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ABSTRACT: The scheduling and rostering of personnel is a problem that occurs in many
organizations. Aircrew scheduling has attracted considerable attention with many heuristic
methods being proposed but in recent times set partitioning optimization methods have become
more popular. The aircrew rostering problem is discussed and formulated as a generalized set

partitioning model.

Because of the extremely large optimization models which are generated in practical situations,
some special computational techniques have been developed to produce solutions efficiently.
These techniques are used to solve problems arising from an airline application in which set
partitioning models with more than 650 constraints and 200,000 binary variables are generated.
The solutions are produced on a Motorola 68020 microprocessor in little more than three hours.

This paper was prepared while the author was a Visiting Scientist in the Centre for Applied
Mathematics at Cornell University and was partially supported by NSF Grant #DMS-8706133.
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§ 1 Introduction

The scheduling of air crews is a problem that has attracted considerable attention from both airlines
and the mathematical community (see for example Lavoie et al (1988) and Cook (1989)). Air
crews are amongst the most valuable of airline resources and efficient utilization of crews is
obviously an important consideration in airline operations. From a mathematical point of view the
problems of air crew scheduling give rise to a number of challenging problems in combinatorial
optimization.

The air crew scheduling problem is usually partitioned into two distinct subproblems or stages.
The first problem, called the Planning or Pairings Problem, involves the construction of sequences
of flights or sectors which are variously described as duties (tours of duty) or trips (or pairings or
rotations). In some situations these duties or trips can be daily periods of work but in other
applications they can involve sequences of flights and periods of rest over many days. The
important feature of a duty or trip is that it must be "feasible" with respect to all the rules,
regulations and conditions of awards and agreements. While many of these conditions are
common to most airlines the details can vary greatly among airlines. Most duties or trips originate
and terminate at a crew base (hence the term "rotation"). The underlying objective in the planning
problem is to produce a schedule of feasible duties or trips which cover all the timetabled flights in
the most efficient manner possible. Efficiency is often measured in terms of the number of duties
or trips but there are other obvious criteria such as total duty time and the number of sectors on
which crews are positioned (or deadheaded) without working.

Many airlines continue to produce planning schedules using heuristic computer methods of which
Rubin's algorithm (Rubin (1973)) has probably been the most widely used. However, a number
of airlines have developed or are developing optimization-based techniques to solve the pairings
problem. Marsten et al (1979) discuss the use of optimization techniques in crew planning for
Flying Tiger, and Marsten and Shepardson (1981) describe the application of similar techniques to
the solution of aircrew scheduling problems for three other airlines. Crainic and Rousseau (1987)
and Lavoie et al (1988) discuss the use of column generation techniques to solve set partitioning
problems arising in the airline industry and Gershkoff (1987) describes American Airlines' use of
optimization techniques in the solution of their aircrew pairing problems. During the past three
years a set partitioning based optimization system has been used by Air New Zealand (Ryan and
Garner (1985)) to prepare tours of duty for the domestic services of the airline. This system now
plays an important role in the crew planning functions of Air New Zealand.



The second problem associated with air crew scheduling is referred to as Rostering. The Rostering
phase involves the allocation of the planned duties or trips from the first stage to individual crew
members to form a "line of work" (LoW) over the rostering period. In this paper we will consider
the rostering period to be four weeks. Each trip originates and terminates at a crew base and
consists of a sequence of flights (sectors) and rest periods. Trips range in length from one-day
two-sector trips to fifteen or sixteen-day multisector trips. Typically a trip will be followed by a
stand-down rest period of a length related to the work content of the trip. The internal work content
of the trip is however of little importance in the rostering problem. Trip destinations such as
Europe, the United States, Japan and Australia do influence the attractiveness of a LoW but the
details of component sectors and airports visited in the trips are irrelevant. The full Rostering
problem can usually be broken into smaller independent subproblems corresponding to groups of
crew members of the same rank.

The approach to the "solution" of the Rostering Problem used by most North American airlines is
referred to as the Bidline System. The pairings produced as the solution of the pairings problem
are published and the crews then bid for their preferred line or alternative lines of work. Bids are
usually accepted in order of decreasing seniority in the crew rank. The bidline system can result in
considerable inequitability within a crew rank with many junior crews seldom being allocated their
preferred line of work. Most airlines outside North America (especially the smaller airlines)
attempt to produce rosters which satisfy some measure of equitability to ensure that all crew
members of the same rank are allocated lines of work with similar work content. While the rosters
produced are certainly more equitable, the equitability rostering problem is invariably far more
difficult to solve than the planning problem because of its increased combinatorial complexity. For
this reason most airlines requiring equitable rosters adopt sequential heuristic methods to allocate
duties or trips to individual crews. Such methods invariably lead to some inequitability at least for
a subset of the crew rank. In this paper we outline an extension of the mathematical optimization
techniques developed for the planning problem to solve the equitability rostering problem.



§ 2 A Mathematical Model for Rostering

It is clear that each individual crew member must be allocated exactly one LoW and each trip must
be covered by sufficient crew members. For each crew member in a given rank we can generate a
set of many LoWs from which exactly one must be chosen. Each LoW in the set can be costed
according to some measure of its desirability. The generation process and cost measures will be
discussed in § 3.

The rostering problem can be modelled mathematically using a generalized version of the set
partitioning model. Assuming there are p crew members and ¢ trips, the model is naturally
partitioned into a set of p crew constraints, one for each crew member in the rank, and a set of ¢
trip constraints corresponding to each trip which must be covered. The variables of the problem
can also be partitioned to correspond to the feasible LoWs for each individual crew member. The
rostering set partitioning problem can be written

minz=clx, Ax=b, x;=0orl
where A is a 0-1 matrix partitioned as

C: C G ... Cp

Ly Ly Ly ... L,

and C; = e;eT is a (p x n;) matrix with e; the ith unit vector and eT= (1,1,...,1). The n; LoWs for
crew member i form the columns of the (f x nj) matrix Lj with elements [ defined as [ = 1 if the
kth LoW for crew member i covers the jth trip and lix = 0 otherwise. The matrix A has total
dimensions of m x i nj where m = p +t. The right-hand-side vector b is givenby bj=1,i=
i=1
1,...,p and bp4j =rj, i = 1,..., t where rj is the number of crews required to cover the ith trip. In
some circumstances certain trips of shorter duration can be overcovered (ie more than rj crews
allocated) thus implying the inclusion of corresponding surplus variables in the model to create
equality constraints. After an optimal roster has been constructed, the overcovered trip can be
removed from the LoWs of any surplus crews in the optimal solution and replaced with extra days
off. Surplus crews can be selected from amongst those crew members allocated the overcovered
trip by taking into account the past workload and also the nature of the optimal LoWs for those
crew members. It is clear that overcover should not be permitted for trips of longer duration since



the replacement of such a trip by extra days off would create an inequitable LoW with too many
days off.

The cost vector ¢ should be chosen to reflect the relative "cost” of each LoW. Since most airlines
are pleased to construct one feasible solution to the rostering problem there is no obvious or
traditional measure which is used to discriminate among feasible solutions. We discuss one
possible measure in § 3.

The rostering model has a special structure which deviates from pure set partitioning in that the
right-hand-side vector is not unit valued and some constraints need not be equalities. The crew
constraints of the A matrix also exhibit a generalized upper bounded structure which is not
commonly found in set partitioning. It can be shown (see Ryan and Falkner (1988)) that
constraints of this type have a particularly important and beneficial effect on the occurrence of
integer basic feasible solutions in the LP relaxation derived from the set partitioning model.

§ 3  Generation and Costing of LoWs

The generation of LoWs is performed by a straightforward enumeration process for each crew
member considered in turn. For a particular crew member the process begins with the construction
of a skeleton LoW which takes into account the carryover activity from the previous roster period
and includes preassigned activities such as drills and training, requested trips and requested days
off and periods of call and leave. All possible legal and desirable sequences of trips are then
generated by adding trips to the skeleton until no further additions are possible. The last added
activity is then deleted and further additions are attempted. This enumeration process continues
until all possible LoWs have been considered. There are more than thirty rules and conditions
which a legal and desirable LoW must satisfy. Some of these are mandatory but others reflect the
preferences of the airline or the individual crew member. One particularly important restriction
involves a requirement that every LoW must have at least ten days off at home base in each twenty-
eight day roster period.

For a practical crew rostering problem, the generalized set partitioning model proposed in § 2 has
dimensions in the order of between 200 and 700 constraints and tens or perhaps even hundreds of
millions of variables since some crew members can have many thousands of alternative LoWs.
Fortunately it is possible to reduce the number of variables first by limited subsequence filtering
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techniques similar to those described by Ryan and Falkner (1988) and secondly by a number of
implicit restrictions on the types of LoWs which will be considered feasible.

The limited subsequence filtering techniques are based on the premise that each crew member
should be allocated his or her next trip as soon as possible after completing his or her previous trip
and the mandatory rest. On completion of each trip, a limited number of subsequent trips are
chosen as alternative following trips. The choice of alternatives is not critical. It can be based on
least possible idle time between trips but can also include consideration of aspects related to the
costing of LoWs. Typically as few as one or two and as many as ten to twenty subsequences are
selected. Besides reducing the number of variables, limited subsequence filtering also improves
the natural integer properties of the set partitioning problem and reduces the fractioning potential of
the optimal solutions since the resulting constraint matrix has a more "balanced" form (see Ryan
and Falkner (1988)). The implicit restrictions reflect the practical application and could include for
example an upper limit on the number of days off in any feasible LoW and the elimination of
certain undesirable sequences or combinations of trips within a LoW for some crew members. The
reduced problems have between 20,000 and 200,000 variables with each crew member having on
average between 400 and 500 alternative LoWs. Variation can range from a single LoW for some
crew members up to 2000 for others.

The definition of an objective function is not obvious. Because airlines usually operate the first
roster they can construct, there is no traditional objective measure with which to compare
alternative rosters. In fact feasibility plays a much more important role than optimality when
rosters are being constructed. However, in order to construct equitable rosters we need to develop
an objective which reflects the interests of both management and the crews. From an airline's
point of view it is obviously important to minimize the number of crews required to cover all trips
and also to preserve a certain tolerance of disruption in the solution. For example, reasonable flight
delays should not make it impossible for a crew member to complete the allocated LoW. From the
crew member's point of view one particularly important preference is that trips of the same type
(often related to destination) should be spaced apart by a sufficient number of days. Given the
number of crew members required for each trip of a certain type, the frequency with which such
trips occur in the roster period and the number of crew members in the rank, the ideal or expected
separation between trips of that type can easily be calculated. When constructing a LoW, if a trip is
allocated before the ideal separation interval has elapsed since the last allocation of a trip of that
type, the number of days short of the desired separation interval is referred to as the number of
"history days violated". One measure of quality of a LoW, at least from the crew perspective, is
given by the sum of history days violated for each trip in the LoW. For a given rank then, the total



history violated can be thought of as a possible objective measure. The objective value can also
reflect some preference for LoWs which have fewer days off (ie closer to the average days off
across the rank) and fewer trips (ie closer to the average number of trips required to be performed
by each crew member). Both of these average values can be easily calculated before the generation
process begins. Such preferences are consistent with the notion that the most desirable roster is
one in which each crew member performs a similar amount of work.

It is also possible to utilize the model to minimize first the number of crews and second the
equitability rostering objective. This can be accomplished by including a null LoW (a LoW which
represents the crew member as performing no trips in the roster period) priced at zero cost and
adding a "small" constant penalty to each actual LoW generated for that crew member. The SPP
will then naturally tend to select null LoWs in preference to actual LoWs provided that all the trips
can be covered without the services of the inactive crew members. This device is particularly
useful in identifying the need for promotions to increase the rank size. A small number of fictitious
crew members can be added to the rank but will only be used if the problem has no feasible
solution without the use of extra crew members.

In generating LoWs for each crew member it is also possible to take into account an individual's
preferences for LoWs with certain work content. For example some crew members may prefer
LoWs made up of shorter duration trips while other crew members may prefer longer trips. Such
preferences can influence the filters and tests for feasibility during the generation process and they
can also influence the calculation of the objective coefficient for each LoW. Preferences are not
allowed to cause infeasibility in the rostering model but they can, at least in the longer term,
produce more attractive and satisfying solutions.

§ 4 Solution Method

The solution of SPPs has been surveyed by Balas and Padberg (1979) (see also Bausch (1982))
and recent results in the development of set partitioning and covering techniques suggest that
problems with several thousand variables can now be solved (Bodin et al (1983)). Marsten and
Shepardson (1981) reported the solution of larger set partitioning problems with up to 30,000
variables but in some cases solutions were not found. Since 1981 a number of authors have
described Marsten's SETPAR code (Marsten (1974)) as the most efficient algorithm for set
partitioning. In a recent paper Fisher and Kedia (1988) have reported the solution of randomly
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generated set partitioning problems with up to 100 constraints and 10,000 variables and although
direct comparisons with SETPAR were not performed, Fisher and Kedia suggest that their
algorithm, based on Lagrangian Relaxation, "is at least an order of magnitude faster than
Marsten's". However the limited and approximate nature of the comparisons do not provide a
clearly superior approach especially when the problem dimensions are increased significantly.
Similar claims, based on comparisons with SETPAR, have been made by Chan and Yano (1988)
for their method which uses a dual multiplier adjustment algorithm to produce bounds. Again
problems with fewer than 10,000 variables were considered in these comparisons.

Because of our previous successful experience in solving set partitioning problems with up to
30,000 variables in the Planning phase (but with foolhardy optimism) we have attempted to solve
the massive generalized SPPs generated in the rostering application by a conventional integer
programming approach. The LP relaxation is solved first using a primal simplex algorithm and
then a branch and bound procedure based on a constraint branch (Ryan and Foster (1981)) is
applied to produce integer solutions. Brown et al (1987) also describe the successful application of
a similar conventional IP approach in the shipping industry although the LP solution method and
the branching mechanism were different.

§ 4.1 Solution of the LP Relaxation.

The solution of the LP relaxation has always proved to be a computational bottleneck in solving
SPPs. Two main difficulties arise. The first is due to the very large number of variables (LoWs)
in the LP formulation. Even with the use of generation filters as discussed in § 3, the number of
variables can often exceed 200,000. However it is possible to partition the variables into classes
which rank in decreasing order of attractiveness. The ranking need not be based directly on the
magnitudes of the objective coefficients although they provide one obvious means of ranking.
Ranking could also be based on numbers of trips or days off which vary significantly from the
expected average number of trips or days off. During the primal convergence process each class of
variables can be treated in a different way. For example, some classes of variables may not be
considered in the entering variable pricing until late in the primal convergence, while variables from
other classes may be considered as entering variables only if the LP remains primal infeasible.
With careful use of such techniques and the use of partial pricing, it is possible to significantly
reduce the problems associated with very large numbers of variables in the primal LP convergence.
The solution of the relaxed LP has also been improved by the use of a version of the elastic LP
strategies of Brown and Graves (1975). During the convergence of the RSM, primal feasibility is
not forced quickly through a conventional phase-1 procedure but is achieved much more slowly by
gradually increasing the costs on the (artificial) slack and surplus variables to drive them from the

8



basis. The intention here is to choose costs for slacks and surplus variables which just bound the
true optimal dual variable values.

The second difficulty in solving the LP relaxation of SPPs is due to the presence of gross
degeneracy at near-integer basic feasible solutions. Because of the use of limited subsequence
matrix reduction techniques in the generation of the constraint matrix, many such near-integer basic
feasible solutions can be visited during the LP convergence and solutions with as many as 80% of
the basic variables at zero value are common. At grossly degenerate primal bases, the RSM tends
to stall sometimes for many thousands of degenerate pivots even when conventional techniques
such as maximizing the pivot element are used to determine the leaving variable. This degeneracy
phenomenon in the SPP has been discussed by a number of authors (see for example Albers
(1980), Falkner (1988), Marsten and Shepardson (1981)) and to avoid the difficulties, Marsten
(1974) solved the relaxed LP using a dual algorithm in his SETPAR code. For problems with very
large numbers of variables this is not an attractive option. Other authors have avoided the
problems of degeneracy by developing alternative bounding strategies based on Lagrangian
relaxation or dual variable adjustments.

The problems of degeneracy have been overcome in the solution of the rostering model by the use
of Wolfe's method (Wolfe (1963), Ryan and Osborne (1988)) and by a carefully chosen right-
hand-side perturbation scheme. Wolfe's method provides a guaranteed termination of the stall and
is used only when a sequence of degenerate pivots is observed. The perturbation scheme
involving bj=1+€ , i=1,...,p creates a tension between the crew constraints of the model and the
trip constraints which still have integer right-hand-sides. For a small value of € such as 10-7, the
values of basic variables are perturbed sufficiently to avoid degeneracy and in practice few truly
degenerate pivots are observed during the convergence of the RSM. Typically, as few as one or
two hundred degenerate pivots occur in RSM convergences of more than 10,000 iterations and
Wolfe's method is seldom required.

§ 4.2 An Efficient Branching Strategy

It is well known that the conventional variable branch is particularly ineffective in the resolution of
fractional solutions which arise at the optimal solution of the relaxed SPP linear programme. The
1-branch (forcing the branched variable to the value one) imposes significant structure on the
solution of the problem and often causes the minimized objective function to increase. The O-
branch however has little effect when there are many thousands of alternative variables which can



enter the basis producing a new fractional feasible solution without increasing the objective
function value. The branch and bound tree then develops in a very unbalanced way so that the
bounding mechanism is seldom effective especially on the zero branch. As an alternative, the
constraint branch (Ryan and Foster (1981)) has proven to be particularly effective in resolving
fractional solutions in the set partitioning problem. This type of branch was also discussed in the
context of set covering by Etcheberry (1977). At an optimal fractional solution of any node of the
branch and bound tree, a pair of constraints, say s and ¢, can be identified such that
0 < z xj <1
je I(s,0)

where J(s,) = {j!| ag=1 and a5 = 1 }. Itis easy to show that in any fractional solution at least
one such pair of constraints can be identified. In this application the pair can be chosen to involve
a crew member s and a trip ¢ only partially performed by that crew member. The branch can
then be imposed by requiring on the 1-branch

2xj=1

je Js.n

(ie crew member s must perform trip ¢ ) and on the 0-branch

ij=0

je I(s,0)

(ie crew member s must not perform trip #). The zero branch is easy to implement by forcing all
variables in J(s,?) to take the value zero. The Dual Simplex Method can be used to remove the
resulting infeasibility which results from imposing the branch. In the SPP, the 1-branch can also
be easily implemented by requiring

Xj = 0
je J'(5.0

where J'(s,;t) ={j| asj=1oraj=1, a5+ a; } is the complementary set to J(s,t) and, as for the
0-branch, the resulting infeasibility is removed using the DSM. It should be noted that enforcing
the 1-branch for crew member s and trip ¢ involves forcing to zero those variables for crew
member s which do not cover trip ¢ and provided trip ¢ requires a single additional crew
member, also all variables for other crew members which do cover trip .

The constraint branch, in contrast to the variable branch, can involve the simultaneous elimination
of many hundreds and sometimes thousands of variables on each side of the branch. Because
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many variables are eliminated on each side of the branch, the branch and bound tree develops in a
much more balanced fashion.

In practice if s and ¢ are chosen so that E xj is maximized (ie as close to 1 as possible)
je 1.0

then the branch and bound can be implemented with a depth-first 1-branch and the 0-branch can
safely be left unfathomed since the 1-branch reflects the preference of crew member s for trip ¢
already implied by the LP optimal but fractional solution. This choice of branch has the added
benefit that few DSM iterations are required to remove the infeasibilities due to other crew
members performing a small fractional part of trip ¢ . Integer solutions are invariably produced by
a sequence of 1-branches and the algorithm has been implemented to terminate as soon as an
integer solution is found. On a few occasions towards the bottom of a sequence of 1-branches and
especially when

2 xj =05

je I(s.0)

(ie the LP is indicating no preference for the 1-branch or the 0-branch) the problem can become
infeasible on the 1-branch. In such situations the 0-branch from that node of the tree is evaluated
and if necessary the 0-branches of nodes even further back up the tree are evaluated to find an
integer solution.

§ 5 Some Results and Computational Experience

The computations reported in this paper have been performed using the ZIP package (Ryan
(1980)). ZIP, a suite of Fortran 77 routines, incorporates sparse matrix techniques (Reid
(1976,1982)) to handle the sparse basis factorizations used in the primal and dual simplex
algorithms. All the results have been generated on an IBM PC/AT with a Definicon DSI-780/4
accelerator board which is based on a Motorola 68020 microprocessor.

We report here results obtained from the rostering of five ranks of crews (identified by labels CH,
PU, AP, SE and JU) during three consecutive roster periods. The roster periods, each requiring a
separate optimization, will be identified by numbers 1, 2 and 3. The CH problems, identified as
CH1, CH2 and CH3 in Table 1, involve approximately 55 crew members and 120 trips which are
each to be covered once during each of three separate 28 day roster periods.
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For ranks AP, SE and JU, the required trip coverage varies between 1 and 8 depending on the
crew rank and aircraft type (Boeing 747 or 767) of the trip. Within each rank small natural
variations occur between periods in the number of crews and trips. The results in Table 1 give the
sizes of the set partitioning problems generated and show summary information about the RSM
convergence including the number of iterations, the total 68020 processor time in minutes, the
optimal LP objective (z-value) and the number of variables with integer (ie unit) and fractional
values at the relaxed LP optimal solution. Information about the branch and bound computation is
also included. Table 1 also gives the total minimized history violation in days for each problem. It
should be noted that these history violation figures exclude history violations which result from a
crew member requesting a trip which violates that crew member's own history. Given that
requested trips should be allocated except where no feasible solutions can be produced, such
requested history violations cannot be eliminated by the rostering objective.

The results of Table 1 illustrate a number of interesting points about the solution of the extremely
large and structured set partitioning problems arising from the rostering model.

1. Generalized set partitioning models with more than 650 constraints and nearly 200,000
variables can be solved on a microcomputer provided the models have sparse column form and
special structure. These problems are significantly larger than SPPs previously reported as
being solved. Problems with as many as 250,000 variables have been solved to optimality on
the microcomputer and problems with more than 300,000 variables have been solved on a
mainframe machine.

2. Although there appears to be a relatively large number of revised simplex iterations required at
least in the JU rank, the basis factorization updates and the entering variable pricing are fast
because of the sparse 0-1 constraint matrix structure.

3. The limited subsequence matrix reductions can result in the generation of a suboptimal
solution. However provided the subsequences are chosen with care, the LoWs which are
excluded are less attractive in that they contain longer periods of idle time. The loss of
optimality can be estimated by introducing further excluded LoWs and permitting the RSM to
reconverge from the previous optimal basis. It has been found that the objective is seldom
improved even by small amounts but when the objective is decreased the optimal solutions are
invariably more fractional. It should also be recalled that the rostering objective reflects an ill-
defined measure of equitability. The results show that the generated integer solutions have a
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very small average history violation per crew member. In fact the total history violation is much
less than the history violation generated by previously used heuristic methods. This is
especially true for the larger ranks where the optimization is able to produce excellent solutions
by taking advantage of the extra flexibility in a way that is not possible with a heuristic method.

4. The relaxed linear programme solutions exhibit strong integer properties. This can be attributed
to the limited subsequence filtering techniques and also to the action of the crew constraints
which tend to be of a "perfect" type (see Ryan and Falkner (1988)). Such dominant constraints
effectively prevent fractions from occurring within the LoWs for a particular crew member.
Any fractions which do occur in an optimal solution of any node of the branch and bound tree
must involve more than one crew member.

5. The constraint branch based on a crew member and a trip is most effective in resolving
fractional solutions. Relatively few nodes of the branch and bound tree are evaluated before an
integer solution is found and the problems towards the bottom of the sequence of 1-branches
usually involve few variables since most variables have already been branched to zero. The
resulting DSM convergences are usually simple and feasibility is quickly restored.

6. Total CPU times to produce integer solutions on a microcomputer range from six or seven
minutes for the CH rank to two to three hours for the JU rank.

One particularly important benefit of the optimization approach to the solution of the rostering
problem, at least in comparison with heuristic methods, is that infeasibility can be identified with
certainty. Often in situations where the crew rank is close to the minimum rank size and there are
days during the roster period when insufficient crews are available to perform all the trips, the
optimization will identify such trips and days. By carefully setting the costs of trip slack variables,
it is possible to produce infeasible solutions which leave uncovered the fewest trips of shortest
duration. This information can then be used to "create" feasibility by modifying the skeleton
activities such as drills and requested trips and days off for some crew members to free further
crew resources on the tight days of the roster period. In contrast, when using heuristic methods,
one is never certain whether the infeasibility is due to the inadequate nature of the heuristic or
whether it truly is an infeasible problem. It was commonly thought that the rostering problems
were in fact always close to infeasibility but it is now clear that there exist many alternative feasible
solutions which can be constructed and explored using the optimization techniques.
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