ESTIMATION OF THE REIATIVE FISHING POWER OF INDIVIDUAL SHIPS

*
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Introduction

The use of commercial catch statistics in constructing indices of fish
abundance such as catch per unit of effort requires that the unit of effort be
well defined and constant through time. Since the total commercial catch for a
year is made up of the individual annual catches of a number of ships of varying
types and sizes working several different kinds of gear this requirement for a
standard unit of effort raises difficaitiés. Beverton and Holt (1) consider this
problem in connectioﬁ with the enalysis of catch statistics from the plasice fishery
of the North Sea, and point up the need for a statistically efficient method of
estimating the relative fishing power of each vessel so that the actual effort of
the vessel can be transformed into standard units on a scale comparable to that of
all other vessels,

The problem is neatly illustrated by Beverton and Holt with an example in
which the total catch and hours of effort is known for 6 fishing trips involving
3 different vessels and 3 different locations in time and space (Table 1). They
suggest that one of the trips, say ship A at location 1, be ' o

Table 1. The catch rates for 6 different
fishing trips

Location

Ship I II III
A Al A2 -
B B1 32 B3
C - - 05

arbitrarily selected as a standard for comparison and the fishing power of the
other two vessels then be expressed relative to the fishing power of vessel A,

Thus, four possible estimates of the fishing power of vessel C are listed as
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with the suggestion that (iv) might be "as good as any". We shall show that for
this problem the estimator
C., /B.B
(v) 'ﬁz \/ A1A2
3y712

is likely to be more efficient than any of the others, and shall indicate the

general method by which such efficient estimators are constructed.

A Statistical Model for Catch Rates

The model upon which the 4 estimators of Beverton and Holt are based is the
multiplicative model for a two-way classification without interaction. Thus, the
model asserts that one location is expected to yield a catch rate which is a fixed
percentage higher than another location for every vessel and, equivalently, that
one vessel ig expected to achieve a catch rate which is a fixed percentage higher
than that of another vessel at every location. So, denoﬁing Pi as the power factor
of the i'th vessel and Qj as the power factor of the j'th location we obtain the
model shown in Table 2,

Table 2. Mulitplicative model for the catch rates of 3 vessels
at 3 locations

» Location
Ship 1 2 3
1 CPyQy8yy CP,Q58,5 CP,Q5E, 5
2 CP Epy CPy8oFo5 CPyA385
3 CP,Q,Ex, 0P, F s, CPAAEs 5

where C is a constant and E is a random variable having an expected value of
unity. If the trip of ship number 1 (ship A) to location number 1 is to be taken
as the standard for comparison then all other power factors P and Q are to be
expressed as a fraction of Pl and Ql; hence, in this instance we would set
P1=Ql=l and obtain for this example the model shown in Table 3. Putting the
errors E all equal to 1 then reveals the intuitive basis of the estimators (i)-(v)
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Table 3. Multiplicative model for the 6 trips with ship A and
location I taken as standard

Location
Ship I IT III
A A1=CEll Ay=CQ5E, 5 -
B B,=CP,E, B2=CP2Q2E22 B3=CP2Q3E23
c - - 03=01>5Q5E33

given earlier.

Empirical evidence in support of this multiplicative model for catch
statistics of plaice was presented by Beverton and Holt; they found that when
fishing power statistics were classified according to tonnage and method of
propulsion of the vessels the distribution of errors within these classes was
log normel =-- that is, on the logarithmic scale the within-class distribution
of power factors was normsl with constant variance. Their subsequent analyses
were therefore performed on the log scale, and on the basis of this finding it
is now apparent that a more efficient method of estimating power factors would
have been to transform to the logarithmic scale at the beginning and compute the
least squares or maximum likelihood estimators of fishing power. On this scale
the multiplicative model of Table 2 becomes additive as shown in Table 4, where
lower case letters are used to denote

Table 4, Additive model for catch rates on the logarithmic scale

Location
Ship 1 2 5
1 ctpytgyte Cfpl+q2+e12 c+pl+q5+e15
2 c+p2+ql+e21 cH+pytaytess c+p2+q5+e25
3 c+p3+ql+e31 c+p3+q2+e32 c+p3+q5+e33

logarithms (x=log X)e According to the evidence presented by Beverton and Holt,
the errors e are normally distributed with zero mean and constant variance.
Relative fishing power may be defined for this model in almost any way that
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is convenient, the only formal requirement being that the definition impose
linear restraints on the p's and q's. The most conventional linear restrictions
are

P ¥PotP5=0 ,  qy+q,+a5=0

which amount to using the row and column means as standares for comparison;
under these restrictions the constant ¢ in the model then represents the average
log catch rate for the set of 3 ships and 3 locations. The procedure suggested
earlier of choosing one ship and one location as the standards for comparison
is perhaps equally convenient, though seemingly more arbitrary. Such a choice
as ship number 1 and location number 1 is then equivalent to imposing the linear
restrictions

p1=log Pl=logl=0, q;=1og Q1=10g1=0

The choice of linear restraints is irrelevant except from the standpoint of
computational convenience, for using the statistically most efficient method of
estimation will produce the same relative fishing powers regardless of the choice}
that is, the difference between two estimates §l~§é will be independent of the
choice of linear restrictions. This point will be illustrated with the example

involving six fishing trips.

Least Squares of Maximum Likelihood Estimation of Fishing Power

The method of estimating the parameters of an additive tow~factor model with
missing cells apﬁears in standard textbooks on statistical methodology (see, for
example, Steel and Torrie (1960) p.289) usually under the name of "the method of
fitting constants." This procedure is an application of the least squares method
of multiple regression which, under the normality assumptions mentioned earlier,
also yields maximum likelihood estimates. The method is algebraically simple,
but is computationally fairly tedious, involving matrix inversion, though with
electronic computers: this, too, becomes a relatively simple operation.

In the textbook £reatment of this topic the emphasis is ordinarily placed
upon hypothesis testing rather than point estimation, and is presented under the
general heading of "analysis of variance." For estimation purposes it is perhaps

more convenient to regard this problem as a special case of the general multiple
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regression problem expressed by the model

¥ =BXoitPy Xyt ‘*Bk kite

where the expected value of an observation Y depends linearly upon the levels of
k+]l factors, and each observed Yi
XOi’Xli""’in of these factors. The X!s are known constants, the B's are
unknown and to be estimated, and the e's are independent identically distributed
errors. If n observations Y --',Y are available then the best unbiased esti-
mator of Bi= (BO,Bl,'--Bk) is, in matrix notation, B— X'X)-IX'Y, if the ets are
normally distributed then this is also the maximum likelihood estimator and is
statistically efficient, We illustrate this estimation procedure first with the

data of Table 3 transformed to logarithms as shown in Table 5,

is obtained at a different set of levels

Table 5, Additive model for the log catch rates of 6 fishing
trips with ship A and location 1 taken as standard

Location
A ay=cteqy ap=ctgyte, 5 -
B bl=c+p2+e2l b2=c+p2+q2+e22 b3=c+192+c13+e25
C - - =C+P,+q +
37C PzTdz¥e55

The role of the B parameters is now taken by 5'=(°’P2’P5’92’95) and the X matrix
of coefficients of these parameters is then given by Table 6. Taking the sums
of squares and crossproducts of the columns of this matrix, we then obtain the
matrix X*®X shown in Table T; and inverting this, an operation which would
require only a second or two on a high speed computer, we obtain the matrix
(X'X)"l shown in Table 7. Finally, the product of (X!X)“l with the
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Table 6. Matrix X of coefficients of the parameters in a
linear additive model

Parameter
| Observation c p2 93 q2 q3
8q 1 0 0 0 0]
a, 1 0 0 _ 1 0
bl 1l 1 0 0 0
b2 1 1 0 ' lA 0
’b3 1 1 0 0 ' 1
c3 1 0 1 0 1l

Table Te Matrix X*X of sums of squares and crossEroducts of
the columns of X and the inverse (X'X)"

Column
Column c Py ;p3 % q3
c 6 3 1 2 2
Py > 3 0 1 1
P5 1 0 1 0 1
P 2 1 0 2 0
a5 2 1 1 0 2
The inverse of XX
c Py Pz 9% a3
c 3/ -1f2 -1f2 -1f2  -1/h
P, -1/2 1 1 o -1/2
Ps -1/2 1 3 0 -3/2
a -1/2 ) 0 1 1/2
a4 -4 -2 32 1f2 /b




crossproducts
a1+a2+bl+b2+b5+c5
bl+b2+b5
XY = c
3
a.2+b2
b+
gives the estimates
log scale original scale

¢ s %»(3a1+a2+bl-b2)

A 1 ~ J—
ppy= 5 (by+by-a -ay) P, = /BBy/AA,
D= Do-bte £, = P /B
Pz= Pa=0z%C3 3% 273/ %5

A~

1
%= 5 (by=by-a)+ay)

A

35= by~ (a=ay+3014b,)

The variance of these estimates on the logarithmic scale is oi times the

diagonal elements of (X'X)'l; thus, cé:}oé/h, 02 =c§, 0R =302, etc. Covariances
between estimates are likewise computed as og times the corresponding element of
(X'X)"l; thus, oa & =o§, Oa A =0, Oan & =—30§/2, etc., and 50 03 a =o§ +0%
P2sP3 Poslp P33 Po-P3 “2 P3

"20'\ A =20§ °

If instead of the restriction pl=ql=0 we impose the restriction pl+p2+p5
=q1+q2+q5=0 then essentially the same results will be obtained., The X matrix
for this case is shown in Table 8, along with the inverse of X'X, from which we

obtain the estimates in Table 8.
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Table 8. The matrices X and (X'X)-l for the case
pl+p2+p3=ql+q2+q3=0

X
Parameter

Observation c Pl Py 9 %

ay 1l 1 0 1 0

a, 1 1 0 0 1

b1 1 (0] 1 0

b2 1 0 1 0 1

‘n3 1l 0 1 -1 -1

c3 1 -1 -1 -1 -1

@)™t
Parameter

Parameter c Py Py 9 %

c 2/9 -1/9 =1/9 1/18  1/18
Py /9 2/3 o -2/9 -2/9
2, -1/9 0 /3 -1/18 -1/18
qy /18 -2/9  -1/18  5/12 -1/12
a 1/18 -2/9 -1/18 -1/12  5/12

Estimates
A 1 2 _1>2
c‘ =3z [a1+5'2+b1+b2+2°3] cg = '6”(-:
A~ 1 oh - 2 _ 22
91 =3 [al+a2 bl \:2+b3 05] 031 = 30.:-:
» _1rl . o _ 2 _1lo
Pp = 5 (5o #opma -ep)ebymc, ] 3, " e
SR Y Y b 2 _ 2.2
4 =73 Bal Sa,+5b; ~by ’-LbB] oal = 750¢
A 1
qQ, = E[Baa-ial-blﬁbe-hbs ] o§2 = 3_'2262
33 = -ﬁi-ﬁa 0% = 0A +0R +20a A = 02
- P Py P2 PP
" A A 2 2 , 2 2 2
q_3 = —q2—q5 OA = OA +0K +20A A = '50'5
' o % 4 B Py
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We note that the fishing power of ship B relative to ship A is again estimated by

A A 1 2 2 2 2

P,-p, = =(b.+b.-a.-a,) OA A =0a +0A =20A A =0
SO

P B

r2_ A

= =

L

N N A > Da2 102 _z,2
Ps-Py 261 §2 -8, b5+c5 s Oa _ haﬁl+aﬁé+haﬁi’ﬁ2 307

P B
Py _ %5 e
Pl B3 AlAE

2
€

by (Y'Y-FX'Y)/(n-k-1). In the present example n=6, and k+l=5 parameters are

being estimated so the residual sum of squares

The residual variance o2 is estimated in the general regression problem

(a§+a§+b§+b§+b§+c§)~€(al+a2+bl+b2+b3+c3) -ﬁl(al+a2-c5) -ﬁé(bl+b2+b3-c5)

'ql(al+bl'b3'°3 -q2(a2+b2-b3-c3)

has only 1 degree of freedom. An analagous form for the residual spplies to

the earlier analysis with pl=ql=0_ and gives the same value for 3?. For purposes
of hypothesis testing it is pertinent that 3§ is statistically independent of
the other estimates. Thus, for example, under the hypothesis that pl----p5 the

ratio (B.-8,)/V/362 is distributed as Student's t with 1 degree of freedom.
175 €

Modifications of the Model

Beverton and Holt list a number of factors such as tonnage, class, design,
age, and skipper which might explain the variation in fishing power of the
different vessels, suggesting that a classification of vessels into various
groups should be introduced into the model to determine the effect of such factors.
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The collection of fishing locations in time and space might also be further
classified, at least according to time and geographic location, to determine
the effects of these factors on catch rates; since the same priﬁciples apply
to the subclassification of ships and locations, however, it will suffice to
consider only the former, ' ’

In the North Sea plaice fishery a major factor affecting cafdh’fate'was
the means of propulsion of the vessel; Beverton and Holt distinguished two
classes for this factor, the steam trawler and the diesel powered motor trawler.
To illustrate the modification of the model required to incorporate this factor
we enlarge our earlier example to inciude 5 ships, say 3 steam trawlers and 2
motor trawlers as shown in Table 9. The earlier model of Tables 2 and !+ would
still suffice for the 3 steam trawlers and an entirely similar model should hold

Table 9. The catch rates of two types of vessels at three locations

Location
Ship Type ‘ I I1 IIT ,
A Steem A Ay ;:; AT
B » Steam ‘ Bl B2 33
c Steam - - 03
F Motor . Fl - F3
G Motor - Gz -

for the 2 motor trawiers; that is, the additive model of Table L should now be
extended to include ;
Location .
Ship { Type I II III

F | Motor | cipytayte), cipytaytey,  ciptagie) s

G | Motor c+p5+q1+e51 c+p5+q2+e52 c+p5+q_3+e55

where, under the conventional linear restrictions,

Py*ps=0 , qu+q5=0 .
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The constant ¢, representing the average log catch rate, should however be
different for steam and motor trawlers if method of propulsion actually does
arfect catch rate. We therefore identify these two constants as ¢y and Cphs

respectively, and taking c=(cl+cg)/2 as our standard for comparison we let
cl=c+(cl--c)=c+dl , c2=c+(c2~c)=c+d2 y  Gy+dy=0

The additive model for the log catch rates of Table 9 which incorporates
this de-effect due to method of propulstion is shown in Table 10; with the 5
linear restrictions which have been imposed there are only 7 independent
parameters in this téble, and their estimation proceeds as before by the methodé
of multiple regreséién. A test of the significance of the effect of method of "
propulsion would fﬁén be obtained from the regression analysis as a tf or Fe=

test of the hypothesis that the "regression coefficient" d, is equal to zero.

1

Table 10, Additive model for log catch rate of two types of ships

Location Log:;

Ship Type I - II III Tonnagé
A Steam c+d1+pl+q1+ell 'c+dl+pl+q2+e12 - tl
B Steam c+d1+p2+q_l+e21 c+d1+p2+q2+e22 c+d1+p2+q5+623 t2
C Steam - - c+d1+p5+q3+e35 t5
F Motor °+d2+ph+q1+ehl - c+d2+ph+q.3+eu5 th
G Motor - c+d2+p5+q2+e5a - t5

Another factor which proved to have a significant effect upon catch rate
was thé éize ‘of the ship as measured by its tonnage; in fact, it was found
that the power factor P was directly proportional to tonnage, on the average,
with different proportionality factors for steam and motor trawlers. The
constanté'dl'and d2 of the above model would represent these two proportionality
factors on the log scale, and incorporation into the model of the assumption

that the power factor P, is proportional to the tonnage Ti would then consist

i
of replacing the p-parameters by the log tonnage deviates,



p,=(t,-%;) | py,=(ty, %)
p2=(t2"is) Psz(ts"%M)

where ti = log Ti and
€S=(tl+t2+t5)/3 %M=(th+t5)/2

The procedure for fitting this modified model would be to deduct the log tonnage
deviate t-t from each of the observed log catch rates of that ship, eliminate
all p's from the model and proceed with a multiple regression analysis. The
difference between the residual sum of‘sqpares from this analysis and the
residual sum of squares from the analysis of Table 10 represents the reduction
in residual sum of squares which is attained due to fitting the p's instead of
simply assuming that the p's are equal to the corresponding known constants
t-t. The degrees of freedom in this difference of residuals is equal to the
number of ships minus the number of types, or 5-2=3 in this case, and the mean
square obtained by dividing by degrees of freedom may then be tested for signi-
ficance against the residual mean square from the analysis of Table 10, The

entire procedure is illustrated by a numerical example in the next section.

Numerical Illustration

The preceding analysis is illustrated here with an artificial set of data
for Table 10; these data, shown in Table 11, were generated by assigning arbi-
trary values to the ¢, 4, q and t parameters of Table 10, and taking the p
parameters approximstely equal to the log tonnage deviates t-% within each type
of vessel. Observed log catch rates (Y) were then comstructed by combining the
parameters in the manner indicated in Table 10 and adding to each a random
normal deviate e, .

The first phase of the analysis consists of setting out the coefficients
of the unknown parameters in matrix form {Table 12) and computing crossproducts
smong these coefficlents and between the coefficients and the observations.

This matrix of crossproducts is then inverted by standard methods and multiplied

by the vector of crossproducts between coefficients and observations to obtain
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Teble 11. Log catch rates of five ships at three locations
Y*élog catch rate1
Y=1log catch rate ad justed
Location log Location
Ship Type I II III Tonnage I II 111
A Steam 020  .120 - 1.954 207 .307 -
B Steam «503 463 238 2,322 0322 282 057
c Steam - - 251 2,146 - - 246
Mean log tonnage 2.1k
F Motor .188 - 142 -1.778 356 - »310
G Motor - o Skk - 2,11k ~- 376 --
Mean log tonnage 1.946

;Adjusted log catch rate

= log catch rate - log tonnage + mean log tonnage

Table 12, Coefficients of the unknown parameters (Table 10) and their cross-
rroducts with log cateh rates

Catch rate Parameter

! A 2 -] h 2 2
.020 «207 1 1l 1 0 1 0 0
«120 « 307 1 1 1 0 0 1 0
«503 322 1 1 0 1 1 0 0
65 282 1 1 0 1 0 1 0
.238 . 057 1 1 0 1 -1 -1 0
.251 246 1 1 -1 -1 -1 -1 0
.188 +356 1 -1 0 0 1 0 1
b2 0310 1 -1 0 0 -1 -1 1
.Skl «376 1 -1 0 0 0] 1 -1
XY . 2,469  .721 -.111 953 c080 496 -.21k

XY ¥ 2,463 379 272 «352

Crossproducts of coefficients of the parameters

XX
Parameter
Parameter c d; P, T, N 9%, _51——
c 9 p) 1 2 0 0 1
a, 3 9 1 2 0 0 |-1
P, 1 1 3 1 2 2 0
P, 2 2 1 L4 1 1 0
q 0 0 2 1 6 3 0
% 0 0 2 1 3 6 -2
| By, 1 -1 0 0 0 -2 3
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the parameter estimates. Thus, in Table 13, the estimate §1=~.111 is obtained
as the sum of crossproducts of the inverse elements in the Py column times the
elements of the IXY column,

?1 = [(~10) (2.469)+(~3L4) (.T21)+e v o+ (~T2) (-,213) ] /540==.111

Goodness of fit of the model may be measured by the ratio

Residual S.S. after fitting (c)

a2, - = Residual S.S. after fitting (c,dl,pl,pe,qi,qe,ph)

Residual S.S. after fitting c

The residual sum of squares (S.S.) after fitting the constant c (the mean) is
simply the corrected sum of squares of the 9 observationms,

Res. S.S. after fitting (c)=§¥§-‘%(ZY)2
=.953267~ 5(2.469)=.275938  (4.£.=8)
and the residual sum of squares after fitting all seven parameters is, from
Table 13,
0953267= [(4297) (2469)+(~.037) (o721 )4+ « o4 (=4126) (=.214)]
=,953267-.959339=.013928  (Q.f.=2)
giving

Ra_ 0275938“‘0013228 = '262010 - 95
" 275938 275938 ~ °

Thus, 95 percent of the variance among the 9 observations is accounted for by
the six parameters dl, Py Py Q45 9 and 9% this, however, is not statistically
significant when tested by the F-test

Mean Square due to fitting d,,P,,P5»9)s%P),
F

® Residual Mean Square after fitting dl,pl,p2,q1,q2,pu

_ +262010/6 _ 043668 _ ,
= .oi3§é8§2 = 00696k = °°

because of the small number of degrees of freedom in the residual.
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Table 13. Solution to the multiple regression problem of Table 12

Inverse matrix of crossproducts of coefficients (x540)

(%)™t
Parameter
Parameter | ¢ : dl Py Py 9 % Py, XY Estimate
c 80 -25 =10 -25 15 ~15 =45 2.469 297
d; ~25 86 -34 -31 -3 39 63 721 -.037
Py =10 -3l 296 ~16 ~48 -96 -T2 ~+111 -.247
Py =25 =31 =16 176 =12  -24  -18 +953 k2
%4 15 -3 -48 -12 144 -T2 -54 .080 .030
% -15 29 -96 24 -T2 216 162 1496 .08k
Py ~45 63 =72 -18 -5k 162 32h -,214 ~.126
Inverse of deleted matrix of crossproducts
of coefficients (x72)
Parameter
Parameter c dl 9 % XY Estiéate
¢ 9 -3 0 o | 2.469 279
ay -3 9 0 0 o721 -.013
q; 0 0 -8 16 196 .101
IXY* 2,463 2379 272 352
Bstimate | 4292 =.055  .02L  LOM8
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Anslogous methods may be used to test the significance of more specific
features of the model; for example, to determine the fraction of the total
variance which is due specifically to variation of fishing power among ships of
like method of propulsion we compute

Res.S.S, after fitting (c,dl,ql,qa)-Res.S.S. after fitting (c’dl’Pl’Pe’qi’qe’Ph)

Res.S.S5. after fitting ¢

This computation involves another matrix inversion; we simply drop the p's from
the model and so reduce the coefficient matrix by deleting the blocks indicated
in Table 12, Estimates of c, dl, 9
deleted matrix are given in Table 13; thus

and % obtained from the inverse of the

€=[9(2,569)-3(.721)+o(.080)+o(.u96)]/72=.279

and the residual S.S. after fitting only c, dl, Q3 and B is then
2953267-[(.279) (2.469)+(~.013) (,721)+(=.037) (.080)+(.101) (,496)]=,227363

with 9-b=5 degrees of freedom. The fraction of the total variance which is due
specifically to the p-parameters is therefore -

+227363-.013928 _ .213435 _
755G~ = 575958 = 11

and the significance of this may be tested by

.. M,S. due to (PI:PQ’P).;.) _ .2121‘5555 = 10,2
= ReSeMQSO - .01392 2" :

Even with 2 degrees of freedom in the residual, the variation in the p's is

detected at the 10 percent significance level,

The difference between the average log catch rate of steam and motor. trawlers
is measured by the parameter dl, which may be tested for significance in the
above manner., For a single parameter, however, the test procedure illustrated
above simplifies to an F~-test of the form

(&) 2
F = 1 == (-.037) = 1'25
g%% Res. M.S. gég(.00696h)
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which is non-significant. The fraction 86/540 is the d
the inverse matrix of Table 13.

Finally, we illustrate the procedure for testing the hypothesis that within
types of vessels, the fishing power of a ship is proportional to its tonnage.
On the log scale, this is equivalent to the hypothesis that within types of
vessels, pi=ti-5. This hypothesis is tested by replacing p, by ti-% in the
model and comparing the resulting residual M,S. with the residual M.S. of
.00696h obtained with no restrictions on p,, p, and py. Since the deviates
ti—t are known constants then the replacement of Py by ti-E in the model is
equivalent to subtracting ti-% from the observed log catch rates of ship number
i; the resulting adjusted catch rates are shown in Table 11 and denoted by Y*.
With the p-parameters thus deducted from the model, the matrix of parameter
coefficients becomes the deleted matrix considered previously, and the computa-
tions follow the same pattern but with Y replaced by Y¥, The parameter estimates
so obtained (Table 13) then give

1 diagonal element of

Res.S.S. after fitting (c*ﬁdi,pl=-0187, p,=.181, q;§q33p4=-,168)

9
=z¥*2-c*(2.u65)-d§<,379)-q§(.272)- *(.352)
1

=.T48283~(.292) (2,463)~(~.055) (+379)-(+021) (,272)~(,048) (. 352)
=,027123

Permitting Py Py and Py, to vary arbitrarily in the model thus reduces the
residual sum of squares by only
«027123-,013928=,.013195

and this sum of squares with 3 degrees of freedom is not significant when tested
against the residual for the unrestricted model,

0013195/3 _
F = ois008/5 = 03 -
Another way of expressing this result is that while the best fitting p-parameters

accounted for 7T percent of the variation in log catch rate, fixing the
p~parameters by making them equal to the log tonnage deviates reduced this
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Tercentage only to 72 percent,

0213,'{'3 "001 l 5 -
HI 2 = T2

and the reduction was not significant.

et
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