a continuum di-

electric environment which sits on the theoretical foundation of Chapter 2. Below,

we show that this new approach, which in a simple approximation is related to

that recently introduced by Fattebert and Gygi[13], gives results in good agreement

with currently accepted quantum chemical methods and is well-suited to surfaces.

Finally, we apply the approach to carry out the first ab initio study of the reac-

tivity of hydrogen and chlorine on an oxygen-terminated Cr2O3(0001) surface in

contact with a solution.

3.2 Theoretical approach: joint density-functional theory

Because of the large cells required in this study (well over one hundred atoms),

the only practicable ab initio approach suited to describe the electrons of the

surface and the reactants is the density-functional theory.[11] The size of the surface

cell and time-scales needed for proper thermodynamic averaging make a direct

molecular dynamics treatment of the aqueous environment infeasible, thus raising

the question of how to treat the solvent. To do so within a rigorous framework, we

use the concept of a joint density-functional theory (JDFT) between the electrons

in the surface and the molecules comprising the solvent, introduced in Chapter 2.

This new theory affords the opportunity to maintain a density-functional treat-

ment of the electrons of the system of interest while giving a rigorous description of

the solvent in terms of “classical” density-functional theories[14], which treat water

rigorously in terms of a simple thermodynamically averaged molecular density and
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a functional to which computationally tractable approximations are known[15].

While the availability of classical density-functional approximations to Alq[15]

makes Eq. (2.7) an attractive starting point for future work, in this first work,

we make the further simplification of performing the minimization over {Ni(r)},

resulting in the variational principle

A = min
n(r)

(

AKS[n(r), {ZI , RI}] −
∫

d3r V (r)n(r) + W [n(r), {ZI , RI}]
)

, (3.1)

where

W [n(r), {ZI , RI}] ≡ min
{Ni(r)}

(Alq[{Ni(r)}] + U [n(r), {Ni(r)}, {ZI , RI}])

is universal in the sense that its functional form depends solely upon the identity

of the environment (and, implicitly, the temperature). Note that, in principle, the

theory at this stage is exact. Below we outline the models and approximations

which we introduce because the exact forms of the functionals AKS[n(r), {ZI , RI}]

and W [n(r), {ZI , RI}] are unknown.

3.3 Computational details

For treatment of the electrons in the chromium-oxide surface through the func-

tional AKS[n(r), {ZI , RI}], we apply the standard local spin-density approxima-

tion (LSDA)[16]. The calculations themselves employ the total-energy plane-wave

density-functional pseudopotential approach[17] with potentials of the Kleinman-

Bylander form[18] with p and d nonlocal corrections at a cutoff of 40 hartrees.

Supercells with periodic boundary conditions in all three dimensions represent the

surfaces of isolated oxygen-terminated (0001)-oriented slabs of Cr2O3 of thickness

13 Å separated by 7.8 Å of either vacuum or solvent. The in-plane boundary
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conditions suffice to describe 2 × 2 reconstructions and consist of four times the

unit from Cline et al.[11] so as to allow sufficient isolation of solvent volumes ex-

cluded by chlorine adsorbed on the surface. The supercell contains a total of 40

chromium and 72 oxygen atoms with chlorine or hydrogen added to the two sur-

faces in inversion-symmetric pairs, one on each side of the slab. Finally, we use a

single k-point to sample the Brillioun zone of the surface slab, which corresponds

precisely to the sampling density previously established by Cline et al.[11]. Those

authors established that for this choice of functional, pseudopotential, plane-wave

cutoff, sampling density in the Brillioun zone and supercell, calculations give a

good description of the bulk and surface properties of Cr2O3. As in the aforemen-

tioned work, we employ the analytically continued functional approach[17, 19] to

minimize the Kohn-Sham energy with respect to the electronic degrees of freedom.

Below, we relax all ionic configurations until the total energy is within 0.027 eV of

the minimum and the maximum force in any direction is less than 0.3 eV/Å.

3.4 Local dielectric theory

For the environment functional W [n(r), {ZI , RI}] in Eq. (3.1), we take the in-

teraction of the electron and nuclear charges of the system under study with a

dielectric environment in which the dielectric constant is local in space and has a

value dependent only upon the electron density at each point, ǫ(r) ≡ ǫ(n(r)). This

corresponds to taking the primary mode of interaction between the system and the

environment to be long-range screening associated with favorable alignment of the

dipole moments of the water molecules with the instantaneous electrostatic field

of the system under study. In reality, correlations among water molecules imply

that the true dielectric response function ǫ(r, r′) is non-local in space, a simplifi-
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cation which we we shall relax somewhat in Chapter 4. For now, we focus on the

long wave-length (k → 0) dielectric response and so approximate ǫ(r, r′) as a local

function ǫ(r). The dependence of the value of ǫ(r) on the local density n(r) in our

model allows us to eliminate dielectric screening due to the environment from the

interior regions of the system under study. Thus, in effect, we have in this simple

model a dielectric cavity around our system determined by isosurfaces of system’s

electron density.

Taking in this way the dielectric interaction to be the most significant and

modeling it with a local approximation to the dielectric constant is standard prac-

tice in semiempirical quantum-chemical continuum dielectric models[20] but does

not take direct account of molecular-scale effects such as changes in the dielectric

response near the surface due to effects like hydrogen bonding with the surface. As

noted above, writing the dielectric constant as a function of the explicit electron

density allows the electronic structure to determine the boundary between the sol-

vent environment and the explicit system, an approach which Fattebert and Gygi

have shown to reproduce well results from the quantum chemistry literature[13].

For a more detailed calculation in the future, one could improve upon our results

by including a small number of water molecules explicitly at the surface of the

system or by employing the more detailed variational principle of Eq. (2.7) with

approximate functionals which account for nonlocal dielectric effects as well as

surface tension associated with the solid-liquid interface.

In practice, we implement the above model for W by computing the total free

energy of the system in contact with the environment as the stationary point with
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respect to both the electrons and the mean electrostatic field φ(r) of the functional

A = ATXC [n↑(r), n↓(r)] + ∆Vps[n↑(r), n↓(r)] (3.2)

−
∫

d3r

{

φ(r)

(

ntot(r) −
∑

I

ZIδ
(3)(r − RI)

)

− ǫ(n(r))

8π
|∇φ(r)|2

}

where n↑(r), n↓(r) and ntot(r), respectively, are the up-, down-, and total elec-

tron densities, ATXC [n↑(r), n↓(r)] is the Kohn-Sham single-particle kinetic plus

exchange correlation energy within the local spin-density approximation, ∆Vps is

the difference in the total pseudopotential energy from that expected from pure

Coulombic interactions with point ions of valence charges ZI at locations RI , and

δ(3)(r) is the three-dimensional Dirac-δ function. Note that, although we do work

directly with the Kohn-Sham orbitals, for brevity we have written the above in

terms of the electron densities. We also note that at this level of approximation

our joint density-functional theory takes the same form as the approach of Fatte-

bert and Gygi[13], which introduced the form as a computational device without

formal justification. Finally, we were able to implement this approach with rela-

tively modest changes to our group’s preexisting density-functional software. The

primary change was to combine the calculation of the Hartree field (potential from

the electrons) and the ionic potential (local part of the ionic pseudopotential) into

a single solution of Poisson’s equation in the presence of the dielectric function

ǫ(n(r)).

For the local dielectric function ǫ(n(r)), we choose a specific form which varies

smoothly from the dielectric constant of the bulk solvent ǫb when the electron

density n(r) is less than a critical value nc indicative of the interior of the solvent

to the dielectric constant of vacuum ǫ = 1 when n(r) > nc. Specifically, we take

ǫ(n) = 1 +
ǫb − 1

2
erfc

(

ln(n/nc)√
2σ

)

, (3.3)
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Figure 3.1: Comparison of the predictions of a simple joint density-functional

theory (vertical axis) with established quantum chemical values (horizontal axis)

for the electrostatic contribution to the solvation energy of acetamide, acetic acid,

methanol, ethanol and methane (from left to right) from Marten et al.[21].

where the parameter σ, to which the results are not very sensitive, controls the

width of the transition from bulk to vacuum behavior. (Note that Fattebert

and Gygi[13] have introduced and justified a very similar form to model ǫ(n).)

To determine the parameters σ and nc for this simple model, we fit computed

electrostatic solvation energies in aqueous solution (ǫb = 80) to the accepted values

from the quantum-chemical literature for methane, ethanol, methanol, acetic acid

and acetamide[21]. Figure 3.1 summarizes the quality of this comparison for our

final choice of fit parameters, σ = 0.6 and nc = 4.73 × 10−3 Å−3.
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Figure 3.2: Relaxed structure of a pristine surface slab, side view ([0001] direction

runs vertically up the page): oxygen (light gray spheres), chromium (dark gray

spheres). The labeling of atomic layers follows Cline et al.[11].

3.5 Results and discussion

3.5.1 Pristine surface

Cline et al.[11] review in detail the structure of bulk Cr2O3 and the relaxation

of its pristine (0001) oxygen-terminated surface. Figure 3.2 shows the relaxed

structure of our supercell surface slab. The bulk structure consists of alternating

planar layers of oxygen atoms separated by bilayers of chromium. As Cline et

al.[11] also find, the primary relaxation associated with forming the surface is for

the oxygen-terminated surface layers to move inward toward the bulk crystal with

slight in-plane displacements.
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Figure 3.3a.1 shows the filled and empty energy levels from our supercell calcu-

lation of the (0001) oxygen-terminated surface of Cr2O3 in a vacuum environment.

Following standard practice, we choose the zero of energy to be the Fermi level,

the energy below which states are fully occupied and above which they are empty.

The states at the zero line in the figure are thus the highest occupied molecular

orbitals (HOMOs) and the first states above the line are the lowest unoccupied

molecular orbitals (LUMOs). The figure shows the levels of the pristine surface to

be fully filled up to a gap of about 0.5 eV separating the HOMOs and LUMOs.

To provide a more global view, Figure 3.4 presents the intensive density of

states, the number of levels from Figure 3.3a.1 per unit energy per electron as a

function of energy, computed using a Gaussian broadening of width σ=0.41 eV. To

underscore the distinction between occupied and unoccupied states, the figure gives

a separate curve for each. Finally, as a guide to the identification of the bands,

the figure also contains markers for the LSDA atomic eigenvalues of oxygen and

chromium, which have been shifted uniformly upward by 4.4 eV to approximately

counteract the shifting of the Fermi level of the supercell states to zero energy.

Although there may be no a priori reason to expect neutral atomic eigenvalues

to be relevant for this ionic system, we find below that detailed inspection of the

corresponding local densities indicates that the features in the density of states

correspond precisely in spin orientation, localization, and orbital character to those

of the nearby atomic states indicated in the figure.

Three features in the supercell density of states play important roles in the

chemistry of this surface. First, the highest occupied oxygen orbitals appear as

the shoulder (from ∼-4 eV to ∼-2 eV) of the oxygen 2p band, which consists of

“minority” spin electrons, electrons with spin opposite to the net atomic spin.
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Figure 3.3: Near-gap energy levels for (a) pristine, (b) hydrogenated, and (c)

chlorinated system in (1) vacuum and (2) dielectric: filled levels (solid circles),

empty levels (open circles), and partially filled levels (crosses).
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Figure 3.5a presents the sum of the probabilities associated with states in this

range and clearly indicates this shoulder to be a surface oxygen band. (The

contour level in this and all subsequent electron density maps is set at the same

value of 0.68 e−/Å3, chosen so as to make evident the localization and orbital

character of the corresponding states.) The localization of different spin types

to either surface corresponds to the fact that the oxygen atoms on each surface

have opposite net spin direction. Next, the highest occupied molecular orbitals

(HOMOs) overall appear as an sd-hybrid chromium band (from ∼-2 eV to ∼0 eV)

consisting of electrons of “majority” spin, spin aligned with the net atomic spin.

Figure 3.6 shows these states to be bulk chromium states, with atoms alternating in

majority spin direction corresponding to the anti-ferromagnetic nature of the bulk

material. Finally, the LUMOs of the system appear as the low energy majority

spin shoulder (from ∼0 H to ∼1 eV) of an empty chromium band. Figure 3.7 shows

this shoulder to consist of surface states of primarily chromium character protected

under the outer oxygen layer. This character of the HOMOs and LUMOs suggests

that any oxygen missing from the outer surface would expose a reactive chromium

layer underneath.

Upon repeating the pristine surface calculation in the presence of a dielec-

tric environment, we find virtually no change. There is no change in Figure 3.2

and, although some very small changes are evident in going from Figure 3.3a.1 to

Figure 3.3a.2, the global picture of the density of states in Figure 3.4 is visually

indistinguishable for vacuum (solid curve) and dielectric (dashed curve). Finally,

inspection of density maps corresponding to Figures 3.5–3.7 again shows no no-

ticeable changes.
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Figure 3.5: Contour level (0.68 e−/Å3) of the sum of probability densities from

the highest energy shoulder of the oxygen 2p band, side view ([0001] direction runs

vertically up the page): up spin (black surface), and down spin (white surface).

Locations of atomic layers are indicated as in Figure 3.2.
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Figure 3.6: Contour level (0.68 e−/Å3) of sum of probability densities from the

chromium sd ↑ band, side view ([0001] direction runs vertically up the page): up

spin (black surface), and down spin (white surface). Atomic layers indicated as in

Figure 3.2.
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Figure 3.7: Contour level (0.68 e−/Å3) of sum of probability densities from the

lowest energy shoulder of the chromium sd ↓ spin band, side view ([0001] direction

runs vertically up the page): up spin (black surface), down spin (white surface).

Atomic layers indicated as in Figure 3.2.
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3.5.2 Interaction with hydrogen

Anticipating bonding with oxygen, we initially placed a hydrogen atom in vacuum

directly on top of one of the surface oxygen atoms, all of which are equivalent

by symmetry. Figure 3.8a shows that, upon relaxation, the hydrogen atom cants

away from the surface perpendicular while appearing to form a bond with the

underlying oxygen atom: the final relaxed O-H distance is 0.95 Å, quite close to the

experimental O-H separation in H2O (0.96 Å). Figure 3.9 shows that the canting of

the hydrogen atom is in the same direction as one would expect for the 2p orbital of

the associated oxygen atom given its in-plane displacement. Finally, Figure 3.10a,

which shows the total electron density associated with the chemisorbed H, confirms

the presence of the bond as a small protrusion in the density near the hydrogen

atom.

Figure 3.3b.1 shows the filled and empty energy levels of the hydrogenated

surface in a vacuum environment. As with the pristine surface (Figure 3.3a),

the energy levels are fully filled up to a HOMO-LUMO gap, consistent with the

observed bonding. To better resolve the bond associated with the chemisorbed

hydrogen, Figure 3.11 presents the local density of states in the vicinity of the

hydrogen atom, which we compute in the same way as the total density of states

of Figure 3.4 but by now weighing each level with the probability of an electron

in the level being within 0.69 Å of the proton. The local density of states shows

that the hydrogen atom interacts mostly with the surface oxygen 2p band. A plot

of the total density associated with this surface band, Figure 3.12a, confirms that

it contains most of the density protrusion associated with the O-H bond. Finally,

Figure 3.13a shows that the HOMO of the hydrogenated surface, while maintaining

significant bulk chromium character, indeed localizes near the hydrogen atom.
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(a) (b)

Figure 3.8: Relaxed structure of surface slab with adsorbed hydrogen in (a) vacuum

and (b) dielectric: oxygen (light gray spheres), chromium (dark gray spheres), and

hydrogen (black spheres). Same view as Figure 3.2 but showing atoms from a

single supercell.
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Figure 3.9: Relaxed structure of a single supercell with adsorbed hydrogen in

vacuum, top view ([0001] direction normal to page): oxygen (light gray spheres),

chromium (dark gray spheres), and hydrogen (black sphere).
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(b)

Figure 3.10: Contour level (0.68 e−/Å3) of total electron density for hydrogen atom

adsorbed on oxygen-terminated (0001) surface in (a) vacuum and (b) dielectric,

side view ([0001] direction runs vertically up the page). Atomic layers indicated

as in Figure 3.2. Note that most contours are near spherical and appear as balls

centered on atoms.
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Figure 3.11: Local density of states within 0.69 Å of the proton for hydrogen

interacting with oxygen-terminated (0001) surface in vacuum (solid curve) and

solution (dashed curve). Same conventions as Figure 3.4.
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(b)

Figure 3.12: Contour level (0.68 e−/Å3) of the sum of probability densities associ-

ated with oxygen 2p surface band in (a) vacuum and (b) dielectric: up spin (black

surface), down spin (white surface). Atomic layers indicated as in Figure 3.2.
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Figure 3.13: Contour level (0.68 e−/Å3) of the HOMO of hydrogen interacting

with the oxygen-terminated (0001) surface in (a) vacuum and (b) dielectric, side

view ([0001] direction runs vertically up the page): up spin (black surface), down

spin (white surface). Atomic layers indicated as in Figure 3.2.
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To determine the final atomic configuration in the presence of a solvent, we

begin with the positions from Figure 3.8a and relax the atomic coordinates within

the approximate joint density functional of Eqs. (3.2,3.3) until the maximum force

on any atom is less than 0.3 eV/Å. Figure 3.8b, which displays the resulting con-

figuration, shows that the presence of the dielectric has a dramatic effect on the

hydrogen. The nearest oxygen-hydrogen distance has increased to 2.3 Å, clearly

breaking the O-H bond and returning the hydrogen atom to the solution. Con-

sistent with this picture, the largest residual force remains on the hydrogen atom

in the direction tending to push it yet further from the surface. Lack of any indi-

cation of the presence of the hydrogen atom in the resulting total charge density,

Figure 3.10b, indicates that the atom enters the solution as an ion.

Figure 3.3b.2 shows that upon the removal of the proton from the surface,

the excess electron from the O-H bond appears simply as a donated conduction

electron just above the energy gap. Consistent with this donation, the dashed curve

in Figure 3.11 shows a dramatic reduction in the local density of states near the

proton, and the HOMO in Figure 3.13b now shows more of the surface chromium

character of the original LUMO band from Figure 3.7.

3.5.3 Interaction with chlorine

Anticipating the possibilities of ionic bonding for chlorine, we initially placed (in

the 1×1 surface supercell) a chlorine atom in vacuum directly above each of the

two distinct types of Cr3+ site from the outermost chromium bilayer and found

the site above the innermost of the two component layers to be favored by 0.4 eV.

Figure 3.14 shows a top ([0001]) view of the relaxed configuration for this site

when computed within the 4×4 supercell. We find relatively little relaxation from
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Figure 3.14: Relaxed structure of surface interacting with chlorine in vacuum:

oxygen (light gray spheres), chromium (dark gray spheres), and chlorine (black

sphere): top view ([0001] direction perpendicular to page).

the clean surface structure (movement of all surface atoms is less than 0.01 Å)

with the chlorine ion settling upon relaxation to a position with a chlorine-oxygen

separation of 2.6 Å, only 20% smaller than the sum of the nominal ionic radii,

3.1 Å. Figure 3.15a shows a side view of the total electron density for a surface

with adsorbed Cl in vacuum, illustrating the physisorbed nature of the interaction.

Turning to the energy levels, Figure 3.3c.1 shows the levels near the gap. In this

case, three two-thirds filled states (degenerate to within 19 meV∼ 220 K) appear

just below the top of the gap, indicating the presence of a hole in the Cr band,

which we interpret as arising from the chlorine atom absorbing an electron from
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Cr [4b]

O [5]

Cr [6a]
Cr [6b]
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(b)

Figure 3.15: Contour level (0.68 e−/Å3) of total electron density for chlorine atom

adsorbed on oxygen-terminated (0001) surface in (a) vacuum and (b) dielectric,

side view ([0001] direction runs vertically up the page). Atomic layers indicated

as in Figure 3.2. Note that densities are such that the contours appear spherical.
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the chromium oxide to become Cl−. To explore local effects from the adsorbed

chlorine, Figure 3.16 presents the local density of states, weighing each state with

the probability of an electron being within 1.6 Å of the chlorine nucleus. In contrast

to the local density of states of the hydrogen calculation, the appearance of the

oxygen band is significantly reduced and there is much stronger mixing with the

bulk chromium states. This mixing corresponds to alignment of the barely bound

Cl− states with the bulk HOMO chromium band as the chlorine ion draws electrons

from the bulk chromium band, which is serving as a reservoir of electrons. Finally,

Figure 3.17a shows the sum of the electron probabilities in the partially filled states

at the Fermi level, which are thus both the HOMOs and the LUMOs. Interpreted

as the sum of states lacking exactly one electron from full occupancy, the figure

shows the spatial distribution of the hole which the formation of the Cl− injects

into the chromium-oxide slab. As one would expect, this (positive) hole tends to

localize to the vicinity of the Cl− ions.

Upon relaxation of the physisorbed chlorine surface in the presence of the sol-

vent, we find there to be very little relaxation (no more than 0.01 Å for any atom),

little difference in the total charge density (Figure 3.15b), no change in the presence

of partially filled states at the Fermi level (Figure 3.3c.2), and very little difference

in the local density of states (Figure 3.16) or the spatial distribution of the hole

injected into surface, Figure 3.17b.

3.5.4 Conclusions

Above, we give an application of the novel approach of using a joint density-

functional theory to treat an ab initio electronic structure calculation in the pres-

ence of a liquid solvent such as water. Through this approach, we find the mode
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Figure 3.16: Local density of states within 1.6 Å of the chlorine nucleus for chlorine

interacting with the oxygen-terminated (0001) surface in vacuum (solid curve) and

solution (dashed curve). Same conventions as Figure 3.4.
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(a)

O [3]

Cr [4a]
Cr [4b]
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Cr [6a]
Cr [6b]
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Figure 3.17: Contour level (0.68 e−/Å3) of HOMOs and LUMOs (equivalent in this

case) of chlorine interaction with oxygen-terminated (0001) surface in (a) vacuum

and (b) dielectric, side view ([0001] directions runs vertically up the page). Atomic

layers indicated as in Figure 3.2.
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of interaction of the oxygen-terminated Cr2O3 (0001) surface with hydrogen to be

covalent bonding while that with chlorine to be ionic bonding. The presence of a

dielectric solvent has very little effect on the pristine surface or on its interaction

with chlorine, while it has a dramatic affect on the interaction with hydrogen. In

vacuum, hydrogen readily forms an O-H bond with the outermost layer of atoms of

the surface. In the presence of water, the strong screening associated with dielectric

effects in the vicinity of the proton (ultimately via hydrogen bonding interactions)

so weakens the attractive potential of the proton that the covalent bond is broken,

the electron is released into the surface, and the proton solvates.

In contrast, the interaction with chlorine in vacuum is already ionic, with a

neutral chlorine atom having sufficient electronegativity to draw an electron from

the bulk of the crystal and thus ionize to Cl− while injecting a hole into the

bulk. The presence of a dielectric solvent tends to screen the excess charge on

the chlorine ion, thereby only further stabilizing this form of interaction with the

surface so that there is little change in this case when going from vacuum to a

dielectric environment. It thus appears that the primary reason why the solvent

has a much greater effect on the interaction with hydrogen than with chlorine is

that a dielectric environment generally favors the formation of ions and the surface

interaction with chlorine is already ionic whereas the interaction with hydrogen in

vacuum is covalent.

We believe that there would be little effect on these conclusions were the cal-

culations to be performed with ions rather than atoms. Doing so would involve

principally removing a single electron from the calculation for each hydrogen atom

or adding an electron for each chlorine atom. For the chlorine cases, this would

simply remove the relatively delocalized hole from the bulk chromium band and
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thus likely have little effect on the final results. For the interaction with hydrogen,

the removal of an electron from our calculation as performed currently would, in

the dielectric case, likely simply remove the relatively delocalized donated electron

or, in the vacuum case, likely simply introduce a relatively delocalized hole into the

chromium band. In either of these cases for hydrogen, we again would expect little

change in the results of our calculations. To make a definitive statement for the

precise behavior of a proton on the surface, future calculations should include the

more detailed variational principle of Eq. (2.7) and at least a few water molecules

so as to allow for the Grotthus mechanism (proton diffusion via bond switching

events in the water environment). However, allowing the Grotthus mechanism

would seem only to make departure of the proton into the solution more likely.

Thus, although we cannot draw a definitive conclusion at this point, we feel that

with protons, as we have found with hydrogen atoms, there will be little disruption

of the chemical integrity of the surface.

Overall, a novel picture emerges to explain how the oxygen-terminated surface

of Cr2O3 is particularly protective in a hydrochloric acid solution. The outer

oxygen layer provides a natural barrier to interaction with chlorine but might be

expected to interact strongly with protons. However, through dielectric screening

effects, it is the aqueous environment itself which eliminates the outer oxygen

layer’s natural tendency to interact with hydrogen.

Our calculations of surface chemistry in the presence of a solvent make clear

the need for additional work to complete the picture of the passivating effects of

chromium oxide. We would next like to study the interaction of chlorine and hydro-

gen with a chromium-terminated surface, whose HOMOs would then be exposed

on the surface rather than protected under the outer oxygen layer. We also would
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like to explore pit corrosion by calculating the interaction of the aforementioned

species with a step in the passivating oxygen layer. Finally, we would like to con-

trast the interactions of chlorine in such systems to the interactions of fluorine and

bromine in order to better understand the corrosive success of chlorine relative to

these other species.
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Chapter 4

Classical Density-Functional Theory for

Water

Chapter 3 introduced the local dielectric approximation for water, which accounted

only for the electrostatic interactions in a very approximate way but completely

neglected cavitation energies. This chapter explores the development of classical

density-functional theories for water to allow description of such cavitation ener-

gies. We explore how the best known approximate form for the classical density

functional, the weighted density approximation, fails when applied directly to wa-

ter. We then introduce a new, computationally efficient and accurate classical

density-functional theory for water and apply it to the hydration of hard spheres

and inert gas atoms. We find relatively good agreement with molecular dynamics

simulations for the hydration of small hard spheres of radii relevant to molecules

in solution, and we find rough agreement for the solvation of inert gas atoms in

water. Our attempts to describe inert gas atoms, however, clearly point to the

need to explore orientationally dependent density functionals for liquid water.

4.1 Introduction

Despite its importance to a wide range of problems in chemistry and biology,

relatively little progress has been made in the first principles understanding of the

microscopic structure of water and its interaction with solutes. The underlying

reason for this is that, in the liquid state, the kinetic energy of molecules is on

the same order as their interaction energy, so that the perturbative methods which

60
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have proved so successful for solids and non-ideal gases fail.

For the study of liquids and their interactions with external systems, two gen-

eral classes of theoretical methods have been developed. The first treats the liq-

uid as a collection of molecules treated either ab initio within density-functional

theory or with a model interatomic potential, such as the simple point charge

(SPC) model [1] or the 4-site transferable intermolecular potential TIP4P [2], and

then uses molecular dynamics (MD) or Monte Carlo numerical methods to per-

form statistical averaging over the thermal phase space[3, 4, 5]. These methods

are intuitively simple to understand and also relatively straightforward to imple-

ment numerically. However, because they involve statistical averaging of many

molecules over an exponentially growing configuration phase space, these methods

are numerically very demanding. The second class of methods treats the liquid as

a continuous media[6, 7, 8, 9, 10]. Without the need for thermal averaging or to

represent molecules individually, these latter methods are much more efficient com-

putationally. However, such models are generally built in an empirical way and,

generally, there is no systematic way to improve them. Nonetheless, significant

progress has been made in understanding the interaction of water with external

environments using this approach, such as the work of Pratt and Chandler [11] on

the theory of the hydrophobic effect and the Lum, Chandler, Weeks (LCW) theory

of hydrophobicity[12].

In this chapter, we explore the nature of the interaction of water with exter-

nal environments using a somewhat different approach than that of Chandler and

coworkers and work in the classical density-functional theory framework reviewed

briefly in Section 1.2 of this thesis. There are two main advantages of working in

this framework. First, the classical density-functional theory of liquids is a continu-
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ous theory of the liquid state which is exact in principle. Moreover, this framework

gives the free energy and the density profile of the liquid in any external potential

V (~r) in terms of a single density-functional[13], so that study of the hydropho-

bic effect (liquid in contact with either an impenetrable wall or an impenetrable

hard sphere) and of the interaction of the liquid with any solute can be carried

out in a single, unified framework. A number of approximate density-functionals

have been developed for water and applied to the hydrophobic effect[9, 14]. Much

more demanding theories which go beyond the average molecular density to con-

sider explicitly the distribution of molecular orientations in water have also been

developed[15, 16]. These current density functional theories, however, prove to be

either quite computationally demanding or to provide an over-simplified descrip-

tion.

We begin this work by introducing a computationally efficient density-functional

theory for water which reproduces the hydrophobic effect near hard boundaries.

We then present the first application of a classical density-functional theory to

realistic ab initio potential energy surfaces of solutes, applying our theory to the

solvation of the inert gas sequence. This latter study allows us to address directly

the question of whether explicit orientation dependence, with all of the concomi-

tant computational demands, is necessary to provide an accurate description of

the solvation of even the simplest solutes.

4.2 Failure of traditional weighted-density functional form

Our density-functional theory is inspired by the class of weighted-density function-

als [17, 18] described in Section 1.2. We begin with a simpler, non-self-consistent
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form of the weighted density approximation due to[18],

Fex[ρ(~r)] =

∫

d~rρ(~r)fex(ρ̄(~r))

where fex(ρ̄(~r)) is the excess free energy per particle of the inhomogeneous liquid

at ~r and

ρ̄(~r) =

∫

d~r′w(~r −~r′; ρ0)ρ(~r′).

This theory gives the direct correlation function

c(~r1 − ~r2; ρ0) = −β
δ2Fex[ρ]

δρ(~r1)δρ(~r2)
,

in Fourier space as

c(k; ρ0) = −βρ0
∂2fex

∂ρ2
w2(k; ρ0) − 2β

∂fex

∂ρ
w(k; ρ0), (4.1)

which may be solved for the unknown function w(k) given experimentally derived

data for c(k).

Experiments generally give results from which the oxygen total correlation

function h(r) ≡ g(r) − 1 may be extracted. Figure 4.1 presents results from

[19] along with a fit to an analytic function which we used for our numerical

calculations,

h(k) = − 4πra
sinc(kra) − cos(kra)

k2
e−k2/2σ2

a

+ Arbsinc(krb)e
−k2/2σ2

b + Brcsinc(krc)e
−k2/2σ2

c , (4.2)

where the values of the various parameters appear in Table 4.2. From the total

correlation function h(k), the direct correlation function c(k) may be obtained

directly in Fourier space from the Ornstein-Zernike equation,

1 + ρ0h(k) =
1

1 − ρ0c(k)
.
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Figure 4.1: Oxygen-oxygen total correlation function in liquid water: experimen-

tally determined data of [19] (squares), Fourier transform of fitted analytic function

Eq. (4.2) (curve)

Table 4.1: Fitted values of parameters in Eq. (4.2)

A=90 B2 B=-28.75 B2

ra=4.89 B rb=5.25 B rc=6.0 B

σa=4 B σb=3 B σc=2 B
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Figure 4.2: Direct oxygen-oxygen correlation function for liquid water in Fourier

space extracted from experimental data

Finally, Figure 4.2 presents our results for c(k).

For liquids with attractive interactions in general and for water in particular,

these equations are known not to allow appropriate solutions [9, 6]. As a quadratic

equation, Eq. (4.1) has two roots for w(k). Figure 4.3 shows the real part of

the solution of Eq. (4.1) for water under standard conditions. The flat regions of

the result correspond to points where the solution has become complex. Isotropy

requires that w(~r − ~r′) be spherically symmetric so that w(k) must be real. Thus,

although Eq. (4.1) gives the appropriate condition for the functional to reproduce

the pair correlation functions, there is no choice for w(~r−~r′) which will reproduce

correlations in the fluid. Sun[9] also reports inability to solve the equation for

w(k) for certain values of k, even for the self-consistent weighted density functional

theory.
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Figure 4.3: Two roots of Eq. (4.1) for w(k) (real part)

From Figure 4.3 it might appear that the failure to find an appropriate w(k)

to reproduce c(k) comes from a peculiarity in c(k) rather from the structure of the

equations. It also appears that a relatively small change to c(k) would yield real

solutions. This suggests the following alternative functional,

Fex[ρ(~r)] =

∫

d~rρ(~r)fex(ρ̄(~r)) +
1

2

∫∫

d~rd~r′ρ(~r)χ(~r − ~r′)ρ(~r′), (4.3)

in which most of the physics can still be captured in the fex(ρ̄) term, with relatively

small corrections provided by the quadratic kernel χ to maintain exact recovery of

the two-point correlation function. From (4.3), we then have

c(k) + βχ(k) = −βρ0
∂2fex

∂ρ2
w2(k; ρ0) − 2β

∂fex

∂ρ
w(k; ρ0) (4.4)

so that the new left-hand side may be made to take on values such that real

solutions exist. However, although this equation can be arranged to always yield

real solutions, each branch of that solution will always violate one of the basic
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limiting conditions on w(k), either that w(k = 0) = 1 so that the free energy of

the uniform liquid is reproduced or that w(k → ∞) = 0 so that w(~r−~r′) contains

no delta function, allowing the ideal gas part Fid[ρ] to capture properly all high

frequency behavior. Specifically, one may show as a property of the quadratic

formula that, because for water it happens that ∂fex(ρ)/∂ρ < 0, the branch of

the solution which approaches unity as k approaches zero is not the same branch

which approaches zero as k approaches infinity. The additional function χ(k)

cannot change this because physically reasonable χ(k) must approach zero in both

of these limits: so as not to disturb the free energy of the uniform liquid, χ(~r)

must integrate to zero, so as to properly capture high spatial frequency behavior

with Fid[ρ], χ(k) must vanish as k → ∞.

This difficulty can be removed by considering higher order correlations [20].

However, such correlations increase the computational complexity significantly and

the required experimental information may not be available. This thesis explores

the alternative route of staying with two particle correlations but exploring new

functional forms.

An intriguing modification which always yields real solutions for w(k) without

the device of introducing χ is to write

F [ρ(~r)] = Fid[ρ̄(~r)] +

∫

d~rfex(ρ̄(~r)).

In this case, the direct correlation function obeys

1 − ρ0c(k) = βρ0
∂2(Fid(ρ) + fex(ρ))

∂ρ2

∣

∣

∣

∣

ρ=ρ0

|w(k)|2 .

Now, because the Ornstein-Zernike equation ensures 1 − ρ0c(k) = 1
S(k)

> 0, real

solutions for w(k) will always exist. Unfortunately, because S(k → ∞) → 1, w(k)

is finite as k → ∞, which, again, ultimately produces invalid results for quantities
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in the high frequency limit, such as the hydration energy of small spheres R → 0.

4.3 Construction of classical density-functional theory for

water

This section builds on the preceding experience to construct a successful classical

density functional theory for water. The final method is computationally much

simpler that the full weighted density-functional approach in that it does not re-

quire computationally demanding self-consistent calculations of the weighted den-

sity. On the other hand, our form does allow us to incorporate much of the same

physics as [6] and to thus find a form which is competitive computationally but

more accurate than other, more simplified functionals[9].

The primary differences between our form and the traditional form are to in-

troduce the quadratic kernel from the first attempted functional above and, from

the second failed functional above, to not separate the excess free energy per unit

volume into a product of the local density and an excess free energy per particle.

In particular, we write

F [ρ(~r)] = Fid[ρ(~r)] +

∫

fex(ρ̄(~r))d~r (4.5)

+
1

2

∫∫

ρ(~r)χ(~r − ~r′)ρ(~r′)d~rd~r′,

using the local density in Fid[ρ(~r)] ensures exact treatment of short length-scale

properties through the first term in Eq. (4.5), which is known exactly. Again,

so that the new, final term does not affect the free energy of the uniform fluid,

we choose to consider only χ(~r) which integrate to zero and so that the high-

frequency behaviors from the ideal gas component are not affected, we insist also

that χ(k → ∞) → 0.
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Within this theory, the direct correlation function obeys

c(k) + βχ(k) = β
∂2fex(ρ)

∂ρ2

∣

∣

∣

∣

ρ=ρ0

|w(k)|2 .

Figure 4.4 shows kBTc(k) and the resulting χ(k) when choosing w(k) as normalized

Gaussian so that

ρ̄(~r) ≡ (2λ2π)−
3

2

∫

ρ(~r′)e
−|~r−~r′|2

2λ2 d~r′, (4.6)

where the width λ is chosen to best fit the resulting planar surface tension (Gibbs

free energy per unit area[13]). (λ = 0.4605 a.u. reproduces the surface tension of

bulk water 70 mN/m or 4.5× 10−5 a.u.) Note that the resulting χ(k) is relatively

small, so that most of the description of the physics remains in the non-linear

fex(ρ̄(~r)) part, with relatively small corrections in χ(k) to ensure exact description

of the direct two-particle correlation function. As with the traditional weighted

density-functional approximation, the non-linearity of the second term in Eq. (4.5)

ensures that a large-scale phase separation between vapor and liquid is treated

correctly.

To construct the functions and parameters needed in Eq. (4.5), we begin by

noting that, for the uniform liquid, the last term gives zero (χ has zero integral)

and ρ̄(~r) = ρ(~r), so that fex(ρ) can be constructed to reproduce the properties of

the uniform liquid exactly. In practice, we parameterized fex(ρ) as a sixth-order

polynomial

fex(ρ) = aρ6 + bρ5 + cρ4 + dρ3 + eρ2 + fρ + g. (4.7)

with parameters chosen to reproduce, for bulk water at standard ambient tem-

perature and pressure (SATP), the density and bulk modulus of both the liquid

and vapor (four parameters), the derivative of the bulk modulus of the liquid

with respect to pressure ∂B/∂P (one parameter), and phase coexistence of the
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Figure 4.4: Direct correlation function kBTc(k) from Figure 4.2 and the residual

χ(k).

liquid and vapor at the zero of free energy (two parameters). Table 4.2 gives

both the fit data and the resulting parameters, and Figure 4.5 presents the final

function F (ρ). Note that in this work we employ mostly atomic units (a.u.) so

that Planck’s constant, the electron mass and the fundamental charge all have

numerical value unity (h̄ = me = e = 1), implying that energies are measured in

units of 1 hartree=27.21 eV and distances in units of 1 bohr=0.5291 Å. Finally,

we emphasize that in constructing this functional we used only either uniform or

macroscopic properties of water and have fit nothing to free energies of solution

for any kind of solute.
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Table 4.2: Properties of uniform bulk water at Standard Ambient Temperature

and Pressure (SATP: T=25 ◦C, P=100.00 kPa)

Vapor density 0.023 kg/m3

Water density 997.1 kg/m3

Bulk modulus 2.187 GPa

∂B/∂P 5.83

a 6.630 × 109

b −1.277 × 108

c 9.200 × 105

d −2.602 × 103

e 8.906 × 10−4

f −1.415 × 10−2

g 1.077 × 10−10
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Figure 4.5: Free energy density of water as a function of its density at SATP
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4.4 Application to hydration of hard spheres

To test the accuracy of this approximation we use it to calculate the free energy of a

spherical cavity in water, a standard test case used in the literature [12, 9, 21, 22] to

explore density variations in water over all possible length scales. The interaction

potential with a hard sphere of radius R, defined so that the center of no molecule

approaches within a distance R of the sphere center, is idealized because it depends

only on the distance of the water molecule to the hard sphere and does not depend

on the orientation. For instance, for a real water molecule it is unclear even what

point to take to represent the location of the molecule. The position of the oxygen

nucleus is most commonly taken.

Figure 4.6 compares our results for the surface tension (free energy change per

unit area) of a spherical cavity with results of molecular simulations for SPC/E

water[23]. The figure verifies that the surface tension approaches in the macro-

scopic value in the limit of large radii and shows that for smaller radii, the surface

tension has a strong dependence on radius. Our results are in much better agree-

ment with the molecular dynamics data than those of the original Lum-Chandler-

Weeks[12] theory. The good agreement with explicit molecular dynamics simula-

tions (very good for the small radii typical of solvated molecules and within 20%

at the worst case) suggests that this model can be used to give a good quantitative

description of the hydrophobic effect, a central problem of theoretical chemistry.

4.5 Application to hydration of inert gas atoms

The ultimate motivation for inhomogeneous continuous theories of bulk water is

to understand solvation of real solutes, not artificial hard boundaries. Within
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Figure 4.6: Surface tension of a hard sphere of radius R in water at SATP. Solid line

denotes the results of our classical density-functional theory calculations. Molecu-

lar simulation results for a cavity in SPC/E water are indicated by diamonds [23].

Dashed line corresponds to macroscopic surface tension of water. R is defined as

the distance of closest approach between molecular centers and sphere center.
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the density-functional framework of Eq. (1.21), one can simply and rigorously in-

corporate the effects of any external potential V (~r) acting on the liquid, making

treatment of real solutes simple in principle, provided a static potential V (~r) ac-

curately describes the interaction of water with the solute. For our next test, we

treat a simple but challenging problem for which there is experimental data, the

solvation of inert gas atoms.

The experimental solubilities of the inert gasses in water give the corresponding

solvation free energies directly. In the dilute limit, the free energy of solvation ∆Ω

relates to the mole fraction solubility through the relation

∆Ω = kBT log

(

ngas

X1nw

)

= kBT log

(

1atm

kBTX1nw

)

(4.8)

where X1 is the mole fraction solubility in water and nw is the number density of

liquid water.

The experimental data, which Table 4.3 summarizes, show an interesting trend.

Although the solvation energies of hard spheres increase with size, the solvation

energies of inert gas atoms tend to decrease. (Note that for helium, the worst

possible case, we estimate quantum zero-point effects to be quite small, on the

order of 0.005 eV, so that this must be purely an effect of the interactions.) Thus,

a simple cavity model for solvation of inert gas atoms is not a good approximation

and one must use a more realistic interaction potential V (~r).

We determined the potential energy of interaction between a water molecule

and an atom of each of the inert gasses in Table 4.3 directly through ab initio

density-functional theory calculations within the generalized gradient approxima-

tion (GGA) [24]. For these calculations we take ~r to be the displacement between

the nucleus of the inert gas and the nucleus of the oxygen atom and considered

one hundred different orientations for the water molecule, with these orientations
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Figure 4.7: Interaction of Argon and a water molecule. Each diamond corresponds

to a specific orientation. Also presented are the Boltzmann average potential (solid

line) and the minimum potential (dot-dashed line).

optimized to sample the angular dependence evenly according to the procedure of

Womersley and Sloan[25]. Figure 4.7 summarizes the results for argon, which was

typical of all of the inert gasses considered in this work.

The scatter in the interaction energy at each distance r shows a strong depen-

dence on the orientation of the water molecule, particularly at shorter distances.

The question then immediately arises of how to couple to any continuum theory

based solely on the molecular density N(r) with no information about the orienta-

tion of the molecules in the solute. As the coupling in such density-only functional

theories takes the form
∫

V (~r)n(~r)d~r, a choice must be made to define a unique

value for the potential V (~r) for each point ~r. One approach would be to assume,

unrealistically, that each water molecule independently assumes its most favored
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orientation for a given distance, thereby defining V (r) as the minimum energy en-

velop (Vmin(r)) of the data in Figure 4.7. Another approach would be to take the

thermal average interaction under the, also unrealistic, assumption that the water

molecules choose their orientations independently of each other, thereby defining

V (r) as the Boltzmann weighted average (VkT (r)) of the data at each distance. The

fact that there is no satisfactory answer for a definitive choice for V (~r) underscores

the need in future work to include some sort of orientational information into the

density functional description of water. For now, we explore the accuracy that can

be obtained with non-orientation dependent functionals in conjunction with the

above two choices, Vmin and VkT .

Table 4.3 summarizes the results of the minimum free energy of our functional

for both of the above choices for the external potential. As expected, the use of

the minimum envelop Vmin provides a lower bound on the experimental solvation

energies. This choice, for the larger atoms Ar and Kr, also reproduces the exper-

imental trend of lower solvation energies for larger atoms, confirming that there

is sufficient attraction in the negative portions of the interaction (as evident in

Figure (4.7) to more than compensate increased size of the cavity.

Alternately, using the Boltzmann averaged potential VkT does provide more

accurate results in the sense that the maximum error is 0.1 eV, although the trend

in decreasing energy with increasing size is not well reproduced. Evidently, the

“true” potential, if such exists, lies between these extremes. Although 0.1 eV is

on the order of the interactions explored here, this is actually a promising result

because the accuracy of typical electron density functional theories, such as the

local density approximation, is also on this order. Thus, the accuracy of this theory

in capturing the hydrophobic effect should be sufficient for most applications of a
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Table 4.3: Solvation energies of inert gas atoms

Exp. (eV) VkT (eV) Vmin (eV)

Helium 0.12 0.12 0.07

Neon 0.12 0.05 −0.02

Argon 0.09 0.19 0.09

Krypton 0.07 0.19 0.08

joint-density functional theory. The errors only appear to be large in this context

because of the challenging nature of describing the subtle interactions between

water and noble gas atoms. For more typical molecules with stronger electric

fields, the hydrophobic effect is a relatively small correction to the total solvation

energy and, although more work is clearly needed, the present approach should

give at least workable results.

4.6 Conclusions and future directions

This chapter presents a simple density-functional theory for water which gives

good agreement with molecular dynamics simulation data for the solvation of hard

spheres in water. We find that even for non-polar solutes the orientation of water

molecules plays an important role in solvation. Thus, although solvation of hard

spheres is well described by density-only theories, such a theory does not neces-

sarily adequately describe the solvation of even simple solutes such as inert gases.

While we obtain promising results indicating that some form of density-functional

theory can explain the counter-intuitive trend of decreasing energy with increasing

size in the inert gas sequence, it appears that, particularly for non-polar solutes,

treatment of orientation in some form is needed to attain results approaching so-
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called “chemical accuracy,” accuracy sufficient to predict accurately reaction rates

at standard conditions of room temperature, 0.025 eV. Nonetheless, the functional

presented here should be sufficient for use in joint density functional theories em-

ploying standard approximations for the electron density functional whose uncer-

tainties are comparable to those of the functional presented here, ∼ 0.1 eV.
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Chapter 5

Joint Density-Functional Theory for

Electronic Structure of Solvated Systems

The preceding chapters introduced a theorem that allows joint treatment of elec-

tronic and classical density functionals, advanced the state-of-the-art of classical

density-functional descriptions of water, and introduced a simple local dielectric

model for coupling the electrons of the solute to the solvent. This final chapter

combines all of these ideas, introducing a new model density functional for the ab

initio description of electronic systems in contact with a molecular liquid environ-

ment. The resulting density-functional theory joins an electron density-functional

for the electrons of a solute with a classical density-functional theory for the liq-

uid into a single variational principle for the free energy of the combined system.

A simple, approximate model functional predicts solvation energies, without any

fitting of parameters to solvation data, at least as well as state-of-the-art quantum-

chemical cavity approaches, which require such fitting. While more work is needed

in the future to capture more of the underlying physics correctly, the results ob-

tained with the current simplified model are encouraging and suggest that even

better accuracy might be obtained when more of the physics is described correctly.

5.1 Introduction

Ab initio electron density-functional methods have proved a computationally effi-

cient and accurate tool for the exploration of a wide range of issues in condensed-

matter physics and chemistry. (See, for instance [1, 2].) However, application of

81
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this approach is largely limited to the solid-state, gas phase chemistry, or to surface

chemistry in high vacuum environments, with practical problems involving liquid

environments largely out of reach. The reason for this unfortunate limitation is

that proper description of the effects of water demands not only the inclusion of

many solvent molecules but also thermodynamic sampling of many configurations

of those molecules so as to properly capture the structure and response of the

liquid over experimental length and time scales. Thus, the applicability of such

approaches to the vast array of problems involving liquid environments, from liquid

fuel-cell research to biochemistry, is severely curtailed.

In response, much effort (many thousands of articles and a large number of

reviews, [3, 4, 5, 6, 7] and others, in the last decade alone) has been dedicated

to the development and application of a large number of different “continuum”

solvation models, in which the details of the molecular aqueous environment are

replaced by a continuum description. More recently, Dzubiella et al.[8] developed a

continuum model for water where hydrophobic, dispersion and electrostatic energy

terms are written as functionals of the exclusion volume. The plethora of models

evidences the importance of the problem, but the lack of a consensus underscores

that no truly satisfactory method has been found.

The weaknesses of the current state of the art in continuum solvation ap-

proaches arises from their basic structure. As Ref. [7] and the other reviews cited

above describe, such approaches generally divide the free energy of solvation into a

number of contributions, typically cavitation (formation of the solvent-solute inter-

face), dispersion (long-range electron correlations), repulsion (short-range electron

overlap effects), and electrostatic (reorientational and polarization screening in the

solvent). Work then proceeds to develop models for each of these terms separately.
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The models for these terms generally require a cavity shape, which is most usually

defined by spheres representing atoms or functional groups, where the sphere radii

are determined by fits of the final results to a large empirical database of solva-

tion energies[3]. Finally, to account for nonlinear saturation effects near solutes,

an intermediate dielectric constant is often used in a shell around the solute as a

buffer between the solute and bulk medium, as in Ref. [9] for example. Despite

the successes of this method, the ad hoc separation of physical effects (all origi-

nating ultimately from the underlying quantum and statistical mechanics) and the

empirical fitting to precisely the class of quantities of interest limits the reliability

of the predictions of these models. This is especially true for applications to new

classes of chemical species or to situations outside of the fitting database, such as

to study liquid phase surface catalysis.

The new approach which we propose to pursue here relieves many of the afore-

mentioned difficulties. As shown below, even a preliminary implementation of this

new approach gives results which are competitive with state-of-the-art continuum

solvation models, even without fitting to any solvation data whatsoever, suggest-

ing that further refinements which incorporate more of the physics beyond what

we manage to accomplish here has the promise to produce a new, efficient and

predictive approach to electronic structure in the presence of liquid environments.

5.2 Joint density-functional theory

As shown in Chapter 2, a straightforward combination of Mermin’s non-zero tem-

perature formulation of density-functional theory[10] with Capitani et al.’s ex-

tensions of the zero-temperature theory to include nuclear degrees of freedom[11]

leads to the following, exact variational principle for the total thermodynamic free
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energy of an electron-nuclear system in a fixed external electrostatic potential V (r)

A = min
nt(r),{Ni(r)}

{

F [nt(r), {Ni(r)}] + (5.1)

∫

d3r V (r)

(

∑

i

ZiNi(r) − nt(r)

)}

,

5.3 Construction of approximate functionals

Working with (2.7) requires an approximate functional Alq[{Ni(r)}] for the bulk

liquid. For water this is an active area of research[12, 13, 14]. To describe water

in our preliminary implementation, rather than using the functional developed in

Chapter 4, for computational expediency, we developed an even simpler functional

based on the ideas of Sun[12]. We first imagine minimizing over the proton density

so that a single field remains, the density N(r) of the oxygen nuclei, which one

may view as the “molecular density” as determined by taking the oxygen nucleus

to define the location of each molecule. Our version of the resulting functional

then takes the form

Alq[N(r)] = (5.2)

Aid[N(r)] +

∫

N(r) [ǫhs(N(r)) − aN(r)] d3r

−b

∫

N(r)

[
∫

gσ(r − r′)N(r′) d3r′ − N(r)

]

d3r.

The first term in Eq. (5.2), Aid[N(r)] = kBT
∫

N(r) (ln (N(r)λ3) − 1) d3r is the

analytically exact functional for the ideal gas, where kBT is the thermal energy

and λ is the thermal de Broglie wave length of the solute molecules. In the

second term, ǫhs ≡ kBT ((3/2) ((1 − η)−2 − 1) − ln (1 − η)) is the Percus-Yevick

approximation[15] for the free energy per particle of a system of hard spheres of

diameter d over and above that of the ideal gas, where η ≡ (πd3/6)N(r) with d be-
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ing the sphere diameter (fit to experimental parameters below). (In retrospect, this

work should have employed the Carnahan-Starling approximation, which more ac-

curately describes hard spheres and represents little or no computational overhead.

For the range of parameters relevant here, the two approximations agree to within

about 4%, and so we expect little significant change to the final results.) The con-

stant a in this second term describes the cohesive tendency between molecules that

holds the fluid together. The third term is written so that it is non-zero only if N(r)

is not constant, where b is a coupling constant and gσ(r) ≡ exp(−r2/2σ2)/(2πσ2)3/2

is a normalized Gaussian describing the range of non-local behavior.

The first two terms in Eq. (5.2) capture the properties of the bulk fluid. The

two parameters a and d in these terms were adjusted to reproduce the equilibrium

density and bulk modulus of water with results summarized in Table 5.1. For the

final term which describes inhomogeneities, the non-local coupling strength b and

the range σ were adjusted to reproduce the macroscopic surface tension of water γ

and the approximate location Rb of the “bend” (as measured by the point of max-

imum downward curvature) of the surface tension versus sphere radius prediction

of the molecular dynamics data of ten Wolde and co-workers[16]. Table 5.1 sum-

marizes these results as well. We emphasize that although some of the parameter

fits in this preliminary formulation are empirical, they do not involve any solvation

free-energy data whatsoever.

For the coupling functional U [N(r), n(r), V (r)] in (2.7), we proceed by dividing

it into two parts: long-range dielectric screening ∆Usc[n(r), V (r)] capturing the

tendency of the molecules in the liquid to be found in orientations and polarization

states that tend to screen long-range electric fields, and a short-range electron-

overlap interaction ∆Uel[N(r), n(r)]. The long-range screening depends only on
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Table 5.1: Fit parameters from (5.2) with comparisons between model and experi-

mental results (at standard conditions of 20◦C and atmospheric pressure. (*) The

value for dγ/dR is theoretical[16]. (See text.)

parameters a d b σ

( J m3

mole2 ) (nm) ( J m3

mole2 ) (nm)

values 0.3944 0.2918 0.1561 0.4388

properties Nb B γ Rb

(kg/m3) (GPa) (mJ/m2) (nm)

this work 998.3 2.184 71.93 3.70

experiment(*) 998.2 2.190 72.75 ∼4

the electrostatics of the solute and so depends only on its electron density n(r) and

the nuclear electrostatic potential V (r). The electron-overlap contribution depends

upon contact between the solvent molecules and the solute electron density and so

to some approximation depends only upon these two densities.

The lowest-order form for the electronic coupling between the liquid and the

solute which is compatible with translational and rotational symmetry is then

∆Uel[N(r), n(r)] =

∫

d3R

∫

d3r n(r)Vps(r − R)N(R).

Such a lowest-order coupling is a reasonable starting point as the overlap is small.

With this form, the convolution kernel Vps plays the role of the average potential

which an electron at point r feels from a water molecule at point R, similar to the

“molecular” pseudopotential of the type introduced by Cho and coworkers in the

different context described above[17]. The main difference between this potential
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and that of Ref. [17] is that in the present, preliminary formulation, the pseu-

dopotential contains no information about the orientation of the molecules and so

represents some sort of orientational average. To optimize numerical convergence,

we choose to fit Vps(r) to the sum of two origin-centered Gaussians of adjustable

width and amplitude for a total of four adjustable parameters,

Vps(r) = A1e
− r2

2σ2
1 + A2e

− r2

2σ2
2 .

We then adjusted these parameters to reproduce the orientationally averaged in-

teraction of a water molecule with an atom of neon as a function of distance.

Figure 5.1 summarizes the results. The parameters that we found are

A1 = 0.0765;σ1 = 2.045; A2 = −0.065; σ2 = 2.165.

With this simple form, we were able to reproduce the average interaction to within

1 millihartree (∼ 0.63 kcal/mole) for all distances beyond 2Å. (Smaller distances

are not very relevant as the interaction becomes very repulsive. For comparison,

at room temperature, kBT = 0.93 mH.) Here, there is no fitting to empirical data,

and the pseudopotential is truly ab initio.

Next, the screening term depends upon the long-range electrostatic potential of

the solute and the tendency of the solvent molecules to orient and polarize along the

resulting fields. Here, we go a small step beyond our screening model in Chapter 3,

and model the screening as the electrostatic response in the presence of a linear,

scalar (i.e., non-tensor), but now non-local dielectric function. Note that although

this is a small improvement to the description of the long wavelength interactions,

the overall model which we introduce here is much more sophisticated than that

of Chapter 3 in that it includes an explicit description of the solvent in terms of

a density functional (thus accounting cavitation effects) and also includes a short-
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Figure 5.1: Comparison of energy of interaction of water molecule with an atom of

neon as a function of neon-oxygen distance: results from orientation independent

pseudopotential (solid curve), orientally averaged ab initio data (centers of error

bars), typical (1σ) range of values as a function of orientation (range of error bars).
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range contact interaction (thus accounting repulsion and dispersion effects). The

particular model we have explored for the dielectric function is

ǫ(r, r′) ≡ δ(r − r′) +
4πχb

N2
b

N(r)f(r − r′)N(r′),

where δ(r) is the Dirac-delta function, f(r) is a short-ranged function integrating to

one, and Nb and χb are the density and static dielectric polarizabilities, respectively,

of the bulk liquid. This choice ensures a smooth transition from the dielectric

constant of the bulk to that of vacuum over the length-scale of f(r). The choice

to include both N(r) and N(r′) is motivated both by the need for ǫ(r, r′) to be

symmetric and by the notion that the response at point r to a field at point r′

depends on the density of molecules at both locations. The connecting function

f(r) was chosen to be a Gaussian of width σ=2.25 bohr=∼1.190 Å, somewhat

larger than the O-H bond distance in water. The motivation for using this value of

σ is that, at lower values, dielectric screening at short length-scales is so effective

that the system may lower its energy by bringing fluid density N(r) into the atomic

cores and the system thus becomes numerically unstable. We stress, however, that

once stability was achieved, the final results were not sensitive to the choice of

this parameter (typically 10% variation in the solvation energy over the range

σ = 1.5 bohr to σ = 2.5 bohr) and that this parameter was in no way adjusted to

reproduce experimental solvation energies. In the future, a direct description of the

electric polarization in terms of the orientational state of the solvent would capture

dielectric effects directly and remove the need for constructing such a simple model.

Finally, in conjunction with a nonlocal dielectric response, a term must be

added to the energy functional to help prevent the aforementioned numerical

issues associated with penetration of the solvent density into the cores of the

atoms. To avoid this, we added a short-ranged repulsive potential of the form
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Figure 5.2: Short-ranged repulsive potential added to prevent collapse of liquid

density N(r) into the strong electric fields within the atomic cores. Once prevention

of this artificial collapse is achieved, the final results are insensitive to the choice

of this potential.

∫

Vrep(r)N(r) d3r inside the atomic cores to prevent the overlap of the solvent

with the nuclei, where Vrep(r) is taken to be a rapidly decaying exponential func-

tion (rounded within ∼0.25 Å of the origin) of constant 8.44 Å−1, leading to an

apparent hard wall at thermal energy scales near 1.5 Å(Figure 5.2). Again, once

the system is numerically stable, the results are not sensitive to the form of the

repulsion (typically 1% changes in solvation energy) so long as the repulsion effec-

tively cuts off before the natural point of closest approach of the solvent at ∼2 Å.

(See Figure 5.3 and the corresponding discussion below.)
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5.4 Results and conclusions

The meaningful physical quantities predicted by joint-density functional theory

include not only the free energy A but also the liquid density N(r). Under certain

circumstances, the later is accessible directly in experiments. For instance, when

studying the solvation of a water molecule with liquid water, the density N(r) in

our formulation gives the density of oxygen nuclei given a fixed location for one

water molecule. As observed by Percus [18], the spherical average of N(r) thus

corresponds to the oxygen-oxygen pair distribution function gOO(r) measured in

experiments. Figure 5.3 shows our results for this quantity. In good agreement

with both x-ray and neutron scattering experiments[19], we find N(r) to be es-

sentially zero until a radius of ∼2.0 Å, at which point the density rises rapidly,

overshooting the bulk density before finally approaching it. The experiments do

show a much more pronounced peak and much more structure in the form of os-

cillations which occur beyond 2.5 Å. We believe that these discrepancies are due

to the over simplified model we are using for Alq[N(r)] in (5.2) and that a better

liquid density-functional would improve this. Generally, the coordination number

for a liquid is defined as the integral of gOO from r = 0 to the location of the first

minimum after the coordination peak. In our case there are no such oscillations.

However, if we define the coordination number as the integral of gOO up to 3.6 Å,

the last point before the bulk value of unity is obtained, we find a coordination of

5.3, relatively close to the value of approximately four measured in liquid water

and far from the close packed value near twelve typically found in simple fluids.

Thus, our model, as simple as it is, captures enough of the physics of water to re-

flect the hydrogen bonding network which leads to tetrahedral coordination. The

model also appears to reflect the correct energetics and to give a correct ab ini-
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Figure 5.3: Spherical average of N(r) about the oxygen nucleus of an explicit

water molecule in solution scaled to the bulk liquid density, corresponding to the

correlation function gOO(r) measured in experiments on liquid water.

tio prediction of the boundary position of the cavity outside of which the fluid

is excluded. To our knowledge, this is the first accurate determination of such a

boundary directly from first principles. As solvation energies are known to be quite

sensitive to the construction of the boundary, this success gives a strong advantage

to the current approach.

Finally, Figure 5.4 summarizes the comparison of the free energies predicted by

the implementation described above with both experiment and the predictions of

state-of-the-art continuum solvation models. Our joint density-functional theory

results are clearly superior to dielectric-cavity-only calculations and are arguably

better than state-of-the-art continuum methods that include cavity corrections. It

is particularly satisfying to see that, without any fitting or ad hoc adjustments,
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Figure 5.4: Computed (vertical axis) versus experimental (horizontal axis) solva-

tion energies for water, ethanol, methanol and methane (from left to right): perfect

agreement (diagonal line), published quantum chemistry values ([20] for all but wa-

ter, [21] for water) with dielectric contribution only (open squares) and including

cavitation terms (closed squares), preliminary results from joint density functional

theory (open circles).

the hydrophobicity of methane is predicted correctly. We emphasize, however,

that this agreement does not imply that we have correctly captured all of the

underlying physics. More direct, microscopic physics should be built into the

functionals, particularly in the description of dielectric screening effects. We feel

that the quality of the current results, without adjustment of parameters, suggests

that incorporation of more microscopic physics into the design of the functionals

has the potential to lead to yet more reliable results in the future.

Although the results of this preliminary implementation are already superior
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in that they involve no fitting to solvation energies and are of comparable quality

to the state-of-the-art, there are a number of weaknesses in the preliminary imple-

mentation, namely (1) the lack of orientational dependence in the pseudopotential,

(2) an artificial separation of the dielectric response from the internal orientational

correlations of the liquid, (3) an over simplified, linear description of the dielectric

response with an ad hoc nonlocal length scale, (4) the resulting need to artifi-

cially prevent the solvent from overlapping the nuclei. Most of these weaknesses

can be addressed by a formulation informed of orientational ordering by including

knowledge of the underlying hydrogen bonding network of water. This would allow

for the use of orientation-dependent pseudopotentials and would naturally capture

nonlocal and nonlinear effects in the dielectric response.
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