
ADAPTIVE BAYES-OPTIMAL METHODS FOR
STOCHASTIC SEARCH WITH APPLICATIONS TO

PREFERENCE LEARNING

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Stephen N. Pallone

August 2017



c© 2017 Stephen N. Pallone

ALL RIGHTS RESERVED



ADAPTIVE BAYES-OPTIMAL METHODS FOR STOCHASTIC SEARCH

WITH APPLICATIONS TO PREFERENCE LEARNING

Stephen N. Pallone, Ph.D.

Cornell University 2017

Many fundamental problems in mathematics can be considered search prob-

lems, where one can make sequential queries to find a point with desired prop-

erties. This includes convex optimization, in which queries are points within

the feasible region, and the corresponding subgradient implies a separating hy-

perplane that allows non-optimal points to be discarded. Search problems can

be solved from a Bayes-optimal viewpoint, where a prior distribution is main-

tained over the search space quantifying the likelihood of the desired point’s

location. In this manner, queries and their responses allow this prior to be up-

dated with new information, and the objective is to ask the best query to learn

the location of the desired point as efficiently as possible.

This framework can be adapted to solving variants of one dimensional deter-

ministic search, which includes work such as developing query strategies asso-

ciated with parallel function evaluations, or analyzing a bisection-like method

that sorts the roots of functions that must be evaluated together.

Most significantly, this idea is used in multidimensional search in the appli-

cation of learning the preferences of a single user. In this case, the queries are

comparative questions, where multiple alternatives are presented to the user,

and they choose the most preferred option. The preferences of the user are en-

coded in a linear classifier, where the user’s utility for an alternative roughly

corresponds to the dot product between this classifier and a feature vector. The



response model enables answers to be contaminated by probabilistic noise, al-

lowing the analysis of responses that break mathematical principles such as

transitivity. The objective is to minimize the expected posterior loss of this clas-

sifier by adaptively and sequentially selecting the best subset of alternatives to

present to the user. We consider multiple forms of loss, most notably includ-

ing posterior entropy, and provide results characterizing these best subsets. We

develop theory yielding tight bounds for measures of loss under the optimal

policy, show how computationally tractable algorithms can be implemented,

and analyze these policies in two unique computational scenarios.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The problem of deterministic search is fundamental to the field of optimization,

as solving a constrained continuous optimization problem is equivalent to find-

ing a feasible point in a particular level set. For example, given some constraint

set D ⊂ Rd, minimizing a function f : Rd → R to tolerance ε is equivalent to

finding some x̄ ∈ L(D, ε), where

Lf (D, ε) =

{
x ∈ D : f(x)− inf

z∈D
f(z) ≤ ε

}
(1.1)

corresponds to an ε level set of f . This optimization approach requires an or-

acle that separates non-optimal and non-feasible points from the rest. In the

paradigm of convex optimization, Lf (D, ·) is a convex set, and therefore, a sub-

gradient vector provides a separating hyperplane that allows one to exclude a

halfspace from the search. This directly translates into cutting plane methods

that are fundamental to complexity theory such as the center of gravity method

and the ellipsoidal method (see Nemirovskii, Yudin, and Dawson 1983, for a

comprehensive review).

One of the simplest examples of these kinds of algorithms is deterministic

bisection search, used to find the zero of a one-dimensional monotonic function.

At iteration n, an interval [an, bn) containing the desired point x∗ is maintained,

and the function is evaluated at midpoint of this interval. Depending on the

sign of the result, one can find the subinterval containing the desired point. The

routine is repeated with this subinterval, while the other is eliminated from the
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search.

Bisection can be interpreted as a sequential, Bayesian optimal learning al-

gorithm, where the location of the optimal solution X∗ is treated as a random

variable that is distributed uniformly on the interval [an, bn). From this interval,

a query xn+1 is selected, one finds a new interval [An+1, Bn+1) that depends on

the outcome of this query. Here,An+1 andBn+1 are respectively the left and right

endpoints of the next subinterval. These are X∗-measurable random variables

that also depend on the query xn+1. Specifically,

[An+1, Bn+1) =





[an, xn+1) xn+1 > X∗

[xn+1, bn) xn+1 ≤ X∗.

(1.2)

For a given loss function ` that measures dispersion of this interval, the objective

is to minimize expected loss by adaptively choosing optimal queries at every

iteration, or in mathematical terms,

min
xn+1∈[an,bn)

En
[
` [An+1, Bn+1)

]
, (1.3)

where the expectation is taken with respect to a uniform distribution on the cur-

rent interval [an, bn). In cases where the loss function ` is convex with respect to

interval length, the expected loss becomes a symmetric, convex function in xn+1

over the interval [an, bn), and therefore, an optimal query point lies at the mid-

point of that interval, justifying bisection method from a Bayes-optimal point of

view.

The interval at each time epoch represents the current knowledge of the lo-

cation of the desired point. This notion of knowledge can be generalized even

further. One can envision a prior distribution pn over the interval [an, bn) that

encodes where the point is more or less likely to be located. For the ordinary
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bisection method, this prior is uniform over the entire length of the subinterval,

but in many applications, there can be circumstances for believing the value of

X∗ is not uniformly distributed a priori. In the case of deterministic search, the

likelihood function gn+1 can be one of two different indicator functions,

gn+1(t) =





I(t < xn+1) xn+1 > X∗

I(t ≥ xn+1) xn+1 ≤ X∗,

(1.4)

depending on the result of query xn+1. The posterior is then updated, defining

pn+1 ∝ pn · gn+1. Since gn+1 is X∗-measurable, so is the posterior pn+1. The loss

function ` now becomes an operator on probability distributions that returns a

measure of dispersion, and the goal is to minimize the expected dispersion of

the posterior distribution pn+1, choosing the query to satisfy

inf
xn+1∈supp(pn)

En
[
` (pn+1)

]
. (1.5)

where the expectation is taken with respect to prior pn, and query xn+1 ∈

supp(pn) is chosen to be a value in the support of distribution pn.

The performance of such policies depends on maximizing the amount of in-

formation content of each query, which strongly depends on problem variants

such as the set of feasible queries and the observation model. In full generality,

there are many variants of such search problems that greatly affect the struc-

ture of such optimal policies. One can envision a scenario where query out-

comes are contaminated by noise and non-deterministic. The approach would

be nearly identical to (1.5), except the structure of likelihood gn+1 would be more

complex. For instance, Waeber (2013) tackles a stochastic root-finding problem

where noise does not vary within subintervals, implying that gn is piecewise

constant. Search problems are also common in multidimensional spaces, aris-

ing in areas such as pattern recognition (Huo, Chan, and Lee 1995; Bruzzone

3



and Prieto 2002; Jedynak, Frazier, Sznitman, et al. 2012), experimental design

(Thall, Simon, and Estey 1995; Kontsevich and Tyler 1999; Chevret 2012), de-

cision theory (Weitzman 1979; Cooper, Subramanian, and Torczon 2001), and

preference elicitation (Houlsby et al. 2011; Yu, Goos, and Vandebroek 2012).

This thesis focuses on several search problems, showing structural results

and deriving Bayes-optimal policies under various loss functions for these dif-

ferent scenarios. In particular, the work in this thesis falls under two vari-

ations of such search problems. Chapters 2 & 3 focus on variants of one-

dimensional root-finding problems, whereas Chapters 4 & 5 study a multidi-

mensional stochastic search problem applied to learning the preferences of a

single user. Although these problems stem from similar ideas, they are different

enough that the notation used for each problem is distinct.

1.2 Variants of One-Dimensional Search

The first half of the thesis focuses on two problems tackling one-dimensional bi-

section search with more complex query mechanisms. In Chapter 2, we consider

a variant of bisection where multiple queries can be made at once and queries

require time to evaluate. Evaluating multiple queries at once splits a given in-

terval into many subintervals, hence the name multisection. The objective in this

scenario is to find a policy that jointly and adaptively assigns queries to learn

the root of a monotonic function as efficiently as possible.

To study this, we formulate the query allocation problem as a dynamic pro-

gram, where the objective is to minimize the expected loss of the containing

interval at a random stopping time, which models the importance of computa-
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tional budget. We consider convex loss functions that model various degrees of

risk aversion.

When query computation times are deterministic and equal for all possible

points, we show the optimal policy is to split the interval into equal subinter-

vals, always reducing length by a constant factor, regardless of computational

budget and risk aversion.

However, this policy is not necessarily optimal when the computation times

are i.i.d. random quantities. Because the outcome of certain queries become

known before that of others, the value of information of unfinished queries can

instantly change. This interjects enough uncertainty in the flow of information

that risk aversion and computational budget become a significant factor. If com-

putational budget is low or risk aversion is high, optimal policies tend to place

new queries closer to the midpoint of the current interval, regardless of the lo-

cations of other queries. On the other hand, if the computational budget is large

or if risk aversion is low, then new queries tend to be placed more strategically

so that the information value of any query is not affected by any other queries

that complete beforehand.

The most pronounced case of this are policies that make query allocations to

use a minimal number of computational states, implying that information flow

is relatively constant. We call these self-similar policies. Among the most notable

of these is the Golden Section policy, named for an algorithm that makes use of

the same type of query allocation. Given the ability to make two queries at once,

it uses the golden ratio to place queries such that the same query allocation can

always be made, regardless of whichever query finishes first. We show that

self-similar policies are optimal under risk-neutrality, and conjecture that they

5



are optimal under risk-aversion when the computational budget is sufficiently

large.

Chapter 3 considers a different kind of one-dimensional search problem. In

this scenario, there are multiple monotonically increasing functions defined on

the interval [0, 1) with corresponding zeros. These functions are “coupled” in

that they must be evaluated simultaneously for a given argument. Most no-

tably, this problem setting manifests with the computation optimal Gittens and

Whittle index policies when solving bandit problems. The zeros correspond

to optimal Lagrange multipliers for the value function evaluated at n different

states, and the value function must be evaluated for all n states at once for a sin-

gle multiplier. Ordinarily, if the goal were to find n roots to a tolerance of ε, this

would take n log2 1/ε function evaluations. However, the objective is find the

correct ordering of the corresponding roots, and this can be done in substantially

less time.

The routine can be described as follows: given an interval with n unsorted

roots, query a point within the interval to split the interval into two smaller

subintervals. Each of these subintervals will contain a proportion of the n roots.

If a subinterval contains at most one root, it is fully sorted and no further action

is required. Otherwise, recursively run the routine on all subintervals that con-

tain unsorted roots. Since each subinterval is sorted with respect to the other

subintervals, it is only necessary for each root to be contained within its own

subinterval to derive a total ordering.

The objective is to find a querying policy that minimizes the expected num-

ber of evaluations needed to find a complete ordering of the roots. We derive

structural results to show that the querying policy only depends on the number

6



of unsorted roots within a given interval, and it is only necessary to consider

the original case where all n roots are contained within a single interval.

To model this, the roots are modeled to be i.i.d. uniformly on the unit inter-

val. Under these assumptions, the problem of choosing a querying strategy can

be represented as a one-dimensional dynamic program, which can be solved

numerically. The most notable result is that the bisection policy is not optimal,

and in fact, there are instances where querying away from the midpoint leads

to a slightly faster expected computational time. Nonetheless, we show that

the bisection policy achieves a linear time complexity with respect to the num-

ber of zeros, which is optimal, and the rate is almost indistinguishably close to

optimal. This bisection routine sorts these n roots with an expected 1.44n func-

tion evaluations, which is much more efficient than splitting the interval into an

ε-grid.

1.3 Multidimensional Search for Preference Learning

The latter half of the thesis considers a different kind of search problem. Chap-

ters 4 & 5 focus on learning a user’s preferences. The type of queries we consider

are comparative questions in which the user is presented with a set of alterna-

tives and is asked to choose the most preferred option. The objective is to adap-

tively select the subset of alternatives at every step to maximize the amount of

information learned about a user’s preferences.

We model a user’s choice model using a linear classifier θ ∈ Rd. Each alter-

native has a corresponding feature vector in Rd that encapsulates all the distin-

guishing properties. Roughly speaking, the model predicts a user to prefer al-
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ternative A over alternative B if θTxA ≥ θTxB. Therefore, when we pose queries

to the user, their response implies a set of linear inequalities satisfied by their

linear classifier. Through these sequential queries, we seek to learn a user’s lin-

ear classifier θ as efficiently as possible.

Unlike the previous search problems studied in this thesis, the search of θ

takes place on a higher dimensional space, which presents its own set of chal-

lenges. Halfspaces in one dimension can only take two directions: facing to-

wards positive infinity or facing towards negative infinity. However, in Rd

space, halfspaces can take any number of directions on a (d − 1)-dimensional

sphere. Now when considering separation oracles, the direction of the separat-

ing hyperplane has a critical effect on the amount of partitioned mass on each

side. This is often a challenge in cutting plane methods for higher dimensional

convex optimization, where the direction of the gradient is unknown a priori.

In this setting, however, the hyperplanes always pass through the origin, and

we are tasked with choosing the alternatives that imply a specific direction, pre-

senting us with a geometrically interesting yet manageable problem.

Another complication is human behavior: there are times when one’s re-

sponses to preferential questions contradict, or otherwise violate mathematical

principles such as transitivity. Any reasonable choice model needs to be able to

handle these occurrences. One way to do this is to introduce probabilistic un-

certainty into the model. Our approach involves sending the model-consistent

response through a noise channel, and only this perturbed response is observed.

In other words, conditioned on the alternative with the highest dot product with

respect to the user’s linear classifier, the observed response is chosen according

to a fixed probability distribution. This allows us to handle responses that con-
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tradict themselves according to the model.

To accommodate this, we take an approach similar to (1.5) by maintaining a

prior distribution for linear classifier θ and update it after every user response.

The loss function we largely focus on throughout the Chapters 4 & 5 is differ-

ential entropy, which generalizes the concepts behind cutting plane methods.

Differential entropy of the prior density pn is defined as

H (pn) = En [− log2 pn(θ)] . (1.6)

When the distribution is uniform on a compact set, the corresponding differ-

ential entropy is equal to the logarithm of the set’s volume. Thus, learning the

linear classifier θ amounts to asking comparative questions that cuts the most

probabilistic mass at every step. Another benefit of using entropy as a mea-

sure of loss is the massive foundation supporting it called information theory (see

Cover 1991, for a comprehensive review) that can be used to derive structure

for optimal querying policies and other useful results.

Taking this approach, we apply fundamental results in information theory to

find how to choose the sets of alternatives. The optimal querying policy strongly

depends on the noise channel. One common instance is when a noise channel

does not take the order of alternatives into account, which is referred to as a

symmetric noise channel. In the case of a symmetric noise channel, an optimal

policy involves selecting alternatives that the user is equally likely to select a pri-

ori. This result is reminiscent of classic bisection method, but our result handles

more complicated noise channels as well. In all such cases, there is a specific

predictive distribution for user responses that maximizes differential entropy

reduction. Finding this predictive distribution only involves solving one con-

cave maximization problem, with dimensionality equal to the desired cardinal-

9



ity of the offered subset. Further, we show that the optimal entropy reduction

policy is a greedy one. This policy is referred to as entropy pursuit. We provide

a tight linear lower bound for entropy with respect to the number of questions

asked.

The remaining difficulty lies in selecting the correct subset of alternatives

that induces the optimal predictive distribution. In reality, the set of alterna-

tives is finite but massive, and finding such a subset is very much a combinato-

rial and arduous problem. We show that presenting a subset with a predictive

distribution approximately equal to optimal results in an approximately opti-

mal decrease in entropy. Thus, it is possible to use subsampling to find a query

that is sufficiently close to optimal. In the continuum case, where the set of al-

ternatives has a non-empty interior, we show it is possible to construct a query

with the desired predictive distribution, so long as the predictive distribution is

reasonably diffuse relative to the prior density. A corollary is that the entropy

pursuit policy achieves the optimal rate for a symmetric noise channel in the

continuum case, and otherwise reduces entropy in a linear fashion, albeit with

a non-optimal rate.

For all the benefits of using differential entropy as a measure of loss, the met-

ric itself is difficult to interpret. We present another metric to compare against

called misclassification error. After asking the user a number of comparative

queries, we then are presented with a question ourselves, and the goal is to min-

imize the probability of answering incorrectly. Even though this metric is easier

to interpret, finding the optimal querying policy to minimize the expected loss

is intractable. Instead, we compare the optimal entropy reduction policy with a

greedy one-step knowledge gradient policy that selects queries as if an assessment

10



question was posed immediately after. This one-step policy is still much more

expensive to compute than entropy pursuit because it requires comparing ques-

tions against other questions in a combinatorial fashion. Nevertheless, we show

that a linear function of differential entropy bounds the misclassification error

from below. Further, we prove minimizing misclassification error is equivalent

to minimizing a penalized version of differential entropy.

While Chapter 4 explores the theory behind different query policies, Chap-

ter 5 studies the implementation of necessary components for finding approx-

imate policies and evaluating their effectiveness. The first section delves into

sampling from the posterior distributions generated by the previously defined

noise model. We use a geometrically-inspired sampler called hit-and-run, and

show exactly how it can be used to sample from mixed Normal priors updated

with weighted piecewise uniform likelihoods. We then explore ways in which a

sampler can be warm-started by leveraging the statistical properties of a similar

sampler. This process is called “hot starting,” and we apply it to when the poste-

rior is updated and when the noise parameters of the posterior are adjusted. We

then focus on two computational examples. The first example uses academic

papers as real alternatives, but otherwise simulates user responses. In this sce-

nario, we show entropy pursuit performs similarly to its misclassification error

counterpart, even before considering the computational cost of both policies.

The second scenario uses historical user interaction with lists of academic pa-

pers. Although we are not free to adaptively query the user, we attempt to

passively learn the linear classifiers of tens of thousands of users and the noise

channel parameters simultaneously using a Gibbs sampler. We show that the

predictive power in this scenario is moderate at best, but pose that further in-

vestigation is needed to find if using fully adaptive query strategies under this

11



model can work well in real applications.
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CHAPTER 2

MULTISECTION: PARALLELIZED BISECTION

Abstract

We consider a one-dimensional bisection method for finding the zero of a func-

tion, where function evaluations can be performed asynchronously in a par-

allel computing environment. Using dynamic programming, we characterize

the Bayes-optimal policy for sequentially choosing points at which to query the

function. In choosing these points, we face a trade-off between aggressively re-

ducing the search space in the short term, and maintaining a desirable spread

of queries in the long-term. Our results provide insight on how this trade-off

is affected by function evaluation times, risk preferences, and computational

budget.

2.1 Introduction

Parallel computing platforms are now ubiquitous, no longer being restricted

to the high-performance computing environments used for massive-scale com-

putation. Platforms that are broadly accessible include cloud computing, local

computer clusters, and personal computers containing multicore processors.

These platforms have the potential to allow us to more rapidly solve existing

formulations of optimization problems, or to solve much larger, in the sense of

computational requirements, formulations, provided that we can devise algo-

rithms that appropriately exploit parallelism.
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Perhaps the simplest optimization problem is to find the zero (assumed to

exist and be unique) of a continuous function f that is positive to the right of

the root and negative to the left of the root on the interval (0, 1), where f is

known only through a computational procedure that returns f(x) when queried

at x ∈ (0, 1). This problem can be viewed as an optimization problem since f

can be interpreted as the derivative of a smooth unimodal function that attains

its minimum in (0, 1). We minimize that unimodal function by seeking a zero

of its derivative. Even for this problem it is not clear how to exploit parallel

computing, and thus this problem is our starting point and the subject of this

chapter.

A natural sequential approach for solving root-finding problems of such

functions is bisection, in which an interval containing the root is successively

reduced through evaluations of the function at the midpoint of the interval.

When multiple cores are available to compute f , we might generalize bisection

in such a way that we evaluate the function at multiple points simultaneously.

At which points should we evaluate the function in order to rapidly reduce the

interval in which we know the root lies? Throughout this chapter we assume an

idealized model of communication, whereby all information is available to all

processors.

We use dynamic programming, in which the state of the dynamic program

encapsulates the interval in which the root is known to lie and the points that

are still being evaluated by cores, to attempt to identify optimal policies. The

dynamic program uses a reward function that is a function of the width of the

smallest interval we are certain contains the root. The dynamic program only

uses the sign of the function values, rather than the values themselves, which
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keeps the calculations tractable. While using the function values themselves

makes sense from an intuitive standpoint, we do not know how to formulate

and solve a tractable dynamic program in that setting.

First suppose that the time required to perform a function evaluation f(x) is

deterministic and does not depend on x. This abstraction seems reasonable if

the time to complete a function evaluation is not too variable, and leads one to

consider algorithms that are, in some sense, synchronous, in that the cores op-

erate iteratively, where the next iteration is not initiated until all cores complete

processing from the current iteration. In this setting, with n cores, it is perhaps

natural to evaluate the function at n equally spaced x values in the interior of

the interval. Since all cores complete processing simultaneously, the interval is

reduced at each stage by a factor of (n + 1)−1. This indeed turns out to be op-

timal when the root is initially assumed to be equally likely to be anywhere in

the interval, as we assume throughout this chapter.

In general, function evaluation times may depend on x and may be random.

We do not address the former issue in this chapter, which admittedly limits the

scope of our analysis, but with good reason; identifying the optimal locations at

which to evaluate a function would likely be very difficult if the time to compute

f(x) varies in some complicated manner with x. However, we do address the

latter issue.

When processing times are random, cores do not necessarily complete pro-

cessing at the same time, and one is naturally drawn to algorithms that are

asynchronous, in that they do not proceed in lockstep as with synchronous al-

gorithms. When one core reports a function value, it enables us to reduce the

interval in which the root is contained, and this will render function evalua-
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tions proceeding at some of the other cores redundant. This makes the question

of where to evaluate the function so as to rapidly reduce the interval a highly

nontrivial one. We make the additional assumption that processing times are in-

dependent and identically exponentially distributed, which makes the analysis

tractable.

The “memoryless” property of the exponential distribution ensures that the

residual processing-time distribution is unchanged if we re-assign cores to dif-

ferent x values before they complete processing, so that nothing is lost in doing

so. Furthermore, the minimum of independent exponential random variables is

also exponential with a reduced mean, so one can obtain solutions more rapidly

by “stacking” cores on a single x value. These properties are very special, and

so while we do briefly consider them as being approximations of reality when

processing times are extremely variable, as might arise in a cloud-computing

environment where cores are shared by other users that are not visible to us, the

main part of our analysis does not exploit them.

Our main findings in the random-processing-time context are two-fold.

• If stacking is not allowed, and one has only two cores available, then a

policy that is similar to golden-section search is optimal under a specific

risk-neutral reward function, and is close to optimal for others.

• When stacking is allowed, then for all risk preferences and computational

budgets, it is always optimal to stack queries at the midpoint of the inter-

val.

When we parallelize bisection, as in the present chapter, multiple points are

simultaneously evaluated. Accordingly, the term “multisection” seems appro-
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priate as a descriptor of algorithms like those considered here, hence the title of

the chapter. We henceforth refer to parallelized bisection algorithms as “multi-

section algorithms” and the associated problem in deciding where to query the

function as the “multisection problem.”

The remainder of this chapter is organized as follows. In Section 2.2 we de-

fine a stochastic process that tracks the progress of multisection. In Section 2.3

we introduce a dynamic programming recursion that allows us to character-

ize some important properties of an optimal policy. Section 2.4 computes the

optimal policy when processing times are deterministic and equal on all cores.

Section 2.5 develops our primary results for random processing times in both

the “no-stacking” case and the case where stacking is permitted.

2.2 Problem Specification

We model the allocation problem using dynamic programming and Bayesian

statistics. A priori, we take the root X∗ ∼ Unif(0, 1). Observing the value of

the function f at points within (0, 1) allows us to localize X∗ more precisely.

We keep track of the smallest interval in which X∗ is known to reside, and those

m ≤ n points within this interval currently being evaluated, through an ordered

tuple of real numbers S = (S(0), S(1), . . . , S(m), S(m+1)). (See Section 2.5.2 for an

example.) In this tuple, the first and last values, S(0) and S(m+1), describe the

smallest interval [S(0), S(m+1)] in which X∗ is currently known to reside, and

S(1), . . . , S(m) are points at which we are currently evaluating f . Without loss

of generality, we assume S(k) ≤ S(k+1). We construct a dynamic program, and

a tuple of this form will be our state variable. When m, the number of points
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currently being evaluated, is strictly less than n, the number of available cores,

this tuple or state indicates that we may assign idle cores to evaluate f at new

points. We call such states “incomplete states.” The set of incomplete states is

contained in the set

S = {(s0, s1, . . . , sm, sm+1) : 0 ≤ m ≤ n, sk ≤ sk+1 for 0 ≤ k ≤ m} .

We track the state variable over time. While our problem is a continuous-

time problem, the state variable only changes at moments in time when a core

finishes a function evaluation. These are also the moments in time when we

make decisions about how to allocate newly idle cores to new points. We index

this discrete set of decision epochs by j, and indicate the (pre-decision) state

variable at the beginning of the jth epoch, before any idle cores are re-allocated,

by Sj = (S
(0)
j , . . . , S

(mj+1)
j ), where mj is the number of active cores at the be-

ginning of the jth decision epoch. We respectively denote the left and right

endpoints of the search interval Sj as Aj = min(Sj) and Bj = max(Sj).

Let the time at which the jth decision epoch occurs be σ(j) ≥ 0. The first

decision epoch is indexed by j = 0, and starts at time σ(0) = 0. The state variable

at this moment in time is S0. Typically we consider the case S0 = (0, 1), but we

also consider other values for S0 in a dynamic program constructed below. At

each decision epoch j, we make a decision about how to allocate our idle cores

according to some decision rule or policy.

Mathematically, we define a policy π to be a function π : S → X(S)

that maps states to actions, where the action is an ordered tuple X =

(x0, x1, · · · , xn, xn+1) ∈ S of the same form as the state variable, which assigns all

n cores to evaluate f(x1), . . . , f(xn). We require that this action assign all n cores,

leave unchanged those cores that are still actively performing function evalua-
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tions, and not alter the interval in which X∗ is known to reside. To achieve this,

we define the space of allowed actions for a given state variable (also called the

“action space”) as

X(S) =





(x0, x1, . . . , xn, xn+1) :
X ⊇ S, xk ≤ xk+1 for 0 ≤ k ≤ n

x0 = min(S), xn+1 = max(S)




. (2.1)

The set of allowed actions at the first decision epoch is X(S0). The constraint

X ⊇ S ensures that we do not disturb active function evaluations. The con-

straints x0 = min(S) and xn+1 = max(S) ensure that we leave unchanged the

smallest known interval containing X∗. Changing this interval requires observ-

ing the results from function evaluations.

At this first decision epoch, we also draw, for each newly assigned core i =

1, . . . , n, an independent random variable δ(i)
0 ∼ F , where F is some known

probability distribution with support on (0,∞). The random variable δ(i)
0 is the

wall-clock time at which the job just started on core i will complete. We let

δ0 = (δ
(1)
0 , . . . , δ

(n)
0 ). Our model allows early termination when the point being

evaluated is eliminated from the interval containing the root by another newly

completed function evaluation, and so function evaluations do not always run

for the full time period δ
(i)
0 . In this chapter, we consider two possibilities: either

F takes a single value with probability one, or F is an exponential distribution.

Given these times, the first time at which a function evaluation will com-

plete is σ(1) = mini δ
(i)
0 . Over the time period (0, σ(1)), the state of the cores is

described by π(S0). Let Q1 = arg mini=1,...,n δ
(i)
1 be the jobs that complete at time

σ(1). More than one job may finish at a time. We observe function values for

all points (S
(i)
0 : i ∈ Q1). These cores become momentarily idle, and the new

observations of f reduce the interval in which X∗ is known to reside, and may
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also eliminate some points not inQ1 that are actively being evaluated. This then

produces a new incomplete state variable, which we call S1. Below we describe

the conditional distribution of S1 given π(S0) and Q1. We then choose the next

action using our policy, evaluating the points implied by π(S1).

We proceed iteratively in this fashion, constructing a sequence of random

variables (Sj, δj, σ(j) : j = 0, 1, . . .). At each decision epoch j = 1, 2, . . ., let

Qj = arg mini=1,...,n δ
(i)
j−1 be the jobs that complete at the beginning of this deci-

sion epoch, and let σ(j) = mini=1,...,n δ
(i)
j−1 be the wall-clock time at which this

decision epoch occurs. At the beginning of this decision epoch, we draw Sj

from its conditional distribution given Sj−1 and Qj , as described below. We

then choose an action π(Sj) that allocates all newly idle cores. For those cores

that are still performing a previous function evaluation, we set δ(i)
j to the previ-

ous value, which is δ(i′)
j−1 for some i′. However, if a core is newly allocated, then

we generate a new iid processing time for the new function evaluation, drawing

δ
(i)
j such that δ(i)

j − σ(j) ∼ F .

In this way, each policy implies a probability distribution P π over the se-

quence of random variables (Sj, δj, σ(j) : j = 0, 1, 2, . . .). Let Eπ be the expecta-

tion operator corresponding to this probability distribution. Define the policy

space Π to contain all policies π : S 7→ X(S) satisfying π(S) ∈ X(S) for all S ∈ S.

We show later that it suffices to define a policy on a much smaller domain.

The state variable does not change between decision epochs, taking the value

Xj = π(Sj) in the time interval (σ(j), σ(j + 1)).

We now describe the conditional distribution of Sj under Pπ given Sj−1 and

Qj . For each core i ∈ Qj that finishes at the beginning of the jth epoch, we
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observe f
(
X

(i)
j−1

)
. From the sign of this function value, we infer whether X∗ ≤

X
(i)
j−1 or X∗ > X

(i)
j−1. We use this information to update the search interval and

make it as small as possible. Accordingly, let

Lj =
{
i ∈ Qj : X∗ ≥ X

(i)
j−1

}
and Uj =

{
i ∈ Qj : X∗ ≤ X

(i)
j−1

}
. (2.2)

For each core i ∈ Lj , the results from the most recent function evaluations tell

us that X∗ ≥ X
(i)
j−1. Let `j be largest such index, i.e., let `j = maxLj if Lj is

nonempty, and otherwise set `j = 0. Likewise, set uj = minUj if Uj is nonempty,

and otherwise set uj = n+ 1.

We terminate a function evaluation at a point X(i)
j−1 that has not finished be-

fore decision epoch j if the point is cut off by some point in Qj , i.e., if i < `j

or i > uj . Any other jobs that have not yet completed will be allowed to run

until at least the next epoch. The state Sj is then a tuple describing the new

interval in which X∗ is known to reside, and the jobs that are still running at

time σ(j). Formally, Sj = (X
(i)
j−1 : i = `j, . . . , uj). The updated search interval is

[Aj, Bj] = [minSj,maxSj].

Conditioning on which jobs complete at decision epoch j, we can find the

probability of certain outcomes for (Aj, Bj) using the uniform prior on X∗.

Given Qj and Xj−1, (Aj, Bj) is conditionally independent of Sk and δk for all

k < j, and

P
(

(Aj, Bj) =
(
Q

(i−1)
j , Q

(i)
j

) ∣∣∣ Qj, Xj−1

)
=
Q

(i)
j −Q(i−1)

j

Bj−1 − Aj−1

.

We now define a reward function R : S → R that measures progress in

reducing the interval. For any state Sj , let ‖Sj‖ = Bj − Aj be the length of the

search interval. We choose the reward function R(S) = ‖S‖−r, where r ∈ (0, 1].

The parameter r controls our risk preference. As r → 0 we become more risk
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averse, because there is less gain for making the interval smaller. Choosing r = 1

minimizes risk aversion.

We choose a time horizon T , and seek to make decisions so that the reward

function applied to the state at time T is large. Conceptually, one could use a

fixed value for T , or allow T to be a random variable, modeling the situation

in which one is uncertain when starting a computation about how long we will

run it before asking it to produce an answer. For tractability, we assume that T

is exponentially distributed with rate parameter α, independent of all else.

Let τ = sup {j : T ≥ σ(j)} so that the random time T falls in the interval

[σ(τ), σ(τ + 1)). Then the interval to which X∗ has been localized at time T is

[Aτ , Bτ ], which has associated reward R(Sτ ).

The value, i.e., expected reward, attained by policy π ∈ Π is V π = Eπ R(Sτ ).

We want to find a policy that maximizes the expected reward. Let

V = sup
π∈Π

V π. (2.3)

An optimal policy is any policy π that attains the supremum in (2.3). An ε-optimal

policy is any policy π such that V π ≥ V − ε for some given ε > 0.

2.2.1 Deterministic and Equal Waiting Times for Queries

We first assume that it takes a deterministic and constant time to evaluate the

function at any point in [0, 1]. That is, F represents a point mass at some C >

0. This assumption is reasonable when the variability of computation times is

small. The wait time is independent of where the function is being evaluated,

which may not reflect reality, but makes the model more tractable. Because
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every task takes the same amount of time to complete, Qj = {1, . . . , n} for all j,

and hence all n cores are reallocated at each decision point and σ(j)−σ(j−1) =

C for all j. This predictability makes the state space smaller and the optimal

allocation easier to identify. The deterministic case will serve as a benchmark

for the exponential case.

2.2.2 Exponential Waiting Times for Queries

What is the effect of variability of function evalution times on the optimal al-

location of points? We model this variability by assuming the evalution-time

distribution F is exponential with rate λ. The choice of exponential evaluation

times is a computational convenience that admits evaluation uncertainty while

retaining tractability. Since there is probability zero of any two independent

exponential random variables taking the same value, Qj is a singleton with

probability one. The memoryless property of the exponential distribution en-

sures that for every j and for every i = 1, . . . , n, the residual processing time

δ
(i)
j − σ(j) ∼ exponential(λ), independent of all past history. Therefore, it is

equally likely for any job to finish first, so that P(Qj = {i}) = n−1 for every i. In

addition, σ(j + 1)− σ(j) is exponentially distributed with rate nλ.
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2.3 Desirable Properties of the Value Function

2.3.1 Value Function Recursion

The problem (2.3) is a stochastic control problem, and we study it using dynamic

programming. We first show that under the assumptions of Section 2.2.1 or

2.2.2, the problem is an infinite-horizon discrete-time Markov decision process.

Under either assumption the stopping index τ has a geometric distribution with

P (τ = j) = (1 − γ)γj for j ≥ 0, where γ can be easily computed. Indeed, when

processing times are deterministically equal to C > 0, γ = e−αC , and when

they are exponentially distributed, γ = nλ/(α + nλ). Using the fact that τ is

independent of Sj, S0, it can be shown that for any policy π,

V π(S) = (1− γ)Eπ
[
∞∑

j=0

γjR(Sj) | S0 = S

]
.

Thus, except for a constant factor of 1− γ, solving (2.3) is equivalent to solv-

ing the infinite-horizon discrete-time discounted-cost Markov decision process

supπ Eπ
[∑∞

j=0 γ
jR(Sj) | S0 = S

]
. This Markov decision process is over the time-

homogeneous controlled Markov process (Sj : j = 0, 1, 2, . . .), which evolves in-

dependently of (δj : j = 0, 1, 2, . . .) under the assumptions of either Section 2.2.1

or Section 2.2.2.

Define the value function V (S) = supπ V
π(S). Under the conditions of Theo-

rem 2.3.1 below, standard results in dynamic programming (Hernández-Lerma

and Lasserre 1996, p. 46) show that

V (S) = (1− γ)R(S) + γ

(
max
X∈X(S)

E [V (S1) | X0 = X,S0 = S]

)
. (2.4)

26



2.3.2 Scaling and Shifting Made Easy

Intuition tells us that there should be a relationship between states that are either

scaled or shifted. This would greatly reduce the size of the state space. For

notational convenience, for any h, c ∈ R, let (hS + c)(i) = hS(i) + c for every i.

Recall that R(S) = ‖S‖−r for r ∈ (0, 1]. Then one can verify that R(aS + b) =

a−rR(S). This property extends to the value function, as follows.

Theorem 2.3.1. Suppose that R(S) = ‖S‖−r for r ∈ (0, 1]. For c, h ∈ R with h > 0,

the value function V has the following properties:

1. Shift Invariance: V (S + c) = V (S)

2. Inverse Scaling: V (hS) = h−r V (S)

Proof. We show the result by induction. For a function f : S → R, the Bellman

operator T is given by

T f(·) = (1− γ)R(·) + γ

(
max
X∈X(·)

E [ f(Sj+1) | Sj = · , Xj = X]

)
.

We claim that the result holds for T (k) R for all k ∈ N. As a base-case, con-

sider k = 0. We let T (0)R(·) = R, so the result holds trivially. Now assume

T (k) R has the above properties, and let S̄ = hS + c, X̄ = hX + c.

T (T (k) R(S̄)) = (1− γ)R(S̄) + γ

(
max
X̄∈X(S̄)

E
[
T (k)R(Sj+1) | Sj = S̄ , Xj = X̄

])
.
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The transition kernel itself is shift and scale invariant. That is, P(Sj+1 = S ′ |Sj =

S, X) = P(Sj+1 = hS ′ + c |Sj = hS + c, hX + c). Therefore, for any measurable

function g, we have E[g(Sj+1) |Sj = S, Xj = X] = E[g(hSj+1 + c) |Sj = S̄, Xj =

X̄]. We can rewrite the expectation using the process (Sj : j ∈ N). Using the

induction hypothesis, we see

T (T (k) R(S̄)) = (1− γ)R(hS + c) + γ

(
max
X∈X(S)

E
[
T (k)R(hSj+1 + c) | Sj = S , Xj = X

])

T (k+1)R(S̄) = h−r (1− γ)R(S) + h−rγ

(
max
X∈X(S)

E
[
T (k)R(Sj+1) | Sj = S , Xj = X

])
,

i.e., that T (k+1)R(S̄) = h−r T (k+1)R(S). Therefore, we have proved that the result

holds for T (k)R, for all k. We now wish to assert limk→∞ T
(k)R(S) = V (S) for

all S ∈ S. According to Hernández-Lerma and Lasserre (1996, p. 46), this holds

under the following three conditions.

• The action space is compact: As we defined it, the action space X(S) for ev-

ery S is a bounded subset of Rn+2 that is the intersection of a finite number

of closed halfspaces; see (2.1).

• The reward R is lower semi-continuous and non-negative: We have

R(Sj) = [Bj −Aj]−r, and if we define R(Sj) =∞ for states where Aj = Bj ,

then the inverse image of every open set of rewards is an open set of states,

which is exactly the definition of lower semi-continuity. Hence, R is lower

semi-continuous on a compact set.

• The transition kernel is continuous: The construction in Section 2.2 ensures

this, although a full verification is cumbersome and thus omitted.

Therefore, T (k)R → V pointwise as k → ∞. Moreover, for any state S and

parameters h, c, there existsK1 andK2 such that for all k ≥ K1, we have |V (S)−
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T kR(S)| ≤ ε, and for all k ≥ K2, we have |V (hS + c)− T kR(hS + c)| ≤ ε. So for

all k ≥ max{K1, K2},

ε ≥ |V (hS + c)− T (k)R(hS + c)|

= |V (hS + c)− h−r V (S) + h−rV (S)− h−r T (k)R(S)|

≥ |V (hS + c)− h−r V (S)| − h−rε,

which shows that the value function also has the desired properties.

2.3.3 Normalized Scaling and State Space Reduction

Corollary 2.3.2. For some state S ∈ S, let S̄ = S−S(0)

S(n+1)−S(0) so that S̄(0) = 0 and S̄(n+1)

= 1. Then from the previous theorem, we have

V (S) = V
(
(S(n+1) − S(0))S̄ + S(0)

)
=
(
S(n+1) − S(0)

)−r
V (S̄) = R(S)V (S̄)

The corollary demonstrates the structure embedded in the bisection algo-

rithm. From a theoretical standpoint, we can reduce our attention to all states

within the interval [0, 1]. This will help us identify the structure of optimal poli-

cies.

2.4 Optimal Policy Structure for Deterministic and

Equal Processing Times

Suppose that the evaluations take a deterministic amount of time to compute.

If we start the first batch of function evaluations simultaneously, then the jobs
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finish all at once, and all n points can be allocated. Using the recursion, we

can prove that an optimal allocation at every step is for the points to be equally

spaced in the interval.

Theorem 2.4.1. Suppose the function evaluations require a deterministic and equal

amount of time to compute. Let R(·) be defined as before, with r ∈ (0, 1). If X̃j =

(X̃
(0)
j , X̃

(1)
j , . . . , X̃

(n)
j , X̃

(n+1)
j ) is defined by

X̃
(i)
j = Aj +

i

n+ 1
(Bj − Aj) ,

then X̃ is an optimal allocation for S = (Aj, Bj), and this defines an optimal policy.

Proof. At decision epoch j we must allocate all n points because Qj = {1, . . . , n}

for all j ≥ 0 with probability 1. Thus, it is only necessary for the state to keep

track of the endpoints of the interval because there are no jobs that are left to

continue. For an allocationX to be optimal for incomplete state S, it must attain

the maximum in

max
X∈X(S)

EV (S) = max
X∈X(S)

n∑

i=0

(
X(i+1) −X(i)

X(n+1) −X(0)

)
V
(
(X(i), X(i+1))

)
.

Using the inverse scaling property,

max
X∈X(S)

EV (S) = max
X∈X(S)

n∑

i=0

X(i+1) −X(i)

‖S‖
(
X(i+1) −X(i)

)−r
V ((0, 1))

= ‖S‖−1 V ((0, 1)) max
X∈X(S)

n∑

i=0

(X(i+1) −X(i))1−r.

In this maximization, X ∈ X(S) implies we can choose S(0) = X(0) ≤ X(1) ≤

· · ·X(n) ≤ X(n+1) = S(n+1) arbitrarily, since no jobs are ongoing. Changing

variables to ui = X(i+1) − X(i) for i = 0, 1, . . . , n, the problem becomes that of

maximizing
∑n

i=0 u
1−r
i , subject to the constraints that

∑n
i=0 ui = ‖S‖ and ui ≥ 0
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for every i. This is a concave maximization problem with local, and therefore

global, minimum when u0 = u1 = · · · = un = ‖S‖(n + 1)−1, which corresponds

to X̃ . The maximum is unique when r ∈ (0, 1) since the objective function

is strictly concave. When r = 1, X̃ is still optimal, but it is not the uniquely

optimal solution. Lastly, iteratively choosing the optimal allocation X̃ for every

S yields an optimal policy Hernández-Lerma and Lasserre (1996, p. 46).

Hence equally-spaced allocation provides the optimal solution to the dy-

namic program for deterministic function evaluations. It is encouraging to see

a result that is consistent with the classical bisection method.

2.5 Optimal Policy Structure for I.I.D. Exponential Processing

Times

We now characterize optimal policies in the presence of exponentially dis-

tributed processing times. Function evaluations no longer finish simultane-

ously, so we must reallocate points without the information from jobs that are

still running.

2.5.1 A Simplified Recursion

Recall that each core i = 1, 2, . . . , n is equally likely to return a function value

at every decision point. If Core i returns with the information that X∗ > X(i),

then the resulting incomplete state is X(i)
+ = (X(i), X(i+1), . . . , X(n), X(n+1)). Oth-

erwise, if the process returns withX∗ < X(i), then the resulting incomplete state
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is X(i)
− = (X(0), X(1), . . . , X(i−1), X(i)). Therefore

P
(
Sj+1 = X

(i)
+

∣∣∣ Sj, Xj

)
=

(
1

n

)(
Bj −X(i)

j

Bj − Aj

)

and

P
(
Sj+1 = X

(i)
−

∣∣∣ Sj, Xj

)
=

(
1

n

)(
X

(i)
j − Aj
Bj − Aj

)
.

We can now analyze the dynamic programming recursion. Conditioning on the

action Xj ,

V (Sj) = (1− γ)R(Sj) + γ max
X∈X(Sj)

E[V (Sj+1) |Sj, Xj = X]

= (1− γ)R(Sj) + γ max
X∈X(Sj)

1

n

n∑

i=1

[(
X(i) − Aj
Bj − Aj

)
V (X

(i)
− ) +

(
Bj −X(i)

Bj − Aj

)
V (X

(i)
+ )

]
.

Now assume Sj is normalized, i.e., ‖Sj‖ = 1. We want to express V (Sj) in terms

of the value of other normalized states. Scaling and shifting, we find that

V (Sj) = (1− γ)(1) + γ max
X∈X(Sj)

1

n

n∑

i=1

[
X(i) V (X

(i)
− ) + (1−X(i))V (X

(i)
+ )
]

= (1− γ) + γ max
X∈X(St)

1

n

n∑

i=1

[
(X(i))1−r V (X̄

(i)
− ) + (1−X(i))1−r V (X̄

(i)
+ )
]
,

where X̄
(i)
+ and X̄

(i)
− are the respective normalized states for X

(i)
+ =

(X(i), . . . , X(n+1)) andX(i)
− = (X(0), . . . , X(i)). Now we can restrict the state space

to {S ∈ S : min(S) = 0, max(S) = 1}. In fact, for the rest of the chapter, we con-

sider only normalized states and allocations.

In addition to expressing the value function in terms of the current state, we

can also express it in terms of the actionX . One can viewX as the post-decision

state, andW (X), the expected downstream reward resulting from actionX , as a

so-called Q-factor or post-decision value function (Powell 2011, see). Formally,

we define W (X) as

W (X) =
1

n

n∑

i=1

(X(i))1−r V (X̄
(i)
− ) + (1−X(i))1−r V (X̄

(i)
+ ). (2.5)
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For z ∈ [0, 1], let β(z) = z1−r + (1 − z)1−r, with r ∈ (0, 1] defined as in

the reward function R.In an abuse of notation, for an allocation X , we define

β(X) = n−1
∑n

i=1 β(X(i)), and β((0, 1)) = 1. Using the original definition V , we

can write W as a recursion, yielding

W (X) = (1−γ)β(X)+
γ

n

n∑

i=1

(X(i))1−r

[
max

Y ∈X(X̄
(i)
− )

W (Y )

]
+(1−X(i))1−r

[
max

Z∈X(X̄
(i)
+ )

W (Z)

]
.

(2.6)

2.5.2 Golden Section Policy

The above recursions and shifting/scaling properties reveal the structure inher-

ent in the Multisection Algorithm. We now want to leverage this structure in

deriving an optimal policy. When we have two cores, i.e., n = 2, we can de-

scribe a policy that reduces the interval size by a constant factor in every step,

and guarentees that the (normalized) allocation at every step is identical.

Let X = X0 = π((0, 1)). When n = 2, we have X = (0, a, b, 1), with X(1) = a

and X(2) = b. By normalizing, we have X̄(1)
+ =

(
0, b−a

1−a , 1
)

and X̄
(2)
− = (0, a

b
, 1).

We only need to consider these states because X̄(1)
− = X̄

(2)
+ = (0, 1), meaning that

both cores need to be reallocated. If we want π(X̄
(i)
+ ) = π(X̄

(i)
− ) = X for i = 1, 2

and some allocation X , i.e., that the allocation is the same for both states, then

we require that (0, b−a
1−a , 1) ⊂ (0, a, b, 1) and (0, a

b
, 1) ⊂ (0, a, b, 1). One way to

satisfy this is for a = (b − a)/(1 − a) and b = a/b. This system of equations has

the unique solution

X(1) = a =
1

2

(
3−
√

5
)

X(2) = b =
1

2

(√
5− 1

)
. (2.7)

Consider a policy π such that π((0, 1)) = π((0, a, 1)) = π((0, b, 1)) = (0, a, b, 1)

and π(hS+c) = hπ(S)+c. We call this policy the Golden Section Policy because
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it uses the same queries as the Golden Section Search Algorithm (Kiefer 1953) for

finding the extremum (either maximum or minimum) of a unimodular function.

In both situations, Golden Section uses symmetry to maintain the same spread

of queries. In the context of multisection, the construction of the Golden Section

policy implies that if Xj = X , then π(X̄
(i)
+ ) = π(X̄

(i)
− ) = X for i = 1, 2, implying

that Xj+1 = Xj for all j ≥ 0. This property can be used to show that Golden

Section is optimal under a risk-neutral reward function.

On the Fringe: Optimal When Indifferent

We now show that under risk indifference, i.e., r = 1, Golden Section is optimal.

Theorem 2.5.1. Let π be the Golden Section policy as defined above. If r = 1, then π is

optimal.

Proof. From the recursion in W (·), we see for any allocation X ∈

arg maxZ∈X((0,1))W (Z),

W (X) = (1− γ)β(X)

+
γ

n

n∑

i=1

(X(i))1−r

[
max

Z1∈X(X̄
(i)
− )

W (Z1)

]
+ (1−X(i))1−r

[
max

Z2∈X(X̄
(i)
+ )

W (Z2)

]
.

If we relax the constraints in the two maxima, we see that

W (X) ≤ (1− γ)β(X)

+
γ

n

n∑

i=1

(X(i))1−r
[

max
Z1∈X((0,1))

W (Z1)

]
+ (1−X(i))1−r

[
max

Z2∈X((0,1))
W (Z2)

]

= (1− γ)β(X) + γ W (X)
1

n

n∑

i=1

[(X(i))1−r + (1−X(i))1−r]

= (1− γ)β(X) + γ W (X)β(X).
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By iteratively substituting the above inequality for W (X), we can express the

upper bound as the infinite geometric series

W (X) ≤ (1− γ)β(X)
∞∑

p=0

γp β(X)p, (2.8)

which converges when γβ(X) < 1 and diverges to infinity otherwise. But if

we consider the value of the Golden Section policy, with Y being the Golden

Section allocation,

W π(Y ) = (1− γ)β(Y ) +
γ

n

n∑

i=1

(Y (i))1−rW π(π(Ȳ
(i)
− ))) + (1− Y (i))1−rW π(π(Ȳ

(i)
+ ))

= (1− γ)β(Y ) +
γ

n

n∑

i=1

(Y (i))1−rW π(Y ) + (1− Y (i))1−rW π(Y ),

and we can also write the post-decision value of choosing the Golden Section as

W π(Y ) = (1− γ)β(Y )
∞∑

p=0

γp β(Y )p. (2.9)

If r = 1, we have β(X) = 2 for any allocation X , which makes (2.8) and (2.9)

both equal. If γ < 1/2, then the upper bound equals 2(1−γ)/(1−2γ). If γ ≥ 1/2,

then the series diverges to infinity. In either case, choosing the Golden Section

policy π achieves the upper bound, and is therefore optimal.

When r < 1, the Golden Section Policy still performs very well. In the W (·)

recursion, the immediate reward obtained from assigning queries with alloca-

tion X is given by β(X). Since the Golden Section Policy requires only one

allocation, it is sufficent to use this as a metric for the performance of the entire

policy. Now suppose X is the Golden Section Allocation. If we compare β(X)

versus maxz β(z) = 2r, which is achieved by the Bisection Method, there is an

extremely small gap. At its smallest, the ratio β(X)/2r ≥ 0.993, achieved when

r = 0.502. And from numerically solving discretized versions of the dynamic
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program, there is strong computational evidence that the Golden Section Policy

is optimal for any 0 < r < 1 with γ sufficiently large.

We can also compare the Golden Section Policy to the traditional Bisection

Method in terms of W (·). Let w1 and w2 be the respective post-decision state

values for Bisection and Golden Section policies. Using (2.9) and the definition

of γ in Section 2.3.1, we can derive closed form expressions for w1 and w2 in

terms of α, λ, and r. In general, Golden Section achieves a higher expected

reward because it effectively uses the additional information, and the loss from

cutting off-center is relatively small. There are values of parameters (eg. α = 0.5,

λ = 1.2, r = 0.5) for which Golden Section performs infinitely better under this

metric. However, in cases where λ is small, it is more advantageous to use

Bisection.

Larger Numbers of Cores

For a general number of cores n, it is difficult to explicitly find policies similar

to Golden Section. Even when n = 3, one cannot rely on a single allocation

to define a policy. (For the case of three dimensions, finding such a policy is

equivalent to solving a system with three variables and six nonlinear equations,

none of which are redundant.) A fundamental idea behind Golden Section is

that reducing the number of states visited over time is beneficial for the long-

run performance of the algorithm. We might then relax the condition that we

only visit a single state, i.e., Xj+1 = Xj for every j, and instead design a policy

that visits a finite number of states. This might be a more achievable goal in

higher dimensions, even though it is not guaranteed to yield an optimal policy.
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For example, consider a policy for the case n = 3 defined by two allocations

Y = (0, 1/3, 1/2, 2/3, 1) and Z = (0, 1/4, 1/2, 3/4, 1). The potential incomplete

states arising from Y or Z, (exploiting the fact that both Y and Z are symmetric

about 1/2 so as to reduce the number of incomplete states), are

Ȳ
(1)

+ = (0, 1/4, 1/2, 1) Ȳ
(1)
− = (0, 1) Ȳ

(2)
+ = (0, 1/3, 1)

Z̄
(1)
+ = (0, 1/3, 2/3, 1) Z̄

(1)
− = (0, 1) Z̄

(2)
+ = (0, 1/2, 1),

(2.10)

which means that no matter what job finishes first, we will always be able to

choose action Y or action Z to reallocate the idle processors. In other words,

starting from Y or Z, for every j ≥ 0 there always exists some Xj ∈ {Y, Z} ∩

X(Sj). Such a choice of policy yields a Markov Chain on the allocation space

X((0, 1)) with only two states. This kind of policy is desirable because it easy

to describe and easy to analyze. Even though such a policy is reminiscient of

Golden Section, both actions are not equally preferable. The queries of Y are

positioned closer to the midpoint than those of Z, which means Y is likely to

reduce the interval length by a greater amount. Because of this, in cases where

we have a choice between Y and Z, selecting Y is preferable, and one can verify

that W (Y ) > W (Z). Even so, the existence of a policy with a small action space

is promising. We suspect that similar policies exist for larger n, although finding

them has proven to be difficult.

2.5.3 To Stack or Not To Stack

The memoryless property of the exponential distribution means that the resid-

ual processing time for a core is always exponentially distributed with the same

mean. This observation suggests that each time a core completes, we might

re-assign all cores that are still running as well as those that have been made re-
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dundant. Our formulation in Section 2.2 did not allow this, because we required

that X ⊂ S, i.e., that the action leaves cores running that are still in process.

We continue to require that non-redundant cores continue to run, but there is a

subtlety in our setup that has a substantial impact on the form of the optimal

policy. With exponential processing times, with probability 1 we see a single

core, i say, return a value at each decision point, so that either (`j, uj) = (0, i) or

(`j, uj) = (i, n + 1) in the discussion immediately following (2.2). If, for exam-

ple, Core i tells us that X∗ > X(i), then just after (2.2) our formulation allows

us to reassign all cores with indices less than i. In practice, we have the option

of doing more. If Core i + 1 is also evaluating at X(i), then we can also reassign

Core i+1, along with any other cores j > i for which X(j) = X(i). In our present

formulation this is not allowed.

We made this modeling choice because it seemed, to us, to be realistic to not

“stack cores,” i.e., to not assign them to evaluate the same point. However, in

situations such as in cloud-computing environments where cores can be quite

unreliable and the speed of processing can be highly variable from one core

to another, we may have incentive to evaluate very similar points on multiple

cores, i.e., to adopt stacking policies. We now adapt our formulation to allow

such policies.

Suppose now that when Core i concludes that X∗ > X(i), we reassign all

cores j for which X(j) ≤ X(i), including those with indices greater than i. Sim-

ilarly, when X∗ ≤ X(i), we reassign all cores j for which X(j) ≥ X(i). Now

the transition kernel is no longer continuous because, for example, there is a

large difference between stacking two adjacent points, and instead evaluating

two points that are minutely but positively separated. Hence, the argument in
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Theorem 2.3.1 no longer applies, and we are no longer assured that an optimal

value function exists and satisfies the Bellman recursion. We conjecture that this

is so, and proceed in this section under this conjecture.

Optimal Stacking Policy Structure

It turns out that now the optimal policy for any set of parameters is one where

all cores stack at the midpoint of the interval.

Theorem 2.5.2. Stacking queries X(i)
j = 1

2
(Aj +Bj) for every core i is the optimal

allocation for independent exponentially distributed waiting times with common rate.

Proof. Since V (S0) is the optimal allocation when all n cores are assigned,

V (X̄
(i)
− ) ≤ V (S0) because the value function is more constrained. Therefore,

V (S0) = (1− γ) + γ max
X∈X(S0)

1

n

n∑

i=1

[
(X(i))1−r V (X̄

(i)
− ) + (1−X(i))1−r V (X̄

(i)
+ )
]

≤ (1− γ) + γ max
X∈X(S0)

1

n

n∑

i=1

[
(X(i))1−r V (S0) + (1−X(i))1−r V (S0)

]

= (1− γ) + V (S0)γ max
X∈X(S0)

1

n

n∑

i=1

[
(X(i))1−r + (1−X(i))1−r] .

The function β(·) is maximized at x = 1/2 with β(x) ≤ 2r. Each term in the sum

is bounded above by this value, with equality if every queried point X(i) = 1/2.

Thus,

V (S0) ≤ (1− γ) + V (S0)γ 2r,

with equality if all points X(i) are stacked at 1/2. Hence, stacking at 1/2 is opti-

mal regardless of the value of γ. Moreover, if γ < 2−r then the optimal value is

finite.
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CHAPTER 3

COUPLED BISECTION FOR ROOT ORDERING

3.1 Introduction

Consider a function f : S × [0, 1) → R, where S is finite but large, and for

every s, f(s, ·) is monotonic with unique root. If we are interested in finding

the zero x∗(s) of f(s, ·) for all elements s ∈ S , then for each f(s, ·) we could

employ the classical bisection method. However, if one evaluation of f for some

x yields values of f(s, x) for all s ∈ S , then we could potentially solve multiple

bisection problems at once. Furthermore, if we are only interested in the ordering

of elements s with respect to their zeros x∗(s), calculating the zeros to precision

is computationally unnecessary.

The coupled root-ordering setting has applications in computing Gittins

policies (Gittins and Jones 1974; Whittle 1988), respectively used in multi-arm

bandit and restless bandit problems. We are then interested in ordering states in

the state space according to their Gittins or Whittle indices, which correspond

to the zero of a particular function. The ordering of the states is all that is re-

quired to implement the index policy. Methods for evaluating these indices

to precision are prevalent in the literature (Niño-Mora 2011, see) for a discus-

sion on computational methods). In practical applications where Gittins indices

are computed, the problems typically have additional structure, such as sparse

transition kernels or the ability to compute indices in an online fashion. The

most competitive algorithms for computing Gittins index policies exploit these

kinds of structure. Coupled bisection does not take advantage of any additional

structure, and therefore is not competitive with these algorithms. However,
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its generality allows it to compute index policies for a wide range of problems

that be formulated as instances of coupled root-ordering (Hu, Frazier, Xie, et al.

2014; Zhao and Frazier 2014; Dayanik, Powell, and Yamazaki 2008; Glazebrook,

Kirkbride, and Ouenniche 2009, see).

Coupled bisection can also be used in solving coupled root-finding prob-

lems, because it can be more computationally efficient to sort the roots before

further refining their respective locations. One such example is the estimation

of phase diagrams during the evaluation of piezoelectric materials (Shrout and

Zhang 2007). Given a pair of chemical compoundsA andB, one must determine

for each temperature s in some set a critical threshold x∗(s) such that mixtures

of A and B with a fraction x > x∗(s) of A form one crystal phase, while mix-

tures with x < x∗(s) form another phase. Here, f(s, x) is the crystal phase at

temperature s and mixing coefficient x, and can be observed through a physical

experiment. Synthesizing a particular linear combination x is time consuming,

but allows easy observation of f(s, x) for all temperatures s. This is a coupled

root-finding problem.

Coupled root-finding also arises in remote sensing, when finding the bound-

ary of a forest or other geographical feature from an airborne laser scanner (Cas-

tro and Nowak 2008). Here, an aircraft chooses a latitude x at which to fly and

observes the presence or absence of the feature, f(s, x) ∈ {0, 1}, for all longi-

tudes s in the flight path. The boundary at longitude s is given by the root x∗(s).

Naively, we could discretize the interval [0, 1) and calculate f with respect

to all discretized values of x. Although this is easy to program and understand,

the computational investment can be massive and unnecessary. We develop a

coupled bisection method that can sort these elements in a more efficient fash-
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ion.

We solve this problem by sequentially evaluating f at different values of x.

When we evaluate f at some value x, we find f(s, x) for every element s, and

we can deduce for every element whether x∗(s) ≥ x or x∗(s) < x. At every

iteration, we know of a subinterval that contains x∗(s). These subintervals form

a disjoint partition of [0, 1). By evaluating f for a different value of x at each

iteration, we refine the previous partition, choosing one subinterval to split into

two. This continues until for every element each subinterval contains at most

one root.

In this process, we must find a way to sequentially select the next value of

x at which we evaluate f . One might conjecture by analogy that the optimal

decision is to choose some subinterval and select the midpoint of that interval

to be the next value of x. This policy is not optimal, but we show it can sort the

elements by their associated zeros in O (|S|) iterations in expectation, and cal-

culate the asymptotic constant to be bounded above by 1.44. We also provide a

lower bound of |S|−1 for the minimum number of iterations for any policy, im-

plying an approximation guarantee of 1.44. Moreover, we give computational

evidence suggesting our proposed policy is even closer to optimal than the 1.44

guarantee suggests.

3.2 Problem Specification

We first model the underlying decision process. Suppose X =
{

[x(i), x(i+1)) : i = 0, . . . ,m
}

denotes a partition of the interval [x(0), x(m+1)). We

assume x(i) < x(i+1) for all i. Let N = (n(0), n(1), . . . , n(m)) represent the num-

43



bers of roots that lie in the corresponding subintervals in X . Together, the pair

(X,N) determine the computational state. Suppose at decision epoch j, our cur-

rent computational state is (Xj, Nj). We choose a refined partition

Xj+1 =
{[
x

(0)
j , x

(1)
j

)
, . . . ,

[
x

(`)
j , x̄j+1

)
,
[
x̄j+1, x

(`+1)
j

)
, . . . ,

[
x

(j)
j , x

(j+1)
j

)}
,

where ` ∈ {0, . . . , j} and x̄j+1 ∈ (x
(`)
j , x

(`+1)
j ). Accordingly, let X(Xj) be the set

containing all refined partitions of Xj containing j + 1 subintervals. We then

evaluate f at x̄j+1. For all elements s ∈ S we observe f(s, x̄j+1), and therefore

we can determine whether x∗(s) is less than or greater than x̄j+1. At this point,

the n(`)
j roots in the original subinterval

[
x

(`)
j , x

(`+1)
j

)
are split among the two

newly-created subintervals. Hence, we have

Nj+1 =
(
n

(0)
j , . . . , n

(`−1)
j , N̄j+1, n

(`)
j − N̄j+1, n

(`+1)
j , . . . , n

(j)
j

)
,

where n(`)
j+1 = N̄j+1 and n

(`+1)
j+1 = n

(`)
j − N̄j+1. All other components in Nj remain

the same because we learn nothing new about roots in the other subintervals.

A priori, we assign a prior distribution to the location of x∗(s) for ev-

ery element s ∈ S. For simplicity, we assume that for every s, indepen-

dent of all else, x∗(s) ∼ Unif[0, 1). Otherwise, as long as under the prior

distribution the root locations are i.i.d. and absolutely continuous with re-

spect to Lebesgue measure, we can use an inverse mapping to appropriately

stretch the real line to yield the above case. Therefore, a priori, N̄j+1 ∼

Binomial
(
n

(`)
j , (x̄j+1 − x(`)

j )/(x
(`+1)
j − x(`)

j )
)

. Since we would like to find an or-

dering for x∗(·), we stop evaluating f when every subinterval in the partition X

contains at most one root, i.e., we stop when n(i) ≤ 1 for all i ∈ {0, . . . , |N | − 1}.

Define the stopping time τ = inf{j ∈ N : N
(i)
j ≤ 1 ∀i = 0, 1, . . . , j}.

We would like to model this multiple root-finding problem as a dynamic

program that finds the Bayes-optimal policy minimizing the expected number
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of evaluations of f(·, x) needed to find an ordering of all elements s ∈ S with

respect to x∗. We define the value function for computational effort under policy

π

W π(X,N) = Eπ [ τ |X0 = X, N0 = N ] , (3.1)

where π is a policy that maps computational states (X,N) to partitions X̄ ∈

X(X). The value function W π counts the expected number of iterations needed

to sort the elements s ∈ S with respect to x∗ under policy π. We define the value

function W (X,N) = infπ∈Π W
π(X,N), where Π denotes the set of all policies π.

3.3 Recursion

Using the original definition of the value function in (3.1), we can derive a re-

cursion for the computational dynamic program. For a computational state pair

(X,N) that do not satisfy the stopping conditions, we have that

W π(X,N) = 1 + Eπ [W π(X1, N1) | (X0, N0) = (X,N)] ,

where X1 = π(X0, N0) indicates the next refinement of the partition, and N1 is

the subsequent spread of elements among subintervals.

By the principle of optimality, we can iteratively take the best partition X1

over each step, which gives us a recursion for W , the value function under the

optimal policy. Because the process ((Xj, Nj) : j ≥ 0) is time-homogeneous, we

can drop the subscripts and denote X̄ as the refinement of partition X , and N̄

as the resulting distribution of elements among subintervals. Thus, we have

W (X,N) = 1 + min
X̄∈X(X)

E
[
W (X̄, N̄)

∣∣ X0 = X, N0 = N
]
. (3.2)
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3.3.1 Decomposition and Interval Invariance

We can greatly simplify this recursion by decomposing it by the different subin-

tervals.

Theorem 3.3.1. Under the optimal policy, the value function W has the following two

properties.

• Decomposition: W (X,N) =
∑|N |−1

i=0 W
({

[x(i), x(i+1))
}
, n(i)

)

• Interval Invariance: W
({

[x(i), x(i+1))
}
, n(i)

)
= W

(
{[0, 1)} , n(i)

)
.

Proof. We will first prove the decomposition result. For any initial com-

putational state (X,N), consider the following policy. For each subin-

terval [x(i), x(i+1)), take an optimal policy for the computational state
({

[x(i), x(i+1))
}
, n(i)

)
, and once we find a partition of the subinterval satisfying

the stopping conditions, we do the same for another subinterval. Therefore, it

must be W (X,N) ≤∑|N |−1
i=0 W

({
[x(i), x(i+1))

}
, n(i)

)
.

Now we will prove the opposite inequality. First, note that the order we

choose to further partition the subintervals is irrelevant, since we only seek to

minimize the number of evaluations required, and each evaluation provides

refinement only within its subinterval. Without loss of generality, consider

only policies that evaluate the function with value within the leftmost subin-

terval that still does not satisfy the stopping conditions. Suppose this inter-

val is [x(i), x(i+1)) and contains the zeros of n(i) elements. Before we are al-

lowed to move to the next subinterval, we must find a partition of [x(i), x(i+1))

that satisfies the stopping conditions. By definition, this takes a minimum of

W
({

[x(i), x(i+1))
}
, n(i)

)
steps. Since we only evaluate the function at one value
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at a time, we perform one evaluation on exactly one subinterval at each step.

Therefore, repeating the same logic for every subinterval tells us W (X,N) ≥
∑|N |−1

i=0 W
({

[x(i), x(i+1))
}
, n(i)

)
.

We will now prove the second claim of the theorem using a pathwise ar-

gument. Suppose we have initial computational state (X0, N0) =
(
[a, b), n(i)

)
.

Define the operator T ((X,N)) = ((b− a)X + a,N). If we define
(
X̃j, Ñj

)
=

T−1 (Xj, Nj) for all time epochs j, there exists a one-to-one mapping between

computational states. For any sample path of the process ((Xj, Nj) : j ≥ 0)

which reaches the stopping conditions at time epoch t, it must be that (X̃t, Ñt)

also satisfies the stopping conditions. Therefore, it must be that W (X̃0, Ñ0) ≤

W (X0, N0). Symmetry gives the opposite inequality, and hence the result.

It may seem strange that the recursion relation does not depend on the size

of the interval. In fact, it only depends on the number of elements in each sub-

interval, because we are only concerned with finding the correct ordering.

The decomposition is helpful both when solving the dynamic program and

describing the optimal policy. Since the value function is additive among subin-

tervals, the order in which we refine the partition does not affect the optimal

number of evaluations of f . Thus, we can focus our attention on solving a one-

dimensional dynamic program and without loss of generality solely consider

the subinterval [0, 1).
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3.3.2 Simplified Recursion

Since we can write the value function W in terms of its smaller subintervals, we

can just consider the special case where the partition X = {[0, 1)}. In a slight

abuse of notation, we define W (n) = W ({[0, 1)}, n) and have

W (n) = 1 + min
x∈(0,1)

E [W (Nx) +W (n−Nx) ] , (3.3)

where Nx ∼ Binomial(n, x), independent of all else. Intuitively, we choose a

point x ∈ (0, 1) to evaluate the original dynamic program, and the n elements

get split among the two newly-created sub-intervals. As before, we have the

stopping conditions W (0) = W (1) = 0. Computationally, we cannot use this

recursion to solve for W (·) explicitly, since Nx can equal 0 or n with positive

probability, causing W (n) to appear on both sides of (3.3). Proposition 3.3.2

accounts for this.

Proposition 3.3.2.

W (n) = min
x∈(0,1)

{
1

1− xn − (1− x)n
+ E

[
W (Nx) +W (n−Nx)

∣∣∣∣ 1 ≤ Nx ≤ n− 1

]}
.

(3.4)

Proof. From (3.3), for any x ∈ [0, 1],

W (n) ≤ 1 + E [W (Nx) +W (n−Nx) | Nx ∈ [1, n− 1]] · P (Nx ∈ [1, n− 1])

+ (W (n) +W (0))P (Nx = n) + (W (0) +W (n))P (Nx = 0) ,

with equality for some x ∈ [0, 1] (since the interval is compact and the right side

is continuous in x). Since W (0) = 0, we get

W (n) ≤ 1 + E [W (Nx) +W (n−Nx) | Nx ∈ [1, n− 1]] · P (Nx ∈ [1, n− 1])

+W (n) (1− P (Nx ∈ [1, n− 1])) ,

i.e., W (n) ≤ 1

P (Nx ∈ [1, n− 1])
+ E

[
W (Nx) +W (n−Nx)

∣∣∣∣ Nx ∈ [1, n− 1]

]
.
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This inequality is tight for the same x that made the previous inequality tight.

Using Nx ∼ Binomial(n, x) gives the result.

This recursion reveals the structure behind the coupled bisection algorithm.

Suppose we have an interval that contains n elements. There are two possibili-

ties when evaluating f at the next value of x: (i) splitting the interval into two

subintervals, one of which contains all n elements, and (ii) splitting into two

subintervals, both of which contain at least one element each. In case (i), we

would have to perform the same procedure again on that smaller subinterval.

The first term in (3.4) is exactly equal to the expected number of iterations it

takes to break free of this loop. Case (ii) corresponds with the conditional ex-

pectation term in the same equation. Thus, the choice of x is a balancing act

between limiting the iterations spent on the initial split and obtaining a desir-

able spread of elements in subintervals after that split occurs.

3.4 Bisection Policy

Consider the bisection policy β ∈ Π, where we choose to evaluate the function

at the midpoint of the interval, i.e., choosing x = 1/2 for all n in the recursion

(3.3). This yields

W β(n) = 1 + 2 E[W β(N1/2) ], (3.5)

where N1/2 ∼ Binomial(n, 1/2), with stopping conditions W (0) = W (1) = 0.
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3.4.1 Greedy Shannon Entropy Reduction

The bisection policy β is a good candidate policy because it is intuitive and easy

to implement. But there is also a metric where bisection is optimal. If our goal is

to sort elements with respect to their zeros, we can view the problem as trying

to find the correct permutation of elements among the |S|! possibilities. Since

we assume a priori that the roots of all elements are i.i.d. uniformly distributed

throughout [0, 1), every permutation of elements in S is equally likely.

We define H(X,N) to be the Shannon entropy of the distribution of possi-

ble permutations of S at computational state (X,N). In this case, since we are

considering a uniformly discrete distribution, this is equivalent to

H(X,N) = log2



|N |−1∏

i=0

n(i)!


 , (3.6)

where the term inside the logarithm denotes the number of permutations of

roots consistent with computational state (X,N). The first observation is that

the entropy of a given computational state (X,N) does not depend on the par-

tition X , but only on the number of zeros in each partition. Also, because of the

convenient properties of the logarithm, the decomposition property comes for

free, giving us

H(X,N) =

|N |−1∑

i=0

H({[x(i), x(i+1))}, n(i)).

For the same reasons given for decomposing W , we only need to consider

one subinterval at a time. Therefore, we can assume without loss of general-

ity that we start with computational state ([0, 1), n). Similarly to W , we define

H(n) = H({[0, 1)}, n). We would like to maximize the expected entropy reduc-

tion, meaning

max
x∈(0,1)

H(n)− E [H(Nx) +H(n−Nx)] , (3.7)
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where Nx ∼ Binomial(n, x).

Theorem 3.4.1. An optimal solution for (3.7) is x∗ = 1/2 for all n ≥ 2, implying

that the bisection policy maximally reduces entropy, given a single function evaluation,

among possible permutations of elements in S.

Proof. The objective function in (3.7) is symmetric about x = 1/2, because n −

Nx
d
= N1−x. If we can show that it is concave in x, then we are done. We know

that H(n) = log2 n!, and therefore, we can compactly write the optimization

problem in (3.7) as

max
x∈(0,1)

E
[
log2

(
n

Nx

)]
. (3.8)

First, we use a property of binomial coefficients, namely that
((
n
k

)
: k = 0, . . . , n

)

is a log-concave sequence (Stanley 1989), and hence,
(
log2

(
n
k

)
: k = 0, . . . , n

)
is

a concave sequence. Now we invoke a useful property of distributions in expo-

nential families. A random variable Zθ parameterized by θ is convexly parameter-

ized if for any convex function f , E[f(Zθ)] is convex in θ. Mean-parameterized

exponential family distributions are convexly parameterized (Shaked 1980;

Schweder 1982), and since the binomial distribution is a member of that fam-

ily, it follows that (3.8) is concave in x.

We showed bisection is an optimal policy with respect to the one-step re-

duction of the Shannon entropy of possible orderings of roots. Now we explore

how well the bisection policy can reduce computational effort in W .
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3.4.2 Minimizing Computational Effort

It is reasonable to conjecture that bisection is also an optimal policy for mini-

mizing computational effort. However, for n = 6, solving the dynamic program

W computationally with (3.4) reveals that the optimal choice of x is not the mid-

point of the interval, but rather is located at x∗6 = 0.5± 0.037, with an optimality

gap of 2.58 × 10−5. This is the first of many disparities between the bisection

policy and the optimal policy in this setting.

To bound the optimality gap, we derive upper bounds on W β(·) and lower

bounds on W (·). We can show a rather crude lower bound for W (·). If we want

to sort n elements, we must perform at least n − 1 evaluations of f to separate

them, and induction on n with (3.4) confirms that W (n) ≥ n− 1.

In comparison, what upper bounds can we derive for W β(·)? We have com-

putational evidence suggesting that W β grows linearly for large n, so we focus

on bounding the linear growth rate. For a function g defined on the integers, let

∆g(n) = g(n + 1) − g(n). We will prove for large n that ∆W β(n) ≤ γ for some

constant γ.

3.4.3 What’s the difference?

To derive upper bounds, we use a structural result regarding the growth rate of

W β , which is proved using a coupling argument.

Lemma 3.4.2.

∆W β(n) = E
[

∆W β(N1/2)
]
, (3.9)
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where N1/2 ∼ Binomial(n, 1/2), and with stopping conditions ∆W β(0) = 0 and

∆W β(1) = 2.

Proof. We start with the recursion from (3.5) and take a difference, giving us

∆W β(n) = 2E
[
W β(N̂1/2)−W β(N1/2)

]
,

where N1/2 ∼ Binomial(n, 1/2) and N̂1/2 ∼ Binomial(n+ 1 , 1/2). We can couple

these two random variables since the expression involves only their expectation.

Let B1/2 ∼ Bernoulli(1/2), independent of all else, and since N̂1/2
d
= N1/2 +B1/2,

we have that

∆W β(n) = 2E
[
W β(N1/2 +B1/2)−W β(N1/2)

]
,

= 2E
[

1

2

(
W β(N1/2 + 1)−W β(N1/2)

)
+

1

2

(
W β(N1/2)−W β(N1/2)

)]

= E
[

∆W β(N1/2)
]
.

For the stopping conditions, we use the original stopping conditions for (3.3),

which gives us W β(0) = W β(1) = 0. By direct calculation using (3.4), we find

W β(2) = 2 (which happens to correspond with W at n = 2).

Here the growth rate ∆W β(n) is a weighted average of all previous growth

rates, suggesting that the sequence should converge. We use this idea to derive

a method for calculating upper bounds on W β(n) for large but finite values of

n, and conjecture these bounds hold for all n.

3.4.4 Upper Bounds

Before we show a computational method for deriving upper bounds on

∆W β(n), we first prove a property of the Binomial distribution.
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Lemma 3.4.3. For non-negative integers ` and m such that ` ∈ [0,m − 2], and for

n ≥ m, let p`,m be defined as

p`,m(n) = P
(
N1/2(n) ≥ `+ 1

∣∣ N1/2(n) ≤ m− 1
)
,

where N1/2(n) ∼ Binomial(n, 1/2). Then p`,m(n) is non-decreasing in n.

Proof. For any non-negative integer n, p`,m(n) ≤ p`,m(n + 1) is equivalent

to N1/2(n) ≤rh N1/2(n + 1), where ≤rh refers to the reverse hazard rate order-

ing (Shaked and Shanthikumar 2007, p. 37). By definition, for two discrete ran-

dom variables U and V , U ≤rh V if

P(U = n)

P(U ≤ n)
≤ P(V = n)

P(V ≤ n)
, (3.10)

for all natural numbers n. It is clear from (3.10) that N1/2(n) ≤rh N1/2(n). We

also have 0 ≤rh B1/2, where B1/2 ∼ Bernoulli(1/2), independent of all else.

Now we use the fact that reverse hazard rate ordering is closed under

convolutions (Shaked and Shanthikumar 2007, p. 38), i.e., if we have ran-

dom variables U1, U2 and V1, V2 such that U1 ≤rh V1 and U2 ≤rh V2, then

U1 + U2 ≤rh V1 + V2. Because N1/2(n) ≤rh N1/2(n) and 0 ≤rh B1/2, we deduce

N1/2(n) + 0 ≤rh N1/2(n) + B1/2, and since N1/2(n) + B1/2
d
= N1/2(n + 1), we get

N1/2(n) ≤rh N1/2(n+ 1).

Using (3.9), we now present computationally tractable upper bounds on the

value of the bisection policy.

Theorem 3.4.4. For some non-negative integer m, we define gm(n) =

max`∈[n,m−1] ∆W β(`), and define h as

hm(n) = E
[
gm
(
N1/2

) ∣∣ N1/2 ≤ m− 1
]
,
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where N1/2 ∼ Binomial(n, 1/2). Suppose we have γm > 0 so that the following condi-

tion holds:

max
{

∆W β(m), hm(m)
}
≤ γm. (3.11)

Then for all n ≥ m, it must be that ∆W β(n) ≤ γm.

Proof. We use induction on n ≥ m. The condition gives us the base case n = m.

Now suppose that for all k ∈ [m,n− 1] that ∆W β(k) ≤ γm. From (3.9),

∆W β(n) = E
[
∆W β

(
N1/2

)]

= ∆W β(n) P
(
N1/2 = n

)
+ E

[
∆W β

(
N1/2

) ∣∣ N1/2 ≤ m− 1
]
P
(
N1/2 ≤ m− 1

)

+ E
[
∆W β

(
N1/2

) ∣∣ m ≤ N1/2 ≤ n− 1
]
P
(
m ≤ N1/2 ≤ n− 1

)

≤ ∆W β(n) P
(
N1/2 = n

)
+ E

[
g
(
N1/2

) ∣∣ N1/2 ≤ m− 1
]
P
(
N1/2 ≤ m− 1

)

+ γm P
(
m ≤ N1/2 ≤ n− 1

)

= ∆W β(n) P
(
N1/2 = n

)
+ hm(n) P

(
N1/2 ≤ m− 1

)
+ γm P

(
m ≤ N1/2 ≤ n− 1

)
,

where the inequality is due to the definition of g in the first term and the induc-

tive hypothesis in the second term. Because we can solve for ∆W β(n), all that

remains is to show hm(n) ≤ γm. Consider

hm(n) = E
[
g
(
N1/2

) ∣∣ N1/2 ≤ m− 1
]

= g(0) +
m−2∑

`=0

∆g (`) · P
(
N1/2 ≥ `+ 1

∣∣ N1/2 ≤ m− 1
)

= g(0) +
m−2∑

`=0

∆g (`) · p`,m(n).

Since g is non-increasing, ∆g is non-positive. Also, we proved in Lemma 3.4.3

that p`,m(n) is non-decreasing in n. Since n ≥ m,

hm(n) ≤ g(0) +
m−2∑

`=0

∆g (`) · pm(m) = hm(m) ≤ γm,

where the last inequality is true by the assumption.
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Theorem 3.4.4 is useful because we can compute ∆W β for the first m terms

using (3.9), then use the above result to find an arbitrarily tight bound on the

policy for all n ≥ m. The condition in (3.11) can be verified directly with the

computed values of W β(n) for n ∈ [0,m− 1].

3.5 Computational Results and Concluding Remarks

Using Theorem 3.4.4, and choosing appropriate values for m, we computa-

tionally derive upper bounds on the bisection policy. In general, the bounds

improve as m increases. Choosing m = 15, we find that the linear growth

Figure 3.1: Performance of the Bisection Policy
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(a) The values W β(n), W (n) and their
difference for n ≤ 5000. The bi-
section policy is close to optimal in
the number of expected iterations
required, enough for W β and W to
coincide above, as further evidenced
by the scale in panel (b).
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(b) The rates ∆W (n) and ∆W β(n) for n ≤
5000. Although we show theoretically
that ∆W (n) ≥ 1, it appears that ∆W (n)
is bounded below by a larger constant
for large n, and the true gap in rates is
closer to 0.0001.

rate of the expected number of iterations required under the bisection policy is

bounded above by γ15 = 1.4440, compared to the lower bound of 1 shown ear-

lier on the growth rate of the optimal policy. This implies that, as n approaches

infinity, the ratio of the expected number of iterations required under the two
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policies is bounded above by 1.4440.

In fact, the gap in performance appears to even tighter. For 100 ≤ n ≤ 5000,

by using (3.4) to compute W directly, we empirically observe that ∆W (n) ≥

1.4425, and the sequence seems to converge rather quickly, as shown in Fig-

ure 3.1b. Further, from Figure 3.1a, we see that the expected number of iterations

required to sort n elements under the bisection policy is indistinguishably close

to that under the optimal policy. This suggests that bisection is near-optimal,

although proving this seems difficult. In any case, we have a linear-time algo-

rithm for ordering elements by their associated zeros.
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CHAPTER 4

BAYES-OPTIMAL ENTROPY PURSUIT FOR ACTIVE CHOICE-BASED

PREFERENCE LEARNING

4.1 Introduction

The problem of preference learning is a well-studied and widely applicable area

of study in the machine learning literature. Preference elicitation is by no means

a new problem (Schapire and Singer 1998), and is now ubiquitous in many dif-

ferent forms in nearly all subfields of machine learning. One such scenario is

the active learning setting, where one sequentially and adaptively queries the

user to most efficiently learn his or her preferences. In general, learning in an

online setting can be more efficient than doing so in an offline supervised learn-

ing setting, which is consequential when queries are expensive. This is often the

case for preference elicitation, where a user may not be inclined to answer too

many questions. The ability to adaptively query the user with particular exem-

plars that facilitate learning to the labels of the rest is invaluable in the context

of preference elicitation.

In particular, there is great interest in using choice-based queries to learn the

preferences of an individual user. In this setting, a user is offered two or more

alternatives and is asked to select the alternative he or she likes most. There are

other types of responses that can assess one’s preferences among a set of alter-

natives, such as rating each of the items on a scale, or giving a full preference

order for all alternatives in the set. However, choosing the most-preferred item

in a given set is a natural task, and is a more robust measurement of prefer-

ence than rating or fully-ranking items. For this reason, choice-based methods
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have been shown to work well in practice (see Louviere, Hensher, and Swait

2000), and these are the types of queries we study. In this chapter, we formulate

the problem of sequential choice-based preference elicitation as a finite horizon

adaptive learning problem.

The marketing community has long been focused on preference elicitation

and isolating features that matter the most to consumers. In this field, conjoint

analysis is a class of methods that attempts to learn these important features

by offering users a subset of alternatives (Green and Srinivasan 1978). Lately,

there has been a push in the marketing community to design sequential meth-

ods that adaptively select the best subset of alternatives to offer the user. In the

marketing research literature, this is referred to as adaptive choice-based con-

joint analysis. In the past, geometrically-motivated heuristics have been used to

adaptively choose questions (Toubia, Hauser, and Simester 2004). These heuris-

tics have since evolved to include probabilistic modeling that captures the un-

certainty in user responses (Toubia, Hauser, and Garcia 2007).

These problems are also tackled by the active learning community. For in-

stance, Maldonado, Montoya, and Weber (2015) use existing support vector ma-

chine (SVM) technology to identify features users find important. In the context

of preference elicitation in the active learning literature, there are two main ap-

proaches. The first is to take a non-parametric approach and infer a full pref-

erence ranking, labeling every pairwise combination of alternatives (Fürnkranz

and Hüllermeier 2003). The benefit to this approach is the generality offered by

a non-parametric model and its ability to capture realistic noise. Viewing pref-

erence learning as a generalized binary search problem, Nowak (2011) proves

exponential convergence in probability to the correct preferential ordering for
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all alternatives in a given set, and shows his algorithm is optimal to a constant

factor. Unfortunately, this probabilistic upper bound is weakened by a coef-

ficient that is quadratic in the total number of alternatives, and the running

time of this optimal policy is proportional to the number of valid preferential

orderings of all the alternatives. These issues are common for non-parametric

ranking models. Using a statistical learning theoretic framework, Ailon (2012)

develops an adaptive and computationally efficient algorithm to learn a rank-

ing, but the performance guarantees are only asymptotic. In practice, one can

only expect to ask a user a limited number of questions, and in this scenario,

Yu, Goos, and Vandebroek (2012) show that taking a Bayesian approach to opti-

mally and adaptively selecting questions is indispensable to the task of learning

preferences for a given user. In the search for finite-time results and provable

bounds, we opt to learn a parametric model using a Bayesian approach. In par-

ticular, this chapter largely focuses on a greedy policy that maximally reduces

posterior entropy of a linear classifier, leveraging information theory to derive

results pertaining to this policy.

Maximizing posterior entropy reduction has long been a suggested objec-

tive for learning algorithms (Lindley 1956; Bernardo 1979), especially within

the context of active learning (MacKay 1992). But even within this paradigm

of preference elicitation, there is a variety of work that depends on the user re-

sponse model. For example, Dzyabura and Hauser (2011) study maximizing

entropy reduction under different response heuristics, and Saure and Vielma

(2016) uses ellipsoidal credibility regions to capture the current state of knowl-

edge of a user’s preferences. Using an entropy-based objective function al-

lows one to leverage existing results in information theory to derive theoreti-

cal finite-time guarantees (Jedynak, Frazier, Sznitman, et al. 2012). Most simi-
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lar to our methodology, Brochu, Brochu, and Freitas (2010) and Houlsby et al.

(2011) model a user’s utility function using a Gaussian process, updating the

corresponding prior after each user response, and adaptively choose questions

by minimizing an estimate of posterior entropy. However, while the response

model is widely applicable and the method shows promise in practical situ-

ations, the lack of theoretical guarantees leaves much to be desired. Ideally,

one would want concrete performance bounds for an entropy-based algorithm

under a parameterized response model. In contrast, this proves information

theoretic results in the context of adaptive choice-based preference elicitation

for arbitrary feature-space dimension, leverages these results to derive bounds

for performance, and shows that a greedy entropy reduction policy (hereafter

referred to as entropy pursuit) optimally reduces posterior entropy of a linear

classifier over the course of multiple choice-based questions. In particular, the

main contributions are summarized as follows:

• In Section 4.2, we formally describe the response model for the user. For

this response model, we prove a linear lower bound on the sequential en-

tropy reduction over a finite number of questions in Section 4.3, and pro-

vide necessary and sufficient conditions for asking an optimal compara-

tive question.

• Section 4.3.3 presents results showing that the linear lower bound can be

attained by a greedy algorithm up to a multiplicative constant when we

are allowed to fabricate alternatives (i.e., when the set of alternatives has a

non-empty interior). Further, the bound is attained exactly with moderate

conditions on the noise channel.

• Section 4.4 focuses on misclassification error, a more intuitive metric of

measuring knowledge of a user’s preferences, and explores a one-step
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knowledge gradient policy that minimizes this metric in a greedy fash-

ion. In the context of this metric, we show a Fano-type lower bound on

the optimal policy in terms of an increasing linear function of posterior

differential entropy.

• Lastly, in Section 4.4.5, we derive a new entropy policy that encapsulates

the benefits of the knowledge gradient policy, and motivates the explo-

ration of similarly structured policies.

4.2 Problem Specification

The alternatives x(i) ∈ Rd are represented by d-dimensional feature vectors that

encode all of their distinguishing aspects. Let X be the set of all such alterna-

tives. Assuming a linear utility model, each user has her own linear classifier

θ ∈ Θ ⊂ Rd that encodes her preferences 1. At time epoch k, givenm alternatives

Xk = {x(1)
k , x

(2)
k , . . . , x

(m)
k } ∈ Xm, the user prefers to choose the alternative i that

maximizes θTx(i)
k . However, we do not observe this preference directly. Rather,

we observe a signal influenced by a noise channel. In this case, the signal is the

response we observe from the user.

Let Z = {1, 2, . . . ,m} denote the m possible alternatives. We define Zk(Xk)

to be the alternative that is consistent with our linear model after asking ques-

tion Xk, that is, Zk(Xk) = min
{

arg maxi∈Z θ
Tx

(i)
k

}
. The minimum is just used

as a tie-breaking rule; the specific rule is not important so long as it is determin-

istic. We do not observe Zk(Xk), but rather observe a signal Yk(Xk) ∈ Y, which

depends on Zk(Xk). We allow Y to characterize any type of signal that can be

1Throughout this chapter, we use boldface to denote a random variable.
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received from posing questions in X. In general, the density of the conditional

distribution of Yk(Xk) given Zk(Xk) = z is denoted f (z)(·). Here, we primarily

consider the scenario in which Y = Z = {1, 2, . . . ,m}, where nature randomly

perturbs Zk(Xk) to some (possibly the same) element in Z. In this scenario, the

user’s response to the preferred alternative is the signal Yk(Xk), which is ob-

served in lieu of the model-consistent “true response” Zk(Xk). In this case, we

define a noise channel stochastic matrix P by setting P (zy) = f (z)(y) to describe

what is called a discrete noise channel.

One sequentially asks the user questions and learns from each of their

responses. Accordingly, let Pk be the probability measure conditioned on

the σ-field generated by Yk = (Y`(X`) : 1 ≤ ` ≤ k − 1). Similarly, let Yk =

{Y`(X`) : 1 ≤ ` ≤ k − 1} denote the history of user responses. As we update,

we condition on the previous outcomes, and subsequently choose a question

Xk that depends on all previous responses Yk from the user. Accordingly, let

policy π return a comparative question Xk ∈ Xm that depends on time epoch

k and past response history Yk. The selected question Xk may also depend on

i.i.d. random uniform variables, allowing for stochastic policies. We denote the

space of all such policies π as Π. In this light, let Eπ be the expectation operator

induced by policy π.

We consider a specific noise model, which is highlighted in the following

assumptions.

Noise Channel Assumptions. For every time epoch k, signal Yk(Xk) and true re-

sponse Zk(Xk) corresponding to comparative question Xk, we assume

• model-consistent response Zk(Xk) is a deterministic function of question X and

linear classifier θ, and
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• given true responseZk(Xk), signal Yk(Xk) is conditionally independent of linear

classifier θ and previous history Yk, and

• the conditional densities f = {f (z) : z ∈ Z} differ from each other on a set of

Lebesgue measure greater than zero.

The first two assumptions ensure that all the information regarding θ is con-

tained in some true response Zk(Xk). In other words, the model assumes that

no information about the linear classifier is lost if we focus on inferring the true

response instead. The last assumption is focused on identifiability of the model:

since we infer by observing a signal, it is critical that we can tell the conditional

distributions of these signals apart, and the latter condition guarantees this.

One of the benefits this noise model provides is allowing us to easily update

our beliefs of θ. For a given question X ∈ Xm and true response z ∈ Z, let

A(z)(X) =




θ ∈ Θ :

θTx(z) ≥ θTx(i) ∀i > z

θTx(z) > θTx(i) ∀i < z




. (4.1)

Thesem sets form a partition of Θ that depend on the questionX we ask at each

time epoch, where each set A(z) corresponds to all linear classifiers θ that are

consistent with the true response Z = z.

Let µk denote the prior measure of θ at time epoch k. Throughout the the-

sis, we assume that µk is absolutely continuous with respect to d-dimensional

Lebesgue measure, admitting a corresponding Lebesgue density pk. At every

epoch, we ask the user a comparative question that asks for the most preferred

option in Xk = {x1, x2, . . . , xm}. We observe signal Yk(Xk), and accordingly

update the prior.

Lemma 4.2.1. Suppose that the Noise Channel Assumptions hold. Then we can write
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the posterior pk+1 as

pk+1 (θ |Yk(Xk) = y) =

(∑
z∈Z I(θ ∈ A(z)(Xk)) f

(z)(y)∑
z∈Z µk (A(z)(Xk)) f (z)(y)

)
pk(θ), (4.2)

where I denotes the indicator function.

Proof. Using Bayes’ rule, we see

pk+1(θ |Yk(Xk) = y) ∝ Pk(Yk(Xk) = y |θ = θ) · pk(θ)

=
∑

z∈Z

Pk(Yk(Xk) = y |Zk(Xk) = z, θ = θ) · Pk(Zk(Xk) = z |θ = θ) · pk(θ).

Now we use a property of Yk(Xk) and Zk(Xk) from the Noise Channel

Assumptions, namely that Yk(Xk) and θ are conditionally independent given

Zk(Xk). This implies

pk+1(θ |Yk(Xk) = y) ∝
∑

z∈Z

Pk(Yk(Xk) = y |Zk(Xk) = z) · Pk(Zk(Xk) = z |θ = θ) · pk(θ)

=
∑

z∈Z

f (z)(y) · I
(
θ ∈ A(z)(Xk)

)
· pk(θ),

where the last line is true because Zk(Xk) is a deterministic function of θ and

Xk. Normalizing to ensure the density integrates to one gives the result.

The Noise Channel Assumptions allow us to easily update the prior on θ.

As we will see next, they also allow us to easily express the conditions required

to maximize one-step entropy reduction.

4.3 Posterior Entropy

We focus on how we select the alternatives we offer to the user. First, we need to

choose a metric to evaluate the effectiveness of each question. One option is to
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use a measure of dispersion of the posterior distribution of θ, and the objective

is to decrease the amount of spread as much as possible with every question.

Along these lines, we elect to use differential entropy for its tractability.

For a probability density p, the differential entropy of p is defined as

H(p) =

∫

Θ

−p(θ) log2 p(θ) dθ.

For the entirety of this thesis, all logarithms are base-2, implying that both Shan-

non and differential entropy are measured in bits. Because we ask the user mul-

tiple questions, it is important to incorporate the previous response history Yk
when considering posterior entropy. Let Hk be the entropy operator at time

epoch k such that Hk(θ) = H(θ | Yk), which takes into account all of the previ-

ous observation history Yk. Occasionally, when looking at the performance of a

policy π, we would want to randomize over all such histories. This is equivalent

to the concept of conditional entropy, with Hπ(θ |Yk) = Eπ [Hk(θ)].

Throughout the thesis, we represent discrete distributions as vectors. Ac-

cordingly, define ∆m = {u ∈ Rm :
∑

z u
(z) = 1, u ≥ 0} to be the set of dis-

crete probability distributions overm alternatives. For a probability distribution

u ∈ ∆m, we define h(u) to be the Shannon entropy of that discrete distribution,

namely

h(u) =
∑

z∈Z

−u(z) log2 u
(z).

Here, we consider discrete probability distributions over the alternatives we

offer, which is why distributions u are indexed by z ∈ Z.

Since stochastic matrices are be used to model some noise channels, we de-

velop similar notation for matrices. Let ∆m×m denote the set of m × m row-

stochastic matrices. Similarly to how we defined the Shannon entropy of a vec-
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tor, we define h(P ) as an m-vector with the Shannon entropies of the rows of P

as its components. In other words,

h (P )(z) =
∑

y∈Y

−P (zy) log2 P
(zy).

An important concept in information theory is mutual information, which

measures the entropy reduction of a random variable when conditioning on

another. It is natural to ask about the relationship between the information gain

of θ and that of Zk(Xk) after observing signal Yk(Xk). Mutual information in

this context is defined as

Ik(θ;Yk(Xk)) = Hk(θ)−Hk(θ |Yk(Xk)). (4.3)

One critical property of mutual information is that it is symmetric, or in other

words, Ik(θ;Yk(Xk)) = Ik(Yk(Xk);θ) (see Cover 1991, p. 20). In the context of

our model, this means that observing signal Yk(Xk) gives us the same amount

of information about linear classifier θ as would observing the linear classifier

would provide about the signal. This is one property we exploit throughout

this work, since the latter case only depends on the noise channel, which by

assumption does not change over time. We show in Theorem 4.3.1 below that

the Noise Channel Assumptions allow us to determine how the noise channel

affects the posterior entropy of linear classifier θ.

The first identity, given by (4.4), says that the noise provides an additive

effect with respect to entropy, particularly because the noise does not depend

on θ itself. The second identity, given by (4.5), highlights the fact that Yk(Xk)

provides the same amount of information on the linear classifier θ as it does on

the true answerZk(Xk) for a given question. This means that the entropy of both

θ andZk(Xk) are reduced by the same number of bits when asking questionXk.
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Intuitively, asking the question that would gain the most clarity from a response

would also do the same for the underlying linear classifier. This is formalized

in Theorem 4.3.1 below.

Theorem 4.3.1. The following information identities hold under the Noise Channel

Assumptions for all time epochs k. The first is the Noise Separation Equality, namely

Hk(θ |Yk(Xk)) = Hk(θ |Zk(Xk)) +Hk(Zk(Xk) |Yk(Xk)), (4.4)

and the Noise Channel Information Equality, given by

Ik(θ;Yk(Xk)) = I(Zk(Xk);Yk(Xk)), (4.5)

where the latter term does not depend on response history Yk.

Proof. Using the symmetry of mutual information,

Hk(θ |Yk(Xk))−Hk(θ |Yk(Xk),Zk(Xk)) = Hk(Zk(Xk) |Yk(Xk))−H(Zk(Xk) |θ,Yk(Xk)).

Further, we know Hk(θ |Yk(Xk),Zk(Xk)) = Hk(θ |Zk(Xk)) because Yk(Xk) and

θ are conditionally independent given Zk(Xk). Also, since Zk(Xk) is a function

of θ and Xk, it must be that Hk(Zk(Xk) |θ,Yk(Xk)) = 0. Putting these together

gives us the first identity. To prove the second identity, we use the fact that

Hk(θ |Zk(Xk)) +Hk(Zk(Xk)) = Hk(Zk(Xk) |θ) +Hk(θ).

Again, Hk(Zk(Xk) |θ) = 0 because Zk(Xk) is a function of θ and Xk. This yields

Hk(θ |Zk(Xk)) = Hk(θ) −Hk(Zk(Xk)). Substitution into the first identity gives

us

Hk(θ)−Hk(θ |Yk(Xk)) = Hk(Zk(Xk))−Hk(Zk(Xk) |Yk(Xk)),

which is (4.5), by definition of mutual information. Finally, by the Noise Chan-

nel Assumptions, signalYk(Xk) is conditionally independent of historyYk given

Zk(Xk), and therefore, Ik(Zk(Xk);Yk(Xk)) = I(Zk(Xk);Yk(Xk)).
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The entropy pursuit policy is one that maximizes the reduction in entropy

of the linear classifier, namely Ik(θ;Yk(Xk)) = Hk(θ) − Hk(θ |Yk(Xk)), at each

time epoch. We leverage the results from Theorem 4.3.1 to find conditions on

questions that maximally reduce entropy in the linear classifier θ. However, we

first need to introduce some more notation.

For a noise channel parameterized by f = {f (z) : z ∈ Z}, let ϕ denote the

function on domain ∆m defined as

ϕ(u ; f) = H

(∑

z∈Z

u(z)f (z)

)
−
∑

z∈Z

u(z) H
(
f (z)
)
. (4.6)

We will show in Theorem 4.3.2 that (4.6) refers to the reduction in entropy from

asking a question, where the argument u ∈ ∆m depends on the question. We

define the channel capacity over noise channel f , denoted C(f), to be the supre-

mum of ϕ over this domain, namely

C(f) = sup
u∈∆m

ϕ(u ; f), (4.7)

and this denotes the maximal amount of entropy reduction at every step. These

can be similarly defined for a discrete noise channel. For a noise channel pa-

rameterized by transmission matrix P , we define

ϕ(u ; P ) = h(uTP )− uTh(P ), (4.8)

and C(P ) is correspondingly the supremum of ϕ(· ; P ) in its first argument. In

Theorem 4.3.2 below, we show that ϕ(u ; f) is precisely the amount of entropy

over linear classifiers θ reduced by asking a question with respective predictive

distribution u under noise channel f .

Theorem 4.3.2. For a given question X ∈ Xm, define uk(X) ∈ ∆m such that

u
(z)
k (X) = µk

(
A(z)(X)

)
for all z ∈ Z. Suppose that the Noise Channel Assumptions
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hold. Then for a fixed noise channel parameterized by f = {f (z) : z ∈ Z},

Ik(θ;Yk(Xk)) = ϕ (uk(Xk) ; f) . (4.9)

Consequently, for all time epochs k, we have

sup
Xk∈Xm

Ik(θ;Yk(Xk)) ≤ C(f), (4.10)

and there exists u∗ ∈ ∆m that attains the supremum. Moreover, if there exists some

Xk ∈ Xm such that uk(Xk) = u∗, then the upper bound is attained.

Proof. We first use (4.5) from Theorem 4.3.1, namely that Ik(θ;Yk(Xk)) =

Ik(Zk(Xk);Yk(Xk)). We use the fact that mutual information is symmetric,

meaning that the entropy reduction in Zk(Xk) while observing Yk(Xk) is equal

to that in Yk(Xk) while observing Zk(Xk). Putting this together with the defini-

tion of mutual information yields

Ik(θ;Yk(Xk)) = Ik(Zk(Xk);Yk(Xk))

= Hk(Yk(Xk))−Hk(Yk(Xk) |Zk(Xk))

= H

(∑

z∈Z

Pk(Zk(Xk) = z) f (z)

)
−
∑

z∈Z

Pk(Zk(Xk) = z)H(f (z))

= H

(∑

z∈Z

µk
(
A(z)(Xk)

)
f (z)

)
−
∑

z∈Z

µk
(
A(z)(Xk)

)
H(f (z)),

which is equal to ϕ(uk(Xk) ; f), where u(z)
k (Xk) = µk

(
A(z)(Xk)

)
. Therefore, the

optimization problem in (4.10) is equivalent to

sup
Xk∈Xm

ϕ (uk(Xk) ; f) .

Since {uk(X) : X ∈ Xm} ⊆ ∆m, we can relax the above problem to

sup
u∈∆m

ϕ(u ; f).
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It is known that mutual information is concave in its probability mass function

(see Cover 1991, p. 31), and strictly concave when the likelihood functions f (z)

differ on a set of positive measure. Thus, for a fixed noise channel f , ϕ(· ; f)

is concave on ∆m, a compact convex set, implying an optimal solution u∗ exists

and the optimal objective valueC(f) > 0 is attained. Further, if we can construct

some Xk ∈ Xm such that µk
(
A(z)(Xk)

)
= u

(z)
∗ for every z ∈ Z, then the upper

bound is attained.

We have shown that entropy reduction of the posterior of θ depends only on

the implied predictive distribution of a given question and structure of the noise

channel. If we are free to fabricate alternatives to achieve the optimal predictive

distribution, then we reduce the entropy of the posterior by a fixed amountC(f)

at every time epoch. Perhaps the most surprising aspect of this result is the fact

that the history Yk plays no role in the amount of entropy reduction, which is

important for showing that entropy pursuit is an optimal policy for reducing

entropy over several questions.

In practice, one can usually ask more than one question, and it is natural to

ask if there is an extension that gives us a bound on the posterior entropy after

asking several questions. Using the results in Theorem 4.3.2, we can derive an

analogous lower bound for this case.

Corollary 4.3.3. For a given policy π ∈ Π, we can write the entropy of linear classifier

θ after K time epochs as

H(θ)−Hπ (θ |YK) = Eπ
[

K∑

k=1

ϕ(uk(Xk) ; f)

]
, (4.11)

and a lower bound for the differential entropy of θ after asking K questions is given
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below by

inf
π∈Π

Hπ(θ |YK) ≥ H(θ)−K · C(f). (4.12)

Further, if for a given policy π and history Yk indicates that comparative question Xk

should be posed to the user, then the lower bound is attained if and only if uk(Xk) = u∗,

with u∗ as defined in Theorem 4.3.2. Thus, entropy pursuit is an optimal policy.

Proof. Using the information chain rule, we can write the entropy reduction for

a generic policy π ∈ Π as

H(θ)−Hπ(θ |YK) = Iπ (θ;YK)

=
K∑

k=1

Eπ
[
Ik (θ;Yk(Xk))

]
≤ K · C(f),

where the last inequality comes directly from Theorem 4.3.2, and the upper

bound is attained if and only if uk(Xk) = u∗ for every k = 1, 2, . . . , K. This

coincides with the entropy pursuit policy.

Essentially, Corollary 4.3.3 shows that the greedy entropy reduction policy

is, in fact, the optimal policy over any time horizon. However, there is still an

important element that is missing: how can we ensure that there exists some

alternative that satisfies the entropy pursuit criteria? We address this important

concern in Section 4.3.3.

4.3.1 Optimality Conditions for Predictive Distribution

Because of the properties of entropy, the noise channel function ϕ has a lot of

structure. We use this structure to find conditions for a non-degenerate opti-
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mal predictive distribution u∗ as well as derive sensitivity results that allow the

optimality gap of a close-to-optimal predictive distribution to be estimated.

Before we prove structural results for the channel equation ϕ, some more

information theoretic notation should be introduced. Given two densities f (i)

and f (j), the cross entropy of these two densities is defined as

H
(
f (i), f (j)

)
=

∫

Y
−f (i)(y) log2 f

(j)(y) dy.

Using the definition of cross entropy, the Kullback-Leibler divergence between

two densities f (i) and f (j) is defined as

KL
(
f (i)

∥∥ f (j)
)

= H(f (i), f (j))−H(f (i)).

Kullback-Leibler divergence is a tractable way of measuring the difference of

two densities. An interesting property of Kullback-Leibler divergence is that

for any densities f (i) and f (j), KL(f (i)‖f (j)) ≥ 0, with equality if and only if

f (i) = f (j) almost surely. Kullback-Leibler divergence plays a crucial role the

first-order information for the channel equation ϕ.

We now derive results that express the gradient and Hessian of ϕ in terms

of the noise channel, which can either be parameterized by f in the case of a

density, or by a fixed transmission matrix P in the discrete noise channel case.

For these results to hold, we require the cross entropyH(f (i), f (j)) to be bounded

in magnitude for all i, j ∈ Z, which is an entirely reasonable assumption.

Lemma 4.3.4. For a fixed noise channel characterized by f = {f (z) : z ∈ Z}, if the

cross entropy terms H(f (i), f (j)) are bounded for all i, j ∈ Z, then the first and second
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partial derivatives of ϕ with respect to u are given by

∂ϕ(u ; f)

∂u(z)
= KL

(
f (z)

∥∥∥∥∥
∑

i∈Z

u(i)f (i)

)
− ξ

∂2ϕ(u ; f)

∂u(z) ∂u(w)
= −ξ

∫

Y

f (z)(y) f (w)(y)∑
i∈Z u

(i)f (i)(y)
dy,

where ξ = log2 e, and KL(· ‖ ·) is the Kullback-Leibler Divergence.

In particular, if a discrete noise channel is parameterized by transmission matrix P ,

the gradient and Hessian matrix of ϕ can be respectively expressed as

∇u ϕ(u ; P ) = −P log2

(
P Tu

)
− h(P )− ξe

∇2
u ϕ(u ; P ) = −ξ P

(
diag

(
uTP

))−1
P T ,

where the logarithm is taken component-wise.

Proof. We first prove the result in the more general case when the noise channel

is parameterized by f . From the definition of ϕ,

ϕ(u ; f) =

∫

Y
−
(∑

i∈Z

u(i)f (i)(y)

)
log2

(∑

i∈Z

u(i)f (i)(y)

)
dy −

∑

i∈Z

u(i)H(f (i)).

Since t 7→ − log t is convex, by Jensen’s inequality, H(f (z),
∑

i u
(i)f (i)) ≤

∑
i u

(i)H(f (z), f (i)), which is bounded. By the Dominated Convergence Theo-

rem, we can switch differentiation and integration operators, and thus,

∂

∂u(z)
ϕ(u ; f) =

∫

Y
−f (z)(y) log2

(∑

i∈Z

u(i)f (i)(y)

)
dy − ξ −H(f (z))

= KL

(
f (z)

∥∥∥∥∥
∑

i∈Z

u(i)f (i)

)
− ξ.

Concerning the second partial derivative, Kullback-Leibler divergence is always

non-negative, and therefore, Monotone Convergence Theorem again allows us

to switch integration and differentiation, yielding

∂2ϕ(u ; f)

∂u(z) ∂u(w)
= −ξ

∫

Y

f (z)(y) f (w)(y)∑
i∈Z u

(i)f (i)(y)
dy.
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For the discrete noise channel case, the proof is analogous to above, using Equa-

tion (4.8). Vectorizing yields

∇u ϕ(u ;P ) = −P
(
log2(P Tu) + ξe

)
− h(P )

= −P log2

(
P Tu

)
− h(P )− ξe.

Similarly, the discrete noise channel analogue for the second derivative is

∂2ϕ(u ;P )

∂u(z)∂u(w)
= −ξ

∑

y∈Y

P (zy)P (wy)

∑
i∈Z u

(i)P (iy)
,

and vectorizing gives us the Hessian matrix.

One can now use the results in Lemma 4.3.4 to find conditions for an opti-

mal predictive distribution for a noise channel parameterized either by densities

f = {f (z) : z ∈ Z} or transmission matrix P . There has been much research on

how to find the optimal predictive distribution u∗ given a noise channel, as in

Gallager (1968). Generally, there are two methods for finding this quantity. The

first relies on solving a constrained concave maximization problem by using a

first-order method. The other involves using the Karush-Kuhn-Tucker condi-

tions necessary for an optimal solution (see Gallager 1968, p. 91 for proof).

Theorem 4.3.5 (Gallager). Given a noise channel parameterized by f = {f (z) : z ∈

Z}, the optimal predictive distribution u∗ satisfies

KL

(
f (z)

∥∥∥∥∥
∑

i∈Z

u(i)f (i)

)




= C(f) u
(z)
∗ > 0

< C(f) u
(z)
∗ = 0,

where C(f) is the channel capacity.

The difficulty in solving this problem comes from determining whether or

not u(z)
∗ > 0. In the context of preference elicitation, when fixing the number of
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offered alternativesm, it is critical for every alternative to contribute to reducing

uncertainty. However, having a noise channel where u(z)
∗ = 0 implies that it is

more efficient to learn without offering alternative z.

To be specific, we say that a noise channel parameterized by f = {f (z) : z ∈

Z} is admissible if there exists some f∗ ∈ Int (Hull(f)) such that for all z ∈ Z,

KL
(
f (z)

∥∥ f∗
)

= C

for some C > 0. Otherwise, we say the noise channel is inadmissible. Admissi-

bility is equivalent the existence of a predictive distribution u∗ > 0 where all m

alternatives are used to learn a user’s preferences. For pairwise comparisons,

any noise channel where f (1) and f (2) differ on a set of non-zero Lebesgue mea-

sure is admissible. Otherwise, for m > 2, there are situations when u(z)
∗ = 0 for

some z ∈ Z, and Lemma 4.3.6 provides one of them. In particular, if one density

f (z) is a convex combination of any of the others, then the optimal predictive

distribution will always have u(z)
∗ = 0.

Lemma 4.3.6. Suppose the noise channel is parameterized by densities f = {f (z) : z ∈

Z}, and its corresponding optimal predictive distribution is u∗. If there exists λ(i) ≥ 0

for i 6= z such that
∑

i 6=z λ
(i) = 1 and f (z)(y) =

∑
i 6=z λ

(i)f (i)(y) for all y ∈ Y, then

u
(z)
∗ = 0.

Proof. Suppose f (z) =
∑

i 6=z λ
(i)f (i). Take any u ∈ ∆m such that u(z) > 0. We will

construct a ū ∈ ∆m such that ū(z) = 0 and ϕ(ū ; f) > ϕ(u ; f). Define ū as

ū(i) =





u(i) + λ(i)u(z) i 6= z

0 i = z.

It is easy to verify that
∑

i ū
(i)f (i) =

∑
i u

(i)f (i). But since entropy is strictly
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concave, we have H
(
f (z)
)
>
∑

i 6=z λ
(i)f (i). Consequently,

ϕ(u ; f) = H

(∑

i∈Z

u(i)f (i)

)
−
∑

i∈Z

u(i)H
(
f (i)
)

= H

(∑

i 6=z

ū(i)f (i)

)
−
∑

i 6=z

u(i)H(f (i))− u(z)H(f (z))

< H

(∑

i 6=z

ū(i)f (i)

)
−
∑

i 6=z

u(i)H(f (i))− u(z)
∑

i 6=z

λ(i)H(f (i))

= H

(∑

i 6=z

ū(i)f (i)

)
−
∑

i 6=z

ū(i)H(f (i)) = ϕ(ū ; f),

and therefore, one can always increase the objective value of ϕ by setting u(z) =

0.

Of course, there are other cases where the predictive distribution u∗ is not

strictly positive for every z ∈ Z. For example, even if one of the densities is

an approximate convex combination, the optimal predictive distribution would

likely still have u(z)
∗ = 0. In general, there is no easy condition to check whether

or not u∗ > 0. However, our problem assumes m is relatively small, and so it is

simpler to find u∗ and confirm the channel is admissible. In the case of a discrete

noise channel, Shannon and Weaver (1948) gave an efficient way to do this by

solving a relaxed version of the concave maximization problem, provided that

the transmission matrix P is invertible.

Theorem 4.3.7 (Shannon). For a discrete noise channel parameterized by a non-

singular transmission matrix P , let

v =
exp (−ξ−1P−1h(P ))

eT exp (−ξ−1P−1h(P ))
, (4.13)

where the exponential is taken component-wise. If there exists u > 0 such that

uTP = vT , then u ∈ Int(∆m) is the optimal predictive distribution, meaning that
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∇u ϕ(u ;P ) = βe for some β ∈ R, and ϕ(u∗ ;P ) = C(P ), and the noise channel is

admissible. Otherwise, then there exists some z ∈ Z such that u(z) = 0, and the noise

channel is inadmissible.

Proof. Using (4.8) and Lagrangian relaxation,

sup
u: eTu=1

ϕ(u ;P ) = sup
u: eTu=1

h(uTP )− uTh(P )

= sup
u∈Rm

inf
λ∈R

h(uTP )− uTh(P )− λ
(
eTu− 1

)
.

Differentiating with respect to u and setting equal to zero yields

−P log2

(
P Tu

)
− h(P ) + ξe− λe = 0,

and since P is invertible,

− log2

(
P Tu

)
= P−1h(P ) + (λ− ξ)e,

since Pe = e for all stochastic matrices P . Algebra yields

P Tu = exp
(
−ξ−1P−1h(P ) + (λ/ξ − 1)e

)

= Λ · exp
(
−ξ−1P−1h(P )

)
,

where Λ = exp (λ/ξ − 1) is some positive constant. We require eTu = 1, and if

uTP = vT , it must be that

uT e = uTPe = vT e,

implying that eTu = 1 if and only if eTv = 1. Hence, Λ is a normalizing constant

that allows vTP = 1. Thus, we can set v as in (4.13), and now it is clear that

v ∈ ∆m. We can invert P to find an explicit form for u, but P−Tv is only feasible

for the original optimization problem if it is non-negative. However, if there

exists some u ∈ ∆m such that uTP = vT , then the optimal solution to the relaxed

problem is feasible for the original optimization problem, proving the theorem.
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If there does not exist some u ≥ 0 that satisfied uTP = vT for v defined in

(4.13), then the non-negativity constraint would be tight, and u
(z)
∗ = 0 for some

z ∈ Z. In this case, the noise channel is inadmissible, because it implies asking

the optimal question under entropy pursuit would assign zero probability to

one of the alternatives being the model consistent answer, and thus posits a

question of strictly less than m alternatives to the user.

The condition of P being non-singular has an enlightening interpretation.

Having a non-singular transmission matrix implies there would be no two dis-

tinct predictive distributions for Zk(Xk) that yield the same predictive distri-

bution over Yk(Xk). This is critical for the model to be identifiable, and pre-

vents the previous problem of having one row of P being a convex combination

of other rows. The non-singular condition is reasonable in practice: it is easy

to verify that matrices in the form P = αI + (1 − α)veT for some v ∈ ∆m is

invertible if and only if α > 0. Transmission matrices of this type are fairly

reasonable: with probability α, the user selects the “true response,” and with

probability (1 − α), the user selects from discrete distribution v, regardless of

Zk(Xk). The symmetric noise channel is a special case of this. In general, if one

models P = αI+(1−α)S, where S is an m×m stochastic matrix, then P is non-

singular if and only if −α/(1 − α) is not an eigenvalue of S, which guarantees

that P is invertible when α > 1/2. Nevertheless, regardless of whether or not

P is singular, it is relatively easy to check the admissibility of a noise channel,

and consequently conclude whether or not it is a good modeling choice for the

purpose of preference elicitation.
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4.3.2 Sensitivity Analysis

In reality, we cannot always fabricate alternatives so that the predictive distri-

bution is exactly optimal. In many instances, the set of alternatives X is finite.

This prevents us from choosing an Xk such that uk(Xk) = u∗ exactly. But if we

can find a question that has a predictive distribution that is sufficiently close to

optimal, then we can reduce the entropy at a rate that is close to the channel

capacity. Below, we elaborate on our definition of sufficiently close by showing

ϕ is strongly concave, using the Hessian to construct quadratic upper and lower

bounds on the objective function ϕ.

Theorem 4.3.8. If there exists u∗ ∈ ∆m such that u∗ > 0 and ϕ(u∗ ; f) = C(f) (i.e., if

the noise channel is admissible), then there exist constants 0 ≤ r(f) ≤ R(f) such that

r(f) · ‖u− u∗‖2 ≤ C(f)− ϕ(u ; f) ≤ R(f) · ‖u− u∗‖2.

Further, suppose transmission matrix P encoding a discrete noise channel is non-

singular, and has minimum probability κ1 = minzy P
(zy) > 0, maximum probability

κ2 = maxzy P
(zy), channel capacity C(P ) and distribution u∗ such that ϕ(u∗ ;P ) =

C(P ). If u∗ > 0, we have

ξ

2κ2

∥∥(u− u∗)TP
∥∥2 ≤ C(P )− ϕ(u ;P ) ≤ ξ

2κ1

∥∥(u− u∗)TP
∥∥2

for all u ∈ ∆m, with ξ = log2 e.

Proof. The (z, w) component of −∇2ϕ(· ; f) is lower bounded by

∫

Y

f (z)(y)f (w)(y)∑
i∈Z u

(i)f (i)(y)
dy ≥ 1

maxi∈Z, y∈Y f (i)(y)

∫

Y
f (z)(y)f (w)(y) dy, (4.14)

since the denominator can be upper bounded. Let M denote the m ×m matrix

with its (z, w) component equal to the right-most term in (4.14) above. Since
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it can be written as a Gram matrix for an integral product space, M is positive

semi-definite, and it is clear that M � −∇2ϕ(u ; f) for all u ∈ ∆m. Correspond-

ingly, let r(f) be the smallest eigenvalue of M .

For an upper bound, we employ a different approach. Let qR(u) = C −

(R/2) ‖u − u∗‖2 denote the implied quadratic lower bound to ϕ. It is clear that

qR(u) ≥ 0 if and only if ‖u− u∗‖ ≤
√

2C/R. Since ϕ is a non-negative function,

we only need to find R so that qR is a lower bound when qR(u) > 0. Consider

inf
R

R

s.t. qR(u) ≤ ϕ(u ; f) ∀u : ‖u− u∗‖ <
√

2C/R.

The problem is feasible since∇2ϕ is continuous about u∗, and hence, there exists

an R sufficiently large such that qR is a lower bound of ϕ in a small neighbor-

hood around u∗. The problem is obviously bounded since the optimal value

must be greater than r(f). Now let R(f) denote the optimal value to the prob-

lem above. Taylor expanding about u∗ yields

r(f) · ‖u− u∗‖2 ≤ C(f)− ϕ(u ; f) +∇u ϕ(u∗ ; f)T (u− u∗) ≤ R(f) · ‖u− u∗‖2.

But since u∗ > 0, optimality requires ∇u ϕ(u∗ ; f) = βe for some β ∈ R. Since u

and u∗ are both probability distributions,

∇u ϕ(u∗ ; f)T (u− u∗) = βeT (u− u∗) = 0,

and hence the lower and upper bounds hold.

The proof for the discrete noise channel case is similar, with the exception be-

ing that we can easily find constants that satisfy the quadratic lower and upper

bounds of the optimality gap C(P )−ϕ(u∗ ; P ). We observe the elements of uTP

are lower bounded by κ1 = minzy Pzy and upper bounded by κ2 = maxzy Pzy.
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Therefore, for all u ∈ ∆m,

ξκ−1
2 PP T � ∇2

u ϕ(u ;P ) � ξκ−1
1 PP T .

Lemma 4.3.4 implies that∇uϕ(u∗ |P ) = βe since u∗ > 0. Thus, Taylor expansion

about u∗ yields

ξ

2κ1

∥∥(u− u∗)TP
∥∥2 ≤ C(f)−ϕ(u;P )+∇u ϕ(u∗;P )T (u−u∗) ≤

ξ

2κ2

∥∥(u− u∗)TP
∥∥2
.

Lastly, since both u∗ and u are distributions, their components sum to one, im-

plying ∇u ϕ(u ; P )T (u− u∗) = 0. The result directly follows.

This gives us explicit bounds on the entropy reduction in terms of the L2

distance of a question’s predictive distribution from the optimal predictive dis-

tribution. In theory, this allows us to enumerate through all questions in Xm

and select that whose predictive distribution is closest to optimal, although this

is difficult when the size of X is large.

Symmetric Noise Channel

A symmetric noise channel is a special case of a discrete noise channel, where

the transmission matrix entries only depend on whether or not y = z. There

are many instances where in a moment of indecision, the user can select an

alternative uniformly at random, especially when she does not have a strong

opinion on any of the presented alternatives. A symmetric noise channel useful

for modeling situations whenm is relatively small; ifm is large, with the offered

alternatives being presented as a list, the positioning in the list might have an

effect on the user’s response. However, if the number of alternatives in the

comparative question is small, the ordering should not matter, and a symmetric

noise channel would be a reasonable modeling choice.
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One way to parameterize a symmetric noise channel is by representing the

transmission matrices as Pα = αI + (1 − α)(1/m) eeT , where e is a vector of all

ones, and α ∈ [0, 1]. There are other scenarios including symmetric noise chan-

nels that allow P (zy) > P (zz) for y 6= z, but these situations would be particularly

pessimistic from the perspective of learning, so we opt to exclude these noise

channels from our definition. Since ϕ(· ; Pα) is concave and now symmetric in

its first argument, choosing u
(z)
∗ = 1/m for every z ∈ Z is an optimal solution.

Thus, we want to choose the question Xk so that the user is equally likely to

choose any of the offered alternatives.

In the case of symmetric noise, we can easily calculate the channel capacity

using (4.8), yielding

C(Pα) = log2m− h
(
αe(1) + (1− α) (1/m) e

)
, (4.15)

where e(1) is an m-vector with its first component equal to one, and all others

equal to zero. The concavity of h gives a crude upper bound for the channel

capacity, namely C(Pα) ≤ α log2m. Comparatively, under no noise, one can

reduce the entropy of the posterior of the linear classifier by log2m bits at ev-

ery time epoch. There is an intuitive explanation for this result. With noise

level α, we only observe the model-consistent response with probability α at

each step. Even under the best case scenario of knowing which responses were

model-consistent and which were a random draw, the expected number of bits

of reduced posterior entropy at each step would only be α log2m. In fact, the ex-

pected entropy reduction in reality is lower than this because we do not know

which responses are informative of linear classifier θ.

Because the symmetric noise channel is a special case of a discrete noise

channel, we can leverage the results from Theorem 4.3.8 to derive symmetric
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noise channel sensitivity bounds.

Corollary 4.3.9. Suppose we have a symmetric noise channel parameterized by Pα,

where Pα = αI + (1− α)(1/m) eeT , implying that u(z)
∗ = 1/m for all z. Then

ξα2

2 (α + (1− α)(1/m))
‖u− u∗‖2 ≤ C(Pα)−ϕ(u ;Pα) ≤ ξα2

2(1− α)(1/m)
‖u− u∗‖2

for all u ∈ ∆m.

Proof. We start with the bounds from Theorem 4.3.8 and further refine. The off-

diagonal entries of Pα, by our parameterization of symmetric noise channel, are

its smallest elements, and therefore, κ1 = (1 − α)(1/m). Similarly, the diagonal

entries of Pα are the largest elements, and so κ2 = α + (1− α)(1/m). Lastly, one

can easily verify (u− u∗)TP = α (u− u∗)T .

We return to the symmetric noise channel case in Section 4.3.3, where we

show that in the theoretical case of allowing fabrication of alternatives, a subset

of alternatives can always be constructed to achieve a uniform predictive distri-

bution regardless of the prior, and hence the optimal rate of entropy reduction

can always be achieved.

4.3.3 Selection of Alternatives from the Continuum

Now that we have results relating the predictive distribution uk(Xk) to the en-

tropy reduction in the linear classifier θ, we now explore how we can appropri-

ately choose alternativesXk at every time epoch that yield a desirable predictive

distribution.
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X

x(1)

x(2)

x(3)

x(4)

Figure 4.1: The continuum regime for alternative set X. The document vectors
x(i) can be chosen so that any direction x(i) − x(j) can be achieved for
all possible combinations.

We first focus on the easier case where we can construct alternatives

to ask any comparative questions we desire. For a set of m alternatives

(x(1), . . . , x(m)) = X ∈ Xm and a prior probability measure µ, the characteris-

tic polytopes A(1)(X), . . . , A(m)(X) determine the predictive probabilities. Each

setA(z)(X) composed of constraints θT
(
x(z) − x(i)

)
≥ 0 for i 6= z (ignoring strict-

ness vs. non-strictness of inequalities). Thus, for the set of alternatives X to have

full expressiveness with respect to our model, one must be able to choose alter-

natives so that x(i)−x(j) can take any direction in Rd. A reasonable and sufficient

condition for the interior of X to be non-empty. When this is the case, we can

always choose alternatives such that the relative direction between any two can

take any value. This is what we refer to as the continuum regime.

In most practical situations, the set of alternatives is finite, and such con-

struction is not possible. However, this assumption is more mathematically

tractable and allows us to give conditions for when we can ask questions that

yield a desirable predictive distribution, and consequently maximize entropy

reduction. We return to the more realistic assumption of a finite alternative set

later in Section 5.4.

Consider using pairwise comparisons, i.e., when m = 2. Is it true that re-
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gardless of the noise channel and the prior distribution of θ that we can select a

question Xk that achieves the optimal predictive distribution uk(Xk)? A simple

example proves otherwise. Suppose a priori, the linear classifier θ is normally

distributed with zero mean and an identity covariance matrix. Because the dis-

tribution is symmetric about the origin, regardless of the hyperplane we select,

exactly 1/2 of the probabilistic mass lies on either side of the hyperplane. This

is the desirable outcome when the noise channel is symmetric, but suppose this

were not the case. For example, if the noise channel required 2/3 of the proba-

bilistic mass on one side of the hyperplane, there is no way to achieve this.

This issue is related to a certain metric called halfspace depth, first defined

by Tukey (1975) and later refined by Donoho and Gasko (1992). The halfspace

depth at a point η ∈ Rd refers to the minimum probabilistic mass able to be

partitioned to one side of a hyperplane centered at η. In this thesis, we only

consider the case where the cutting plane is centered at the origin, and need

only to consider the case where η = 0. Hence, let

δ(µk) = inf
v 6=0

µk
({
θ : θTv ≥ 0

})
. (4.16)

In our previous example, the halfspace depth of the origin was equal to 1/2,

and therefore, there were no hyperplanes that could partition less than 1/2 of

the probabilistic mass on a side of a hyperplane.

The question now is whether we can choose a hyperplane such that

u
(z)
k (Xk) = u

(z)
∗ for any u

(z)
∗ ∈ [δ(µk), 1− δ(µk)]. We first prove an intuitive re-

sult regarding the continuity of probabilistic mass of a halfspace with respect to

the cutting plane. One can imagine rotating a hyperplane about the origin, and

since the probability measure has a density with respect to Lebesgue measure,

there will not be any sudden jumps in probabilistic mass on either side of the
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hyperplane.

Lemma 4.3.10. If probability measure µ is absolutely continuous with respect to

Lebesgue measure, then the mapping v 7→ µ
(
{θ ∈ Θ : θTv ≥ 0}

)
is continuous.

Proof. Suppose we have a sequence (vj : j ≥ 0) in Rd \{0} such that vj → v. The

functions I({θ : θTvj ≥ 0}) converge to I(θ : θTv ≥ 0}) almost surely. Taking

expectations and using Dominated Convergence Theorem gives the result.

Lemma 4.3.10 enables us to find conditions under which we can ask a ques-

tion Xk that yields a desirable predictive distribution uk(Xk). In particular,

Corollary 4.3.11 uses a variant of the intermediate value theorem.

Corollary 4.3.11. Suppose u∗ > 0 and Int(X) 6= ∅. Then there exists Xk = (x1, x2) ∈

X2 such that uk(Xk) = u∗ if and only if maxu∗ ≤ 1− δ(µk).

Proof. Take any v ∈ C = {w ∈ Rd : ‖w‖ = 1}, where µk
(
{θ : θTv ≥ 0}

)
= δ(µk).

Now let v′ = −v, and since µk is absolutely continuous with respect to Lebesgue

measure, µk(θTv′ ≥ 0) = µk(θ
Tv′ > 0) = 1 − δ(µk). Also, C is connected, and

w 7→ µk({θ : θTw ≥ 0}) is a continuous mapping: it follows that the image of

any path from v to v′ must also be connected. But the image is a subset of the

real line, and therefore must be an interval. Lastly, C is a compact set, implying

that the endpoints of this interval are attainable, and so the image of any such

path is equal to [δ(µk), 1− δ(µk)].

To recover the two alternatives, first select a vector w ∈ Rd such that µk({θ :

θTw ≥ 0}) = u(1). Choose x(1) ∈ Int(X), and subsequently choose x(2) = x(1)−cw,

where c > 0 is a positive scalar that ensures x(2) ∈ X. Finally, letXk =
(
x(1), x(2)

)
.
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X

x(1)

x(2)

Figure 4.2: Selection of alternatives x(1) and x(2). Since x(1) lies in the interior of
X, it is always possible to choose x(2) so that x(1) − x(2) has the same
direction as v.

To prove the converse statement, suppose max{u∗} > 1−δ(µk). Then by def-

inition of halfspace depth, min{u∗} /∈
{
µk({θ : θTv ≥ 0}) : v 6= 0

}
. Thus, there

does not exist a hyperplane that can separate Rd into two halfspaces with prob-

abilistic mass u∗.

Can we draw a similar conclusion if we offer more more than two alterna-

tives at each time epoch? The mass partition problem becomes increasingly

complex when greater than two alternatives are included. Since the sets A(z)(X)

correspond to convex polyhedral cones, the problem becomes that of finding a

partition of m convex polyhedral cones, or a polyhedral m-fan as it is known in

the computational geometry literature, that attains the prescribed probabilistic

mass u∗. There are a number of results pertaining to convex equipartitions and

extensions of the Borsuk-Ulam Theorem, most notably the Ham Sandwich The-

orem. Despite this, to the best of our knowledge, there is no result for general

mass partitions of convex polyhedral m-fans in the computational geometry lit-

erature. For this reason, we prove such a result here: that one can construct a

polyhedral m-fan with the corresponding predictive distribution u∗ if the mea-

sure µ is such that max{u∗} < 1− δ(µ).

Unlike the previous case that focused on pairwise comparisons, the inequal-
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ity is strict. One of the reasons this is the case is because of the specific structure

of the polyhedral cones in our problem. Since A(z)(X) corresponds to the linear

classifier in which the dot product with alternative z is maximal, these poly-

hedral cones cannot be halfspaces unless the predictive probability for some

alternative equals zero, which we do not allow. Thus, we enforce the additional

constraint that eachA(z) is a salient convex polyhedral cone, meaning that it does

not contain a linear subspace.

To prove the result, we first show the result in the case of two dimensions:

constructing the polyhedral m-fan, then deriving the feature vectors for the cor-

responding alternatives. This result is then generalized to the case of any di-

mension by using a projection argument.

Lemma 4.3.12. Suppose d = 2 and m > 2. If max{u∗} < 1 − δ(µ), then there exists

a two-dimensional polyhedral m-fan characterized by polyhedral cones (A(z) : z ∈ Z)

such that µ(A(z)) = u
(z)
∗ for all z ∈ Z.

Proof. Without loss of generality we can assume ‖θ‖ = 1, and in the case of two

dimensions that is equivalent to θ being parameterized by the interval [0, 2π) on

the unit circle. For an interval I measuring angles in radians, let

Cone(I) =








r cos η

r sin η


 : η ∈ I, r > 0




.

Accordingly, let µC be a measure defined on the unit circle such that µC(I) =

µ (Cone(I)) for every Lebesgue-measurable interval on [0, 2π). This implies that
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δ(µC) = δ(µ). For radian angles η(1) < η(2) < · · · < η(m+1) = η(1) + 2π, we define

B(z) =





[η(1), η(2)] z = 1

(η(z), η(z+1)] z = 2, . . . ,m− 1

(η(m), η(m+1)) z = m

for all z ∈ Z. The asymmetry with respect to sets being B(z) closed or open is

due to the definition of A(z) in (4.1). For each B(z) to correspond to a convex set

strictly contained in a halfspace, we require η(z+1) − η(z) < π. Our objective is to

appropriately select the angles (η(z) : z ∈ Z) so that µC(B(z)) = u(z). It suffices

to consider only two cases.

Case 1: max{u∗} < δ(µ)

This is the simpler case, since all the probabilities from the predictive dis-

tribution are strictly smaller than any halfspace measure. Arbitrarily choose

η(1). Now we want to choose η(2) ∈
(
η(1), η(1) + π

)
so that the interval contains

prescribed measure u(1)
∗ . The function η(2) 7→ µC

(
[η(1), η(2)]

)
is monotonically in-

creasing, continuous, and takes values on (0, δ(µ)]. Since u(z)
∗ ≤ maxu∗ ≤ δ(µk),

the Intermediate Value Theorem allows us to choose η(2) so the interval has mea-

sure u(1)
∗ . Continue in this way until all such angles η(z) are attained.

Case 2: max{u∗} ∈ [δ(µ), 1− δ(µ))

Here, it is necessary to define the set B(z) corresponding to the largest pre-

dictive probability u∗ first, and that with the smallest second. Without loss of
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generality, suppose u(1)
∗ = maxu∗ and u

(2)
∗ = minu∗. Then choose η(1) such that

µC
(
[η(1), η(1) + π]

)
∈ (maxu∗ , maxu∗ + minu∗) . (4.17)

This is possible because

(δ(µ), 1− δ(µ)) ∩ (maxu∗ , maxu∗ + minu∗) 6= ∅,

due to the assumptions that maxu∗ ∈ [δ(µ), 1− δ(µ)) and minu∗ > 0. Now

define η(2) such that µC
[
η(1), η(2)

]
= maxu∗.

Now we define the interval corresponding to minu∗ directly adjacent. Sup-

pose µC(η(2), η(2) + π] > minu∗. Then by the Intermediate Value Theorem,

there exists some η(3) such that µC(η(2), η(3)] = minu∗. Otherwise, suppose that

µC(η(m+1) − π, η(m+1)) > minu∗. Again, by the Intermediate Value Theorem, we

can find η(m) less than π radians from η(m+1) such that µC(η(m), η(m+1)) = minu∗.

We claim that these are the only two possibilities. By way of contradiction,

suppose that neither of these scenarios are true; in other words,

µC [η(2), η(2) + π] ≤ minu∗

µC [η(m+1) − π, η(m+1)] ≤ minu∗.

We can decompose these intervals into non-overlapping parts. Define

a = µC(η(2) + π, η(1) + 2π]

b = µC(η(2), η(1) + π]

c = µC(η(1) + π, η(2) + π).

Suppose that max{a, b} + c ≤ minu∗. The measure of the union of the three

intervals 1−maxu∗ = a+ b+ c, which implies 1−maxu∗ ≤ minu∗ + min{a, b}.
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Figure 4.3: Diagram showing the distribution of probabilistic mass partitioned
in unit circle.

Finally, since the smallest component of u∗ must be smaller in magnitude than

the sum of the other non-maximal components,

max{a, b}+ c ≤ minu∗ ≤ 1−maxu∗ −minu∗ ≤ min{a, b},

implying among other things that b = minu∗ in this scenario. However, this is

a contradiction, since we originally chose η(1) such that b + c < maxu∗ + minu∗

due to (4.17). Therefore, this scenario is not possible, and we can always find an

interval with probabilistic mass strictly greater than minu∗ directly adjacent to

an interval with maximal probabilistic mass.

In all cases, we have defined the first two intervals, and the remaining unal-

located region of the unit circle is strictly contained in an interval of width less

than π radians. Thus, one can easily define a partition as in Case 1, and every

subsequent interval would necessarily have to have length strictly less than π

radians. To recover the convex cones, let A(z) = Cone
(
B(z)

)
for every z ∈ Z, and

it is clear that A(z) contains the desired probabilistic mass.

Lemma 4.3.12 gives a way to construct polyhedral fans with the desired

probabilistic mass. We are interested in finding a set of alternatives that rep-

resents this polyhedral fan, and this is exactly what Theorem 4.3.13 does in the
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X

x(1)

x(2)

x(3)

x(4)

Figure 4.4: Iterative selection of alternatives. Since each x(z) is in the interior of
X, it is always possible to select x(z+1) to maintain a specific direction
for x(z+1) − x(z).

two-dimensional case. The critical condition required is for the set of alterna-

tives X to have non-empty interior.

Theorem 4.3.13. Suppose d = 2 andm > 2. Then given a measure µ that is absolutely

continuous with respect to Lebesgue measure and an optimal predictive distribution u∗,

if Int(X) 6= ∅ and maxu∗ < 1− δ(µ), then there exists X ∈ Xm such that u(X) = u∗.

Proof. First, use Lemma 4.3.12 to construct a polyhedral fan with the cor-

rect probabilistic weights. Using the angles η(1), . . . , η(m) constructed in the

Lemma, we can define separating hyperplanes v(1), . . . , v(m) by setting v(z) =
(
− sin η(z), cos η(z)

)
. Then we have

Ā(z) =




θ :

θTv(z) > 0

θTv(z+1) ≤ 0




.

The goal now is to define the alternatives. First, choose x(1) ∈ Int(X). Now

define x(z+1) = x(z) + c(z+1)v(z+1), where c(z+1) > 0 is a positive scaling that

ensures x(z+1) ∈ Int(X) if x(z) ∈ Int(X). Now we can equivalently write

Ā(z) =




θ :

θT
(
x(z) − x(z−1)

)
> 0

θT
(
x(z) − x(z+1)

)
≥ 0.




.
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Let X = (x(1), . . . , x(m)). It remains to show that A(z)(X) = Ā(z). Because A(z)(X)

has the same linear inequalities as Ā(z), it is clear that A(z)(X) ⊆ Ā(z) for all z.

Now suppose there exists some θ ∈ Ā(z). Since (Ā(z) : z ∈ Z) is a partition of R2,

it is clear that θ /∈ A(z′) for z′ 6= z, and thus, θ /∈ A(z′)(X). Since
(
A(z)(X) : z ∈ Z

)

is also a partition of R2, it must be that θ ∈ A(z)(X). This directly implies Ā(z) =

A(z)(X), and so u(z)(X) = µ(A(z)) = u
(z)
∗ .

Theorem 4.3.13 shows that in the case of two dimensions, a set of m alter-

natives can be generated to ensure that the entropy of the posterior distribution

of θ maximally decreases. This result can be generalized to arbitrary dimension

by selecting a two dimensional subspace and leveraging the previous result.

Theorem 4.3.14. Suppose Int(X) 6= ∅ and u∗ > 0. If maxu∗ < 1 − δ(µk), then

there exists Xk = (x(1), x(2), . . . , x(m)) ∈ Xm such that uk(Xk) = u∗. Further, if

maxu∗ > 1− δ(µk), then finding such a question is not possible.

Proof. We begin by proving the last claim of the theorem. Since any A(z)(Xk)

can be contained by a halfspace centered at the origin, and since all such halfs-

paces have probabilistic mass less than or equal to 1− δ(µk), then we must have

µk(A
(z)(X)) ≤ 1− δ(µk) for every z ∈ Z and for every Xk ∈ Xm.

Now we show the main result of the theorem. There exists some β̄ ∈ Rm\{0}

such that µk
(
{θ : θT β̄ ≥ 0}

)
= δ(µk), since µk has density pk and is continuous.

Let H = {θ : θT β̄ = 0} denote the hyperplane. Now choose a two-dimensional

subspace L such that L ⊥ H. For ν ∈ L, define density pLk as

pLk (ν) =

∫

ω∈L⊥
pk(ν + ω)λd−2(dω),

where λd−2 is (d− 2)-Lebesgue measure, and let µLk denote measure induced by
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density pLk . For β ∈ L, we have

µLk
(
{ν ∈ L : νTβ ≥ 0}

)
=

∫

ν∈L: νT β≥0

pLk (ν)λ2(dν)

=

∫

ν∈L: νT β≥0

∫

ω∈L⊥
pk(ν + ω)λm−2(dω)λ2(dν)

=

∫

(ν,ω)∈(L×L⊥): (ν+ω)T β≥0

pk(ν + ω)λd(dν × dω)

=

∫

θ: θT β≥0

pk(θ)λ(dθ) = µk({θ : θTβ ≥ 0}).

Thus, µLk is consistent with µk. In particular, µLk ({θ : θT β̄ ≥ 0}) = δ(µk), and

thus δ(µLk ) ≤ δ(µk), meaning we can use the previous Theorem 4.3.13 to find an

appropriate comparative question.

In particular, let γ1 and γ2 denote two orthogonal d-vectors that span L, and

let Γ ∈ Rd×2 contain γ1 and γ2 as its columns. To use the Theorem 4.3.13, we

pass µLk ◦Γ, and to convert the resulting question XL
k = (x(1), . . . , x(m)) back into

d-dimensional space, take Xk = (Γx(1), . . . ,Γx(m)).

Theorem 4.3.14 provides one possible construction for a question Xk that

gives a desirable predictive distribution, although there may be others. How-

ever, it is clear that if the halfspace depth δ(µk) is too large, it will not always

be possible to find a question that can yield the optimal predictive distribution,

even if we can construct questions in the continuum. But while it may not be

possible to maximally reduce the entropy of the posterior distribution, we may

choose a question Xk that can still reduce entropy by a constant amount at each

time epoch.

We conclude the section by showing that entropy in the linear classifier θ

can be reduced linearly, even if not optimally.
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Theorem 4.3.15. Suppose X = Rd, and let σk = (max{u∗} − (1− δ(µk)) + ε)+.

Then the following upper bound holds when m = 2 for ε = 0 and when m > 2 for

arbitrarily small ε > 0.

K · C(f)− sup
π

Eπ [I(θ;Yk)] ≤ r(f)

(
1 +

1

m− 1

) K∑

k=1

Eπ[σ2
k]

≤ K · r(f)

(
1 +

1

m− 1

)(
(max{u∗} − 1/2 + ε)+

)2
.

Proof. We start with the case when m > 2. Fix any small ε > 0. Let z′ =

arg max{u∗}. We write equality because in the cases where σk > 0, the maxi-

mum component is unique; otherwise, when σk = 0, the choice of z′ is irrele-

vant. We construct an “approximate predictive distribution” ūk such that

ū
(z)
k =





u
(z)
∗ − σk z = z′

u
(z)
∗ + σk/(m− 1) z 6= z′

This new vector ūk is the projection of u∗ onto the set {u ∈ ∆m : max{u} ≤

(1−δ(µk))−ε}. This “approximate predictive distribution” is chosen to minimize

the L2 distance from optimal u∗, and therefore maximize entropy reduction.

One can show that max{ūk} < 1−δ(µk), and ‖ūk−u∗‖2 ≤ σ2
k (1 + 1/(m− 1)).

Now we can construct X̄k such that uk(X̄k) = ūk at every step, which is possible

by Theorem 4.3.14 since ū > 0 and max{ūk} < 1 − δ(µk). Now we use Theo-
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rem 4.3.8 to show

K · C(f)− sup
π
Iπ(θ;Yk) ≤

K∑

k=1

(
C(f)− Eπk

[
ϕ(uk(X̄k) ; f)

])

=
K∑

k=1

(C(f)− Eπk [ϕ(ūk ; f)])

≤
K∑

k=1

r(f)Eπk
[
‖ūk − u∗‖2

]

= r(f)

(
1 +

1

m− 1

) K∑

k=1

Eπk
[
σ2
k

]
.

And since 1− δ(µk) ≥ 1/2, it follows that σk ≤ (max{u∗} − 1/2 + ε)+, regardless

of µk. The proof is analogous for the m = 2 case: the only change required is

to set ε = 0, because by Corollary 4.3.11, we can find a question if max{u∗} ≤

1− δ(πk), where the inequality need not be strict.

Putting Theorem 4.3.15 together with Corollary 4.3.3 shows that if the alter-

native set X has non-empty interior, the expected differential entropy of linear

classifier θ can be reduced at a linear rate, and this is optimal up to a constant

factor.

Finally, recall in Section 4.3.2 we defined the case of a symmetric noise

channel. There, u(z)
∗ = 1/m for all z ∈ Z. In the pairwise comparison case,

maxu∗ = 1/2 ≤ 1 − δ(µ) for all measures µ. In the multiple comparison case,

maxu∗ = 1/m < 1/2 ≤ 1 − δ(µ) for all measures µ. Thus, regardless of m, in

the continuum setting, a set of alternatives can always be constructed to achieve

a uniform predictive distribution, and therefore optimally reduce posterior en-

tropy.
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4.4 Misclassification Error

The entropy pursuit policy itself is intuitive, especially when the noise channel

is symmetric. However, differential entropy as a metric for measuring knowl-

edge of the user’s preferences is not intuitive. One way to measure the extent of

our knowledge about a user’s preferences is testing ourselves using a randomly

chosen question and estimating the answer after observing a response from the

user. This probability we get the answer wrong called misclassification error.

Specifically, we sequentially ask questions Xk and observe signals Yk(Xk)

at time epochs k = 1, . . . , K. After the last question, we are then posed with

an evaluation question. The evaluation question will be an n-way compari-

son between randomly chosen alternatives, where n can differ from m. De-

note the evaluation question as SK ∈ Xn, where a particular evaluation ques-

tion SK =
(
s(1), . . . , s(n)

)
. The evaluation question is chosen at random ac-

cording to some unknown distribution. Denote the model-consistent answer

as WK(SK) = min
{

arg maxw∈W θ
T sw
}

, where the minimum serves as a tie-

breaking rule. The goal is to use history YK and the question SK to predict

WK(SK). Let ŴK denote the candidate answer that depends on the chosen eval-

uation question response history. Then our goal for the adaptive problem is to

find a policy that minimizes

EπK = Eπ
[

inf
ŴK∈W

P
(
WK(SK) 6= ŴK

∣∣∣YK ,SK

)]
, (4.18)

and one can do this by adaptively selecting the best question Xk that will allow

us to learn enough about the user’s preferences to correctly answer evaluation

question Sk with high certainty. Let E∗K = infπ EπK be the misclassification error

under the optimal policy, assuming it is attained.
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We make several reasonable assumptions on the dependence of SK and

WK(SK) with the model-consistent response Zk(Xk) and signal Yk(Xk) from

the learning question Xk.

Evaluation Question Assumptions. For evaluation question SK = SK and corre-

sponding model-consistent answerWK(SK), we assume

• Evaluation question SK = SK is selected randomly from Xn, independent from

all else, and

• For all such questions SK , signal Yk(Xk) and model-consistent answerWK(SK)

are conditionally independent given Zk(Xk) for all k = 1, . . . , K.

In practice, solving the fully adaptive problem is intractable, and instead,

one can use a knowledge gradient policy to approach this problem. This is

equivalent to solving a greedy version of the problem where we are evaluated

at every step. In other words, after observing signal Yk(Xk), we are posed with

answering a randomly selected evaluation question Sk, with no concern about

any future evaluation. Every question in the sequence (Sk : k = 1, . . . , K) is se-

lected i.i.d. and follows the Evaluation Question Assumptions. The knowledge

gradient policy chooses Xk such that at every time epoch k it solves

EKGk = inf
Xk∈Xm

EKG
[

inf
Ŵk∈W

P
(
Wk(Sk) 6= Ŵk

∣∣∣Yk, Sk

)]
.

Obviously, EKGk ≥ E∗k for all k, since knowledge gradient cannot perform strictly

better than the fully adaptive optimal policy. It would be beneficial to know

how wide the gap is, and this can be done by finding a lower bound on the

optimal misclassification error. In Section 4.4.1, we work towards this goal by

analyzing the knowledge gradient objective.
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4.4.1 Characterizing the Knowledge Gradient Policy

We would like to be able to analyze the solution to the knowledge gradient

policy, but first, further notation must be defined. For a particular assessment

question S ∈ Xn, we define the sets

B(w)(S) =




θ ∈ Θ :

θT s(w) ≥ θT s(i) ∀i > w

θT s(w) > θT s(i) ∀i < w




. (4.19)

Similar to {A(z)(X) : z ∈ Z}, the sets {B(w)(S) : w ∈ W} characterizes a parti-

tion of Θ and defines the sets of linear classifiers that correspond to a particular

answer to the assessment S. We also want to generalize the definition of u(X)

to be able to handle joint and conditional distributions in matrix form. Accord-

ingly, let Uk(Xk, Sk) ∈ ∆m×n be defined by its components, with

U
(zw)
k (Xk, Sk) = µk

(
A(z)(Xk) ∩B(w)(Sk)

)
. (4.20)

Similarly, define Uk(Xk |Sk) ∈ ∆n×m to be

U
(wz)
k (Xk |Sk) = µk

(
A(z)(Xk) |B(w)(Sk)

)
, (4.21)

denoting the matrix of conditional probabilities, with row w of Uk(Xk |Sk) de-

noting probability vectors in ∆m that are conditioned on the eventWk(Sk) = w.

These matrices will allow us to more easily represent different objective func-

tions and equations throughout the rest of the chapter.

Now we are ready to present a more closed-form objective function corre-

sponding to the one-step knowledge gradient policy, both for the cases of a gen-

eral noise channel and a discrete noise channel.

Theorem 4.4.1. Suppose we have a noise channel parameterized by f = {f (z) : z ∈
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Z}. Then the knowledge gradient policy can be calculated as

EKGk = 1− sup
Xk∈Xm

E

[∫

Y
max
w

∑

z∈Z

f (z)(y)U
(zw)
k (Xk,Sk) dy

]
, (4.22)

and in the case of a discrete noise channel parameterized by transmission matrix P ,

EKGk = 1− sup
Xk∈Xm

E
∥∥∥∥UT

k (Xk,Sk) · P
∥∥∥∥
∞,1

(4.23)

where ‖ · ‖p,q denotes the entry-wise Lp,q norm of the given matrix, with norms being

performed in that order.

Proof. Our goal is to minimize

Ek = Ek
[
min
w

Pk
(
Wk(Sk) 6= w

∣∣∣∣Yk(Xk),Sk = Sk

)]
. (4.24)

Using the properties of conditional probability, this is equivalent to minimizing

Ek = 1− E

[∫

Y
max
w∈W

∑

z∈Z

f (z)(y)Pk (Zk(Xk) = z,Wk(Sk) = w |Sk = Sk) dy

]
,

which is equal to (4.22). For a discrete noise channel, (4.24) is equivalent to

Ek = 1− E

[∑

y∈Y

max
w∈W

∑

z∈Z

P (zy) · Pk (Zk(Xk) = z,Wk(Sk) = w |Sk = Sk)

]
,

= 1− E

[∑

y∈Y

max
w∈W

(
UT
k (Xk Sk) · P

)(wy)

]
,

The outer operations, taking a sum and calculating a row-wise maximum, is

exactly the definition of a L∞,1 norm of a matrix. This leaves us with (4.23),

completing the proof.

Theorem 4.4.1 above shows exactly what is needed to compute the objective

for the knowledge gradient policy. Even with a one-step policy, the objective

is difficult to compute, mostly due to the computation of the joint distribution
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matrix Uk(·, ·). The problem is that pairs of queries are compared, and the fact

that matrix has mn components means the probabilistic mass for mn convex

polytopes need to be estimated. Worse yet, this quantity needs to be computed

for many such pairs of queries and averaged accordingly. It is clear that any

benefit gained from using a knowledge gradient policy is paid by a dramatically

larger computational budget.

This begs the question: how exactly does a knowledge gradient policy differ

from entropy pursuit, and is there a computationally efficient way of improv-

ing entropy pursuit that provides the benefits of a knowledge gradient policy?

Information theory gives us a way answer these questions, and in the next sec-

tions, we will bridge the theory between knowledge gradient objectives and

entropy based objectives.

4.4.2 An Interactive Approach

It would be helpful to have an analogue to Theorem 4.3.1 so we can relate the

posterior Shannon entropy of the answer W (S) of evaluation question S to the

answerZk(Xk) of initial questionXk. It turns out that information content in ob-

serving signal Yk(Xk) to infer answer Wk is related to a concept in information

theory called interaction information. In the context of this model, for a model

consistent answer Zk, observed response Yk, evaluation question S and true

answerW (S), Interaction Information denotes the difference

Ik(W (S);Yk;Zk) = Ik(W (S);Yk)− Ik(W (S);Yk |Zk)

= Ik(Yk;Zk)− Ik(Yk;Zk |W (S))

= Ik(Zk;Wk)− Ik(Zk;W (S) |Yk).
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Similarly, we define Conditional Interaction Information as

Ik(W (S);Yk;Zk |S) = E [Ik(W (S);Yk;Zk |S = S)] .

Interaction information tells us the relationship between three random variables

in terms of the redundancy in information content. In general, this quantity can

be positive or negative. If the interaction information between three random

variables is negative, then one does not learn as much from an observation when

already knowing the outcome of another. This is the more natural and relevant

case in the context of misclassification error.

In particular, the goal is to ask questions so that the observations can provide

the maximum amount of information on the answer to an unknown evaluation

question. Theorem 4.4.2 decomposes this problem into an equivalent formula-

tion using interaction information, for which we seek to maximize the amount

of redundancy between the chosen questions Xk and the unknown evaluation

question Sk.

Theorem 4.4.2. Under the Noise Channel Assumptions and Evaluation Question

Assumptions, we have

Ik(Wk(Sk);Yk(Xk) |Sk) = Ik(Wk(Sk);Yk(Xk);Zk(Xk) |Sk) ≤ Ik(Yk(Xk);Zk(Xk)).

(4.25)

Proof. We first claim that Ik(Wk(Sk);Yk(Xk) |Zk(Xk),Sk = Sk) = 0 under the

assumptions. This is because Yk(Xk) and W (S) are conditionally independent

given Zk(Xk), and this directly implies that quantity is equal to zero by the
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definition of conditional mutual information (Cover 1991, p. 22). Now we see

Ik(Wk(Sk);Yk(Xk) |Sk)

= Ik(Wk(Sk);Yk(Xk) |Sk)− Ik(Wk(Sk);Yk(Xk) |Zk(Xk),Sk)

= Ik(Wk(Sk);Yk(Xk);Zk(Xk) |Sk) (4.26)

= Ik(Yk(Xk);Zk(Xk))− Ik(Yk(Xk);Zk(Xk) |Wk(Sk), Sk), (4.27)

where (4.36) denotes the interaction information between random variables

Wk(Sk), Zk(Xk), and Yk(Xk). In particular, the equality of particular impor-

tance is

Ik(Wk(Sk);Yk(Xk) |Sk) = Ik(Yk(Xk);Zk(Xk))−Ik(Yk(Xk);Zk(Xk) |Wk(Sk), Sk),

(4.28)

resulting from the properties of interaction information. Now since Sk

is independent of Yk(Xk) and Zk(Xk), we have I(Yk(Xk);Zk(Xk)) =

I(Yk(Xk);Zk(Xk) |Sk), and the equality in (4.25) directly follows. The inequality

is because the last term in (4.28) is non-negative, due to the properties of mutual

information.

As previously mentioned, interaction information does not have to be non-

negative. Here, the equality in (4.25) implies that the interaction information

is non-negative since Ik(W (S);Yk(Xk) |S) is always non-negative. This means

that when we ask question Xk, observing signal Yk(Xk) yields less information

when we also know the true answer W (S) to another question S, an intuitive

result. We use Theorem 4.4.2 to relate Ik(Wk(Sk);Yk(Xk) |Sk) to Ik(θ;Yk(Xk)).
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4.4.3 Lower Bound on Misclassification Error

We now would like to relate misclassification error to the entropy of the poste-

rior distribution of the linear classifier θ. Theorem 4.4.3 shows that regardless

of the estimator Ŵk, one cannot reduce misclassification error without bound

unless the posterior entropy of θ is reduced as well. This is due to an important

tool in information theory called Fano’s Inequality.

Theorem 4.4.3. For any policy π, a lower bound for the misclassification error under

that policy is given by

Eπk ≥
H(Wk(Sk) |Sk)− Iπ(θ;Yk)− 1

log2 n
.

Proof. Suppose we have a fixed question Sk = Sk, and let Ŵk be any estimator

of Wk(Sk) that is a function of history Yk and known assessment question Sk.

By Fano’s inequality, (Cover 1991, p. 39), we have

Pk(Wk(Sk) 6= Ŵk |Sk = Sk) ≥
Hk(Wk(Sk) |Sk = Sk)− 1

log2 n
. (4.29)

Taking an expectation over possible assessment questions and past history

yields

Eπ
[
Pk(Wk(Sk) 6= Ŵk |Sk)

]
≥ Hπ(Wk(Sk) |Yk, Sk)− 1

log2 n
, (4.30)

where the right side holds because of the definition of conditional entropy. Now
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we use the upper bound on Ik(Wk(Sk);Yk(Xk) |Sk) from Theorem 4.4.2 to show

Hπ(Wk(Sk) |Yk, Sk) = H(Wk(Sk) |Sk)− Iπ(Wk(Sk);Yk |Sk)

= H(Wk(Sk) |Sk)− Eπ
[

k∑

`=1

I`(W`(S`);Y`(X`))

]

≤ H(Wk(Sk) |Sk)− Eπ
[

k∑

`=1

I`(Z`(X`);Y`(X`))

]

= H(Wk(Sk) |Sk)− Eπ
[

k∑

`=1

I`(θ;Y`(X`))

]

= H(Wk(Sk) |Sk)− Iπ(θ;Yk),

where the penultimate equality is from Theorem 4.3.1. Thus, we get

Eπ
[
Pk(Wk(Sk) 6= Ŵ |Yk(Xk),Sk)

]
≥ H(Wk(Sk) |Sk)− Iπ(θ;Yk)− 1

log2 n
, (4.31)

and the result follows.

The bound does not provide any insight if H(Wk(Sk) |Yk),Sk) < 1 since the

lower bound would be negative. This is most problematic when n = 2, in which

case, the Shannon entropy of Wk is bounded above by one bit. However, if the

conditional entropy ofWk(Sk) after observing signal Yk(Xk) is still significantly

large, the misclassification error will not be reduced past a certain threshold.

There are some interesting conclusions that can be drawn from the lower

bound. First, H(Wk(Sk) |Sk) can be viewed as a constant that describes the

problem complexity, representing the expected entropy of evaluation question

Sk. The lower bound is a linear function with respect to the mutual information

of linear classifier θ and the observation history Yk.

We can use this result to bound both the knowledge gradient policy and

the fully adaptive optimal policy from below. Corollary 4.4.4 below leverages
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Theorem 4.4.3 to estimate the optimality gap of knowledge gradient from the

optimal policy.

Corollary 4.4.4. Under noise channel f with channel capacity C(f), the optimal mis-

classification error under the optimal policy after asking k comparative questions is

bounded by
H(Wk(Sk) |Sk)− C(f) · k − 1

log2 n
≤ E∗k ≤ EKGk .

Of course, there is a fairly significant gap in the lower bound, since the mis-

classification errors are non-negative, and yet the lower bound is linear. The

gap comes from the second inequality in (4.25), and this upper bound essen-

tially throws out the redundant information about possible evaluation ques-

tions learned by previous user responses. Nonetheless, it tells us that posterior

entropy reduction is necessary for misclassification error reduction.

4.4.4 Upper Bound for Misclassification Error

We have shown that if the posterior entropy of linear classifier θ is significantly

large, then we cannot hope to reduce the misclassification error beyond a given

threshold. The converse is not necessarily true: differential entropy can be un-

boundedly negative, so we cannot realistically expect a differential entropy up-

per bound on a probability. Nevertheless, we show that misclassification error

can be bounded from above by H(Wk(Sk) |Yk(Xk),Sk).

Theorem 4.4.5. Suppose we define the estimator Ŵ as follows:

Ŵ = arg max
w

Pk(Wk(Sk) = w |Yk(Xk),Sk). (4.32)
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Then we have

ES
[
Pk
(
Wk 6= Ŵ |Yk(Xk),Sk

)]
≤ 1

2
H(Wk |Yk(Xk),Sk).

Proof. For u ∈ ∆n, define f(u) = 1−maxz∈Z u
(z). We first show

f(u) ≤ 1

2
h(u). (4.33)

We first write f as a piecewise-linear function, namely

f(u) =

{
1− u(z) u ∈M (z),

where {M (z)} is a partition of ∆n. For I ⊂ Z, define eI such that

e
(z)
I =





1/|I| z ∈ I

0 z /∈ I.

It is easy to see that M (z) = Hull ({eI : z ∈ I, I ⊂ Z}). We first want to show

that (4.33) holds for all vertices of M (z). Suppose we consider I ⊂ Z such that

|I| = k. Then f(eI) = 1 − 1/k, and h(eI) = log2 k. We would like to find the

smallest constant L such that

1− 1/k ≤ L · log2 k

for all k = 1, 2, . . . , n. The smallest choice for the constant is L = 1/2, which

attains the bound at k = 2. Therefore, for all vertices u of M (z), we have f(u) ≤

(1/2)h(u).

Now suppose u ∈ M (z). On each M (z), we see f is linear. Thus, there exists

weights λI ≥ 0 such that
∑

I λI = 1 and

f(u) =
∑

I: z∈I, I⊂Z

λI f(eI) ≤
∑

I: z∈I, I⊂Z

λI h(eI) ≤ h(u),
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with the last statement holding because of the concavity of h. Because we arbi-

trarily chose M (z), (4.33) holds for all u ∈ ∆n.

Now we see that for fixed Yk(Xk) = y and Sk = Sk, using (4.33),

P(Wk 6= Ŵ |Yk(Xk) = y,Sk = Sk) = 1−max
w

P(Wk = w |Yk(Xk) = y,Sk = Sk)

≤ 1

2
H(Wk |Yk(Xk) = y,Sk = Sk),

and taking expectations of both sides with respect to Sk and Yk(Xk) yields the

result.

Theorem 4.4.5 shows that minimizingHk(Wk(Sk) |Yk(Xk),Sk) will also min-

imize the misclassification error. The proof demonstrates that the upper bound

is tight when there is a two-way tie for selecting the most likely response to a

given question Sk, with no probabilistic mass on the other n−2 alternatives. The

worst-case for this upper bound is a uniform predictive distribution, in which

case, the upper bound can be as high as (1/2) log2 n and can easily grow larger

than one with high n.

With Theorems 4.4.3 & 4.4.5, we have shown that the misclassification error

is bounded above and below by linear functions ofHk(Wk(Sk) |Yk(Xk),Sk). We

have also showed a similar lower bound in terms of the posterior entropy of θ,

but there is no corresponding upper bound. This suggests that if the objective

is to minimize misclassification error, then entropy pursuit can work, but its

effectiveness is heavily reliant on the structure of alternative space Xm.
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4.4.5 Interaction-based Entropy Policy

Since maximizing I(Wk(Sk) ; Yk(Xk) |Sk), is equivalent to minimizing misclas-

sification error, it would be beneficial to analyze policies that attempt to mini-

mize this different entropy metric. First, we show below in Corollary 4.4.6 that

maximizing this quantity is equivalent to maximizing a penalized version of

our original notion of entropy.

Corollary 4.4.6. For a given comparative question Xk ∈ Xm,

Ik(Wk(Sk) ; Yk(Xk) |Sk) = ϕ (u(Xk) ; f)− E
[
ϕ
(
U

(Wk,·)
k (Xk |Sk) ; f

)]
. (4.34)

Proof. Starting with (4.28) from Theorem 4.4.2, we have

Ik(Wk(Sk);Yk(Xk) |S) = Ik(Yk(Xk);Zk(Xk))−Ik(Yk(Xk);Zk(Xk) |Wk(Sk), Sk).

(4.35)

Now we use the definition of ϕ from Theorem 4.3.2 to express both terms on the

right side of the (4.35) above. It is immediate from Theorem 4.3.2 that

Ik(Yk(Xk) ; Zk(Xk)) = ϕ(uk(Xk) ; f).

The second term of (4.35) is merely a variant of the first. By the definition of

conditional mutual information (Cover 1991, p. 23), we have

Ik (Yk(Xk) ; Zk(Xk) |Wk(Sk), Sk)

= Ek
[
Ik (Yk(Xk) ; Zk(Xk) |Wk(Sk) = Wk, Sk = Sk)

]
, (4.36)

= Ek
[
ϕ
(
U

(Wk,·)
k (Xk |Sk) ; f

)]
, (4.37)

where the expression on the inside of the expectation in (4.36) is only the same

mutual information calculation performed, except where the posterior pk(·) is
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restricted to a particular polytope B(w)(Sk). Thus, (4.36) is equivalent to (4.37),

where Uk(Xk |Sk) is substituted in place of uk(Xk) to reflect the influence of the

assessment question on the predictive distribution, and the row of this matrix is

selected at random according to uk(Sk).

Corollary 4.4.6 provides intuition on how an interaction-based policy dif-

fers from an entropy pursuit policy. The objective functions in both cases are

nearly identical, with the exception of the second term of (4.34), which serves

as a penalty function. The purpose of the penalty is to ensure that a query Xk

remains informative of possible other questions Sk. In fact, the penalty inside

the expectation is zero exactly when the matrix Uk(Xk |Sk) is a binary, stochas-

tic matrix, implying that Zk(Xk) is fully correlated Wk(Sk). Otherwise, as the

correlation between these random variables weaken, the penalty term grows

larger. And taking the expectation across assessment questions Sk implies that

the penalty term encourages asking the user queries that provide a lot of infor-

mation for answers to other queries.

The difficulty remains in evaluating the interaction-based objective. Below,

Theorem 4.4.7 provides a relatively simple approximation to the interaction-

based entropy objective defined in (4.34).

Theorem 4.4.7. The interaction-based objective from (4.34) can be approximated by

Ik(Wk(Sk) ; Yk(Xk) |Sk) =
〈

Cov
(
U

(Wk(Sk),·)
k (Xk |Sk)

)
, ∇2

uϕ(u∗ | f)
〉

+O

(∑

w∈W

Ek
∥∥∥U (w,·)

k (Xk |Sk)− u∗
∥∥∥

3
)
, (4.38)

where 〈·, ·〉 denotes the trace inner product. Further, an approximate interaction-based

objective is given below by

sup
Xk∈Xm

〈
Cov

(
U

(Wk(Sk),·)
k (Xk |Sk)

)
, ∇2

uϕ(u∗ | f)
〉
. (4.39)
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Proof. Starting with (4.34), we will use a second order Taylor expansion on both

terms. For a generic u ∈ ∆m, we have

ϕ(u ; f) = ϕ(u∗)−
1

2
(u− u∗)T∇2

uϕ(u∗ ; f)(u− u∗) +O(‖u− u∗‖3), (4.40)

since ∇uϕ(u∗ ; f) = βe for some constant β ∈ R, and eT (u − u∗) = 0 since all

probability distributions sum to unity. Now, fix assessment question Sk = Sk

and true assessment answer Wk(Sk) = Wk. If we look at the difference of this

expression for the two different arguments uk(Xk) and U
(Wk(Sk),·)
K (Xk |Sk), we

see (omitting the cubic remainder terms)

ϕ(uk(Xk) ; f)− ϕ(U
(Wk(Sk),·)
k (Xk |Sk) ; f)

= −1

2
(uk(Xk)− u∗)T ∇2

uϕ(u∗ ; f) (uk(Xk)− u∗)

+
1

2

(
U

(Wk(Sk),·)
k (Xk |Sk)− u∗

)T
∇2
uϕ(u∗ ; f)

(
U

(Wk(Sk),·)
k (Xk |Sk)− u∗

)

= −1

2
(uk(Xk)− u∗)T ∇2

uϕ(u∗ ; f) (uk(Xk)− u∗)

+
1

2

(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)T
∇2
uϕ(u∗ ; f)

(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)

+
1

2
(uk(Xk)− u∗)T ∇2

uϕ(u∗ ; f) (uk(Xk)− u∗)

+ (uk(Xk)− u∗)T ∇2
uϕ(u∗ ; f)

(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)

=
1

2

(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)T
∇2
uϕ(u∗ ; f)

(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)

+ (uk(Xk)− u∗)T ∇2
uϕ(u∗ ; f)

(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)
.

Consider the last term of the last line, and now allow Wk(Sk) to be random.

Taking an expectation,

Ek
[
(uk(Xk)− u∗)T ∇2

uϕ(u∗ ; f)
(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)]

= (uk(Xk)− u∗)T ∇2
uϕ(u∗ ; f)Ek

[
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

]
= 0,

since Ek
[
U

(Wk(Sk),·)
k (Xk |Sk)

]
= uk(Xk), and the expectation operator is linear.
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Putting everything together, we have

Ek
[
ϕ(u ; f)− ϕ

(
(U

(Wk(Sk),·)
k (Xk |Sk)

)
; f)
]

=
1

2
Ek
[(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)T
∇2
uϕ(u∗ ; f)

(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)]

+O

(∑

w∈W

Ek
∥∥∥U (w,·)

k (Xk |Sk)− u∗
∥∥∥

3
)
. (4.41)

Lastly, the first term can be rewritten as

Ek

[(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)T
∇2
uϕ(u∗ ; f)

(
U

(Wk(Sk),·)
k (Xk |Sk)− uk(Xk)

)]

=
〈

Cov
(
U

(Wk(Sk),·)
k (Xk |Sk)

)
, ∇2

uϕ(u∗ ; f)
〉
. (4.42)

The result immediately follows.

The approximation policy in (4.39) is simpler to calculate, in that it only in-

volves deriving the Hessian matrix at the optimal predictive distribution u∗ only

once, and then maximizing an inner product. The major computational hurdle

is effectively estimating the covariance matrix for a given question, which is a

difficulty similar to that of the true interaction-based objective as well as the

knowledge gradient. Calculating joint distributions for pairs of queries would

be a computationally enormous undertaking. This would involve estimating

the probabilistic volumes of all convex partitions {A(z)} corresponding to indi-

vidual queries, as well as the intersection of such partitions. Some estimation

can be done with subsampling, but doing this for all such combinations is in-

tractable.

That being said, concept behind the interactive-based objective is just as im-

portant as the policy it implies. Adding a simple penalty term that quantifies

how queries interrelate has the potential to greatly improve the quality of ques-

tions asked to the user. Future research can and should delve into variants of
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penalty functions that can sufficiently approximate the interaction-based objec-

tive, without having to rely on heavily combinatorial calculations. Ideally, a

distance function that measures difference in angles between hyperplanes may

be sufficient to capture the extent to which a pair of queries are similar.

4.5 Conclusion

In this chapter, we analyze the problem of eliciting a given user’s preferences

by adaptively querying the user with choice-based questions. We formulate

this problem in a sequential active learning setting, where a user’s preferences

are governed by an unknown linear classifier, and the observed responses are

perturbed by noise. We assume the underlying observation model where noise

does not depend on the underlying preferences. Under this regime, we show

that the differential entropy of the posterior distribution of this linear classifier

can be reduced linearly with respect to the number of questions posed. Further,

there exists an optimal predictive distribution that allows this optimal linear

rate to be attained. We provide sensitivity results that show the entropy re-

duction is close to maximal when the actual predictive distribution of a given

question is close to optimal in L2 distance.

On the problem of appropriately choosing the alternatives: when the set of

alternatives has non-empty interior, we provide a construction to find a ques-

tion that achieves the linear lower bound to a constant multiplicative factor, and

exactly for predictive distributions when max{u∗} = 1/2 for pairwise compar-

isons or max{u∗} < 1/2 for multi-way comparisons. When the set of alternatives

is large but finite, we have demonstrated through simulation experiments that
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one can find questions that consistently yield a linear decrease in differential

entropy, and this rate is reasonably close to optimal.

In addition to focusing on differential entropy, we consider misclassification

error as an alternative metric that more intuitively captures the knowledge one

has for a user’s preferences. Using Fano’s inequality, a classic result in the field

of information theory, we show the performance of the optimal policy with re-

spect to this metric is bounded below by a linear function in posterior entropy,

suggesting a relationship between entropy-based and misclassification error-

based policies. Our computational results in the next chapter largely confirm

this, as the entropy pursuit policy and the knowledge gradient policy perform

similarly in a variety of scenarios. For this reason, and the fact that the knowl-

edge gradient requires a significantly larger computational budget, entropy pur-

suit is preferred for adaptive choice-based active preference learning.

Although this work assumes that the number of alternatives m is constant

with respect to time, this can be relaxed with a word of caution. From the per-

spective of entropy, it is always beneficial to increase m, which can be mislead-

ing. Thus, if m is allowed to vary with time, one should not use entropy pursuit

to choose m, and should use another method to select the number of alterna-

tives to present to the user. This may be done by fixing a static sequence mk

in advance, or the parameter could be adjusted adaptively by another policy in

tandem with entropy pursuit. Both approaches would most likely require ex-

tensive precomputation, since the geometry of the space of alternatives would

heavily affect any policy governing m. Similar is the case of when a suitable

prior for the user is not known. In practice, this would also dictate the need

for a preprocessing step, perhaps fitting a Gaussian mixture to a population of
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estimated linear classifiers (Chen and Frazier 2016, see). Regardless, this moti-

vates the use of entropy pursuit in adaptive choice-based preference elicitation,

as well as the study of its effectiveness using historical user responses and ex-

perimentation.
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CHAPTER 5

IMPLEMENTATION AND EMPIRICAL STUDY OF CONJOINT

LEARNING

5.1 Introduction

Previously in Chapter 4, we established a model that allowed us to derive theory

that characterizes the content of an informative query. This Chapter focuses on

implementing the components of this model and evaluating them in various

settings.

Perhaps one of the most significant challenges in a Bayesian model is the

need to sample from a non-trivial posterior distribution. This is critical for any

implementation of the learning policies in our model, and it is the basis for some

of our modeling decisions. As a result, Section 5.2 is dedicated to efficiently

sampling from posterior distributions generated by our noise model, as well

as providing methodology for being able to efficiently generate a new sampler

when updating or changing a posterior distribution.

Section 5.4, we provide numerical results demonstrating that entropy pur-

suit performs similarly to an alternative algorithm that greedily minimizes mis-

classification error. This is shown in a variety of scenarios and across both met-

rics. Taking into account the fact that entropy pursuit is far more computation-

ally efficient than the alternative algorithm, we conclude that entropy pursuit

should be preferred in practical applications.

Finally, in Section 5.5, we focus on studying an empirical example that uses

historical user interactions with real alternatives, and attempt to passively learn
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both linear classifiers for 45,000 users and the parameters of a noise channel

simultaneously using sampling techniques developed earlier in the chapter.

5.2 Sampling via Hit-and-Run

One of the main difficulties is estimating the probabilistic mass contained in a

given halfspace. To do this, we will sample from the probability distribution

and calculate the proportion of the sample that lies in the halfspace. We can

use statistical theory to show that given a sufficiently large sample size, the

estimate is “close” to the true amount of probabilistic mass contained within

the halfspace.

We pose an algorithm that can sample from a class of prior distributions

that contain the priors pn at every time epoch n. We assume that p0 is a mixed

Gaussian prior: for ` = 1, . . . , L, we have weights q` (with
∑

` q` = 1) that weight

the different multivariate Gaussian distributions, characterized by mean µ` and

covariance matrix Σ`.

At every time epoch k = 1, . . . , K, the update involves the halfspaces in-

duced by the alternatives Xk. If the user selects alternative Yk = yk, we take

the assumed noise channel into account to reweight the prior pk uniformly over

specified polytopes {A(z)
k (Xk) : z ∈ Z}. After this, the entire probability space is

re-normalized, yielding pk+1. Thus, we want a sampling algorithm that can effi-

ciently sample over a mixed normal prior, updated with upweighted or down-

weighted polytopes over the space. Section 5.2 offers a way to sample over such

posterior distributions in an efficient way.
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The method we pose is to use a hit-and-run sampler, as specified in Bélisle,

Romeijn, and Smith (1993). Starting at some θk ∈ Θ, the sampler selects a di-

rection v ∈ Rd uniformly at random, which can be done by drawing from a

d-dimensional multivariate Normal distribution and normalizing. We then con-

struct a line {θk + r v : r ∈ R} that is centered on original point θk and spans the

direction d through the entirety of Rd. The sampler then considers the probabil-

ity distribution pn conditioned on that line, and selects θk+1 randomly under the

conditional distribution. Using this construction guarantees that the proposed

point will always be accepted. The algorithm seems simple, but we need to

tailor it to the distributions in our given class.

First, we want to find the distribution of a single Gaussian, conditioned on

lying on a line in Rd. We can express this distribution in closed form. Inter-

estingly enough, the distribution of a multivariate Gaussian conditioned on a

one-dimensional subspace is, in fact, a univariate Gaussian distribution.

Lemma 5.2.1. Suppose thatG ∼ Normal(µ,Σ) and that I = {θ+r v : r ∈ R}, where

θ ∈ Rd specifies an initial point on I and v ∈ Rd specifies a direction.

Further, suppose a random point G lies on the line I, and we can write G = θ+Rv.

Then for such points G that lie on this line, R is a univariate normal random variable

such that

R ∼ Normal
(
−v

TΣ−1(θ − µ)

vTΣ−1v
,

1

vTΣ−1v

)
. (5.1)

Proof. We know that the density function of G is proportional to

g(w) ∝ exp

(
−1

2
(w − µ)TΣ−1(w − µ)

)
.
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Now let v = θ + r d, and consider the quantity in the exponential. We have

g(θ + r v) ∝ exp

(
−1

2

(
θ + r v − µ)TΣ−1(θ + r v − µ

))

= exp

(
−1

2
r2 vTΣ−1v − r vTΣ−1(θ − µ)− 1

2
(θ − µ)TΣ−1(θ − µ)

)

∝ exp

(
−v

TΣ−1v

2

(
r +

vTΣ−1(θ − µ)

vTΣ−1v

)2
)
,

which can be seen by completing the square in terms of r. We can normalize

this quantity with respect to r, and find that it is a normal distribution, with the

desired mean and variance.

We can use this result to sample from a single Gaussian distribution or even

a mixed normal. But now we want to take the likelihood into account.

Given previous choices between alternatives, the user’s response creates a

set of polytopes {Pβ} that partition Rd. Momentarily ignoring the prior, all

points lying within the same polytope are uniformly distributed, but each poly-

tope itself has a different probabilistic weight. Thus, if we were to draw a line

I ⊂ Rd, then each portion I∩Pβ has the same probabilistic weight as Pβ , and the

probability that a point t ∈ I falls on that portion of the line is proportional to

that probabilistic weight, multiplied by the prior probability of lying in I ∩ Pβ .

Putting these two observations together, we can randomly generate a point

on a line, according some distribution in our specified class. We first randomly

select one of the segments I ∩ Pβ . Then we generate a mixed Gaussian random

variable, conditional on it lying in the specified interval. We can do this by

choosing one of the Gaussian distributions in the mix with a certain probability.

Theorem 5.2.2. Suppose M is the distribution of the mixed Gaussian with mixing

proportions {q` : ` = 1, . . . , L} for Gaussians {N` : ` = 1, . . . , L}. Further, let

125



I = {θ + rv : r ∈ R} denote a line centered at θ ∈ Rd for some unit direction v ∈ Rd.

Further, we parameterize a point M lying on line I as M = θ + Rv for some value

R ∈ R. Then for such points M ∈ I, random variable R takes a univariate mixed

Gaussian distribution such that its density gR is defined as

gR(t) =
L∑

`=1

λ` gR`
(t), (5.2)

where gR`
denotes the radial densities defined in Lemma 5.2.1 with the corresponding

hyperparameters (µ`,Σ`) for all ` = 1, . . . , L, and the weights λ` are defined by

λ` ∝ q`

√
det(Σ−1

` )

vTΣ−1
` v

. (5.3)

Proof. We know that for each Gaussian density gN`
for all `, there exists a con-

stant c` > 0 such that

gN`
(t) = c` · gR`

(t) (5.4)

for all t ∈ I. In fact, using Lemma 5.2.1 and the density of multivariate Normal

distributions, it is relatively straightforward to verify that

c` =
(2π)−d/2 det(Σ`)

−1/2

(2π)−1/2 (1/vTΣ−1
` v)−1/2

(5.5)

for all ` = 1, . . . , L. Now using the definition of M , we have for t ∈ I

gR(t) ∝ gM(t)

=
L∑

`=1

q` gN`
(t)

=
L∑

`=1

q`c` gR`
(t),

showing that λ` ∝ q`c`, since gR`
integrates to one over I. Finally, the constants

in the numerator and denominator can be ignored because they are shared by

all such {λ` : ` = 1, . . . , L}.
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Therefore, we can select Gaussian distribution `with probability distribution

proportional to {λ`} defined in (5.3), then generate a Gaussian conditional on

N` ∈ I.

5.3 Hot Starts for Samplers

The hit-and-run sampler outlined above is efficient but requires an initial point.

If the initial point is drawn from the corresponding stationary distribution, then

all subsequent points drawn from the sampler will be generated according to

that stationary distribution as well. There are situations where the distribution

from which we sample will need to be updated with an additional observa-

tion or a new parameter. In this case, we can intelligently sample from the old

distribution to find an initial point with the correct updated distribution. This

concept is referred to as using a hot start, and it is necessary for efficient sam-

pling.

We present hot start techniques for two instances, both of which allowing

stationarity to be preserved when updating or adjusting the prior distribution

currently being sampled. In Section 5.3.1 addresses hot starting when updating

the prior distribution with a new observation. Section 5.3.2 tackles the hot start

problem when changing the parameters governing the noise channel.

5.3.1 Hot Starts for Posterior Updates

Every time the prior is updated, the initial starting point for its internal sam-

pler should be updated as well. If this new starting point is chosen so that it
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is distributed according to the updated posterior distribution, then there is no

need for a burn-in period to “warm-up” the sampler. The problem is that we

can only sample points from the prior, and not the posterior. But we can use

rejection sampling to find such an initial point.

Suppose we can sample from prior distribution with density pk, and suppose

we have likelihood density `(y|θ) for some observation y. The posterior can be

calculated as

pk+1(θ) =
`(y|θ)pk(θ)∫

Θ
`(y|θ)pk(θ) dθ

.

In most circumstances, the denominator of this expression is difficult to com-

pute. Instead, we would like to draw from the existing sampler corresponding

to pk, and accept this point with a certain probability. This is the premise be-

hind rejection sampling (Casella, Robert, and Wells 2004). In this scheme if we

wanted to sample from distribution g using distribution f , we find a constant

M such that pk+1(θ)/pk(θ) ≤ M for all θ. With this, sample θ from f , and sam-

ple U ∼ Uniform[0, 1] independently. Then we accept θ if U ≤ g(θ)/ (M f(θ)).

Otherwise, we reject θ and repeat the process again. This guarantees that θ has

the correct distribution. For maximal efficiency, one must choose this constant

M to be as tight as possible. The unconditional acceptance probability is equal

to 1/M , which implies that the mean number of draws until acceptance is equal

to M .

Below in Theorem 5.3.1, we provide a rejection sampling scheme that allows

one to find a starting point for the posterior sampler by sampling from the prior.

Theorem 5.3.1. Suppose the prior for random variable θ at time epoch k is defined as

pk. Further, suppose one observes signal yk+1 at the next time epoch. Accordingly, the
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prior is updated as

pk+1(θ | yk+1) ∝ pk(θ) · `(yk+1 | θ),

where `(yk+1 | θ) denotes the likelihood of observing yk+1 given θ. Now consider the

following sampling scheme.

Algorithm 5.3.1 Hot start routine for posterior updates.
1: U ← 1
2: u← 0
3: while U > u do
4: Draw θ ∼ pk
5: Draw U ∼ Uniform[0, 1)

6: u← `(yk+1 | θ)
supθ′ `(yk+1 | θ′)

7: end while
8: return θ

Then the resulting sample has the correct distribution, with θ ∼ pk+1(· | yk+1).

Proof. We use the rejection sampling framework from above. A simple choice

for M is

pk+1(θ | yk+1)

pk(θ)
=

`(yk+1 | θ)∫
Θ
`(yk+1 | θ)pk(θ) dθ

≤ supθ `(yk+1 | θ)∫
Θ
`(yk+1 | θ)pk(θ) dθ

, (5.6)

which depends on observation yk+1. This gives us the desired ratio

pk+1(θ | yk+1)

M · pk(θ)
=

`(yk+1 | θ)
supθ′ `(yk+1 | θ′)

, (5.7)

and we accept or reject accordingly.

The benefit of Theorem 5.3.1 is that the conditional acceptance probability

only depends on the relative likelihoods of seeing observation y, and does not

depend on the prior. This makes calculating the ratio extremely efficient in most
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circumstances. The drawback is that this sampling scheme does not work effi-

ciently if there exist signals y such that the likelihood is extremely low for a

given θ. If that is the case, M can be extremely large. Fortunately, in cases where

the likelihood and prior distributions are mutually absolutely continuous, this

routine allows one to hot start a sampler for the posterior using a sample from

the prior. This sampling scheme works well in the case of a discrete noise chan-

nel, where all signals can occur with positive probability. We outline this case

below in Corollary 5.3.2.

Corollary 5.3.2. Suppose we are using the bit-flip noise model and can write the like-

lihood as `(y|θ) =
∑

z∈Z f
(z)(y)I(θ ∈ A(z)), where {A(z) : z ∈ Z} is a partition of Rd.

Accordingly, let zk(θ) denote the unique value z ∈ Z such that θ ∈ A(zk(θ))
k . Consider

the following sampling scheme, where

Algorithm 5.3.2 Hot start for posterior update under bit-flip noise.
1: U ← 1
2: u← 0
3: while U > u do
4: Draw θ ∼ pk
5: Draw U ∼ Uniform[0, 1)

6: u← f (z)(y)

supi∈Z f
(i)(y)

7: end while
8: return θ

Then the resulting sample has the correct distribution, with θ ∼ pk+1(· | yk+1). Further,

suppose that the noise channel is a discrete symmetric noise channel parameterized by

α, such that Pα = αI + (1− α)(1/m)eeT . Consider the sampling scheme
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Algorithm 5.3.3 Hot start for posterior update under symmetric noise channel.
1: U ← 1
2: u← (1− α)/(mα)
3: while U > u do
4: Draw θ ∼ pk
5: Draw U ∼ Uniform[0, 1)
6: if yk+1 = zk+1(θ) then
7: u← 1
8: end if
9: end while

10: return θ

Then the sample has the correct distribution and θ ∼ pk+1.

Proof. The first part of the claim is obvious from Theorem 5.3.1. To derive the

second sampling scheme, we only substitute f (z)(yk+1) = P (zyk+1), and notice

that
pk+1(θ | yk+1)

M · pk(θ)
=

{
f (z)(yk+1)

supi∈Z f
(i)(yk+1)

θ ∈ A(z). (5.8)

Further, the largest elements of stochastic transmission matrix P are on the di-

agonal, so the denominator is easy to find. If yk+1 = zk+1(θ), the candidate θ will

be accepted with probability one, since we assume the diagonal entries of P are

larger than those on the rest of the row. The rest follows from algebra.

Corollary 5.3.2 provides a way of sampling from a prior distribution to effi-

ciently find a starting point for a new posterior sampler, especially in the case

of a discrete symmetric noise channel. It is relatively straightforward to use

the same technique for other discrete transmission matrices. If one can sample

according to the prior distribution p0, one can use the accept-reject routines to

ensure that samplers from any posterior starts with a point already in the cor-

rect stationary distribution. Hence, stationarity is always maintained, and no
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burn period is required for these samplers.

5.3.2 Hot Starts for Adjusting Noise Parameters

There will be instances when a posterior has been updated with many observa-

tions but one wants to sample according to a posterior using a different set of

noise parameters. This will be important when we use a Gibbs sampler in Sec-

tion 5.3.3 to simultaneously estimate a noise channel and the linear classifier for

many users. It is also relevant when the adaptive learning algorithm needs to

be tuned for instances where it learns too passively or aggressively. In this sce-

nario, we can use a similar rejection sampling technique to find a starting point

for the new sampler by using the old one, and this is detailed in Theorem 5.3.3

below.

Theorem 5.3.3. Suppose we make observations under a bit-flip noise channel parame-

terized by likelihood functions {f (z) : z ∈ Z}, such that `(y | θ) =
∑

z∈Z f
(z)(y) I(θ ∈

A
(z)
k . Let zk(θ) denote the unique value z ∈ Z such that θ ∈ A(zk(θ))

k . Suppose we can

express the posterior of linear classifier θ after K observation as

pK(θ | YK ; f) = Df · p0(θ)
K∏

k=1

f (zk(θ))(yk) (5.9)

for some normalizing constant Df > 0. Now suppose the noise channel is changed to

{g(z) : z ∈ Z}, and consider the sampling scheme below.
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Algorithm 5.3.4 Hot start for noise channel update.
1: U ← 1
2: u← 0
3: while U > u do
4: Draw θ ∼ pK,f
5: Draw U ∼ Uniform[0, 1)

6: u←
K∏

k=1

g(zk(θ))(yk)/f
(zk(θ))(yk)

supz∈Z g
(z)(yk)/f (z)(yk)

7: end while
8: return θ

Then θ ∼ pK(θ | YK ; g).

Proof. First, we consider the ratio

pK(θ | YK ; g)

pK(θ | YK ; f)
=
Dg · p0(θ)

∏K
k=1 g

(zk(θ))(yk)

Df · p0(θ)
∏K

k=1 f
(zk(θ))(yk)

(5.10)

and find an upper bound for it. A relatively simple upper bound that depends

on YK is given by

M = (Dg/Df ) ·
K∏

k=1

sup
z∈Z

g(z)(yk)/f
(z)(yk). (5.11)

Therefore, the normalized ratio is given by

pK(θ | YK ; g)

M pK(θ | YK ; f)
=

K∏

k=1

g(zk(θ))(yk)/f
(zk(θ))

supz∈Z g
(z)(yk)/f (z)(yk)

, (5.12)

and we accept or reject accordingly.

Theorem 5.3.3 uses the likelihood ratio of the new and old noise channels

to determine whether accept or reject a candidate point θ. This makes it much

easier to hot start a new sampler with a different noise channel. Similar to the

previous hot start methods, however, there are still some drawbacks. The worst-

case likelihood ratios need to be bounded, and using this method when K is
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large can be challenging. In fact, the expected number of iterations until accep-

tance can be exponentially decreasing in K. Nevertheless, we can apply this to

discrete noise channels, and this is highlighted below by Corollary 5.3.4.

Corollary 5.3.4. Let two discrete noise channels be parameterized by transmission ma-

trices P and Q, and consider the sampling scheme below.

Algorithm 5.3.5 Hot start for discrete noise channel update.
1: U ← 1
2: u← 0
3: while U > u do
4: Draw θ ∼ pK(· | YK ; P )
5: Draw U ∼ Uniform[0, 1)

6: u←
K∏

k=1

Q(zk(θ), yk)/P (zk(θ), yk)

supz∈ZQ
(z,yk)/P (z,yk)

7: end while
8: return θ

Then the generated vector has the desired distribution, with θ ∼ pK(· | YK ; Q). Fur-

ther, in the case of two symmetric noise channels where P = αI + (1 − α)(1/m)eeT

and Q = βI + (1− β)(1/m)eeT , consider the following sample scheme.

Algorithm 5.3.6 Hot start for symmetric noise channel update.
1: U ← 1
2: u← 0
3: while U > u do
4: Draw θ ∼ pK(· | YK ; P )
5: Draw U ∼ Uniform[0, 1)
6: u← R(α, β)N(α,β,YK ,θ)

7: end while
8: return θ

where R(α, β) is the ratio

R(α, β) =
min

(
β+(1−β)(1/m)
α+(1−α)(1/m)

, 1−β
1−α

)

max
(
β+(1−β)(1/m)
α+(1−α)(1/m)

, 1−β
1−α

) (5.13)
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and N(α, β,YK , θ) is defined by

N(α, β,YK , θ) =





∑K
k=1 I(yk = zk(θ)) β < α

K −∑K
k=1 I(yk = zk(θ)) β > α.

(5.14)

Then θ ∼ pK(· | YK ; Q).

Proof. The first half of the claim is evident by letting f (z)(y) = P (zy) and g(z)(y) =

Q(zy) and applying Theorem 5.3.3. The second half of the claim is a special case

of the first. It is easy to verify that if β > α, then the elements on the diagonal

of Q are larger than those of P , and the off-diagonal elements of Q are smaller

than those of P . In this case, the ratio from (5.12) is equal to

K∏

k=1

Q(zk(θ),yk)/P (zk(θ),yk)

supz∈ZQ
(z,yk)/P (z,yk)

=

(
β+(1−β)(1/m)
α+(1−α)(1/m)

)∑K
k=1 I(zk(θ)=yk) (

1−β
1−α

)K−∑K
k=1 I(zk(θ)=yk)

(
β+(1−β)(1/m)
α+(1−α)(1/m)

)K

=




(
1−β
1−α

)
(
β+(1−β)(1/m)
α+(1−α)(1/m)

)



K−

∑K
k=1 I(zk(θ)=yk)

.

Otherwise, if β < α, the opposite is true, and similarly,

K∏

k=1

Q(zk(θ),yk)/P (zk(θ),yk)

supz∈ZQ
(z,yk)/P (z,yk)

=

(
β+(1−β)(1/m)
α+(1−α)(1/m)

)∑K
k=1 I(zk(θ)=yk) (

1−β
1−α

)K−∑K
k=1 I(zk(θ)=yk)

(
1−β
1−α

)K

=




(
β+(1−β)(1/m)
α+(1−α)(1/m)

)

(
1−β
1−α

)




∑K
k=1 I(zk(θ)=yk)

.

Combining both of these completes the proof.

Corollary 5.3.4 above shows how to hot start a new sampler when learning

from observations perturbed by a discrete noise channel. From (5.14), it is clear
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thatN(·, ·,YK , ·) ≤ K, which implies that the conditional acceptance probability

decreases exponentially as a function of the number of observationsK. This can

be compounded when α and β are further apart, as shown by the definition of

R(α, β) in (5.13). However, if the changes in the noise channel are small, Corol-

lary 5.3.4 shows that it is possible to efficiently hot start a new sampler using

a new noise channel with the same observations, maintaining the invariant of

stationarity.

5.3.3 Learning the Noise Channel with Gibbs Sampling

In cases for numerical studies and other situations, it is desirable to estimate pa-

rameters for the noise channel by looking at the interactions of many users with

historical queries. The main issue is that the noise channel dictates how the ob-

servations affect the updating of the prior. The ideal solution involves learning

both the noise channel and the linear classifiers for many users simultaneously.

Learning all such quantities at once can be computationally intensive, so we

only consider the case of estimating a discrete noise channel. In this scenario,

one approach to tackling this massive learning problem is using a Gibbs Sam-

pler. The way to do this involves only two sampling steps. The first involves

sampling the noise channel from some posterior q that depends on the user in-

teraction history as well as the current linear classifiers {θj−1(u) : u = 1, . . . , U}.

The second step is to sample new linear classifiers using the updated noise

channel Pj . Since we start with a sampler conditioned on noise channel Pj−1,

sampling a new linear classifier is done by the rejection sampling step given in

Corollary 5.3.4. This process is outlined in Algorithm 5.3.7 below.
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Algorithm 5.3.7 Joint Estimation Gibbs Sampler

1: for samples j = 1, . . . , J do
2: Pj ← q(· | {θj−1(u) : u = 1, . . . , U})
3: for users u = 1, . . . , U do
4: θj(u) ∼ pK(· | YK ; Pj) via rejection sampling from pK(· | YK ; Pj−1)
5: end for
6: end for

Some important questions are how to model the prior q(·) and how to sam-

ple from it. The answer to both of these depend on the class of transmission

matrices one wants to consider. For the simple case of symmetric noise chan-

nel, there is only a single, one-dimensional parameter to estimate. The noise

parameter α can have a non-informative Beta prior. In this case, user interac-

tions can be treated as conditionally independent given the noise channel Pα,

and therefore, the observations I(zk(θ(u)) = yk(u)) are independent across users

u and queries k. Therefore, one can update the prior q, and this posterior is also

Beta-distributed. Sampling a new noise channel is now as simple as sampling

from a Beta posterior.

Of course, the modeling of noise channels can be much more involved. One

can model each row of transmission matrix P as having a Dirichlet prior, and

in the same manner as above, this prior can be updated after comparing the

sampled linear classifiers θ(u) against the results from the previous queries.

Lastly, this endeavor can still be computationally arduous, even when re-

stricting ourselves to discrete noise channels. However, there is a significant

benefit to using a Gibbs sampler when user interactions are conditionally inde-

pendent. Once the current noise channel Pj has been sampled, the sampling in

lines 3–5 of Algorithm 5.3.7 can be done in parallel. This greatly accelerates the

process of sampling from many users and alleviates the main computational
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bottleneck of the algorithm. We will use this Gibbs sampler in Section 5.5 to

simultaneously learn the linear classifiers of many users as well as the noise

channel itself.

5.4 Simulated Computational Results

In the following subsections, we present computational results from simulated

responses using vectorizations of real alternatives. Section 5.4.1 discusses our

approach and methodology for the numerical experiments, and Section 5.4.2

gives the results of the computational studies and provides insights regarding

the performance of the entropy pursuit and knowledge gradient policies.

5.4.1 Methodology

As an alternative space, we use the 13,108 academic papers on arXiv.org from

the condensed matter archive written in 2014. The information retrieval litera-

ture is rife with different methods on how to represent a document as a vector,

including bag of words, term frequency inverse document frequency (Salton

and McGill 1986), and word2vec (Goldberg and Levy 2014), along with many

others (for an overview of such methods, see Raghavan and Schütze 2008). In

practice, the method for vectorizing the alternatives is critical; if the vectors

do not sufficiently represent the alternatives, any recommendation system or

preference elicitation algorithm will have trouble. For the numerical experi-

ments, we elected to use a vector representation derived from Latent Dirichlet

Allocation (LDA) as described by Blei, Ng, and Jordan (2003). The resulting
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feature vectors are low-dimensional and dense. Since we cannot compute the

posterior distribution analytically, we resort to sampling instead, and the low-

dimensional LDA vectors allow for more efficient sampling.

With any method that utilizes Bayesian inference, it is important to have

enough structure that allows for an efficient sampling scheme from the result-

ing posterior distributions. The benefit of having the simple update of up-

weighting and down-weighting polytopes is that the sampling scheme becomes

quite easy. We use a hit-and-run sampler as described earlier that chooses a di-

rection uniformly from the unit sphere, then samples from the one-dimensional

conditional distribution of the next point lying on that line. Now, re-weighting

polytopes turns into re-weighting line segments. If it is to easy sample points

conditionally on this line, hit-and-run is an efficient way of sampling. We use

a multivariate normally distributed prior because it allows for both computa-

tional tractability for sampling from this conditional distribution as well as a

natural representation of prior information.

To select the hyperparameters for the prior, we sample academic papers and

fit a multivariate normal distribution to this sample. Assuming users’ linear

classifiers have the same form and interpretation as a vector representation is

not reasonable in general. However, in the case of academic papers, authors

are also readers, and so the content in which the users are interested is closely

related to the content they produce. Therefore, in this situation, it is reasonable

to assume that a user’s parameterization of preferences lives in the same space

as the parameterization of the feature set. This is not necessarily the case for

other types of alternatives, and even if it were, using feature vectors to model

preference vectors may not be the best choice. That being said, there are many
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ways to initialize the prior. If one has a history of past user interaction with

alternatives, one could estimate the linear preference vector for each user using

an expectation maximization scheme, and fit a mixed normal prior to the em-

pirical distribution of estimated linear classifiers, as done by Chen and Frazier

(2016). Since the focus here is to compare the performance of the two algorithms

of interest, our choice for initializing the prior is sufficient.

5.4.2 Cross-Metric Policy Comparison

We first compare the entropy pursuit and knowledge gradient policies while

varying the number of presented alternatives. Due to the large set of alterna-

tives, it is computationally intractable to choose questions that optimally follow

either policy, so alternatives are subsampled from X and we approximate both

policies using the alternatives from the subsample. If N alternatives are sub-

sampled, then the approximate entropy pursuit policy requires exhaustively

optimizing over combinations of alternatives (permutations if the noise chan-

nel is not symmetric), and hence will require maximizing over
(
N
m

)
subsets. On

the other hand, the knowledge gradient policy requires comparing
(
N
m

)
informa-

tive questions X with
(
N
n

)
assessment questions S, and thus requires estimating

(
N
m

)(
N
n

)
quantities. Already, this implies that if the computational budget per

question is fixed for both algorithms, one can afford a polynomially larger sub-

sample for entropy pursuit than for knowledge gradient. For example, in the

case where m = n = 2, a computational budget that allows a subsample of

N = 15 alternatives for the knowledge gradient policy would allow the entropy

pursuit policy a subsample size of N ′ = 149. However, rather than fixing a

computational budget for both policies at each step, we allow both policies the
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Figure 5.1: Comparison of average performance of the entropy pursuit and
knowledge gradient policies under a symmetric noise channel (α =
0.7), simulated and averaged with 100 sample paths. Estimates are
accurate to ±0.007 for misclassification error and ±0.06 bits for en-
tropy.

same number of subsamples, setting N = 15 for both policies and all sets of

parameters. We do this to allow for a more straightforward comparison of the

two policies, although further computational studies should study their perfor-

mance under a fixed computational budget. Lastly, the numerical study in this

chapter fixes n = 2. We make this decision because any larger values of n will

make the computations prohibitively expensive, and it is not clear that larger

values of n will provide any additional benefit.

Figure 5.1 compares the entropy pursuit and knowledge gradient policies by

varyingm and fixing other parameters to reflect a low-noise, low prior informa-

tion scenario. As expected, each algorithm performs better on their respective

metrics for a fixed number of provided alternatives m. However, a more sur-

prising conclusion is the similarity in performance of the two algorithms for

any fixed m for both metrics. This suggests that the price to pay for switching
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Figure 5.2: Comparison of the entropy pursuit and knowledge gradient poli-
cies under a symmetric noise channel for various levels of noise and
prior information, simulated and averaged with 100 sample paths.
Estimates are accurate to±0.007 for misclassification error and±0.06
bits for entropy.

from the knowledge gradient policy to the entropy pursuit policy is small com-

pared to the gain in computational efficiency. In fact, if the computational bud-

get for each question were fixed, one would be able to subsample many more

alternatives to compute the entropy pursuit policy compared to the knowledge

gradient policy, and it is very likely the former would out-perform the latter

in this setting. To see if this occurrence takes place in other scenarios, such as

those with higher noise and a more informative prior, one can consult Figure 5.2.

Again, for all the different parameter settings, both policies perform similarly.
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Another interesting aspect of the computational results are the effects of the

parameters on the performance of the two policies. Differential entropy pre-

dictably decreases faster when more alternatives are presented to the user. In

the case of a symmetric noise channel, increasing m only increases the channel

capacity for a fixed noise level α. From the perspective of minimizing posterior

entropy, this makes sense because offering more alternatives at each time epoch

should theoretically allow one to refine the posterior distribution faster. How-

ever, in reality, the noise channel most likely varies with the number of offered

alternatives m, where the quality of the noise channel degrades as m grows. In

the most extreme example, offering too many alternatives to the user will result

in a phenomenon called “decision paralysis,” where the user’s responses will

not contain useful information about her preferences. In this case, the model

is not capturing the added uncertainty, and focusing on posterior entropy as a

performance metric may be misleading.

In contrast, the knowledge gradient policy captures this intuition, since pair-

wise comparisons decrease misclassification error faster than three-way com-

parisons in the cases of high noise or a highly informative prior. In fact, three-

way comparisons only prevail in a low-noise, low prior information scenario,

which is fairly optimistic. Both policies under three-way comparisons were ag-

gressive, and in the high-noise case, they fail to learn anything at all about the

user’s preferences. In practice, it will be necessary to estimate parameters for

the noise channel in order to choose the correct value of m. For now, it suffices

to say that pairwise comparisons are robust and reliable.
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5.5 Empirical Computational Results

Even though the simulated computations provide much insight into the effec-

tiveness of the policy, they do not quantify the extent to which the model fits

reality. There are many questions that the computational efforts in Section 5.4

do not answer. The problem lies in the simulated user responses, which may not

be a realistic choice model. As a result, we will take a more empirical approach

to evaluate the effectiveness of the our model. This includes testing the response

model by using recorded interactions with existent alternatives, as well as test-

ing the computational efficiency of our estimation procedure.

This effort is detailed throughout the rest of the chapter. In Section 5.5.1, we

characterize the data set used in the empirical evaluation and delve into steps

to clean this data. Section 5.5.2 provides the algorithmic approach used to esti-

mate linear classifiers and noise parameters, as well as validating the estimated

data. Lastly, we discuss these computational findings and their implications in

Section 5.5.3.

5.5.1 Empirical Data Set

Again, we use academic papers from arXiv.org as a set of alternatives. Specif-

ically, we consider papers from astrophysics (astro-ph) category published

in the year of 2016. As before, we use Blei, Ng, and Jordan (2003) to generate

10-dimensional LDA vectors for these papers, which assigns a probability dis-

tribution on topics, and we take a log-odds transform to generate vectors that

take values on R10. We choose LDA vectors because our model favors represen-
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tations that are dense and low-dimensional, due to the geometric nature of the

inference routine involved.

Unless an experiment or application is created to adaptively ask the desired

queries to specific users, any interactions the user has with the website will not

necessarily be in the desired form of a comparison between multiple alterna-

tives. However, user interactions stemming from alternatives presented in a list

can be interpreted as multiway comparisons between surrounding alternatives

(Joachims et al. 2007), and one can successfully use such comparisons to learn

a user’s preferences (Radlinski and Joachims 2007). We take this approach, in-

terpreting a user interaction with a list as a comparative query. The immediate

drawback is that we cannot pose a particular query to a user, implying that we

cannot test the effectiveness of policies such as entropy pursuit or knowledge

gradient. Nevertheless, we use these interactions to passively learn linear clas-

sifiers and parameters of the noise model.

There are many ways to derive a consideration set from a user’s interaction

with alternatives presented in a list. Our method is to consider each selected

paper as a pairwise comparison with the previous one. The logic behind this

decision is that the user most likely saw the previous item before clicking on

the selected paper, and therefore made an implicit comparison between the two,

favoring the one most recently selected. If the first paper from the list is selected,

then this is treated as a pairwise comparison with the second paper in the list.

Although this seems unintuitive at first, there is research to suggest that a user’s

eyes focus on the first and second ranked object in a list with roughly equal

time (Granka, Joachims, and Gay 2004), and therefore is likely to consider both

simultaneously. There are many variations of this that address problems like
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how to generate comparisons when adjacent alternatives are selected. We opt

for this modeling choice because of its simplicity and computational ease, but

it would be beneficial for future numerical experiments to try other methods of

generating consideration sets.

On arXiv.org, for each category, we consider user interactions in the “new”

list, which present papers that are published on the arXiv website that day. We

identify a user by a hashed cookie ID, and this allows us to look at interactions

that take place on multiple days. The interactions track which papers were se-

lected on the astro-ph new list. To prevent the inclusion of bots that select

every document on the list, we strain out users who ever select more than 10

academic papers in a single day.

We consider interactions throughout the year of 2016. This interaction data

is split into a training portion, taking place from January 1 through June 30,

and a validation portion, taking place from July 1 through December 31. The

training portion of the data includes all users, excluding strained bots, that in-

teracted with these new lists, totaling to 45,099 users. The validation portion

only considers interactions from users that are present in the training portion,

which includes 5,253 users. Even though there are a large number of users for

which we do not have validation data, we keep them in the training data to

better learn the noise channel.

From Figures 5.3 & 5.4, we can see that almost half of the training sample

only interacted with the list only once, and virtually all users in the training

sample have no more than 20 interactions total with the astro-ph new list.

However, there is a non-trivial number of users who, in the course of one day,

select more than one academic paper on average, and many of these types of
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Histogram of Total Number of User Interactions

Figure 5.3: A histogram of the total number of papers selected by individual
users from the astro-ph new list from January 1 to June 30, 2016.

users visit again.

The goal is to use the history of the training users to predict their linear

classifiers θ and to estimate the parameters of the noise channel.

5.5.2 Algorithmic Approach

Because the learning involves looking at a past history all at once, we are forced

to learn passively and sample from the resulting posteriors. However, this gives

us the opportunity to learn the linear classifiers while simultaneously learn-

ing parameters of the noise model, using the methodology presented in Sec-

tion 5.3.3. Afterwards, we evaluate the quality of our estimates by using an
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Histogram of Average Number of User Interactions

Figure 5.4: A histogram of the average number of papers per session selected
by individual users from the astro-ph new list from January 1 to
June 30, 2016.

entirely different metric for the validation portion of our observations.

To keep things relatively simple, we only attempt learning a symmetric noise

channel for the case m = 2, corresponding to the previous section when we

committed to focusing on pairwise comparisons. In particular, we are learning

the parameter α that defines the transmission matrix Pα = αI + (1−α)(1/2)eeT .

To reiterate, having α = 1 implies that the user always responds to comparative

queries by choosing the academic paper that maximizes the dot product with

her linear classifier. On the other hand, having α = 0 corresponds to the case

where the user responds uniformly at random to every query. Loosely speaking,

larger the estimated values of α imply more observations that are explained

by the utility model. We naively assign a non-informative prior so that α ∼
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Beta(1, 1).

The first step is to generate the posterior distributions of θ for all 45,099

users in our training set, using each of their interactions. Each user starts with

the same multivariate Normal prior, fit to the average document vector and a

scaled-up covariance matrix, similarly to Section 5.4. Then for each paper they

clicked on the list, we derive their consideration set, and equivalently the com-

parative question X ∈ X2 implied by their click. The corresponding posterior is

then updated with the response. Each posterior object maintains a starting point

for a sampler, and when it is updated with a new observation, the hot start rou-

tine outlined in Section 5.3.1. This allows there to always exist a “warm” starting

vector for a sampler if one must be created.

Now we sample according to Algorithm 5.3.7. As mentioned in the corre-

sponding section, the process is greatly accelerated if the sampling step for users

in done in parallel, since it would otherwise take hundreds of thousands of se-

quential hit-and-run proposals just to complete one iteration. We ran the Gibbs

sampler for 1000 iterations, acquiring 1000 samples of α as well as 1000 linear

classifiers θ for all 45,099 training users. These samples are not independent,

and are affected by autocorrelation, as is the case with most Gibbs samplers.

Out-of-sample validation is necessary to evaluate the effectiveness of the

model to predict real life outcomes and not merely simulated ones. To evaluate

the effectiveness of a set of linear classifiers, we first observe that each θ implies

a preferential order over alternatives. And even though a user’s choices may

be contaminated by noise, the user’s response to a query is consistent with this

ordering with probability α. Therefore, evaluating this preferential ordering is

a viable way to evaluate the performance of our sampled linear classifiers.
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We use a metric called discounted cumulative gain (DCG), used to evaluate

relevance of alternative presented in an ordered list. Suppose, for a given set of

N alternatives presented in an ordered list `, that
{
r(i) : i = 1, . . . , N

}
denotes a

list of binary variables indicating whether or not alternative i has been clicked.

Then one defines the sum

DCG(`) =
N∑

i=1

r(`(i))

log2(i+ 1)
.

Intuitively, the DCG of a particular ranked list of alternatives is larger when

the alternatives more relevant to the user are placed further towards the top

of the list. Otherwise, discounting plays a factor, and the opportunity cost of

generating a list where relevant alternatives are further down becomes larger.

There are issues when one wants to compare two DCG scores, but finds that

a different number of alternatives were clicked in both cases. One way to handle

this is to normalize the score by dividing by the maximum attainable score. This

is precisely the definition of normalized DCG (nDCG). Mathematically speak-

ing,

nDCG(`) =
DCG(`)

max`′ DCG(`′)
,

where the maximum is taken over all permutations of the initial list. Now all

nDCG scores fall between zero and one, and can easily be compared with each

other.

The way we use nDCG is as follows: each θ implies a ranking of alternatives

`θ, and the nDCG of each of these rankings can be calculated for a particular

“new” list on astro-ph. But since θ is random, we can compute an expected

nDCG score for each user, quantifying the extent to which the ranking implied

by the sampled classifiers are supported by the real interactions of validation
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users. In other words, for every user, we are estimating

E
[

nDCG(`θ)

]
(5.15)

with the sample average. Even though the sampled linear classifiers θ(u) for all

users u suffers from a degree of autocorrelation, we include the entire sample in

the sample average estimate, with the exception of a burn period (which we de-

tail in the next section). In the following section, we explore the computational

results from the passive learning experiment.

5.5.3 Results

The two components to the results are the noise estimation and the nDCG eval-

uation. Unlike the linear classifiers for the thousands of users, parameter α is

one-dimensional and provides a succinct representation of the quality of fit pro-

vided by those linear classifiers. Accordingly, Figure 5.5 provides a traceplot for

α to show the progression of the Gibbs sampler. Among other things, it shows

that the α samples reached a steady state at around 200 iterations, which sug-

gests incorporating a burn period for inference. This may seem odd, since we

constructed our hot-start mechanisms to always preserve stationarity. However,

this stationarity is conditional on the noise channel, and if the α parameter has

not reached a stationary distribution, then the unconditional θ(u) samples will

not have reached a stationary distribution. As a result, the loss in (5.15) will be

estimated using a sample average using the last 800 samples of the user. One

can see that the chain mixed well once it reached steady-state, albeit in a rela-

tively small band 0.43–0.47. Both of these statements are good news, indicating

the sampling mechanism works when presented with real data.
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Traceplot for Noise Parameter α

Figure 5.5: Traceplot of noise parameter α from the Gibbs sampler.

Using a burn period of 200 iterations, we can take a look at the distribution of

α. Figure 5.6 shows a histogram of the sampled values of α. The distribution is

bell-shaped and has relatively little skew. In particular, we calculated a sample

mean of 0.4595 and a sample standard deviation of 0.0029. This implies that the

user responses are not perturbed by noise roughly 46% of the time.

Now we turn to the nDCG validation results. Unfortunately, the validation

results are not as promising. Figure 5.7 shows that the distribution of nDCG

among users is fairly dispersed and heavily skewed right. In particular, we com-

pute a mean of 0.3126, a median of 0.2938, and a standard deviation of 0.100.

Strictly speaking, this indicates that the learning capability of our model only

achieved 31% of the maximum DCG value. But this is not a very useful expla-

nation. To a provide reference, the nDCG achieved when choosing randomly
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Histogram for Noise Parameter α

Figure 5.6: Histogram of noise parameter α from the Gibbs sampler, with burn
period of 200 iterations.

from a list of 40 alternatives, which is the length of a typical “new” astro-ph

list, is about 0.277. Roughly speaking, we can qualify the predictive capability

of our linear classifiers as slightly better than flipping a coin. In fact, using the

inverse of nDCG, t 7→ 21/t − 1, suggests that a user selecting one paper from a

list would search below the ninth ranked paper to find something relevant for

herself (by plugging the mean into the convex inverse and using Jensen’s in-

equality). This is fairly discouraging for the model’s predictive abilities at large.

Delving further into the data, one may think this phenomenon is due to the

large time periods involved in training or validating. However, looking at Fig-

ure 5.8, this performance does not seem to change significantly with respect to

the date of the observations. But this time series raises a seemingly contradic-

tory statistic: the average nDCG for a given day among all users is 0.3687, which
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Histogram for User Average nDCG

Figure 5.7: Histogram of expected nDCG (using a 200 iteration burn period for
sampled linear classifiers) for all users.

is different from the previous value. This is the result of something subtle: the

nDCG of more frequent arXiv users is implicitly weighted higher in the second

average than in the first.

To confirm our theory, we consider Figure 5.9, which shows a scatterplot

comparing the number of user clicks with the astro-ph new list with the av-

erage nDCG for that particular user. Even with the large cluster of users where

information is limited, there is a slight positive trend when the number of user

clicks increases. The issue at hand is explaining why this trend is that weak.

There are many dynamics that can explain this. One issue is that most users

tend to look no further than the top ten listed academic papers in the “new”

list, especially when the results span across multiple pages. This is generally

true for many search engines and scenarios in which alternatives are presented
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Time Series for Daily Average nDCG

Figure 5.8: Time series of averaged daily nDCG (using a 200 iteration burn pe-
riod for sampled linear classifiers) by user from July 1 through De-
cember 31, 2016.

in a list format. But for the arXiv “new” and “recent” lists, the papers are pre-

sented in order of publication date, regardless of user. This implies that papers

a user might deem more relevant may appear on the last page of the “new” list,

which may prevent users from interacting with relevant alternatives. This ef-

fect should be explored in subsequent data analysis, most likely by excluding

alternatives that appear too far down the original list.

Any number of modeling choices can affect our ability to learn from pre-

vious user interactions. Our choice of vector representation may not be the

best choice for the model. Perhaps future investigation should find the vector-

ization that best captures differences between alternatives, and evaluate these

choices with nDCG or different metrics. The parameterization of noise channels
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User Interactions vs. User nDCG

Figure 5.9: Scatterplot comparing the number of user interactions with the
“new” astro-ph to the expected nDCG of the user.

may not be complex enough to explain how users choose alternatives from a

list, and perhaps the order in which the alternatives are presented is important.

This is closely related to our method of deriving consideration sets from inter-

actions in lists. For this particular passive experiment, we only assumed that

a user selection implied a single comparison between the selected paper and

the paper listed immediately before. Again, further numerical studies should

consider other methods for constructing consideration sets and evaluate their

performance, and ideally should conclude the extent to which preference infor-

mation can or cannot be learned from a list format.

One of the most significant sacrifices made in this statistical study is giving

up the ability to adaptively pose questions to a single user. To a substantial

degree, the weakness in explanatory power of the model is the cost of not asking
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informative queries. Randomly constructed queries can provide redundant and

unhelpful information in the context of previous observations. Again, there is

nothing that promotes relevant papers to the top of the list, and therefore, the

knowledge gained from a user interaction is not as informative. And then there

is the question of policy performance, which we attempt to answer previously in

Section 5.4. We concluded that the entropy pursuit policy performs similarly to

the knowledge gradient policy in terms of learning efficiency, while being much

more computationally feasible. However, the users are the ultimate authorities

on the relevance and learning power of a given querying policy, and without

the ability to control the queries, we will not be able to conclusively determine

the effectiveness of certain policies or the model as a whole.

There is a point at which not being able to pose our own comparative queries

to the user affects our ability to learn, and future studies should attempt to find

where that point is. Our model shows a moderate amount of promise, but in

order to gauge its effectiveness in adaptive online learning, future endeavors

in this area should focus on testing an application that measures the benefit of

asking Bayes-optimal direct-comparison questions versus observing answers to

random ones.

5.6 Conclusion

In this chapter, we develop methodology to efficiently implement the compo-

nents necessary to use the theory in Chapter 4 in real applications, and study

the effectiveness of this model in two different scenarios. In the first scenario,

we show that the entropy pursuit policy performed similarly to the knowledge
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gradient, even when the computational effort required for the latter is much

more massive. The second scenario is much different in nature, in that we give

up the chance to adaptively ask questions in exchange for real historical data.

In applying the Gibbs sampler used to simultaneously estimate linear classi-

fiers and the noise channel, we see that the sampler itself performs well, but the

predictive strength of the generated vectors is moderate at best.

The question of how the selected hyperparameters of the model— the num-

ber of offered alternativesm, the structure of the noise channel, the vectorization

of alternatives, for instance—affect the quality of the predictions is still highly

relevant. But perhaps the most pertinent question remains the exact strength of

adaptiveness in the context of this model, and whether or not it can be done in a

computationally efficient manner. This begs the need for future research in such

problems to combine the scenarios of Section 5.4 5.5 into a single study, devel-

oping an application to test these query policies for many different users. We

conjecture that there exists a penalized form of entropy pursuit that can deliver

both prediction power while remaining computationally feasible for a live user.

Nevertheless, the work in this chapter demonstrates that the model developed

in the previous chapter is not merely confined to the realm of theory, but rather

can be implemented in an efficient fashion.
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