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ESTIMATION OF THE RELATIVE FISHING POWER OF INDIVIDUAL SHIPS 

lm-133-M D. s. Robson* May, 1961 

Introduction 

The use of commercial catch statistics in constructing indices of fish 

abundance such as catch per unit of effort requires that the unit of effort be 

well defined and constant through time. Since the total coiUllercial catch for a 

year is made up of the individual annual catches of a number of ships of varying 

types and sizes working several diff~~ent k~nds of gear this requirement for a 

standard unit of effort raises diffic~ities. Beverton and Holt ( 1 ) consid.er this 

problem in connection with the enalysis of catch statistics from the plaice fishery 

of the North Sea, and point up the need for a statistically efficient ~~thod of 

estimating the relative fishing power of each vessel so that the actual effort of 

the vessel can be transformed into standard units on a scale comparable to that of 

all other vessels. 

The problem is neatly illustrated by Beverton and Holt with an example in 

which the total catch and hours of effort is known for 6 fishing trips involving 

3 different vessels and 3 different locations in time and space (Table 1). They 

suggest that one of the trips, say ship A at location 1, be 

Table 1. The catch rates for 6 different 
fishing trips 

Location 

Ship I II III 

A 

B 

c 

arbitrarily selected as a standard for comparison and the fishing power of the 

other two vesse.l.s then be expressed relative to the fishing povrer of vessel A. 

Thus, four possible estimates of the fishing power of vessel C are listed as 
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with the suggestion that (iv) might be "as good as any11 • ~le shall show that for 

this problem the estimator 

~jBlB2 
(v) B A A 

3 r 2 

is likely to be more efficient than any of the others, and shall indicate the 

gener·a.l method by which such efficient estimators are ·constructed. 

!! Statistical Model for Catch Rates 

The model upon which the 4 estimators of Beverton and Holt are based is the 

multiplicative model for a two-way classification without interaction. Thus, the 

model ass.erts that one location is expected to yield a catch rate which is a. fixed 

percentage higher than another location for every ves~el and, equivalently, that 

one vessel is expected to achieve a catch rate which is a fixed percentage higher .. 

than that of another vessel at every location. So, deno~ing Pi as the power factor . 

of the i 1th vessel and Qj as the power factor of the j'th location we obtain the 

model shown in Table 2 .. 

Table 2. Mulitplicative model for the catch rates of 3 vessels 
at 3 locations 

Location 

Ship l 2 3 
l CPlQlEll CPl~El2 CPlQ3El3 

2 CP2QlE2l CP2~E22 CP2Q3E23 

3 CP3QlE31 CP3~E32 CP3Q3E33 

where C is a constant and E is a random variable having an expected value of 

unity. If the trip of ship number l (ship A) to location number l is to be taken 

as the standard for comparison then all other power factors P and Q are to be 

expressed as a fraction of P1 and Q1; hence, in this instance we would set 

P 1 =Q1 =l and obtain for this example the model shown in Table 3· Putting the 

errors E all equal to l then reveals the intuitive basis of the estimators (i)-(v) 
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Table 3· Multiplicative model for the 6 trips with ship A and 
location I taken as standard 

Location 

Ship I II III 

A Al=CEll A2=C~El2 

B Bl=CP2E21 B2=CP2Q2E22 B3=CP2Q3E23 

c C3=CP3Q3E33 

given earlier. 

Empirical evidence in support of this multiplicative model for catch 

statistics of plaice was presented by Beverton and Holt; they found that when 

fishing power statistics were classified according to tonnage and method of 

propul&ion of the vessels the distribution of errors within these classes was 

log normal -- that is, on the logarithmic scale the within-class distribution 

of power factors was normal with constant variance. Their subsequent analyses 

were therefore performed on the log scale, and on the basis of this finding it 

is now apparent that a more efficient method of estimating power factors would 

have been to transform to the logarithmic scale at the beginning and compute the 

least squares or maximum likelihood estimators of fishing pol-rer. On this scale 

the multiplicative model of Table 2 becomes additive as shown in Table 4, where 

lower case letters are used to denote 

Table 4. Additive model for catch rates on the logarithmic scale 

Location 

Ship 1 2 3 ' 

1 c+pl+ql+ell c+pl+~+el2 c+pl+q:;+el3 

2 c+p2+ql+e21 c+p2+~+e22 c+p2+q3+e2:; 

:; c+p:;+ql +e31 c+p3+~+e32 c+p:;+q3+e33 

logarithms (x=log X). According to the evidence presented by Beverton and Holt, 

the errors e are normally distributed with zero mean and constant varianceG 

Relative fishing power may be defined for this model in almost any way that 
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is convenient, the only formal requirement being that the definition impose 

linear restraints on the p's and q's. The most conventional linear restrictions 

are 

which amount to using the row s~ column means as standares for comparison; 

under these restrictions the constant c in the model then represents the average 

log catch rate for the set of 3 ships and 3 locations. The procedure suggested 

earlier of choosing one ship and one location as the standards for comparison 

is perhaps equally convenient, though seemingly more arbitrary. Such a choice 

as ship number 1 and location number 1 is then equivalent to imposing the linear 

restrictions 

The choice of linear restraints is irrelevant except from the standpoint of 

computational convenience, for using the statistically most efficient method of 

estimation will produce the same relative fishing powers regardless of the choice; ,.. ,.. 
that is, the difference between two estimates p1-p2 will be independent of the 

choice of linear restrictions. This point will be illustrated with the example 

involving .six fishing trips. 

Least Squares 2£ Maximum Likelihood Estimation of Fishing Power 

The method of estimating the parameters of an additive tow-factor model with 

missing cells appears in standard textbooks on statistical methodology (see, for 

example, Steel and Terrie (1960) p.289) usually under the name of 11the method of 

fitting constants." This procedure is an application of the least squares method 

of multiple regress_ion which, under the normality assumptions mentioned earlier, 
,. 

also yields maximum likelihood estimates. The method is algebraically simple, 

but is computatfonally fairly tedious, involving matrix inversion, though with 

electronic computer.s-: this, too, becomes a. relatively simple operation. 

In the textbook treatment of this topic the emphasis is ordinarily placed 

upon hypothesis testing rather than point estimation, and is presented under the 

generaL heading of 11ana.lysis of variance." For estimation purposes it is perhaps. 

more convenient to regard this problem as a special case of the general multiple 

' 
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regression problem expressed by the model 

where the expected value of an observation Y depends linearly upon the levels of 

k+l factors, and each observed Yi is obtained at a different set of levels 

X0i,Xli'•••,Xki of these factors. The X's are known constants, the ~ts are 

unknown and to be estimated, and the €'s are independent identically distributed 

errors. If n observations Y1,•••,Y are available then the best unbiased esti-
n ,., -~-

mater of ~·=(~0,~1,···~k) is, in matrix notation, ~=(X'X) -x•Y; if the € 1s are 

normally distributed then this is also the maximum likelihood estimator and is 

statistically efficient. vle illustrate this estimation procedure first with the 

data of Table 3 transformed to logarithms as shown in Table 5 • 

Table 5. Additive model for the log catch rates of 6 fishing 
trips with ship A and location 1 taken as standard 

Ship 

A 

B 

c 

1 

al=c+ell 

bl=c+p2+e21 

Location 

2 

a2=c+~+el2 

b2=c+p2+~+e22 

3 

b3=c+p2 +q3+e23 

c3=c+p3+q3+e33 

The role of the ~ parameters is now taken by ~'=(c,p2,p3,~,q3 ) and the X matrix 

of coefficients of these parameters is then given by Table 6. Taking the sums 

of squares and crossproducts of the columns of this matrix, we then obtain the 

matrix X'X shown in Table 7; and inverting this, an operation which would 

require only a second or two on a high speed computer, we obtain the matrix 

(X 1X) -l shewn in Table 7. Finally 1 the product of (X !X ) -l with the 
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'Table 6. Matrix X of coefficients of the parameters ina. 

linear additive model 

Parameter 

Observation c p2 p3 ~ q3 

e,. 1 0 0 0 0 

~ 1 0 0 1 0 

b1 1 1 0 0 0 

b2 1 1 0 1 0 

b3 1 1 0 0 1 

c3 1 0 1 0 1 

Table 7. Matrix X 'X of sums of squares and crossroducts of 
the columns of X and the inverse (X 1X)~ 

Column 

Column c p2 p3 ~ q3 

c 6 3 1 2 2 

p2 3 3 0 1 1 

p3 1 0 1 0 1 

~ 2 1 0 2 0 

q3 2 1 1 0 2 

The inverse of X'X 

c p2 p3 ~ q3 

c 3/4 -1/2 -1/2 -1/2 -1/4 

p2 -1/2 1 1 0 -l/2 

p3 -1/2 1 3 0 -3/2 

~ -1/2 0 0 1 1/2 

q3 -1/4 -1/2 -3/2 1/2 7/4 
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cross -,products 

X'Y = 

gives the estimates 

a1+a2+b1+b2+b3+c3 l 
bl+b2+b3 

c3 

a2+b2 

I b3+c3 

original scale log scale 

" 1 c = 4 (3~+a2+b1-b2 ) 

The variance of these estimates on the logarithmic scale is o2 times the 
1 € 

diagonal elements of (X 1X)- ; thus, o~=3o~/4, o~ =o~, a~ =3o~, etc. Covariances 
c P2 P3 

bet"\-reen estimates are likewise computed as o~ times the corresponding element of 

(X 1X)-1; thus, a,. ,. =~1 cr,. ,. =0, cr,. ,. =-3a~/2, etc., and so o~ ,. =cr* +cr~ 
P2,P3 P2,~ P3,~3 ~2-P3 P2 ~3 

If instead of the restriction p1=q1 =0 we impose the restl·iction p1 +p2+p3 
=q1+~+q3=o then essentially the same results will be obtainedo The X matrix 

for this case is shown in Table 8, along with the inverse of X'X, from which we 

obtain the estimates in Table 8. 
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!rab1e 8. The matrices X and (X 1X) - 1 for the case 
P1+p2+P3=q1+~+q3=0 

X 
Parameter 

Observation c p1 

a1 1 1 

a2 1 1 

b1 1 0 

b2 1 0 

b3 1 0 

c3 1 -1 
" 

Parameter c p1 

c 2/9 -1/9 

p1 -1/9 2/3 

p2 -1/9 0 

q1 1/18 -2/9 

~ 1/18 -2/9 

Estimates 

~ = i [a1+a2+b1+b2+2c3 ] 

P1 = 3 [a1+~-b1-b2+b3-c3] 
~ . l [ 1( ) J P2 = 3 2 b1+b2-a1-a2 +b3-c3 

~1 = ~ f3a1-3a2+5b1-b2-4b3 ] 

~ = ~[3a2-3a1-b1 +5b2·4b3 J 

p2 q1 ~ 

0 1 0 

0 0 1 

1 1 0 

1 0 1 

1 -1 -1 

-1 -1 -1 

(X 1X)-1 
Parameter 

p2 ql ~ 

-1/9 1/18 1/18 

0 -2/9 -2/9 

1/3 -1/18 -1/18 

... 1/18 5/12. -1/12 

wo1/18 -1/12 5/12 

a~ = a~ +a~ +2a~ ~ = a2 

p3 . ~1 p2 p1p2 € . 

., 

2 2 2 2 2 2 
a~ = aA +aA + a~ ~ = ;cr€ 
q3 q1 ~ q1'~ 

" 
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We note that the fishing power of ship B relative to ship A is again estimated by 

so 

as 'before, and 

so, as before, 

The residual variance a~ is estimated in the general regression problem 

by (Y'Y-SX 1Y)/(n-k-l). In the present example n=6, and k+l=5 parameters are 

being estimated so the residual sum of squares 

has only 1 degree of freedom. An analagous form for the residual applies to 

the earlier analysis with p1=q1=0 and gives the same value for ~~v For purposes 

of hypothesis testing it is pertinent that ~ is statistically independent of 
E 

the other estimateso Thus, for example, under the hypothesis that p1=p3 the 

ratio (p1-p3)/~ is distributed as Student's t with 1 degree of freedomD 

Modifications £! ~ Model 

Beverton and Holt list a number of factors such as tonnage, class, design, 

age, and skipper which might explain the variation in fishing power of the 

different vessels, suggesting that a classification of vessels into various 

groups should be introduced into the model to determine the effect of such factors. 
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The collection of fishing locations in time and space might also be further 

classified, at least according to time and geographic location, to determine 

the effects of these factors on catch rates; since the same principles apply 

to the subclassification of ships and locations, hm.,ever, it will suffice to 

consider only the former. 

In the North Sea plaice fishery a major factor affecting catch rate was 

the means of propulsion of the vessel; Beverton and Holt distinguished two 

classes for this factor, the steam trawler and the diesel powered motor trawler. 

To illustrate the modification of the model required to incorporate this factor 

we enlarge our earlier example to include 5 ships 1 say :; steam trawlers and 2 

motor trawlers as shown in Table 9. The earlier model of Tables 2 and l-:- would 

still suffice for the :; steam trawlers and an entirely similar model should hold 

Table 9. The catch rates of two types of vessels at three locations 

Ship Type 

A Steam 

B Steam 

c Steam 

F Motor 

G Motor 

I 

Location 

II III 
. . ! ' :-~ .. .r ; ., .. 

for the 2 motor trawlers; that is 1 the additive model of Table 4 should now be 

extended to include 

Location 

Ship Type I II III 

F Motor c+p4 +ql +e 41 c+p4+~+e42 c+p4+q:;+e4:; 

G Motor c+p5+ql+e51 c+p5+~+e52 c+p5+q:;+e53 

_, ' 

where, under the conventional linear restrictions, 
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The constant c, representing the average log catch rate, should however be 

different for steam and motor trawlers if method of propulsion actually does 

affect catch rate. We therefore identify these two constants as c1 and c2, 

respectively, and taking c=(c1+c2)/2 as our standard for comparison we let 

The additive model for the log catch rates of Table 9 which incorporates 

this d.effect due to method of propulstion is shown in Table 10; with the 5 
linear restrictions which have been imposed there are only 7 independe~t 

' ,·· 

parameters in this table, and their estimation proceeds as before by the methods 

of multiple regression. A test of the significance of the effect of method Of 
.. , . . . 

propuls-ion would then be obtained from the regression analysis as a t- or F-

test of the hypothesis that the "regression coefficient" d1 is equal to ___ z~ro. 

Table 10. Additive model for log catch rate of two types of ships 

Ship Type 

A Steam 

B Stes.m 

c Steam 

F Motor 

G Motor 

I 

c+~+pl+ql+ell 

c+~+p2+ql+e21 

Location 

II 

c+dl+pl+.~+e12 

c+dl+p2+~+e22 

III 

c+~ +p2+q3+e23 

c+dl+p3+q3+e33 

c+d2+p4 +q3+e43 

Log,, 
Tonnage 

Another factor which proved to have a significant effect upon catch rate 

was "the: I'Jize·:of the ship as measured by its tonnage; in fact, it was. found 

that the·power factor P was directly proportional to tonnage, on the average, 

with different proportionality factors for steam and motor trawlers • The 

constailts·d1 ·and d2 of the above model would represent these two proportionality 

factors On the log scale, and incorporation into the model of the assumption 

that the power factor Pi is proportional to the tonnage T1 would then consist 

of replacing the ~-parameters by the log tonnage deviates, 



pl=(tl-tS) 

p2=(t2-tS) 

P3=(t3-tS) 

where ti = log Ti and 
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P4=(t4·\) 

Ps=(t5-\> 

The procedure for fitting this modified model would be to deduct the log tonnage 

deviate t-t from each of the observed log catch rates of that ship, eliminate 

all p's from the model and proceed with a multiple regression analysis. The 

difference between the residual sum of squares from this analysis and the 

residual sum of squares from the analysis of Table 10 represents the reduction 

in residual sum of squares which is attained due to fitting the p 1s instead of 

simply assuming that the p's are equal to the corresponding known constants 

t-t. The degrees of freedom in this difference of residuals is equal to the 

number of ships minus the number of types, or 5-2=3 in this case, and the mean 

square obtained by dividing by degrees of freedom may then be tested for signi­

ficance against the residual mean square from the analysis of Table 10. The 

entire procedure is illustrated by a numerical example in the next section. 

Numerical Illustration 

The preceding analysis is illustrated here with an artificial set of data 

for Table 10; these data, shown in Table 11, were generated by assigning arbi­

trary values to the c, d1 q and t parameters of Table 10, and taking the p 

parameters approximately equal to the log tonnage deviates t-t within each type 

of vessel. Observed log catch rates (Y) were then constructed by combining the 

parameters in the manner indicated in Table 10 and adding to each a random 

normal deviate eo 
The first phase of the analysis consists of setting out the coefficients 

of the unknown ·parameters in matrix form· (Table 12) and computing crossproducts 

among these coefficients and between the coefficients and the observations. 

This matrix of crossproducts is then inverted by standard methods and multiplied 

by the vector of crossproducts between coefficients and observations to obtain 
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Table 11. Log catch rates of five ships at three locations 
* l Y =log catch rate 

Y=log catch rate adjusted 
Location log Location 

Ship l Type I II III Tonnage I II III 

A I Steam .020 .120 -- 1.954 .207 .307 --
B I Steam .503 o463 .238 2.322 .322 .282 .057 

! c i Steam -- -- .251 2ol46 -- -- .246 

! Mean log tonnage 2ol41 

F I Motor .. 188 -- .142 I c 

.1 .. 778 .356 ...... .. 310 

G I Motor o544 2oll4 -376 
J -- -- -- --
I Mean log tonnage la946 . 

- - -
1Adjusted log catch rate = log catch rate - log tonnage + mean log tonnage 

Table 12. Coefficients of the unknown parameters (Table 10) and their cross­
products with log catch rates 

Cat 
y 

.020 

.120 

.503 

.. 463 

.238 

.251 

.188 

.142 

.544 

DeY 

ch rate 

Y* -
.207 

.)07 

.)22 

.282 

.057 

.246 

o)56 

,)10 

.)76 

IXY* 

Parameter 

c dl I p1 p2 ql ~ -
1 1 1 0 1 0 

1 1 1 0 0 1 

1 1 0 1 l 0 

I 
1 1 0 l 0 1 

1 1 0 1 -1 -1 

l l -1 -1 -1 -1 

l -1 0 0 l 0 

l -1 0 0 -1 -1 

l -1 0 0 0 1 

2o469 .721 -.111 ·953 .,·080 .496 

2.463 .379 .272 -352 

Crossproducts of coefficients of the parameter~f 
x•x 

Parameter 
-p ara.meter c dl pl p2 ql ~ P4 - - -c 9 3 1 2 0 0 l 

d1 3 9 1 2 0 0 -1 

pl 1 l 3 1 2 2 0 

p2 2 2 l 4 1 1 0 

ql 0 0 2 l 6 3 0 

~ 0 0 2 1 3 6 -2 

p4 1 -1 0 0 0 -2 
I 3 

P4 --
0 

0 

0 . 
0 

0 

0 

l 

l 

.. 1 
f-

~~214 
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the :parameter estimates. Thus, in Table 13, the estimate p1=-.lll is obtained 

as the sum of crossproducts of the inverse elements in the p1 column times the 

elements of the EKY column, 

pl = [(-10)(2.469)+(-34 )(. 721)+• .. +(-72)( -.213) ]/540=-.111 

Goodness of fit of the model may be measured by the ratio 

Res'idual s.s. after fitting (c) 

-Residual SoSo after fitting (c,d1,p1,p2,ql'~'p4) 
R2= ----------------------------------~~~~~-----

Residual s.s. after fitting c 

The residual sum of squares (S•S.) .after fitting the constant c (the mean) is 

simply the corrected sum of squares of the 9 observations, 

Res. SoSo after fitting (c)=tY~- -91 (EY)2 
1 l. 

=·953267- ~(2.469)2=.275938 (d.f.=8) 

and the residual sum of squares after fitting all seven parameters is, from 

Table 13, 

·953267- [( .297) (2.469)+( -.037) (. 721)+•. •+( -.126) ( -.214 )] 

=o953267-.939339=o013928 (d.f.=2) 

giving 
R2= .275938-.013928 _ .262010 _ 95 

.275938 - .275938 - ~ 

Thus, 95 percent of the variance amo.ng the 9 observations is accounted for· by 

the six par~eters d1, p1, p2, q1, ~ and p4; this, however, is not statistically 

significant when tested by the F-test 

_ .262010 6 _ .o4g668 _ 6 2 
- .013928 2 - .oo 964 - • 

because of the small number of degrees of freedom in the residual. 
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'Table 13. Solution to the multiple regression problem of Table 12 

Inverse matrix of crossproducts of coefficients (x540) 

<x•xr1 
Parameter 

Parameter c ·d 1 pl p2 ql ~ p4 DeY Estimate 

c 80 -25 -10 -25 15 -15 -45 2.469 .297 

dl -25 86 -34 -31 - 3 39 63 .721 -.037 
' . 

pl -10 -34 296 -16 -48 -96 -72 ,.-.1~+ -o247 

p2 -25 -31 -16 176 -12 -24 -18 .953' .142 

ql 15 - 3 -48 -12 144 -72 -54 .080 .030 .· . 
~ -15 39 -96 -24 -72 216 162 • 496 .o84 

p4 -45 63 -72 -18 -54 162 324 -.214 ~ .. 126 

Inverse of deleted matrix of crossproducts 
of coefficients (x72) 

Parameter 

Parameter c ~ ~ ~ DeY Estimate 

c 9 -3 0 0 2.469 .279 

dl -3 9 0 0 • 7~.J. .. -.013 
• lt 

ql 0 0 16 -8 .080 -.037 
., 

' ~· 

~ 0 0 -8 16 .496 .101 

.. lXY* 2o463 ·379 .272 ·352 

E'stimate .292 -.055 .021 .o48 
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Analogous methods may be used to test the significance of more spec~fic 

features of the model; for example, to determine the fraction of the total 

variance which is duespecifically to variation of fishing power among ships of 

like method of propulsionMe compute 

Res.SoSo after fitting (c 1 ~1 ~1,~)-Res.s.s. after fitting (c,d1,p1,p2,~1,~,p4) 

Res.s.s. after fitting c 

This computation involves another matrix inversion; we simply drop the p's from 

the model and so reduce the coefficient matrix by deleting the blocks indicated 

in Table 12. Estimates of c, d1, ~l and ~ obtained from the inverse of the 

deleted matrix are given in Table 13; thus 

~= [9 (2 ,.469 )-3 (. 121 )+o( .oao )+o ( .496) J/72= .279 

and the residual s.s. after fitting only c, d1, ~l and ~ is then 

o953267-[(o279)(2a469)+(-.0l3)(.721)+(-.037)(.080)+(el01)(.496)]=.227363 

with 9-4=5 degrees of freedom. The fraction of the total variance which is due 

specifically to the p-parameters is therefore 

.227363-.013928 .213435 
.275938 = .275938 = •77 

and the significance of this may be tested by 

Even with 2 degrees of freedom in the residual, the variation in the p's is 

detected at the 10 percent significance level. 

The difference between the average log catch rate of steam and motor. trawlers 

is measured by the parameter ~~ which may be tested for significance in the 

above manner. For a single parameter, however, the test procedure illustrated 

above simplifies to an F-test of the form 

(~1)2 
F = -8~6,_....;;.._ __ = 8~-.037)2 

540 Res. M.S. 5q:0(.006964) 
= 1.23 
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which is non-significant. The fraction 86/540 is the d1 diagonal element of 

the inverse matrix of Table 13. 

Finally, we illustrate the procedure for testing the hypothesis that within 

types of vessels, the fishing power of a ship is proportional to its tonnage. 

On the log scale, this is equivalent to the hypothesis that within types of 

vessels, p.=t.-t. 
J. J. 

This hypothesis is tested by replacing pi by ti-t in the 

model and comparing the resulting residual M.So with the residual M.S. of 

.006964 obtained with no restrictions on p1, p2 and p4• Since the deviates 

t.-t are known constants then the replacement of p. by t 1-t in the model is 
J. J. 

equivalent to subtracting t.-t from the observed log catch rates of ship number 
J. 

i; the resulting adjusted catch rates are shown in Table 11 and denoted by Y"~. 

With the p-parameters thus deducted from the model, the matrix of parameter 

coefficients becomes the deleted matrix considered previously, and the computa­

tions follow the same pattern but with Y replaced by Y*. The :parameter estimates 

so obtained (Table 13) then give 

Res.s.s. after fitting (c*,d~1 p1=-ol87, p2=.181, qr,q;;,p4=-~l68) 

9 
=ZY~-c*(2.463)-df(.379)-qf(o272)-~(.352) 

1 

=.748283-(.292)(2o463)-(-.055)(.379)-(.021)(.272)-(.o48)(.352) 

=.027123 

Permitting p1, p2 and p4 to vary arbitrarily in the model thus reduces the 

residual sum of squares by only 

.027123-.013928=.013195 

and this sum of squares with 3 degrees of freedom is not significant when tested 

against the residual for the unrestricted model, 

F = o013195 3 _ 63 
.013928 2 - • 

Another way of expressing this result is that while the best fitting p-parameters 

accounted for 77 percent of the variation in log catch rate, fixing the 

p-parameters by making them equal to the log tonnage deviates reduced this 
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percentage on1y to .72 percent, 

.213435-.013195 - 72 
.3759:38 - • . . •. 

and the reduction was not significant. 
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