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In this work, we investigate congruences between modular cuspforms. Specifically,

we start with a given cuspform and count the number of cuspforms congruent to

it as we vary the weight or level. This counting problem is equivalent to under-

standing the ranks of certain completed Hecke rings. Using the deep modularity

results of Wiles, et al., we investigate these Hecke rings by studying the defor-

mation theory of the residual representation corresponding to our given cuspform.

This leads us to consider certain Selmer groups attached to this residual repre-

sentation. In this setting, we can apply standard theorems from local and global

Galois cohomology to achieve our results.
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CHAPTER 1

INTRODUCTION

1.1 Congruences Between Modular Forms

For the last century, congruences between modular forms have played a central

role in number theory. Ramanujan’s work on the � -function, Ribet’s work on the

converse to Herbrand’s Theorem, Mazur’s work on the Eisenstein ideal, and Wiles’

work on Fermat’s Last Theorem all concern congruences between modular forms.

Much of the work on this topic has centered on proving that congruent forms exist.

That is, one starts with a modular form, and then proves the existence of at least

one congruent modular form. The goal of this dissertation is to count the number

of congruent modular forms when at least one is known to exist. We will begin

by giving some basic definitions (following [2]) and examples, which will serve to

motivate our main results.

The group SL2(Z) acts on the complex upper half plane by linear fractional

transformation: ⎛⎜⎝ a b

c d

⎞⎟⎠ ⋅ z =
az + b

cz + b
,

where Im(z) > 0. Now, let N > 0 be an integer and let Γ0(N) ⊂ SL2(Z) be the

subset of 2× 2 matrices whose lower left hand entry is divisible by N .

Definition 1.1. Let k be a positive even integer. A modular form of weight k and

level N is a holomorphic function on the upper half plane satisfying:

1. f(
 ⋅ z) = (cz + d)kf(z) for all 
 =

⎛⎜⎝ a b

c d

⎞⎟⎠ ∈ Γ0(N), and
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2. for all 
 =

⎛⎜⎝ a b

c d

⎞⎟⎠ ∈ PSL2(Z), the function (cz+ d)−kf(
 ⋅ z) has a series

expansion
∞∑
n=0

anq
n/ℎ,

where q = e2�iz, for some ℎ. This expansion is called the Fourier series at

the cusp 
(i∞).

In what follows, we will be interested in the case when 
 = Id, that is, in the

Fourier series of f at i∞. We will refer to the coefficients in this series as the

Fourier coefficients of f . If the constant coefficient a0 = 0 for all 
, then we call f

a cuspform. We will denote by Sk(Γ0(N)) the space of all cuspforms of weight k

and level N .

Example 1.2. Let f(z) be the function defined by

f(z) = q
∞∏
n=1

(1− qn)2(1− q11n)2,

where q = e2�iz. This is a cusp form of weight 2 and level 11. Moreover, for p a

prime number, the pth Fourier coefficient of f is closely related to the number of

Fp-valued points of the elliptic curve

E = X0(11) : y2 + y = x3 − x2 − 10x− 20;

we have that ap(f) = p+ 1−#E(Fp). For small primes p, the Fourier coefficients

ap(f) are listed in Table 1.

It is natural to ask if one can find a canonical basis for the space of cuspforms

Sk(Γ0(N)). To do this we need to introduce a family of commuting operators,

called Hecke operators.
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Definition 1.3. Let f =
∑
an(f)qn be a cuspform in Sk(Γ0(N)), and let p be a

prime number. The pth Hecke operator, Tp, is given by1

Tp(f) =

⎧⎨⎩
∑

p∣n an(f)qn/p + pk−1
∑
an(f)qpn if p ∤ N∑

p∣n an(f)qn/p if p ∣ N.

It is a fact that for p and q distinct prime numbers, we have that TpTq = TqTp.

Thus, to define the Hecke operators for all positive integers, we need only do it

for prime powers. Accordingly, for a positive integer r, we define the prth Hecke

operator by

Tpr =

⎧⎨⎩
TpTpr−1 − pk−1Tpr−2 if p ∤ N

(Tp)
r if p ∣ N.

Thus, if n is any positive integer, we define the nth Hecke operator by

Tn =
∏
i

Tpeii ,

where n =
∏
peii .

Definition 1.4. A nonzero cuspform f ∈ Sk(Γ0(N)) is called a normalized eigen-

form if f is a simultaneous eigenform for all Hecke operators Tn and a1(f) = 1.

It is a standard fact that the Fourier coefficients of a normalized eigenform are

algebraic integers.

The following theorem is due to Atkin and Lehner (see [1]).

Theorem 1.5. There is a basis of Sk(Γ0(N)) of normalized eigenforms.

Example 1.6. Consider the cusp form

Δ(z) = q

∞∏
n=1

(1− qn)24 =
∞∑
n=1

�(n)qn,

1Some authors use the notation Up for the pth Hecke operator when p ∣ N .
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where q = e2�iz. This is the unique normalized eigenform of weight 12 and level

1.2 At first glance, the cuspform f from Example 1.2 and Δ seem to be unrelated.

However, by looking at Table 1, one can see directly that �(p) ≡ ap(f) mod 11 for

small values of p. It turns out that this congruence is true for all primes p and that

Δ is the unique modular form of weight 12 and level dividing 11 which satisfies

this property.

p 2 3 5 7 11 13 17 19
ap(f) -2 -1 1 -2 1 4 -2 0
�(p) -24 252 4830 -16744 534612 -577738 -6905934 10661420
ap(g) 1 -1 -2 4 1 -2 -2 0

Table 1: Fourier coefficients of f , Δ, and g.

Definition 1.7. Let f and g be two normalized eigenforms (possibly of different

weights and levels). Let K be a number field which contains all the Fourier coeffi-

cients of both f and g, and let ℘ be a prime ideal in the ring of integers, OK . We

call f and g congruent modulo ℘ if

aℓ(f) ≡ aℓ(g) mod ℘,

for all but finitely many prime numbers ℓ.

In the previous example, we saw a congruence between modular forms of differ-

ent weights. Hida proved the following theorem ([9]) which explains this example

in general.

Theorem 1.8. Suppose that f is a normalized eigenform in Sk(Γ0(N)). Let K be

a number field containing the Fourier coefficients of f , and let ℘ be a prime of K
2In fact, Hecke operators were initially developed to gain a better understanding the Fourier

coefficients �(n).
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lying above p. If ap(f) is a ℘-adic unit,3 then, for all j ≥ 1, there is a normalized

eigenform, gj, of weight j and level dividing Np such that f is congruent to gj

modulo a prime above ℘.

The next theorem addresses congruences between two cuspforms of different

levels. It is due to Ribet [25] and Diamond-Taylor [4].

Theorem 1.9. Suppose that f ∈ S2(Γ0(N)) and p ∤ N is a prime number. For all

prime numbers q ∤ N , there exists a cuspform g ∈ S2(Nq) such that f and g are

congruent modulo (a prime above) p if and only if aq(f)2 ≡ (q + 1)2 mod p.

Example 1.10. Let f be the cuspform in Example 1.2. We see that a3(f) = −1

and so a3(f)2 ≡ (3 + 1)2 mod 3. Consequently, there is a cuspform of weight 2 and

level 33 congruent to f modulo 3. Let g be such a cuspform. Then g corresponds

to the elliptic curve

A = X0(33) : y2 + xy = x3 + x2 − 11x,

in the sense that for all primes p, we have that ap(g) = p+ 1−#A(Fp). For small

values of p, one can check that ap(f) ≡ ap(g) mod 3 in Table 1. Moreover, since

S2(Γ0(33)) is one-dimensional (over ℂ), g is the unique form of weight 2 and level

33 with this property.

Example 1.11. Consider instead a29(f) = 0. Then, as a29(f)2 ≡ (29+1)2 mod 3,

there is at least one cuspform in S2(Γ0(319)) (note that 319 = 11× 29) congruent

to f modulo 3. However, the space S2(Γ0(319)) has dimension 23 over ℂ, so could

there be more than one?

According to the Modular Forms Database ([28]), there exist cuspforms ℎ1, ℎ2 ∈

S2(Γ0(319)) whose Fourier coefficients generate number fields of degrees 3 and 7,
3This is the condition that f be ordinary at p.
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respectively (actually, we have only chosen these forms up to Galois conjugacy

here, but we ignore that for the time being). The first few Fourier coefficients of

ℎ1 and ℎ2 satisfy the polynomials sp(x) and tp(x), respectively, that are listed in

Tables 2 and 3.

Let � be a root of the polynomial s2(x) = x3 − 3x − 1 and set K = Q(�).

Then ℎ1 is defined over K, since all of the Fourier coefficients generate a degree 3

extension which must contain K (if we take a different root �′, we are getting a

Galois conjugate form). Using SAGE, one can check that the ideal 3OK factors as

(−�2 + 1)3. In particular, 3 is totally ramified in K and, if we let ℘ = (−�2 + 1),

then OK/℘ = F3. Therefore, to check for a congruence modulo ℘ with ℎ1, we need

only consider the roots of the polynomials sp(x) in F3! A simple check shows that

for small p, we have that sp(ap(f)) ≡ 0 mod 3 (this is the third column of Table

2). In fact, this holds all primes except 29, and thus, ℎ1 ≡ f mod ℘.

Let � be a root of the polynomial t2(x) = x7−3x6−4x5 +15x4 +x3−14x2 +1,

and let L = Q(�). Then, as above, ℎ2 is defined over L, since all of its Fourier

coefficients generate a degree 7 extension which must contain L (again, if we take

a different root, we are getting a Galois conjugate form). The ideal 3OL factors as

p1 ⋅ p2 ⋅ p3, with

∙ p1 = (3, �2 − 2),

∙ p2 = (3, �4 − 2�3 − 4�2 + 5t+ 2), and

∙ p3 = (3, � − 1).

These primes have residual degrees 2, 4 and 1 respectively. Since we are looking

for a congruence with f , whose Fourier coefficients are defined over Z, we will work

with p3. Now we are in the exact same situation as before. We need only check
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that tp(ap(f)) ≡ 0 mod 3. For small p, this is the third column of Table 3. Again,

this holds for all primes except 29, and so ℎ2 ≡ f mod p3.

p sp(x) sp(ap(f))
2 x3 − 3x− 1 -3
3 x3 − 3x+ 1 3
5 x3 + 6x2 + 3x− 19 -9
7 x3 + 3x2 − 9x− 19 3
11 x3 − 3x2 + 3x− 1 0
13 x3 + 6x2 + 3x− 19 153
17 x3 + 12x2 + 45x+ 53 3
19 x3 + 12x2 + 45x+ 51 51

Table 2: Minimal polynomials of the Fourier coefficients of ℎ1.

p tp(x) tp(ap(f))
2 x7 − 3x6 − 4x5 + 15x4 + x3 − 14x2 + 1 -15
3 x7 − 17x5 + 3x4 + 78x3 − 8x2 − 96x+ 16 45
5 x7 − 4x6 − 14x5 + 59x4 + 36x3 − 225x2 + 81x+ 81 15
7 x7 − x6 − 25x5 + 9x4 + 136x3 − 56x2 − 152x+ 16 -240
11 x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1 0
13 x7 − 51x5 + 57x4 + 440x3 − 768x2 − 152x+ 464 -5520
17 x7 − 18x6 + 110x5 − 241x4 + 50x3 + 167x2 − 87x+ 9 -8205
19 x7 − 10x6 − 42x5 + 631x4 − 524x3 − 8961x2 + 23681x− 11805 -11805

Table 3: Minimal polynomials of the Fourier coefficients of ℎ2.

Considering Examples 1.6, 1.10, and 1.11 leads to the following general ques-

tions: Given a fixed normalized eigenform f ∈ Sk(Γ0(N)) and a fixed prime p,

for which weights j is there a unique normalized eigenform gj congruent to f

modulo p? Similarly, for which primes q is there a unique normalized eigenform

ℎq ∈ Sk(Γ0(Nq)) such that ℎq is congruent to f modulo p? Of course, Theorems

1.8 and 1.9 tell us when at least one congruent form exists. We are interested in

counting the number of such forms when at least one is known to exist.

Theorem A. Let f ∈ Sk(Γ0(N)) and let p be a prime such that
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1. f is ordinary at p;

2. N is not divisible by any primes that are congruent to 1 modulo p; and

3. f is not congruent to any other modular forms modulo any prime above p.

Then, for all j ≥ 1, there is a unique normalized eigenform of weight j and level

dividing Np which is congruent to f modulo a prime above p.

Theorem B. Let f, g ∈ S2(Γ0(N)) be given such that aℓ(f) ≡ aℓ(g) mod ℘ for

all but finitely many ℓ. Suppose that f is not congruent to an Eisenstein series

modulo ℘. Then, there exist Chebotarev sets of prime numbers Q and L such that:

1. For all q ∈ Q, there is a unique normalized eigenform in the new subspace

of S2(Γ0(Nq)) which is congruent to f modulo a prime above p;

2. For all ℓ ∈ L, there are at least two distinct normalized eigenforms (possibly

Galois conjugate) in the new subspace of S2(Γ0(Nℓ)) that are congruent to f

modulo a prime above p;

3. For all but finitely many q ∈ Q, there exist infinitely many ℓ ∈ L such

that there are at least two distinct normalized eigenforms (possibly Galois

conjugate) in S2(Γ0(Nqℓ)), new at both q and ℓ, that are congruent to f

modulo a prime above p; and

4. For all but finitely many q ∈ Q, there exist infinitely many ℓ ∈ L such that

there is a unique normalized eigenform in S2(Γ0(Nqℓ)), new at both q and ℓ,

that is congruent to f modulo a prime above p.
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1.2 Ranks of Hecke Rings

We start with a brief overview of how we plan to count congruent cuspforms.

See sections 1.6 and 4.1 of [2] for the details of the ideas here. Let TZ ⊆

End(Sk(Γ0(N))) be the ring generated over Z by the Hecke operators Tn acting

on the space of cuspforms of weight k and level N . It is well known that TZ is a

finitely generated Z-module. Let O be the ring of integers of a p-adic field K, and

let k be the residue field of O. Now consider TO = TZ ⊗Z O; it is free of finite

rank over O. Since O is a complete local ring, we have a decomposition

TO =
∏
m

Tm,

where the product runs over the maximal ideals m ⊂ TO. Each localization Tm

is a complete, local O-algebra, free of finite rank over O. The maximal ideals m

are in one-to-one correspondence with Gal(k̄/k)-conjugacy classes of normalized

eigenforms in Sk(Γ0(N),Z)⊗Z k̄.4

If TK = TZ ⊗Z K, then

Tm ⊗O K ≃
∏
℘

TK,℘,

where the product runs over the maximal ideals ℘ ⊆ TK lying over m. The

maximal ideals of TK are in one-to-one correspondence with Gal(K̄/K)-conjugacy

classes of normalized eigenforms in Sk(Γ0(N),Z)⊗Z K̄.

From this, we conclude that if f and g are cuspforms in Sk(Γ0(N),O) and

satisfy aℓ(f) ≡ aℓ(g) mod mO for almost all primes ℓ, then rankOTm > 1, where

m is the maximal ideal associated to the Gal(k̄/k)-conjugacy class of f (and g).

When m is the Eisenstein ideal (used for measuring congruences between cuspforms
4Using Theorem 1.5, one can show that there is a basis of S2(Γ0(N)) consisting of forms with

integral Fourier coefficients. We denote by S2(Γ0(N),Z) the Z-span of this basis.
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and Eisenstein series), Mazur posed the question, “Is there anything general that

can be said about [this rank]?” ([18], p. 140) Here, we explore this question for

congruences between two cuspforms.

One can carry out an entirely analogous analysis for Λ-adic modular forms.

Let ℎ0(N,O) be Hida’s ordinary Hecke ring ([9],[10], or Section 2 of [5] for an

overview), generated over Λ = O[[T ]] by the Hecke operators acting on the space

of ordinary Λ-adic modular forms. This ring is free of finite rank over Λ. Thus,

we again obtain a decomposition

ℎ0(N,O) =
∏
m

ℎ0(N,O)m,

where each localization ℎ0(N,O)m is a complete local Λ-algebra, free of finite rank

over Λ. As before, we see that if two ordinary Λ-adic modular forms are congruent

modulo m, then we have that rankΛ ℎ
0(N,O)m > 1.

The main results of this dissertation involve studying the ranks of these com-

pleted Hecke rings as we vary the weight or the level. As such, we aim to prove

the following theorems, from which Theorems A and B follow immediately.

Theorem A′. Let f ∈ Sk(Γ0(N),O) and let p be a prime such that

1. f is ordinary at p;

2. N is not divisible by any primes that are congruent to 1 modulo p; and

3. �̄f is absolutely irreducible.

Let m ⊂ TO be the maximal ideal corresponding to f , and mH ⊂ ℎ0(N,O) be the

maximal ideal corresponding to the Λ-adic modular form associated to f . If Tm

has rank one as an O-module, then ℎ0(N,O)mH
has rank one as an O[[T ]]-module.
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Theorem B′. Let f, g ∈ S2(Γ0(N),O) be given such that aℓ(f) ≡ aℓ(g) mod mO

for all but finitely many ℓ. Suppose that the residual representation �̄f is absolutely

irreducible. Then, there exist Chebotarev sets of prime numbers Q and L such that,

1. rankOT
q−new
Nq = 1 for all q ∈ Q;

2. rankOT
ℓ−new
Nℓ > 1 for all ℓ ∈ L;

3. For all but finitely many q ∈ Q, there exist infinitely many ℓ ∈ L such that

rankOT
q,ℓ−new
Nqℓ,m > 1; and

4. For all but finitely many q ∈ Q, there exist infinitely many ℓ ∈ L such that

rankOT
q,ℓ−new
Nqℓ,m = 1,

where the superscripts ‘q − new’ and ‘q, ℓ − new’ denote the quotients which act

faithfully on cuspforms which are new at the prime q and at the primes q and ℓ,

respectively.

1.3 Selmer Groups

If f, g ∈ Sk(Γ0(N),O) satisfy aℓ(f) ≡ aℓ(g) mod mO, then the Brauer-Nesbitt

Theorem shows that the residual representations �̄f and �̄g are equivalent (see

Theorem 2.4.6 and Remark 2.4.7 of [31]). Thus, to prove Theorems A′ and B′, we

will start with a residual Galois representation and study its deformation theory.

Let S be a finite set of primes containing {p,∞} and GS be the Galois group

overQ of the maximal algebraic extension ofQ unramified outside S. Suppose that

k is a field of characteristic p and �̄ : GS → GL2(k) is a continuous, odd, absolutely

irreducible representation with determinant equal to a finite order character times a

11



power of the mod p cyclotomic character. By the work of Khare and Wintenberger

([12], [13], [14]) on Serre’s conjecture ([27]), such a representation is necessarily

modular.

Associated to such a Galois representation, there is a universal deformation

ring, RS, and a universal deformation �S : GS → GL2(RS). It is well known that

RS is a compact local Noetherian algebra over the ring of Witt vectors of k, W (k).

We study how the W (k)-rank of such deformation rings vary in two different

settings. First, we consider deformations where the set S remains constant, but

the determinant of the deformation can vary. This corresponds to Theorem A′

and the varying weight case. Second, we consider deformations where we vary the

set S but fix the determinant of all deformations. This corresponds to Theorem

B′ and the varying level case. In both cases, this is accomplished by studying the

dimensions of certain Selmer groups.

Let Ad0(�̄) be the 2×2 trace zero matrices over k with Galois acting via �̄ and

conjugation. A Selmer group is the kernel of a restriction map

H1(GS,Ad0(�̄))→
⊕
v∈S

H1(Gv,Ad0(�̄))

ℳv

for some collection of subspaces {ℳv ⊆ H1(Gv,Ad0(�̄))}. Associated to such a

collection (called a set of local conditions), there is a universal deformation ring,

Rℳ, parameterizing all deformations to compact local Noetherian W (k)-algebras

which ‘satisfy’ these local conditions.

The connection between modular forms and deformation theory comes from an

appropriate choice of local conditions. Indeed, the local conditions in this work

are chosen for the express purpose of considering only deformations of �̄ which

come from modular forms. In this case, we get an isomorphism Rℳ ≃ Tm, where

12



m is the maximal ideal associated to the modular form giving rise to �̄. Thus,

in this dissertation, we are using the full strength of the modularity results of

Wiles, Taylor-Wiles, Kisin, et al. In particular, we see that studying the ranks of

deformation rings is equivalent to studying ranks of Hecke rings!

Our task then becomes finding a method for studying the rank of a deformation

ring. It is a standard fact that the deformation ring corresponding to a set of local

conditions is a quotient of a power series ring over W (k) in d variables, where d

is the dimension of the associated Selmer group. Thus, if we could just determine

the generators of the defining idea, we would know the rank. This is a difficult

question in general. However, it is known that completed Hecke rings are finite

flat complete intersections; that is,

Tm ≃ O[[X1, . . . Xd]]/(f1, . . . , fd)

Thus, with the appropriate choice of local conditions, our deformation ring is also

a finite flat complete intersection. Thus, by studying when the Selmer group is

either trivial or one dimensional (as we vary the weight or level we consider), we

can determine when the rank of the deformation ring (and hence the Hecke ring)

is one or larger than one.
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CHAPTER 2

RECOLLECTIONS

For the remainder of this work, we fix a prime number p ≥ 3, a finite field k of

characteristic p, and a totally real number field F satisfying the following technical

hypotheses:

1. F is linearly disjoint from Q(�p), the field of pth roots of unity, over Q (This

is required so that we can apply the results of [6], and [22]), and

2. the �̄-eigenspace of the class group of F (�p) is trivial (this is required in the

proof of Lemma 3.9).

It is worth mentioning that F = Q satisfies both of these hypotheses for all prime

numbers. For all places v of Q, we fix once and for all an embedding Q̄ ↪→ Q̄v,

and will view any subfield of Q̄ as a subfield of Q̄v by this embedding. We denote

by � the p-adic cyclotomic character and by �̄ the reduction of � modulo p.

We also fix a finite set of places of F , S, which contains all of those dividing

the rational p and∞. Let GF,S be the Galois group of the maximal extension of F

which is unramified outside the primes in S. Fix an absolutely irreducible, totally

odd, continuous representation �̄ : GF,S → GL2(k) that is modular (in the sense

that �̄ is the reduction of a p-adic representation attached to a Hilbert modular

eigenform of parallel weight k). We assume throughout that SL2(k) ⊆ Im(�̄).

In particular this implies that the trace-zero adjoint of �̄, Ad0 �̄, is absolutely

irreducible and that k is the minimal field of definition for both the representation

�̄ and Ad0 �̄ (see Lemma 17 of [23]).
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Many of the background results in this section as well as some of the preliminary

results of Chapters 3 and 4 are true in more generality. However, the main results

do require these assumptions, so we carry them throughout.

2.1 Galois Cohomology and Selmer Groups

We begin by recalling some basic ideas from Galois cohomology; two good ref-

erences are [20] and [21]. All of our Galois modules will be finite dimensional

k-vector spaces, and hence annihilated by p (as such, we do not note this specif-

ically in the hypotheses of any of the results below). Consequently, all of the

cohomology groups H i(G,M) (where G is some Galois group) we deal with will

also be k-vector spaces. Finally, denote by M(j), the Galois module M where the

Galois action is twisted by �̄j.

Lemma 2.1. For any GF -module M , we have an isomorphism

M∗ := HomFp(M,Fp(1)) ≃ Homk(M,k(1))

of GF modules.

Proof. This is Proposition 32 of [8].

Definition 2.2. For a place v of F let Gv denote Gal(F̄v/Fv), and, if v is a finite

place, Iv ⊂ Gv the inertia subgroup and Frobv the Frobenius element which topo-

logically generates Gv/Iv. For a Gv-module M , denote the image of the inflation

map

H1(Gv/Iv,M
Iv)→ H1(Gv,M)

by H1
nr(Gv,M). If M Iv = M , then we will call M an unramified Gv-module.
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Lemma 2.3. Let v be a finite place of F ; then

#H1
nr(Gv,M) = #H0(Gv,M).

Proof. This is Lemma 1 of [30].

Theorem 2.4 (Tate’s Local Duality). Let v be a finite place of F and M a Gv-

module. Then H i(Gv,M) is finite for all i, and

1. For i = 0, 1, 2, the cup product induces a perfect pairing

invv : H i(Gv,M)×H2−i(Gv,M
∗)→ H2(Gv,k(1)) ≃ k;

2. If v ∤ p and M is an unramified Gv-module, then the groups H1
nr(Gv,M) and

H1
nr(Gv,M

∗) are exact annihilators of one another under the pairing in (1);

and

3. There is a local Euler characteristic where

(a) #H1(Gv,M) = #H0(Gv,M)#H2(Gv,M) if v ∤ p, or

(b) #H1(Gv,M) = #H0(Gv,M)#H2(Gv,M)p[Fv :Qp]vp(#M) if v ∣ p.

Proof. See Chapter 1, Section 2 of [20].

Note. The perfect pairing (1) is usually taken to have values in H2(Gv, �p) =

H2(Gv,Fp(1)) ≃ Fp. In light of Lemma 2.1, however, we can take this pairing to

be a k-vector space pairing.

The following is a restatement of Lemma 3 from [23].

Lemma 2.5. Let M be a k[Gv]-module. Then H2(Gv,M) ∕= 0 if and only if M

has a one-dimensional (as a k-vector space) quotient by a Gv-stable subspace on

which Gv acts by �̄.
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Proof. By local duality, H2(Gv,M) ∕= 0 if and only if H0(Gv,M
∗) ∕= 0. But

H0(Gv,M
∗) = (M∗)Gv ∕= 0 if and only if M∗ has a one-dimensional Gv-stable

subspace. Such a subspace of M∗ corresponds to a quotient of M on which Gv

acts by �̄.

Definition 2.6. Let M be a GF,S-module, and suppose that for each v ∈ S, we

have a subgroupℳv ⊆ H1(Gv,M). A collection of such subgroups will be called

a set of local conditions. Denote byℳ⊥
v the annihilator ofℳv under the pairing

in Theorem 2.4 (1); the kernels

H1
ℳ(GF,S,M) := Ker

(
GF,S →

⊕
v∈S

H1(Gv,M)

ℳv

)
,

and

H1
ℳ⊥(GF,S,M

∗) := Ker

(
GF,S →

⊕
v∈S

H1(Gv,M
∗)

ℳ⊥
v

)
are called the Selmer and dual Selmer groups, respectively.

The following theorem is due to Wiles (Proposition 1.6 of [32]). It gives us a

way to measure the relative size of the Selmer and dual Selmer groups. Recall that

the set S contains all of the archimedean primes of F .

Theorem 2.7. For a set of local conditions {ℳv}v∈S, we have that

#H1
ℳ(GF,S,M)

#H1
ℳ⊥(GF,S,M∗)

=
#H0(GF,S,M)

#H0(GF,S,M∗)

∏
v∈S

#ℳv

#H0(Gv,M)
.

2.2 Deformation Theory

We now give a short introduction to the deformation theory of Galois representa-

tions; two good references are [7] and [19].
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Let G be either GF,S or Gv, and �̄ : G→ GL2(k) be a continuous representation.

Let Ad �̄ denote the adjoint representation of �̄: the underlying space is the set of

2-by-2 matrices over k, and the G-action is given by conjugation via �̄. Let C be

the category whose objects are Artinian, local W (k)-algebras with residue field k

and whose morphisms are local W (k)-algebra homomorphisms which induce the

identity on k.

Definition 2.8. Let R be an object of C. A lift of �̄ is a homomorphism � : G→

GL2(R) such that � ≡ �̄ mod mR, where mR is the maximal ideal of R. Two lifts

�1 and �2 to R are strictly equivalent if there is a matrix A ∈ GL2(R), congruent

to the identity modulo mR, such that �1(�) = A�2(�)A−1. A deformation of �̄ to

R is a strict equivalence class of lifts of �̄ to R.

The following theorem is due to Mazur. Recall our hypothesis that �̄ is abso-

lutely irreducible.

Theorem 2.9. There exists compact, local, Noetherian W (k)-algebra with residue

field k, Ru, and a homomorphism �u : G→ GL2(Ru), of �̄ such that

1. The reduction of �u modulo the maximal ideal of Ru gives �̄; and

2. If R is any element of C, and � is any deformation of �̄ to R, then there is a

unique, localW (k)-algebra morphism inducing the identity on k, f : Ru → R,

such that � = f ∘ �u as deformations.

In other words, the functor D : C → Sets, which assigns to R the set of de-

formations of �̄ to R, is pro-representable. Moreover, Ru, is a quotient of

W (k)[[X1, X2, . . . , Xd]], where d = dimkH
1(G,Ad �̄).
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Note. We will also be interested deformations with fixed determinant. To do this,

we note that we simply work with the cohomology of Ad0 �̄, the set of trace zero

matrices under the adjoint action. All of the above goes through identically. In fact,

in Chapter 3, we will frequently go between the fixed determinant and non-fixed

determinant setting. This is readily done since Ad �̄ = Ad0 �̄⊕k as GF,S-modules.

Suppose that G = Gv and �n is a deformation of �̄ to W (k)/pn. Then

H1(Gv,Ad �̄) acts on the set of deformations of �̄ to W (k)/pn+1 which lift �n.

Indeed, if �n+1 is such a deformation and f ∈ H1(Gv,Ad �̄), then (I + pnf)�n+1 is

another such deformation.

Suppose that for each v ∈ S we have a pair (Cv,ℳv), where Cv is a collection

of deformations of �̄ ∣Gv to W (k)/pn (where n varies, and n = ∞ is allowed) and

ℳv ⊂ H1(Gv,Ad �̄) such that (c.f. Properties P1-P7 of Section 1 of [29])

1. (�̄,k) is in Cv;

2. Cv is closed under inverse limits;

3. If (�n,W (k)/pn) is in Cv, then (�n mod pr,W (k)/pr) is in Cv for all 1 ≤ r ≤

n− 1;

4. For all n, there is some (�n,W (k)/pn) in Cv; and

5. Cv is closed under the action ofℳv ⊂ H1(Gv,Ad �̄) described in the previous

paragraph.

We call such pairs a set of local deformation conditions. In the notation of

Section 2.1, we have the following analogue of Theorem 2.9.

Theorem 2.10. Let {(Cv,ℳv)} be a set of local deformation conditions for �̄.

Then there is a universal deformation ring, Rℳ and a universal deformation
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�ℳ : GF,S → GL2(Rℳ), which parameterizes all deformations of �̄ which are lo-

cally in Cv. Moreover, we have that Rℳ is a quotient of W (k)[[X1, . . . , Xd]], where

d = dimkH
1
ℳ(GF,S,Ad �̄).
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CHAPTER 3

VARYING THE WEIGHT

In this chapter, we aim to establish a deformation theoretic version of Theorem A′.

In addition to the hypothesis listed at the start of Chapter 2, we now also assume

that:

1. �̄ is ordinary at all primes above p; that is,

�̄∣Gv =

⎛⎜⎝ �̄k−1'v ∗

0  v

⎞⎟⎠ ,

for all primes v ∣ p, where 'v and  v are continuous, k̄×-valued characters of

Gv with  v unramified, and

2. there are no primes in S such that N v ≡ 1 mod p.

3.1 Fixed Determinant Deformation Conditions

We begin by recalling a collection of local deformation conditions, {(Cv,ℒv)} con-

structed in [6].

Definition 3.1. Let �̄ be as above.

1. Suppose that v ∤ p, p ∤ #�̄(Iv), and that �̄ ∣Gv can be put in the form⎛⎜⎝ 'v 0

0 1

⎞⎟⎠ ,
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for some ramified character 'v : Gv → k×. We will take Cv to be deformations

of the form ⎛⎜⎝ '̃v
v 0

0 
−1
v

⎞⎟⎠ ,

where '̃v is the Teichmüller lift of 'v and 
v : Gv → W (k)× is any unramified

character. This is equivalent to considering lifts of �̄ which factor through

Gv/(Iv ∩Ker �̄). We will take ℒv = H1
nr(Gv,Ad0 �̄).

2. Suppose that v ∣ 2 and p = 3 and that the image of Gv in the projective

representation is S4. We will take Cv to be the deformations of �̄ which

factor through Gv/(Iv ∩ Ker �̄) and have determinant �k−1 times a finite

order character. We will take ℒv = H1
nr(Gv,Ad0 �̄).

3. Suppose that either

(a) v ∤ p, or

(b) v ∣ p and k = 2,

and that �̄ can be put in the form⎛⎜⎝ �̄k−1'v ∗

0 'v

⎞⎟⎠ ,

for some character 'v : Gv → k×. If v ∣ p, assume additionally that 'v is

unramified. We will take Cv to be deformations of the form⎛⎜⎝ �k−1
v ∗

0 
v

⎞⎟⎠ ,

where 
v is any lift of 'v (unramified lift, if v ∣ p). We will take ℒv to be the

image of the map

H1(Gv, U
0)→ H1(Gv,Ad0 �̄),

where U0 is the subset of Ad0 �̄ of upper triangular nilpotent elements.
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4. Suppose that v ∣ p and that we can take �̄ ∣Gv to be of the form⎛⎜⎝ �̄k−1'v ∗

0  v

⎞⎟⎠ ,

where, if k = 2, 'v,  v : Gv → k× are distinct characters with  v unramified.

Assume also that �k−1'v ∕=  v. We will take Cv to be deformations of the

form ⎛⎜⎝ �k−1
v ∗

0 �v

⎞⎟⎠ ,

where 
v and �v lift 'v and  v respectively, and �v is unramified. We will

take

ℒv = Ker(H1(Gv,Ad0 �̄)→ H1(Iv,Ad0 �̄/U0)).

Note. It is a theorem of Diamond, [3], that for v ∤ p, a continuous representation

�̄ : Gv → GL2(k) will take one of the forms (1), (2), or (3) above when F = Q.

The case of general F is Lemma 3.1 of [6].

Lemma 3.2. For the {(Cv,ℒv)} just described, we have that

1. {(Cv,ℒv)} is a set of local deformation conditions for �̄;

2. If v ∤ p, then #ℒv = #H0(Gv,Ad0 �̄); and

3. If v ∣ p, then

#ℒv =

⎧⎨⎩
#k1+[Fv :Qp] if p ∤ #�̄(Gv),

#k[Fv :Qp] if p ∣ #�̄(Gv).

In particular, we get that

#H1
ℒ(GF,S,Ad0 �̄)

#H1
ℒ⊥(GF,S,Ad0 �̄∗)

= 1.
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Proof. The verification of part (1) is more or less immediate, but we will discuss a

similar question below in Lemma 3.4. Part (2) follows from the Galois cohomology

results in Section 2.1, see [6] for the details. For Part (3), assume first that p ∤

#�̄(Gv). One easily checks that

Ad0 �̄ ≃ k⊕ k(�̄k−1'v/ v)⊕ k( v/�̄
k−1'v) and U0 ≃ k(�̄k−1'v/ v),

as Gv-modules (here we now allow the possibility of 'v =  v so cover both cases

(3) and (4) of Definition 3.1). In particular, we have that H0(Gv, U
0) = 0, since,

if 'v ∕=  v, we are assuming that �̄k−1'v ∕=  v. Additionally, H0(Gv,Ad0 �̄/U0) =

H0(Gv,Ad0 �̄/U0) = k. Thus, in the long exact sequence

0 // H0(Gv, U
0) // H0(Gv,Ad0 �̄) // H0(Gv,Ad0 �̄/U0) EDBC

GF@A
// H1(Gv, U

0) // H1(Gv,Ad0 �̄) // H1(Gv,Ad0 �̄/U0) EDBC
GF@A

// H2(Gv, U
0) // . . . ,

associated to the short exact sequence

0→ U0 → Ad0 → Ad0 /U0 → 0,

the first row is just

0→ k→ k.

In particular, this is an isomorphism, so that we get an exact sequence

0→ H1(Gv, U
0)→ H1(Gv,Ad0 �̄)→ H1(Gv,Ad0 �̄/U0). (3.1)

Now, if we are in case (3) of Definition 3.1, then we simply have that ℒv =

H1(Gv, U
0). Applying Lemma 2.5 and Theorem 2.4 we get

#ℒv = #k1+[Fv :Qp],
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as desired.

If we are in case (4) of Definition 3.1, then we see that H2(Gv, U
0) = 0 (again

by Lemma 2.5), so that the sequence in 3.1 is actually short exact. Next, the exact

sequence arising from inflation-restriction,

0→ H1(Gv/Iv, (Ad0 �̄/U0)Iv)→ H1(Gv,Ad0 �̄/U0)→ H1(Iv,Ad0 �̄/U0)Gv/Iv ,

is short exact because Gv/Iv ≃ Ẑ has cohomological dimension 1 (see Section 1

of Chapter XIII of [26]). Thus, splicing these two short exact sequences together,

and using the exactness of the sequences shows that

#ℒv =
#H1(Gv,Ad0 �̄)

#H1(Iv,Ad0 �̄/U0)Gv/Iv

=
#H1(Gv, U

0)#H1(Gv,Ad0 �̄/U0)#H1(Gv/Iv, (Ad0 �̄/U0)Iv)

#H1(Gv,Ad0 �̄/U0)

= #H1(Gv, U
0)#H0(Gv,Ad0 �̄/U0),

where the last equality follows from Lemma 2.3. Again, using Lemma 2.5 and

Theorem 2.4 we get

#ℒv = #k1+[Fv :Qp],

as desired. An entirely analogous argument gives the result when p ∣ #�̄(Gv), so

we omit the details here (see the proof of Lemma 3.6).

The final statement of the lemma follows from an easy application of Theorem

2.7:

#H1
ℒ(GF,S,Ad0 �̄)

#H1
ℒ⊥(GF,S,Ad0 �̄∗)

=
#H0(GF,S,Ad0 �̄)

#H0(GF,S,Ad0 �̄∗)

∏
v∈S

#ℒv
#H0(Gv,Ad0 �̄)

=
∏
v∈S

#ℒv
#H0(Gv,Ad0 �̄)

,

since our assumptions force Ad0 �̄ and Ad0 �̄∗ to be absolutely irreducible. Now,
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since #ℒv = #H0(Gv,Ad0 �̄) for all v ∤ p,∏
v∈S

#ℒv
#H0(Gv,Ad0 �̄)

=
∏
v∣∞

1

#k

∏
v∣p

#ℒv
#H0(Gv,Ad0 �̄)

,

since �̄ is totally odd. Now, if p ∤ #�̄(Gv), then, as we saw above, H0(Gv,Ad0 �̄) =

k. If p ∣ #�̄(Gv), then we have that H0(Gv,Ad0 �̄) = 0. Thus, in either case we

have that
#ℒv

#H0(Gv,Ad0 �̄)
= #k[Fv :Qp].

In particular, this gives that

#H1
ℒ(GF,S,Ad0 �̄)

#H1
ℒ⊥(GF,S,Ad0 �̄∗)

=
∏
v∣∞

1

#k

∏
v∣p

#k[Fv :Qp]

= #k−[F :Q]+
∑

v∣p[Fv :Qp] = 1.

The following result is due to Ramakrishna, [24], in the case F = Q and was

generalized to totally real fields by Gee, [6].

Theorem 3.3. Suppose �̄ satisfies the assumptions at the start of Chapters 2 and

3. For v ∈ S, let {(Cv,ℒv)} be the local deformation conditions defined above.

There exists a finite set of places of F , Q, such that, if we take {(Cq,ℒq)} to be as

in Definition 3.1 (3) for each q ∈ Q, then H1
ℒ⊥(GF,S∪Q,Ad0 �̄∗) = 0. Consequently,

in the notation of Theorem 2.10, Rℒ = W (k) and there exists a deformation of

�̄, � : GF,S∪Q → GL2(W (k)) with determinant a finite order character times �k−1,

such that � ∣Gv∈ Cv for all v ∈ S ∪Q. Moreover, since �̄ is assumed to be modular

of parallel weight k, there exists a Hilbert modular form, g, of parallel weight k,

such that the representations � and �g are equivalent.

Note. The statement of the theorem in this form is originally due to Taylor, [29].

There, the proof is split into two steps. First, using the Poitou-Tate long exact
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sequence, one shows that if H1
ℒ⊥(GF,T ,Ad0 �̄∗) = 0 (for some set of primes T

containing S), then one can deform �̄ step-by-step from W (k)/pn to W (k)/pn+1,

making sure that the local representation is in Cv at each step. The next step is

to produce the set of primes Q which annihilate the dual selmer group. The set Q

is built recursively by repeated applications of the Chebotarev Density Theorem.

We note that #Q = dimkH
1
ℒ⊥(GF,S,Ad0 �̄∗). The modularity result comes from

applying a deep result of Kisin, [15].

Consider the following modified local deformation conditions, which will pa-

rameterize deformations which have determinant a finite order character times

�j−1. Throughout, we let ! be the Teichmüller lift of �̄.

(1′) Suppose that v ∤ p, p ∤ #�̄(Iv), and that �̄ ∣Gv is twist equivalent to⎛⎜⎝ 'v 0

0 1

⎞⎟⎠ .

We will take Cv,j to be deformations of the form⎛⎜⎝ �j−1!k−j'̃v
n 0

0 
−1
v

⎞⎟⎠ .

We will take ℒv as in Definition 3.1 (1).

(2′) Suppose that v ∣ 2 and p = 3 and that the image of Gv in the projective

representation is S4. We will take Cv to be the deformations of �̄ which

factor through Gv/(Iv ∩ Ker �̄) which have determinant �j−1!k−j times a

finite order character. We will take ℒv in Definition 3.1 (2).

(3′) Suppose that either

1. v ∤ p, or
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2. v ∣ p and k = 2,

and that �̄ can be put in the form⎛⎜⎝ �̄k−1'v ∗

0 'v

⎞⎟⎠ ,

for some character 'v : Gv → k×. If v ∣ p, assume additionally that 'v is

unramified. We will take Cv,j to be deformations of the form⎛⎜⎝ �j−1!k−j
 ∗

0 


⎞⎟⎠ .

where 
v is any lift of 'v (unramified lift, if v ∣ p). We will take ℒv to be as

in Definition 3.1 (3).

(4′) Suppose that v ∣ p and that we can take �̄ ∣Gv to be of the form⎛⎜⎝ �̄k−1'v ∗

0  v

⎞⎟⎠ ,

where 'v,  v : Gv → k× are distinct characters with  v unramified. Assume

also that �k−1'v ∕=  v. We will take Cv,j to be deformations of the form⎛⎜⎝ �j−1!k−j
v ∗

0 �v

⎞⎟⎠ ,

where �v is unramified. We will take ℒv to be as in Definition 3.1 (4).

Lemma 3.4. The set {(Cv,j,ℒv)} is a set of local deformation conditions for �̄.

Proof. In each case, it is clear that Cv,j satisfies the first four properties listed

before Theorem 2.10. We will check property (5) here. In case (1′), we have

ℒv = H1
nr(Gv,Ad0 �̄). As Ad0 �̄ ≃ k ⊕ k(') ⊕ k('−1) in this case, we have that
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Ad0 �̄Iv is just the trace-zero diagonal matrices. Thus, if f ∈ ℒv and � is in

Cv,j, one sees that (I + apn−1)�n is again in Cv,j. In case (2′), there is nothing

to check since ℒv = 0 (see [6]). In case (3′), we have that ℒv is the image of

H1(Gv, U
0) → H1(Gv,Ad0 �̄). If [f ] is in this image, then f takes values in the

upper triangular nilpotent matrices. It follows at once that ℒv preserves Cv,j. Case

(4′) follows similarly.

Since only the class Cv,j of deformations changes when we change the �-part of

the determinant of the deformation (and not the local conditions ℒv), the Selmer

and dual Selmer groups are unchanged. Thus, we get the following result immedi-

ately from Theorem 3.3.

Proposition 3.5. Suppose �̄ satisfies the assumptions at the start of Chapters

2 and 3. For v ∈ S, let {(Cv,j,ℒv)} be the local deformation conditions defined

above. There exists a finite set of places of F , Q, such that, if we take {(Cq,j,ℒq)}

to be as in (3′) for each q ∈ Q, then H1
ℒ⊥(GF,S∪Q,Ad0 �̄∗) = 0. Consequently, in

the notation of Theorem 2.10, Rℒ = W (k) and there exists a deformation of �̄,

�j : GF,S∪Q → GL2(W (k)) with determinant a finite order character times �j−1,

such that � ∣Gv∈ Cv,j for all v ∈ S∪Q. Moreover, since �̄ is assumed to be modular

of parallel weight k, there exists a Hilbert modular form, g, of parallel weight j,

such that the representations �j and �g are equivalent.

3.2 Non-fixed Determinant Deformation Conditions

We are now equipped to understand the structure of the non-fixed determinant

deformation ring. Recall that this means considering the cohomology of Ad �̄, as

opposed to just that of Ad0 �̄. The decomposition Ad �̄ = Ad0 �̄ ⊕ k gives rise to
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a decomposition H i(G,Ad �̄) = H i(G,Ad0 �̄) ⊕ H i(G,k), where G is GF,S or Gv

for some v. This decomposition will make it easy to define the necessary local

conditions {(Dv,Nv)}.

To start, for all v we will take our class of deformations, Dv, to be lifts of the

same shape as those of the Cv in Definition 3.1, but without any restriction on the

determinants of the lifts. To define Nv, we simply take Nv = ℒv ⊕H1(Gv,k) for

v not dividing p. The case of v dividing p is more difficult.

Assume v ∣ p. Recall that we are assuming that �̄ ∣Gv is ordinary, in the sense

that we may put �̄ ∣Gv in the form⎛⎜⎝ �̄k−1'v �v

0  v

⎞⎟⎠ ,

where, 'v,  v : Gv → k× are characters with  v unramified such that �k−1'v ∕=  v,

and �v : Gv → k is some function. Note that allow 'v =  v.

Set U ⊂ Ad �̄ to be the subset of matrices whose bottom row is zero; that is

U =

⎧⎨⎩
⎛⎜⎝ a b

0 0

⎞⎟⎠
⎫⎬⎭ ,

which is a Gv-stable submodule of Ad �̄ since �̄ ∣Gv is ordinary.

Suppose first that k ∕= 2 or 'v ∕=  v. Then, we will take Nv to be the kernel of

the map

H1(Gv,Ad �̄)→ H1(Iv,Ad �̄)Gv/Iv .

When k = 2 and 'v =  v, we will take Nv to be the image of the map

H1(Gv, U)→ H1(Gv,Ad �̄),
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if p ∤ #�̄(Gv) (equivalently if �v = 0), and we will take Nv to be the kernel of the

map

H1(Gv,Ad �̄)→ H1(Iv,Ad �̄)Gv/Iv ,

if p ∣ #�̄(Gv) (equivalently if �v ∕= 0).

Lemma 3.6. For all v ∣ p we have that

#Nv =

⎧⎨⎩
#k2+2[Fv :Qp] if p ∤ #�̄(Gv)

#k1+2[Fv :Qp] if p ∣ #�̄(Gv).

Proof. The proof of this fact is completely analogous to the proof of Lemma 3.2.

So, since we showed the case p ∤ #�̄(Gv) there, we will show the case where

p ∣ #�̄(Gv) here. In this case, we are concerned with the kernel of the map

H1(Gv,Ad �̄)→ H1(Iv,Ad �̄)Gv/Iv .

We start by noting that (as in the proof of Lemma 3.2) the inflation-restriction

exact sequence

0→ H1(Gv/Iv, (Ad �̄/U)Iv)→ H1(Gv,Ad �̄/U)→ H1(Iv,Ad �̄/U) (3.2)

is short exact since Ẑ has cohomological dimension one.

Next, suppose that

M =

⎛⎜⎝ a b

0 0

⎞⎟⎠
is an element of U . Then for � in Gv, we have that

�̄(�)M�̄(�−1) = M =

⎛⎜⎝ a − �v(�)
 v(�)

a+ �̄(�)'v(�)
 v(�)

b

0 0

⎞⎟⎠ .
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Since we are assuming that � is not the zero map, we see immediately that

H0(Gv, U) = 0. Moreover, we also get that H2(Gv, U) = 0 by applying Lemma

2.5. Thus, applying Theorem 2.4 shows that

#H1(Gv, U) = #k2[Fv :Qp].

A similar argument (that is, writing out the matrix multiplication), shows that

#H0(Gv,Ad �̄) = #k = #H0(Gv,Ad �̄/U).

Now, associated to the short exact sequence

0→ U → Ad �̄→ Ad �̄/U → 0,

we get the usual long exact sequence

0 // H0(Gv, U) // H0(Gv,Ad �̄) // H0(Gv,Ad �̄/U) EDBC
GF@A

// H1(Gv, U) // H1(Gv,Ad �̄) // H1(Gv,Ad �̄/U) EDBC
GF@A

// H2(Gv, U) // . . .

As we have just seen, however, the first row is just

0→ k→ k,

which is necessarily an isomorphism. Also, we have seen that H2(Gv, U) = 0. In

particular, we get a short exact sequence

0→ H1(Gv, U)→ H1(Gv,Ad �̄)→ H1(Gv,Ad �̄/U)→ 0. (3.3)

Thus, to compute the order of Nv, it suffices to take the alternating product of the
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sums of terms in the sequences (3.2) and (3.3). In particular,

#Nv =
#H1(Gv,Ad �̄)

#H1(Iv,Ad �̄/U)Gv/Iv

=
#H1(Gv, U)#H1(Gv,Ad �̄/U)#H1(Gv/Iv, (Ad �̄/U)Iv)

#H1(Gv,Ad �̄/U)

= #H1(Gv, U)#H0(Gv,Ad �̄/U),

where the last equality follows from Lemma 2.3. We saw above that

#H1(Gv, U)#H0(Gv,Ad �̄/U) = #k2[Fv :Qp]#k,

and the result follows.

In Tables 4, 5, 6, and 7 we have recorded the sizes of several different cohomol-

ogy groups. The arguments for the sizes of these groups are completely analogous

to those given in the proofs of Lemmas 3.2 and 3.6, so we omit the proofs.

M #H0(Gv,M) #H1(Gv,M) #H2(Gv,M)

U0 1 #k[Fv :Qp] 1
Ad0 �̄ #k #k1+3[Fv :Qp] 1

Ad0 �̄/U0 #k #k1+2[Fv :Qp] 1
U #k #k1+2[Fv :Qp] 1

Ad �̄ #k2 #k2+4[Fv :Qp] 1
Ad �̄/U #k #k1+2[Fv :Qp] 1

Table 4: Sizes of various cohomology groups when p ∤ #�̄(Gv) and 'v ∕=  v or
k ∕= 2

The following corollary is immediate from Lemmas 3.2 and 3.6.

Corollary 3.7. For all v ∣ p, we have that

#Nv
#ℒv

= #k1+[Fv :Qp].
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M #H0(Gv,M) #H1(Gv,M) #H2(Gv,M)

U0 1 #k1+[Fv :Qp] #k

Ad0 �̄ #k #k2+3[Fv :Qp] #k

Ad0 �̄/U0 #k #k1+2[Fv :Qp] 1
U #k #k2+2[Fv :Qp] #k

Ad �̄ #k2 #k3+4[Fv :Qp] #k

Ad �̄/U #k #k1+2[Fv :Qp] 1

Table 5: Sizes of various cohomology groups when p ∤ #�̄(Gv) and 'v =  v and
k = 2

M #H0(Gv,M) #H1(Gv,M) #H2(Gv,M)

U0 1 #k[Fv :Qp] 1
Ad0 �̄ 1 #k3[Fv :Qp] 1

Ad0 �̄/U0 #k #k1+2[Fv :Qp] 1
U 1 #k2[Fv :Qp] 1

Ad �̄ #k #k1+4[Fv :Qp] 1
Ad �̄/U #k #k1+2[Fv :Qp] 1

Table 6: Sizes of various cohomology groups when p ∣ #�̄(Gv) and 'v ∕=  v or
k ∕= 2

Lemma 3.8. Let {Nv}v∈S and {ℒv}v∈S be as above. Then

#H1
N (GF,S,Ad �̄)

#H1
N⊥(GF,S,Ad �̄∗)

= #k
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M #H0(Gv,M) #H1(Gv,M) #H2(Gv,M)

U0 1 #k1+[Fv :Qp] #k

Ad0 �̄ 1 #k3[Fv :Qp] 1
Ad0 �̄/U0 #k #k1+2[Fv :Qp] 1

U 1 #k2[Fv :Qp] 1
Ad �̄ #k #k1+4[Fv :Qp] 1

Ad �̄/U #k #k1+2[Fv :Qp] 1

Table 7: Sizes of various cohomology groups when p ∣ #�̄(Gv) and 'v =  v and
k = 2

Proof. By Theorem 2.7, we have that

#H1
N (GF,S,Ad �̄)

#H1
N⊥(GF,S,Ad �̄∗)

=
#H0(GF,S,Ad �̄)

#H0(GF,S,Ad �̄∗)

∏
v∈S

#Nv
#H0(Gv,Ad �̄)

=
#H0(GF,S,Ad0 �̄)#H0(GF,S,k)

#H0(GF,S,Ad0 �̄∗)#H0(GF,S,k(1))

×
∏
v∈S

#Nv
#H0(Gv,Ad0 �̄)#H0(Gv,k)

=
#H0(GF,S,Ad0 �̄)

#H0(GF,S,Ad0 �̄∗)

∏
v∈S

#ℒv
#H0(Gv,Ad0 �̄)

× H0(GF,S,k)

H0(GF,S,k(1))

∏
v∈S

#Nv
#ℒv#H0(Gv,k)

=
#H1

ℒ(GF,S,Ad0 �̄)

#H1
ℒ⊥(GF,S,Ad0 �̄∗)

#k
∏
v∈S

#Nv
#ℒv#H0(Gv,k)

= #k
∏
v∈S

#Nv
#ℒv#H0(Gv,k)

, by Lemma 3.2.

Now, if v ∣ ∞, then Nv = ℒv = 0 so that

#Nv
#ℒv#H0(Gv,k)

=
1

#H0(Gv,k)
=

1

#k
.

If v ∤ p∞, then, since Nv = ℒv ⊕H1(Gv,k), we have that

#Nv
#ℒv#H0(Gv,k)

=
#H1(Gv,k)

#H0(Gv,k)
= 1

since N v ∕≡ 1 mod p and F is disjoint from Q(�p), by assumption.
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Finally, suppose that v ∣ p. Then, by Corollary 3.7, we have that

#Nv
#ℒv#H0(Gv,k)

=
#k1+[Fv :Qp]

#H0(Gv,k)
= #k[Fv :Qp].

Combining all of this gives

#H1
N (GF,S,Ad �̄)

#H1
N⊥(GF,S,Ad �̄∗)

= #k
∏
v∣∞

1

#k

∏
v∣p

#k[Fv :Qp]

= #k1−[F :Q]+
∑

v∣p[Fv :Qp]

= #k,

as desired.

Our next step is to bound the size of H1
N⊥(GF,S,Ad �̄∗) in terms of the size of

H1
ℒ⊥(GF,S,Ad0 �̄∗).

Lemma 3.9. Suppose that {Nv}v∈S and {ℒv}v∈S are as above. Then we have the

containment

H1
N⊥(GF,S,Ad �̄∗) ⊆ H1

ℒ⊥(GF,S,Ad0 �̄∗)⊕H1(GF,S,k(1)).

Moreover, if H1
ℒ⊥(GF,S,Ad0 �̄∗) = 0, then H1

N⊥(GF,S,Ad �̄∗) = 0.

Proof. Clearly, if v ∤ p, then Nv ∩ H1(Gv,Ad0 �̄) = ℒv. If v ∣ p, then certainly

ℒv ⊆ Nv ∩H1(Gv,Ad0 �̄). To see the reverse containment, let f be a one-cocycle

such that the cohomology class [f ] is in the intersection. Then, up to coboundary,

f(�) ∈ U for all � ∈ Iv (because [f ] ∈ Nv) and f(�) ∈ Ad0 �̄ for all � ∈ Gv

(because [f ] ∈ H1(Gv,Ad0 �̄)). Thus, we have that f(�) ∈ U0 for all � ∈ Iv; that

is, [f ] ∈ ℒv. Thus, for all v ∈ S, we have that Nv ∩H1(Gv,Ad0 �̄) = ℒv.

Next, let N⊥v and ℒ⊥v denote the annihilators of Nv and ℒv in H1(Gv,Ad �̄),

and we will let ℒ⊥,0v denote the annihilator of ℒv in H1(Gv,Ad0 �̄). Since we have

Nv ∩H1(Gv,Ad0 �̄) = ℒv, we get that N⊥v ⊆ ℒ⊥v .
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It is not hard to see that ℒ⊥v = ℒ⊥,0v ⊕ H1(Gv,k(1)), for all v. Thus,

H1
N⊥(GF,S,Ad �̄∗) is contained in the kernel of the map

H1(GF,S,Ad �̄∗)→
⊕
v∈S

(
H1(Gv,Ad0 �̄)

ℒ⊥,0v

⊕ H1(Gv,k(1))

H1(Gv,k(1))

)
,

which is clearly H1
ℒ⊥(GF,S,Ad0 �̄∗) ⊕ H1(GF,S,k(1)). This is the first part of the

lemma.

Now, suppose that H1
ℒ⊥(GF,S,Ad0 �̄∗) = 0. Evidently, we then have that

H1
N⊥(GF,S,Ad �̄∗) ⊂ H1(GF,S,k(1)). Thus, we need to consider the kernel of the

map

H1(GF,S,k(1))→
⊕
v∈S

H1(Gv,k(1))

N⊥v ∩H1(Gv,k(1))
.

For v not dividing p, N⊥v = ℒ⊥,0v , so that N⊥v ∩H1(Gv,k(1)) = 0. We will show

the same conclusion hold in the case v ∣ p. Suppose that we are in this setting. As

a subspace of H1(Gv,Ad �̄), we see that H1(Gv,k(1)) is the exact annihilator of

H1(Gv,Ad0 �̄); that is,

N⊥v ∩H1(Gv,k(1)) = N⊥v ∩H1(Gv,Ad0 �̄)⊥

=
(
Nv +H1(Gv,Ad0 �̄)

)⊥
,

by elementary linear algebra. So, if we could prove thatNv+H1(Gv,Ad0 �̄) = Ad �̄,

we would have that N⊥v ∩ H1(Gv,k(1)) = 0. This can be achieved by simply

counting the sizes. Indeed, we know that

#
(
Nv +H1(Gv,Ad0 �̄)

)
=

#Nv#H1(Gv,Ad0 �̄)

#
(
Nv ∩H1(Gv,Ad0 �̄)

)
=

#Nv#H1(Gv,Ad0 �̄)

#ℒv

= #k1+[Fv :Qp]#H1(Gv,Ad0 �̄), by Corollary 3.7,

= #H1(Gv,k)#H1(Gv,Ad0 �̄), by Theorem 2.4,

= #H1(Gv,Ad �̄),
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since H1(Gv,Ad �̄) = H1(Gv,Ad0 �̄)⊕H1(Gv,k).

Thus, we are interested in the kernel of the map

H1(GF,S,k(1))→
⊕
v∈S

H1(Gv,k(1)).

But the elements of this kernel are locally trivial everywhere and hence unramified

everywhere. Hence, a non-trivial element of this kernel would cut out unramified

abelian p-extension of F (�p) in the �̄-eigenspace of the class group. Since we have

assumed that this eigenspace is trivial, we are left to conclude that

H1
N⊥(GF,S,Ad �̄∗) ∩H1(GF,S,k(1)) = 0,

and the second part of the lemma follows.

We are now ready to prove the main result of this section. By the modularity

results of Khare and Wintenberger, Theorem A′ is an immediate corollary of the

following result when F = Q.

Theorem 3.10. Let �̄ : GF,S → GL2(k) be an absolutely irreducible, totally odd,

continuous representation that arises as the reduction of a p-adic representation

attached to a Hilbert modular eigenform of parallel weight k. Then there exists

a finite set of places of F , Q, such that, if we take {(Dq,Nq)} to correspond to

Definition 3.1 (3) for each q ∈ Q, then H1
ℒ⊥(GF,S∪Q,Ad �̄∗) = 0. Additionally, we

have that RN ≃ W (k)[[X]] and a deformation of �̄, � : GF,S∪Q → GL2(W (k)[[X]])

such that � ∣Gv∈ Dv for all v ∈ S ∪Q.

Proof. By Proposition 3.5, there is a finite set of places of F , Q, such that

H1
ℒ⊥(GF,S∪Q,Ad0 �̄∗) = 0.
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By Lemma 3.9, we therefore have that

H1
N⊥(GF,S∪Q,Ad �̄∗) = 0.

Lemma 3.8 and Theorem 2.10 then show that RN is a quotient of W (k)[[X]],

say RN ≃ W (k)[[X]]/I. By universality, we have homomorphisms 'j : RN →

Rℒ,j ≃ W (k) for all j. Moreover, these homomorphisms must all be distinct since

the resulting representations have different determinants. Thus, we conclude that

I = (0) and RN ≃ W (k)[[X]].
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CHAPTER 4

VARYING THE LEVEL

In this chapter, we are interested in studying the ranks of the deformation rings

as we vary the set S. We now allow �̄ to be ramified at primes that satisfy

N v ≡ 1 mod p, but we impose the following additional assumptions:

1. The Selmer and dual Selmer groups for the choice of local conditions

as in Definition 3.1, H1
ℒ(GF,S,Ad0(�̄)) and H1

ℒ⊥(GF,S,Ad0(�̄)), are one-

dimensional;

2. Ш1
S(Ad0(�̄)) = 0, where Ш1

S(Ad0(�̄)) denotes the kernel of the restriction

map H1(GF,S,Ad0(�̄))→
⊕

v∈S H
1(Gv,Ad0(�̄)); and

3. �̄ arises from a Hilbert modular form of parallel weight 2.

The first two of these assumptions are not too onerous. One can make a

large Selmer group one dimensional following [6] (this is the content of Theorem

3.3), while one can make a trivial Selmer group one dimensional following [22].

Assumption (3) can also be arranged by methods of [24] and [29]. All of these

procedures involve adding primes to the ramification set.

Since �̄ is assumed to be modular, the deformation ring Rℒ is isomorphic to a lo-

calized Hecke ring by Theorem 3.3. Thus, Rℒ is a finite, flat, complete intersection

over W (k). In particular, by Theorem 2.10, we see that

rankW (k) Rℒ = 1

if and only if

H1
ℒ(GF,S,Ad0 �̄) = 0.
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Thus, our strategy for the remainder of the section will be to compute the dimen-

sions of various Selmer and dual Selmer groups. Finally, we note that the results

of this section in the case F = Q appeared as joint work of the author and R.

Ramakrishna in [17].

4.1 Nice Primes

Definition 4.1. Suppose �̄ is given as above. A prime v is nice (for �̄) if

∙ N v ∕≡ ±1 mod p

∙ �̄ is unramified at v,

∙ the eigenvalues of �̄(Frobv) have ratio N v.

In particular, we see that we can take

�̄ ∣Gv=

⎛⎜⎝ �̄' 0

0 '

⎞⎟⎠ ,

(recall that we are now in a weight 2 setting) so that nice primes fall under case

(2) of Definition 3.1.

Note. This definition forces us to take p ≥ 5 as all primes are ±1 modulo 3.

Definition 4.2. A Chebotarev set is, up to finitely many elements, a set of prime

numbers defined by an application of the Chebotarev density theorem in some

extension of number fields L/K.

Lemma 4.3. For �̄ as above, the set of nice primes, ℜ, is a Chebotarev set.

Proof. This is Proposition 3.3(a) of [22].
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Recall that k(j) is the group k with Galois action via �̄j. Since the eigenvalues

of �̄(Frobr) have ratio N r for any nice prime r, the eigenvalues of Frobr acting on

Ad0(�̄) are N r, 1 and (N r)−1 so there are Gr-module isomorphisms

Ad0(�̄) =

⎛⎜⎝ a 0

0 −a

⎞⎟⎠⊕
⎛⎜⎝ 0 b

0 0

⎞⎟⎠⊕
⎛⎜⎝ 0 0

c 0

⎞⎟⎠

≃ k⊕ k(1)⊕ k(−1)

and

Ad0(�̄)∗ =

⎛⎜⎝ a 0

0 −a

⎞⎟⎠
∗

⊕

⎛⎜⎝ 0 b

0 0

⎞⎟⎠
∗

⊕

⎛⎜⎝ 0 0

c 0

⎞⎟⎠
∗

≃ k(1)⊕ k⊕ k(2).

Since N r ∕≡ ±1 mod p and F is disjoint from Q(�p), each of the three terms in the

above decompositions is distinct from the others.

Lemma 4.4. Let r be a nice prime for �̄. Then we have

1. H1(Gr,k(j)) = 0 for j ∕= 0, 1;

2. H i(Gr,Ad0(�̄)) ≃ H i(Gr,k)⊕H i(Gr,k(1)) ≃ H i(Gr,Ad0(�̄)∗);

3. H i(Gr,Ad0(�̄)) and H i(Gr,Ad0(�̄)∗) have dimensions 1, 2, and 1 for i =

0, 1, 2, respectively;

4. H1
nr(Gr,Ad0(�̄)) and H1

nr(Gr,Ad0(�̄)∗) correspond to H1(Gr,k) in the de-

composition in (2); and

5. The one dimensional subspace ℒr from case (3) of Definition 3.1, is

ℒr = H1(Gr,k(1)) ⊂ H1(Gr,Ad0(�̄)),
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which, under local duality, is annihilated by the one dimensional space

ℒ⊥r = H1(Gr,k(1)) ⊂ H1(Gr,Ad0(�̄)∗).

Therefore, if either

f ∈ H1
nr(Gr,Ad0(�̄)) and  ∈ H1(Gr,Ad0(�̄)∗)∖H1

nr(Gr,Ad0(�̄)∗)

or

f ∈ H1(Gr,Ad0(�̄))∖H1
nr(Gr,Ad0(�̄)) and  ∈ H1

nr(Gr,Ad0(�̄)∗)

with f,  ∕= 0, then invr(f ∪  ) ∕= 0.

Proof. Statement (1) follows immediately from Theorem 2.4:

#H1(Gr,k(j)) = #H0(Gr,k(j))#H2(Gr,k(j))

= #H0(Gr,k(j))#H0(Gr,k(1− j))

=

⎧⎨⎩
#k if j = 0, 1

1 otherwise.

Statement (2) follows the fact that cohomology commutes with direct sums and

a similar argument to (1). Statement (3) follows from statement (2). Statement

(4) follows from the fact that N r ∕≡ ±1 mod p and that F is disjoint from Q(�p).

Statement (5) is immediate from the definition of ℒr given in Definition 3.1. Fi-

nally, the statement about the non-vanishing of invariants follows from Theorem

2.4.

Definition 4.5. Let Ψ ∈ H1(GF ,Ad0(�̄)∗) and r be a nice prime such that Ψ∣Gr

is unramified. Consider

H1(GF ,Ad0(�̄)∗)
res→ H1(Gr,Ad0(�̄)∗)→ H1(Gr,k) = Hom(Gr,k) = Hom(Gr/Ir,k)
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where the first map is the restriction map and the second arises from the de-

composition of the Gr-module Ad0(�̄) in Lemma 4.4. By Ψ(Frobr), we mean the

evaluation at Frobenius at r of the image of Ψ under the composition above.

Definition 4.6. For a set of primes F set

dens(F) = lim sup
x→∞

F ∩ [1, x]

�(x)
and dens(F) = lim inf

x→∞

F ∩ [1, x]

�(x)

and

dens(F) = lim
x→∞

(F) ∩ [1, x]

�(x)

when the limit exists.

Theorem 1.3 of [16] shows that Chebotarev sets have density as in Definition 4.6.

Proposition 4.7. Let Ψ ∈ H1(GF ,Ad0(�̄)∗), and let ℜ be the (Chebotarev) set

of nice primes. Then the set of r ∈ ℜ such that Ψ(Frobr) = �, for � ∈ k, is a

Chebotarev set having density
densℜ

#k
.

Proof. Recall from the discussion following Definition 4.1 that

Ad0(�̄)∗ ≃ k(1)⊕ k⊕ k(2)

as Gr-modules. The factor with trivial action is dual to the matrices which are

zero except of the upper right hand entry.

Let K = F (Ad0(�̄), �p), so that Ψ∣Gal(K̄/K) is a homomorphism. Then the field

cut out by Ψ, LΨ, is a Galois extension of K with (abelian) Galois group Ad0(�̄)∗.

By Definition 4.5, Ψ(Frobr) = � is equivalent to Frobr corresponding to the dual

of a matrix with � in the upper right hand entry. Such matrices account for
1

#k

of all possibilities. The result follows.
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4.2 The Sets Q and L

Recall that we are assuming both H1
ℒ(GF,S,Ad0 �̄) and H1

ℒ⊥(GF,S,Ad0 �̄∗) are one-

dimensional. Let f and � span H1
ℒ(GF,S,Ad0(�̄)) and H1

ℒ⊥(GF,S,Ad0(�̄)∗) respec-

tively.

Definition 4.8. Let Q be set of nice primes q satisfying f ∣Gq ∕= 0, �∣Gq ∕= 0.

Let L be the set of nice primes ℓ satisfying f ∣Gℓ
∕= 0 and  ∣Gℓ

= 0 for all  ∈

H1(GF,S,Ad0(�̄)∗).

Lemma 4.9. The sets Q and L are Chebotarev sets. For q ∈ Q we have that

H1
ℒ(GF,S∪{q},Ad0(�̄)) = 0.

Proof. That Q and L are Chebotarev sets is an identical argument to Lemma 8 of

[11], working over F instead of Q. The second part comes from the fact that the

primes q ∈ Q are chosen to annihilate the dual Selmer group, H1
ℒ⊥(GF,S,Ad0(�̄)∗);

this is essentially the proof of Theorem 3.3. Applying Lemma 3.2 gives the desired

result.

Proposition 4.10. For any ℓ ∈ L, the Selmer and dual Selmer groups,

H1
ℒ(GF,S∪{ℓ},Ad0(�̄)) and H1

ℒ⊥(GF,S∪{ℓ},Ad0(�̄)∗),

are one dimensional. Moreover, H1
ℒ(GF,S∪{ℓ},Ad0(�̄)) is not spanned by f and

H1
ℒ⊥(GF,S∪{ℓ},Ad0(�̄)∗) is spanned by �.

Proof. As �∣Gℓ
= 0, we have that � ∈ H1

ℒ⊥(GF,S∪{ℓ},Ad0(�̄)∗). In particular, we

may conclude that H1
ℒ⊥(GF,S∪{ℓ},Ad0(�̄)∗) is not trivial.
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As f is a cohomology class for the group GF,S, it is unramified at ℓ. Since

f ∣Gℓ
∕= 0 (by definition of the set L), Lemma 4.4 implies that

f /∈ H1
ℒ(GF,S∪{ℓ},Ad0(�̄)).

Thus, any non-zero element of H1
ℒ(GF,S∪{ℓ},Ad0(�̄)) is ramified at ℓ.

Let f1 and f2 be non-zero elements of H1
ℒ(GF,S∪{ℓ},Ad0(�̄)). By Lemma 4.4,

there is a nontrivial linear combination of f1 and f2 which is unramified at ℓ. This

linear combination is in H1
ℒ(GF,S∪{ℓ},Ad0(�̄)) and therefore zero by the previous

paragraph. Thus, f1 and f2 are linearly dependent, and so H1
N (GS∪{ℓ},Ad0(�̄)) is

at most one-dimensional. The proposition now follows from Lemma 3.2.

Note. By the discussion at the start of the chapter, Parts (1) and (2) of Theorem

B′ follow immediately from Lemma 4.9 and Proposition 4.10.

Proposition 4.11. For any ℓ ∈ L the kernel of

H1(GF,S∪{ℓ},Ad0(�̄))→
⊕
v∈S

H1(Gv,Ad0(�̄)) (4.1)

is one dimensional. Moreover, for any nice prime r, the inflation map

H1(GF,S,Ad0(�̄)∗)→ H1(GF,S∪{r},Ad0(�̄)∗)

has one dimensional cokernel.

Proof. To prove the first statement, set

ℳv = 0, ℳ⊥
v = H1(Gv,Ad0(�̄)∗), for v ∈ S

and

ℳℓ = H1(Gℓ,Ad0(�̄)), ℳ⊥
ℓ = 0,
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so that

H1
ℳ⊥(GF,S,Ad0(�̄)∗) = H1(GF,S,Ad0(�̄)∗).

As any  ∈ H1(GF,S,Ad0(�̄)∗) satisfies  ∣Gℓ
= 0, we have that

H1
ℳ⊥(GF,S∪{ℓ},Ad0(�̄)∗) ⊇ H1

ℳ⊥(GF,S,Ad0(�̄)∗),

and asℳ⊥
ℓ = 0, all elements of H1

ℳ⊥(GF,S∪{ℓ},Ad0(�̄)∗) are trivial (and therefore

unramified) at ℓ, showing

H1
ℳ⊥(GF,S∪{ℓ},Ad0(�̄)∗) = H1

ℳ⊥(GF,S,Ad0(�̄)∗).

Thus, two applications of Theorem 2.7 imply that

#H1
ℳ(GF,S,Ad0(�̄)) ⋅#k = #H1

ℳ(GF,S∪{ℓ},Ad0(�̄)).

As H1
ℳ(GF,S,Ad0(�̄)) = Ш1

S(Ad0(�̄)) = 0 by our hypotheses, the kernel of Equa-

tion (4.1) is H1
ℳ(GF,S∪{ℓ},Ad0(�̄)). The first part follows.

For the second part set T = S ∪ {r}, and let

ℳv = 0, ℳ⊥
v = H1(Gv,Ad0(�̄)∗), for v ∈ T .

The Selmer groups for S and T are Ш1s and the dual Selmer groups for S and T

are the full H1s. Two applications of Theorem 2.7 give

#Ш1
T (Ad0(�̄))

#Ш1
S(Ad0(�̄))

=
#H1(GF,T ,Ad0(�̄)∗)

#H1(GF,S,Ad0(�̄)∗) ⋅#k
. (4.2)

By assumption, Ш1
S(Ad0(�̄)) = 0. Any element of Ш1

T (Ad0(�̄)) is trivial, and

therefore unramified, at r, so Ш1
T (Ad0(�̄)) ⊆ Ш1

S(Ad0(�̄)) = 0. Thus, Equation

(4.2) becomes

#H1(GF,T ,Ad0(�̄)∗) = #H1(GF,S,Ad0(�̄)∗) ⋅#k,

the desired result.
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The second part of Proposition 4.11 implies H1(GF,S∪{r},Ad0(�̄)∗) con-

tains classes ramified at r, for all nice primes r. For q ∈ Q, fix Φq ∈

H1(GF,S∪{q},Ad0(�̄)∗) ramified at q and normalized so that invq(f ∪Φq) = 1 (recall

that our local duality pairing gives invariants that have values in k). Note that

f and any Ψ ∈ H1(GF,S,Ad0(�̄)∗) are unramified at q, so Theorem 2.4 implies

invq(f ∪Ψ) = 0. Thus, though there is ambiguity in choosing Φq, the image of Φq

in

H1(GF,S∪{q},Ad0(�̄)∗)/H1(GF,S,Ad0(�̄)∗)

and invq(f ∪ Φq) are well-defined after this normalization.

The first part of Proposition 4.11 implies that the kernel of Equation (4.1)

contains an element gℓ which is ramified at ℓ. By Proposition 4.10,

H1
ℒ(GF,S∪{ℓ},Ad0(�̄))

is one-dimensional, but

f /∈ H1
ℒ(GF,S∪{ℓ},Ad0(�̄)).

Let fℓ span H1
ℒ(GF,S∪{ℓ},Ad0(�̄)). As fℓ and gℓ are ramified at ℓ, we can argue as in

the proof of Proposition 4.10. Lemma 4.4 implies that some linear combination of

fℓ and gℓ is unramified at ℓ. The coefficients of gℓ and fℓ in this linear combination

are necessarily nonzero. As fℓ ∣Gv , gℓ ∣Gv∈ ℒv for v ∈ S, this linear combination is

locally in ℒv for all v ∈ S and so is in H1
ℒ(GS,Ad0(�̄)); that is, it is a multiple of

f . Thus, after suitably scaling fℓ, we have fℓ = aℓf + gℓ. Note that the coefficient

aℓ is independent of the set Q.

Proposition 4.12. Let q ∈ Q and l ∈ L. Then, H1
ℒ(GF,S∪{q,ℓ},Ad0(�̄)) ∕= 0 if and

only if invq(fℓ ∪ Φq) = 0.

Proof. Recall that fℓ spans H1
ℒ(GF,S∪{ℓ},Ad0(�̄)) and, by Proposition 4.10, � spans
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H1
ℒ⊥(GF,S∪{ℓ},Ad0(�̄)∗). The definition of Q requires �∣Gq ∕= 0, so Lemma 4.4

implies �∣Gq ∕∈ ℒ⊥q . The proof of Theorem 3.3 (see, for instance, the discussion

surrounding Lemmas 1.1 and 1.2 of [29]) implies

H1
ℒ(GF,S∪{q,ℓ},Ad0(�̄)) ∕= 0

if and only if fℓ∣Gq ∈ ℒq. As fℓ is unramified at q and ℒq consists of ramified

classes, we see fℓ∣Gq ∈ ℒq if and only if fℓ∣Gq = 0. But, Φq is ramified at q by

definition, so this can only happen if and only if

invq(fℓ ∪ Φq) = 0

by Lemma 4.4.

Proposition 4.13. Let q ∈ Q and l ∈ L. Then

invq(fℓ ∪ Φq) = aℓ − invℓ(gℓ ∪ Φq).

Proof. Global reciprocity implies

0 =
∑

v∈S∪{q,ℓ}

invv(gℓ ∪ Φq)

= invℓ(gℓ ∪ Φq) + invq(gℓ ∪ Φq),

since gℓ∣Gv = 0 for all v ∈ S. Thus, we have that

invq(fℓ ∪ Φq) = invq((aℓf + gℓ) ∪ Φq)

= aℓ invq(f ∪ Φq) + invq(gℓ ∪ Φq)

= aℓ − invℓ(gℓ ∪ Φq),

since invq(f ∪ Φq) = 1.

Definition 4.14. Fix q ∈ Q, � ∈ k, and set Lq,� = {l ∈ L∣ invq(fℓ ∪ Φq) = �}.
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Theorem 4.15. Let � ∈ k. There exists a finite set G ⊂ Q of cardinality at most

#k− 1 such that for any q ∈ Q∖G

dens(Lq,�) ≥ (#k)! dens(L)

(#k)#k+1
.

Proof. Let � > 0, and suppose there are #k elements qi ∈ Q such that

dens(Lqi,�) <
((#k)!− �) dens(L)

(#k)#k+1
.

Let ℭ = ∩#k
i=1L

c
qi,�

, where Lcq,� denotes the complement in L of Lq,�. We immedi-

ately see that

dens(ℭ) ≥
(

1−#k
(#k)!− �
(#k)#k+1

)
dens(L)

=

(
1− (#k)!− �

(#k)#k

)
dens(L).

Next, consider the set

D = {ℓ ∈ L∣Φqi(Frobℓ) ∕= Φqj(Frobℓ) for 1 ≤ i < j ≤ #k}.

Using Proposition 4.7, it is an exercise to see D is a Chebotarev set with density
(#k)!

(#k)#k
dens(L).

As 1− (#k)!− �
(#k)#k

+
(#k)!

(#k)#k
> 1, we must have ℭ ∩D ∕= ∅; let ℓ ∈ ℭ ∩D. In

particular, we have that

invqi(fℓ ∪ Φqi) = aℓ − invℓ(gℓ ∪ Φqi) ∕= � (4.3)

for i = 1, 2, . . . ,#k, since ℓ ∈ ℭ.

Next, for ℓ fixed, invℓ(gℓ ∪Φqi) depends only on the value of Φqi at Frobℓ, since

invℓ(gℓ ∪ Φr1)− invℓ(gℓ ∪ Φr2) = 0
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if and only if (Φr1 − Φr2)(Frobℓ) = 0, for any nice primes r1, r2. Since ℓ ∈ D

the values Φqi(Frobℓ) for i = 1, 2, . . . ,#k are all distinct. Combining this with

Equation 4.3 gives a contradiction. Thus,

dens(Lqi,�) ≥ ((#k)!− �) dens(L)

(#k)#k+1

for all but #k− 1 elements q ∈ Q. Since � is arbitrary, the result follows.

Note. The first part of Theorem B′ follows immediately from this. If

densLq,0 > 0, then there are infinitely many ℓ such that the Selmer group

dimH1
ℒ(GF,S∪{q,ℓ},Ad0 �̄) = 1. As in the discussion at the start of the chapter,

this automatically shows that the rank of the corresponding deformation ring Rℒ

is greater than one.

Now that we have established that the sets Lq,� are infinite (after possibly

discarding some finite number of q), we turn our attention to showing that these

sets are not too large.

Proposition 4.16. Let � ∈ k and q1, q2 ∈ Q be distinct. Then

dens(Lq1,� ∩ Lq2,�) ≤ dens(L)

#k
.

Proof. Observe that

Lq1,� ∩ Lq2,� = {ℓ ∈ L∣ invq1(fℓ ∪ Φq1) = � = invq2(fℓ ∪ Φq2)}

⊆ {ℓ ∈ L∣ invq1(fℓ ∪ Φq1)− invq2(fℓ ∪ Φq2) = 0}

= {ℓ ∈ L∣ invℓ(gℓ ∪ (Φq2 − Φq1)) = 0}, by Proposition 4.13,

= {ℓ ∈ L∣(Φq2 − Φq1)(Frobℓ) = 0}.

By Proposition 4.7, the set of ℓ ∈ L satisfying (Φq2 − Φq1)(Frobℓ) = 0 is a Cheb-

otarev set with density
dens(L)

#k
.
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Remark. The moral of Proposition 4.16 is that while we do not know how to control

Lq,� by a Chebotarev condition, we can control the ‘difference’ between Lqi,� and

Lqj ,�. Moreover, suppose for some q0 that invq0(fℓ ∪ Φq0) = � for all ℓ ∈ L; that

is, suppose that L = Lq0,�. Then, for any q ∈ Q, q ∕= q0, invq(fℓ ∪ Φq) = � if and

only if invℓ(gℓ ∪ (Φq − Φq0)) = 0, which happens on a set of density
1

#k
dens(L)

by Proposition 4.7.

Proposition 4.17. Let Xi be sets of primes. Then,

dens

(
M∪
i=1

Xi

)
≥

(
M∑
i=1

dens(Xi)

)
−

∑
1≤i<j≤M

dens(Xi ∩Xj).

Proof. Let � > 0 be given. Set bi = dens(Xi) and y = dens(
∪M
i=1Xi). For large x,

(y + �)�(x) ≥ #

((
M∪
i=1

Xi

)
∩ [1, x]

)
,

# (Xi ∩ [1, x]) ≥ (bi − �)�(x), and

(dens(Xi ∩Xj) + �)�(x) ≥ # (Xi ∩Xj) ∩ [1, x].

From inclusion-exclusion, we have for all x

#

((
M∪
i=1

Xi

)
∩ [1, x]

)
≥

(
M∑
i=1

# (Xi ∩ [1, x])

)

−

( ∑
1≤i<j≤M

# ((Xi ∩Xj) ∩ [1, x])

)
,

so for large x

(y + �)�(x) ≥

(
M∑
i=1

(bi − �)

)
�(x)−

( ∑
1≤i<j≤M

(dens (Xi ∩Xj) + �)

)
�(x),

and the result follows.

Theorem 4.18. Let � ∈ Z/pZ. There are at most
√

2#k primes qi such that

dens(Lqi,�) ≥
√

2#k dens(L)
#k

.
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Proof. Suppose there are M ≥
√

2#k + 1 such qi, namely q1, . . . , qM . Proposi-

tion 4.17 implies

dens

(
M∪
i=1

Lqi,�

)
≥

(
M∑
i=1

√
2#k dens(L)

#k

)
−

( ∑
1≤i<j≤M

dens(Lqi,� ∩ Lqj ,�)

)
.

Proposition 4.16 and the fact that Lqi,� ⊆ L imply

dens(L) ≥ dens

(
M∪
i=1

Lqi,�

)
≥
(
M

1

)√
2#k dens(L)

#k
−
(
M

2

)
dens(L)

#k
. (4.4)

The right hand side of Equation (4.4) is a quadratic in M that is maximized at

M =
√

2#k +
1

2
. At M =

√
2#k +

1

2
− 1

2
=
√

2#k, the inequality becomes

dens(L) ≥
(

1 +
1√

2#k

)
dens(L). This would lead to a contradiction if

√
2#k

were an integer. As quadratics are symmetric about their extrema, we get the

same inequality for M =
√

2#k +
1

2
+

1

2
=
√

2#k + 1. Plugging the integer in

the interval [
√

2#k,
√

2#k + 1] into Equation (4.4) gives a contradiction.

Note. In analogy to the comments after Theorem 4.15, the second part of Theorem

B′ follows from this result.
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