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ABSTRACT

The run-up and back-wash processes of single and double solitary waves on a

slope were studied experimentally. Experiments were conducted in three dif-

ferent wave flumes with four different slopes. For single solitary wave, new ex-

perimental data were acquired and, based on the theoretical breaking criterion,

a new surf parameter specifically for breaking solitary waves was proposed. An

equation to estimate maximum fractional run-up height on a given slope was

also proposed. For double solitary waves, new experiments were performed by

using two successive solitary waves with equal wave heights; these waves were

separated by various durations. The run-up heights of the second wave were

found to vary with respect to the separation time. Particle image velocimetry

measurements revealed that the intensity of the back-wash flow generated by

the first wave strongly affected the run-up height of the second wave. Showing

trends similar to that of the second wave run-up heights, both the back-wash

breaking process of the first wave and the reflected waves were strongly af-

fected by the wave-wave interaction. Empirical run-up formula for the second

solitary wave was also introduced.
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CHAPTER 1

INTRODUCTION

1.1 Literature review

Solitary waves have been commonly used to model long water waves, in part

due to the easiness to realize them in the laboratory. The run-up of single

solitary waves on a slope has been extensively investigated. For example,

Hall and Watts [1953] carried out run-up height measurements with various

wave-height-to-water-depth ratios on five different slopes. Synolakis [1987] de-

rived analytical solutions describing the evolution and run-up process of a non-

breaking solitary wave on a uniform slope, and validated them with experi-

ments on a 1/19.85 slope. The theory will be briefly reviewed in Section 1.3.

Experiments on breaking solitary waves on the same slope were also conducted

in Synolakis’ study. More recently, Hsiao et al. [2008] and Chang et al. [2009]

investigated solitary wave run-up in a large-scale wave tank on 1/60 and 1/20

slopes, respectively. Other reported experimental data include: Langsholt [1981],

Gjevik and Pedersen [1981], Zelt [1991], Briggs et al. [1995], Li and Raichlen [2001]

[2002], and Jensen et al. [2003]. Various empirical formulas for maximum run-up

heights of breaking solitary wave have been proposed with different range of

applicability.

Numerically, Zelt [1991] developed a finite element model for solving the

Boussinesq equations and calculated run-up heights on various slopes and pro-

posed an artificial bottom-friction factor to monitor run-up heights on different

slopes. Solving the fully non-linear free-surface potential flow problem with an

integral equation method, Grilli et al. [1997] classified solitary wave breaking
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based on numerical simulations. On the other hand, Li and Raichlen [2002] com-

puted run-up heights for both breaking and non-breaking solitary waves using

a shock capturing model. Kobayashi and Karjadi [1994] and Fuhrman and Madsen

[2008] explored the possibility of introducing a surf parameter to characterize

the run-up of breaking solitary waves.

Compared to the rich literature on single solitary wave run-up, little infor-

mation on the run-up process of multiple solitary waves is available, which can

have important application on estimating the run-up of waves with multiple

crests. Undular bores have been observed during tsunami events (e.g., Grue et

al. [2008], Madsen et al. [2008], and Figure 1.1) and can be viewed as combina-

tion of solitary waves with different wave heights and different separation times

among them. Peregrine [1966] pointed out that undular bores tend to grow into

a succession of solitary waves, while recently El et al. [2012] showed by theory

that a sequence of isolated leading solitons forms as an undular bore propa-

gates into decreasing water depth, although the relevant geophysical scale has

not been explicitly discussed. Thus, there is a need to perform controlled ex-

periments so as to gain a better understanding of the run-up process associated

with multiple solitary waves.

To make the problem more tractable, as a first step we seek to experimen-

tally study two identical solitary waves separated by various separation times.

We remark that Raichlen (unpublished data, 1985) is the first to perform run-up

measurements on double solitary waves, with limited wave conditions on two

different slopes. In this study, we examine the run-up and back-wash processes

in-depth, with a wide range of wave conditions on different slopes to investi-

gate the observed run-up trend, and extend current knowledge in single solitary

2



Figure 1.1: The 2004 Sumatra tsunami observed on Koh Jum island, Thai-
land, shows the characteristics of an undular bore (copyright
Anders Grawin).

wave to the double solitary waves scenario.

Additional experiments for single solitary wave run-up are performed not

only to enrich the data base, but also to serve as references for the double soli-

tary wave experiments. In re-analyzing existing run-up data for single solitary

waves, we define a new surf parameter for solitary wave, based on the wave

breaking criterion following Carrier and Greenspan’s [1958] theory. The new surf

parameter has a slightly different form from those suggested by Kobayashi and

Karjadi [1994] and Fuhrman and Madsen [2008], but it is theoretically grounded.

In the next section, we shall introduce relevant physical and dimensionless

parameters to be used in this study, and then briefly review the theoretical work

on the run-up of solitary waves. We will then describe the laboratory setups
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and experimental methods, followed by the presentation of results. The run-up

heights of single solitary waves will be discussed first. Special attention shall be

paid to the definition of the surf parameter characterizing wave breaking and

run-ups. The approach in analyzing single solitary waves is extended to double

solitary waves. Empirical formulae for the run-up height ratio of two solitary

waves are computed. The back-wash breaking, particle image velocimetry (PIV)

measurements, and the reflected waves will then be examined accordingly and

their relevance explained.

1.2 Definitions and parameters

In studying the run-up of single and double solitary waves the following phys-

ical parameters are involved: h is the constant water depth up to the toe of the

slope; s is the slope expressed in terms of vertical rise divided by horizontal run;

η is the surface elevation from the still water level; H is the solitary wave height

in the constant depth region; τ is the separation time between the two solitary

wave peaks; and R is the vertical run-up height caused by the waves (R1 and

R2 represent the run-up heights of the first and the second wave, respectively,

when double solitary wave is considered). With the above definitions, relevant

normalized parameters include: wave height H/h, separation time τ/T where

T is the effective wave period to be defined, run-up R/h or R/H, and relative

run-up R2/R1. The setup and parameters are illustrated in Figure 1.2.

For a solitary wave travelling at speed c in the ξ-direction, the leading-order

solution in constant depth is well-known:

η(ξ, t) = Hsech2[K(ξ − ct)], where K =
1
h

√
3H
4h

, and c =
√

g(H + h), (1.1)

4
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Figure 1.2: Illustration of the setup and some relevant parameters.

and

λ =
2π
K
, and T =

2π
Kc

, (1.2)

can be viewed as the effective wavelength and effective wave period, respec-

tively. While 2H/λ measures the steepness of the solitary wave front, l = λ/2

characterizes the effective length of the wave front. Since L = h/s is the horizon-

tal length of the beach slope, another relevant dimensionless parameter is the

horizontal length ratio, l/L. In the case of a solitary wave, l/L can be expressed

as
l
L
=

λ

2L
=

(
2π√

3

)
(s)

(H
h

)− 1
2

. (1.3)

1.3 Review of Solitary Wave Run-up Theory

In this section we will review the theoretical derivation shown by Synolakis

[1987], where Carrier and Greenspan’s [1958] transformation was used to solve

the non-linear shallow water equations applied to solitary waves travelling

from constant depth onto a plane slope. The setup is similar to that shown

in Figure (1.2).

5



To begin with, the dimensionless parameters (for use in this section only) are

introduced as follows: u is the depth-average horizontal velocity normalized

by
√

gh, d the local water depth normalized by h, ζ the free surface elevation

normalized by h, x the horizontal spatial coordinate normalized by h, and t the

temporal coordinate normalized by
√

g/h. x = 0 at the initial shoreline and x > 0

offshore. Since we have a constant depth region attached to a plane slope, the

variable local water depth⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d(x) = xs, f or x ≤ 1

s

d(x) = 1, f or x > 1
s

. (1.4)

With the above dimensionless variables, the non-dimensional non-linear

shallow water equations can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ht + (hu)x = 0

ut + uux + ux = 0
, (1.5)

where the subscripts indicate the variables with respect to which the derivatives

are taken.

To solve (1.5), Carrier and Greenspan [1958] proposed the following hodo-

graph transformation: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = ψσ
σ

ζ = 1
4ψβ − 1

2u2

x = 1
s (

1
16 [σ2 − 1

4ψβ +
1
2u2])

t = 1
s (
ψσ
σ
− 1

2β)

, (1.6)

where σ = 0 always corresponds to the shoreline.

This transformation allows us to convert (1.5) into a linear equation in the

(σ, β) domain:

(σψσ)σ = σψββ (1.7)

6



If we assume small incident wave height in the constant depth region so that

the linear wave composition for solitary waves applies, we can use it to specify

the boundary condition at the toe of the slope (X0 = 1/s):

η(X0, t) =

∞∫
−∞

φ(k)e−ikctdk, (1.8)

where φ(k) = 2
3kcsch(πk/2K)eikX1 , K is defined in (1.1), and X1 is the location of

the center of the solitary wave at t = 0.

Converting the boundary condition from the (x, t) domain to the (σ, β) do-

main, however, is not trivial. Synolakis suggests that if non-linearity is insignifi-

cant, the O(u2) terms can be neglected in the conversion, so that (1.6) becomes

u =
ψσ
σ
, ζ =

1
4
ψβ, x =

1
16s

σ2, and t = − 1
2s
β. (1.9)

If the boundary condition is specified as such and the Fourier integral theo-

rem applied repeatedly, Synolakis showed that the solution to (1.7) is

ψ(σ, β) = −16i
X0

∞∫
−∞

φ(k)
k

J0(1
2σkX0)exp[−ikX0(1 − 1

2β)]

J0(2kX0) − iJ1(2kX0)
dk, (1.10)

where J is the Bessel function of the first kind.

Based on (1.10) it can then be shown that for solitary waves the run-up (as a

function of time)

R(t)
h
=

4
3

∞∫
−∞

kcsch(
πk
2K

)
exp[ik(X1 − X0 − ct)]
J0(2kX0) − iJ1(2kX0)

dk, (1.11)

which will be referred to as the run-up integral herein (the maximum value

of this function is the maximum run-up). Synolakis further showed that, if

(H/h)1/2 
 0.288s, (1.11) can be simplified into the run-up law

R
h
= 2.831(s)−

1
2 (

H
h

)
5
4 . (1.12)

7



We note that while easy to use, (1.12) is an asymptotic approximation of (1.11); to

accurately evaluate the maximum run-up resulting from Synolakis’ derivation,

the maximum value of (1.11) should be considered.

For the solution (1.10) to be valid, the Jacobian of the transformation (1.6)

can never equal to zero, so that the transformation from (x, t) to (σ, β) is always

one-to-one, i.e. the free surface never becomes vertical. Synolakis showed that

this requirement implies
H
h
< 0.8183s

10
9 , (1.13)

which can be seen as the theoretical wave breaking criterion, where waves break

during run-up if H/h exceeds the threshold value on the right hand side. Sim-

ilarly, Madsen and Schäffer [2010] derived the breaking criterion during back-

wash - waves break during back-wash if

H
h
> 0.5139s

10
9 , (1.14)
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CHAPTER 2

EXPERIMENTS

2.1 Wave flumes

Experiments were performed in three wave flumes with four different beach

slopes. The three facilities include two medium-sized wave flumes in the De-

Frees Hydraulic Laboratory at Cornell University and the large wave flume in

the O. H. Hinsdale Wave Research Laboratory at Oregon State University. In

each wave flume a piston-type wave-maker is installed on one end of the flume,

and on the other end of the flume is a uniform slope; between the wave-maker

and the toe of the slope is a constant depth region. Four different slopes are

used in the experiments. Table 2.1 lists the dimensions, materials, and beach

slopes of each wave flume. From herein each experiment is identified by the

associated beach slope.

To measure water surface displacement, acoustic wave gauges (Banner Engi-

neering S18U) with 0.5 mm manufacturer-specified resolution, were used in the

wave flumes at Cornell University; resistance-type wave gauges with estimated

Table 2.1: Flume dimensions and slope materials.

Slope Length ×Width ×Height Flume wall material Slope material

1/2.47 34 m × 0.6 m × 0.9 m Glass Glass

1/10 12 m × 0.8 m × 1 m Glass Glass

1/12 104 m × 3.7 m × 4.6 m Concrete Concrete

1/20 34 m × 0.6 m × 0.9 m Glass Glass & styrene

9



resolution between 1 mm and 1 cm were employed in the large-scale flume at

the O. H. Hinsdale Wave Research Laboratory. Video cameras were placed on

top of the slopes to measure wave run-up heights. Grids or fiducial marks on

the slope allow conversion of pixels in the videos to the known length.

2.2 Wave generation

By using Goring’s [1978] method, single and double solitary waves were gen-

erated. Figure 2.1 shows a typical wave-maker trajectory for generating a soli-

tary wave (note that the wave-maker’s definition of negative displacement is

towards the beach slope). Grimshaw’s [1971] second-order solitary wave solu-

tion is used to check the accuracy of wave shapes. Overall, solitary wave shapes

generated in the experiments are highly accurate; see Figure 2.1 for compar-

isons. The wave conditions of the single solitary waves considered are listed in

Table 2.2.

Table 2.2: Experimental wave conditions of single soli-

tary waves. *From Raichlen (unpublished data, 1985),

which will be shown with present results herein.

Slope h(m) H/h R/h Back-wash Run-up Run-up

breaking breaking breaking

(2.2) (2.1) (2.3)

1/2.47 0.2 0.049 0.097 No No No

1/2.47 0.2 0.101 0.230 No No No

1/2.47 0.2 0.149 0.378 No No No

1/2.47 0.2 0.202 0.533 Yes No No
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1/2.47 0.2 0.250 0.686 Yes No No

1/2.47 0.2 0.302 0.854 Yes Yes No

1/2.47 0.15 0.346 0.979 Yes Yes No

1/2.47 0.15 0.394 1.129 Yes Yes No

1/2.47 0.15 0.448 1.294 Yes Yes No

1/2.47 0.15 0.498 1.458 Yes Yes No

1/2.55* unknown 0.225 0.593 Yes No No

1/10 0.5 0.005 0.008 No No No

1/10 0.5 0.007 0.015 No No No

1/10 0.5 0.010 0.028 No No No

1/10 0.5 0.015 0.045 No No No

1/10 0.5 0.019 0.064 No No No

1/10 0.5 0.024 0.079 No No No

1/10 0.5 0.029 0.099 No No No

1/10 0.5 0.034 0.118 No No No

1/10 0.45 0.038 0.139 No No No

1/10 0.45 0.042 0.163 Yes No No

1/10 0.45 0.048 0.184 Yes No No

1/10 0.35 0.047 0.160 Yes No No

1/10 0.3 0.075 0.293 Yes Yes No

1/10 0.29 0.103 0.373 Yes Yes No

1/10 0.2 0.113 0.420 Yes Yes No

1/10 0.2 0.131 0.475 Yes Yes No

1/10 0.2 0.139 0.498 Yes Yes No

1/9.64* unknown 0.350 0.873 Yes Yes Plunging

1/12 1.75 0.105 0.331 Yes Yes No
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1/12 1.75 0.137 0.445 Yes Yes Surging

1/12 1.75 0.150 0.475 Yes Yes Surging

1/12 1.75 0.198 0.580 Yes Yes Plunging

1/20 0.34 0.005 0.018 No No No

1/20 0.34 0.008 0.027 No No No

1/20 0.34 0.011 0.033 No No No

1/20 0.34 0.016 0.051 No No No

1/20 0.34 0.020 0.066 Yes No No

1/20 0.34 0.025 0.081 Yes No No

1/20 0.34 0.030 0.099 Yes No No

1/20 0.27 0.028 0.102 Yes No No

1/20 0.27 0.040 0.135 Yes Yes No

1/20 0.27 0.050 0.172 Yes Yes Surging

1/20 0.27 0.060 0.192 Yes Yes Surging

1/20 0.27 0.080 0.237 Yes Yes Plunging

1/20 0.27 0.100 0.275 Yes Yes Plunging

1/20 0.16 0.094 0.241 Yes Yes Plunging

1/20 0.16 0.140 0.311 Yes Yes Plunging

1/20 0.16 0.186 0.381 Yes Yes Plunging

1/20 0.16 0.233 0.431 Yes Yes Plunging

1/20 0.16 0.250 0.449 Yes Yes Plunging

1/20 0.16 0.326 0.530 Yes Yes Plunging

1/20 0.16 0.373 0.571 Yes Yes Plunging

1/20 0.16 0.417 0.621 Yes Yes Plunging

1/20 0.14 0.100 0.250 Yes Yes Plunging

1/20 0.13 0.150 0.308 Yes Yes Plunging
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1/20 0.14 0.201 0.377 Yes Yes Plunging

1/20 0.14 0.307 0.491 Yes Yes Plunging
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Figure 2.1: Left: a typical wave-maker trajectory to generate a H/h = 0.2
solitary wave in depth h = 0.14 m; right: comparisons between
experimental measurements in the s = 1/20 flume (◦ × �) and
Grimshaw’s theoretical solutions of solitary waves with differ-
ent H/h ratios (- - -).

Two successive solitary waves were also generated, by combining wave-

maker trajectories of two individual solitary waves, with the crests of the two

waves separated by a specified separation time. When the two solitary waves

are close so that the two trajectories intersect each other, linear superposition of

wave-maker velocity is applied, and the wave-maker trajectory is then found

by integrating the combined velocity; the superposition process is illustrated in

Figure 2.2. The two waves generated in such way are called “double solitary

waves” herein.

For separation times τ/T > 0.47, we are successful in generating two identi-

cal waves that maintain nearly permanent forms as they travel down the flume.

Figure 2.3 shows an example of wave gauge records of double solitary waves
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Figure 2.2: Comparison of wave-maker velocity and trajectory, between a
single solitary wave and double solitary waves with separation
time τ/T=0.6. H/h = 0.2 and h = 0.14 m. Left: wave-maker tra-
jectory; right: wave-maker velocity. (—): single solitary wave;
(- - -): double solitary waves.

at different locations. In this figure Grimshaw’s solitary wave solution is also

plotted. Thus, the shortest separation time in the experiments reported herein

is τ/T = 0.472. Table 2.3 and 2.4 tabulate the wave conditions for the double

solitary waves.
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Figure 2.3: Wave gauge measurements of two successive solitary waves at
different locations away from the wave-maker in the s = 1/20
flume at Cornell University. τ/T = 0.818, H/h = 0.201. (a) The
location of the wave gage is 3.62 λ away from the wave-maker;
(b) 5.79 λ; (c) 7.12 λ (d) 7.95 λ (e) 8.80 λ (f) 9.73 λ (toe of the
slope); (◦): experimental data; (- - -): Grimshaw’s solution for a
single solitary wave.
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Table 2.3: A list of double solitary waves generated. *From Raichlen (un-
published data, 1985), which will be shown with present results
herein.

Slope Water depth H/h Separation time τ/T

h(m)

1/2.47 0.2 0.101 0.525, 0.680, 0.864, 1.003, 1.176, 1.364, 1.528

1/2.47 0.2 0.202 0.678, 0.791, 0.852, 0.954, 1.123, 1.298, 1.466,

1.645

1/2.47 0.2 0.302 1.960, 1.635, 1.326, 1.221, 1.066, 0.816, 0.662

1/2.55* unknown 0.225 1.020, 2.510

1/10 0.35 0.047 0.482, 0.565, 0.661

1/10 0.29 0.103 0.669, 0.801, 0.938, 1.212

1/10 0.2 0.139 0.866, 0.967, 1.179, 1.375, 1.577

1/9.64* unknown 0.350 0.990, 1.231, 1.477, 1.723, 1.969, 2.221, 2.467

1/12 1.75 0.105 0.489, 0.611, 0.729, 1.016, 1.246, 1.525, 2.033

1/12 1.75 0.137 0.472, 0.716, 0.973, 1.231

1/12 1.75 0.150 0.570, 0.661, 0.709, 0.966, 1.205, 1.464, 1.990

1/12 1.75 0.198 0.549, 0.646, 0.700, 0.934, 1.434, 1.925

1/20 0.14 0.100 0.490, 0.570, 0.696, 0.860, 1.065, 1.294, 1.466,

1.669, 2.103, 2.451

1/20 0.13 0.150 0.636, 0.751, 0.918, 1.103, 1.233, 1.381, 1.605, 1.837,

2.013

1/20 0.14 0.201 0.637, 0.818, 1.015, 1.206, 1.496, 2.039, 2.616

1/20 0.14 0.307 0.685, 1.073, 1.507, 1.852, 2.183, 2.473, 3.114,

3.598, 3.920
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Table 2.4: Experimental wave conditions of double soli-

tary waves.

Slope H/h τ/T R1/h R2/h Slope H/h τ/T R1/h R2/h

1/2.47 0.101 0.525 0.236 0.247 1/12 0.137 0.716 0.442 0.212

1/2.47 0.101 0.680 0.229 0.232 1/12 0.137 0.973 0.442 0.316

1/2.47 0.101 0.864 0.229 0.221 1/12 0.137 1.231 0.442 0.368

1/2.47 0.101 1.003 0.229 0.225 1/12 0.150 0.570 0.490 0.212

1/2.47 0.101 1.176 0.229 0.232 1/12 0.150 0.661 0.473 0.221

1/2.47 0.101 1.364 0.232 0.232 1/12 0.150 0.709 0.473 0.224

1/2.47 0.101 1.528 0.229 0.232 1/12 0.150 0.966 0.473 0.284

1/2.47 0.202 0.678 0.543 0.577 1/12 0.150 1.205 0.473 0.368

1/2.47 0.202 0.791 0.532 0.596 1/12 0.150 1.464 0.473 0.429

1/2.47 0.202 0.852 0.532 0.581 1/12 0.150 1.990 0.473 0.455

1/2.47 0.202 0.954 0.532 0.562 1/12 0.198 0.549 0.594 0.316

1/2.47 0.202 1.123 0.532 0.532 1/12 0.198 0.646 0.577 0.290

1/2.47 0.202 1.298 0.532 0.510 1/12 0.198 0.700 0.577 0.281

1/2.47 0.202 1.466 0.532 0.524 1/12 0.198 0.934 0.577 0.247

1/2.47 0.202 1.645 0.532 0.532 1/12 0.198 1.434 0.577 0.412

1/2.47 0.302 0.662 0.858 0.940 1/12 0.198 1.925 0.577 0.551

1/2.47 0.302 0.816 0.865 0.854 1/20 0.100 0.490 0.255 0.211

1/2.47 0.302 1.066 0.843 0.865 1/20 0.100 0.570 0.255 0.202

1/2.47 0.302 1.221 0.850 0.892 1/20 0.100 0.696 0.261 0.193

1/2.47 0.302 1.326 0.858 0.903 1/20 0.100 0.860 0.246 0.175

1/2.47 0.302 1.635 0.847 0.865 1/20 0.100 1.065 0.246 0.193

1/2.47 0.302 1.960 0.854 0.832 1/20 0.100 1.294 0.246 0.211
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1/2.55 0.225 1.015 0.593 0.569 1/20 0.100 1.466 0.246 0.229

1/2.55 0.225 2.508 0.595 0.585 1/20 0.100 1.669 0.246 0.246

1/10 0.047 0.480 0.160 0.143 1/20 0.100 2.103 0.246 0.246

1/10 0.047 0.570 0.160 0.149 1/20 0.100 2.451 0.246 0.246

1/10 0.047 0.660 0.160 0.154 1/20 0.150 0.636 0.342 0.281

1/10 0.103 0.670 0.373 0.267 1/20 0.150 0.751 0.323 0.260

1/10 0.103 0.800 0.373 0.307 1/20 0.150 0.918 0.312 0.221

1/10 0.103 0.940 0.373 0.353 1/20 0.150 1.103 0.308 0.212

1/10 0.103 1.210 0.373 0.363 1/20 0.150 1.233 0.310 0.214

1/10 0.139 0.870 0.493 0.280 1/20 0.150 1.381 0.302 0.221

1/10 0.139 0.970 0.500 0.340 1/20 0.150 1.605 0.308 0.250

1/10 0.139 1.180 0.498 0.410 1/20 0.150 1.837 0.298 0.289

1/10 0.139 1.380 0.500 0.460 1/20 0.150 2.013 0.310 0.304

1/10 0.139 1.580 0.500 0.490 1/20 0.201 0.637 0.389 0.389

1/9.64 0.350 0.990 0.869 0.397 1/20 0.201 0.818 0.398 0.354

1/9.64 0.350 1.231 0.869 0.318 1/20 0.201 1.015 0.368 0.273

1/9.64 0.350 1.477 0.875 0.455 1/20 0.201 1.206 0.377 0.255

1/9.64 0.350 1.723 0.882 0.581 1/20 0.201 1.496 0.377 0.255

1/9.64 0.350 1.969 0.880 0.727 1/20 0.201 2.039 0.366 0.309

1/9.64 0.350 2.221 0.864 0.822 1/20 0.201 2.616 0.366 0.363

1/9.64 0.350 2.467 0.875 0.890 1/20 0.307 0.685 0.497 0.551

1/12 0.105 0.489 0.334 0.165 1/20 0.307 1.073 0.497 0.408

1/12 0.105 0.611 0.330 0.191 1/20 0.307 1.507 0.488 0.328

1/12 0.105 0.729 0.330 0.229 1/20 0.307 1.852 0.480 0.301

1/12 0.105 1.016 0.330 0.294 1/20 0.307 2.183 0.480 0.310

1/12 0.105 1.246 0.330 0.323 1/20 0.307 2.473 0.480 0.319
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1/12 0.105 1.525 0.330 0.323 1/20 0.307 3.114 0.497 0.408

1/12 0.105 2.033 0.330 0.334 1/20 0.307 3.598 0.504 0.495

1/12 0.137 0.472 0.455 0.195 1/20 0.307 3.920 0.495 0.513

2.3 Wave height definition

Since single solitary waves in the experiments maintain constant wave shapes

in the constant-depth region, the wave heights in the middle of the constant-

depth region are reported herein as the incident wave heights. In the case of

double solitary waves, the period and wavelength of the first wave are used for

normalization.

For the cases of double solitary waves, two sources of uncertainty in wave

heights exist. First, the two solitary waves within one experimental run can

have wave heights that slightly deviate from each other and the specified value.

Second, the wave heights across experimental runs with different separation

times, can also vary, undermining the goal to treat wave heights as controls and

separation times as variables. To show this variation in wave heights, Figure 2.4

shows the wave gauge measurements with four different separation times in the

s = 1/20 flume. The resulting uncertainty in wave heights is determined as such:

for a specific set of experiments with similar wave heights but different separa-

tion times, the average of all wave heights is seen as the overall wave height,

and the maximum deviation from this wave height is considered to be the un-

certainty associated with this set of experiments. With the above scheme, the

maximum wave-height uncertainty associated with the double solitary waves

experiments is found to be ±0.012 (H/h), or ±7.33% of wave height. The com-
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Figure 2.4: Double solitary waves measurements in the s = 1/20 flume at a
fixed location from cases with four different separation times.
τ/T = (a) 0.685; (b) 1.852; (c) 2.473; (d) 3.920.

plete wave height uncertainty table can be seen in Table 2.5.

2.4 Wave breaking conditions

To consistently classify whether waves break or not, a wave-breaking crite-

rion is needed. Synolakis [1987] analytically derived a criterion for solitary wave

breaking during run-up:

H
h
> 0.8183 s

10
9 or s

(H
h

)− 9
10

< (0.8183)−
9
10 . (2.1)
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Table 2.5: Wave height uncertainty table for double solitary waves.

Slope Overall H/h Maximum H/h deviation Maximum % deviation

1/2.47 0.101 ±0.004 ±3.96%

1/2.47 0.202 ±0.009 ±4.46%

1/2.47 0.302 ±0.009 ±2.98%

1/2.55 0.225 ±0.005 ±2.22%

1/10 0.047 ±0.002 ±4.26%

1/10 0.103 ±0.005 ±4.85%

1/10 0.139 ±0.002 ±1.44%

1/9.64 0.350 ±0.010 ±2.86%

1/12 0.105 ±0.007 ±6.67%

1/12 0.137 ±0.006 ±4.38%

1/12 0.150 ±0.008 ±5.33%

1/12 0.198 ±0.009 ±4.55%

1/20 0.100 ±0.004 ±4.00%

1/20 0.150 ±0.011 ±7.33%

1/20 0.201 ±0.010 ±4.98%

1/20 0.307 ±0.012 ±3.91%

Madsen and Schäffer [2010] recently proposed a more accurate criterion for soli-

tary wave breaking during back-wash (Gjevik and Pedersen [1981] first derived a

similar criterion using a half-sine single wave),

H
h
> 0.5139 s

10
9 or s

(H
h

)− 9
10

< (0.5139)−
9
10 . (2.2)

Note that on a given slope the back-wash breaking can occur for smaller

incident waves compared to those for run-up breaking to occur. As Synolakis
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pointed out himself, (2.1) may not be physical when compared to experimental

observations. To be specific, (2.1) predicts wave breaking during run-up on a

s = 1/2.47 slope for H/h greater than 0.3, yet no visible breaking occurred on

this slope even when H/h = 0.5. Figure 2.5(a)(b)(c) shows a sequence of this

wave running up the slope. It is clear that wave breaking was not visible dur-

ing the run-up phase, but it did happen during the back-wash phase, (d). One

possible explanation of such discrepancy between the theoretical prediction and

laboratory observation lies in the way breaking is defined in the analytical sense

- a wave breaks when the wave front becomes vertical (slope of free surface ap-

proaches infinity). However, a vertical wave front at an instant does not guar-

antee that the wave will break at the next instant. The base of the wave may

accelerate and catch up smoothly with the crest before any broken free surface

develops, thus preventing breaking from developing after a vertical wave front

first appears. Jensen et al. [2003] discussed this issue in their experiments on

a s = 1/5.37 slope during wave run-up, and illustrated the above process by

PIV measurements. On the other hand, the breaking criterion during the back-

wash phase, (2.2), appears highly consistent with laboratory observation - since

the flow is now receding, soon after a vertical front develops it must collapse.

Figure 2.5(d) is a snapshot of a back-wash breaking

Utilizing a fully non-linear potential flow model, Grilli et al. [1997] provided a

breaking criterion based on numerically computed wave shapes. They defined

the three breaker types as follows: spilling breaker type occurs when the vertical

distance between the wave crest and the tip of the overturning jet is smaller

than half the wave height right before the jet touches the free surface, plunging

breaker type occurs when the distance is greater than half the wave height, and
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Figure 2.5: Sequence of a solitary wave with H/h = 0.5 running up a s =
1/2.47 slope. (a) The moment with the steepest run-up front; (b)
the wave continues running up the slope; (c) maximum run-up;
(d) right before the back-wash breaking occurs

surging breaker type occurs when the base of the wave becomes vertical.

With all the numerically computed cases, they recommended the following

wave breaking criterion for solitary waves, where the breaking parameter is

essentially the ratio of a characteristic wavelength to the horizontal slope length,

as shown in (1.3):

S = 1.521
s√

H
h

= 0.419
l
L

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

No breaking, if 0.37 < S

Surging breaker, if 0.3 < S < 0.37

Plunging breaker, if 0.025 < S < 0.3

Spilling breaker, if S < 0.025

(2.3)

This criterion predicts that no breaking will occur on slopes steeper than s =

1/4.7, which agrees with our observations that no breaking occurred on the

s = 1/2.47 slope. Overall, Grilli et al.’s criterion compares well with our ex-
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perimental observations, whereas Synolakis’ underpredicts the wave height for

visible wave breaking to occur. We remark here that Grilli et al.’s criterion can be

seen as an “empirical” criterion based on numerical experiments. The advan-

tage of Grilli et al.’s criterion is that it is related to the wave shape, and numeri-

cally the breaker type can be specified without ambiguity.

2.5 Run-up measurements

The run-up front of single solitary waves or the first wave in the double soli-

tary wave case generally assumes a parabolic shape with the two sides lower

than the center, likely due to no-slip condition at the walls of the flume; on the

other hand, for the second wave in the two-wave case, depending on the wave

condition the second run-up assumes different shapes, which can be parabolic,

inverse-parabolic, uniform, or ill-defined (nearly invisible). Figure 2.6 and Fig-

ure 2.7 show examples of different run-up shapes. Given the mostly non-

uniform run-up shapes, it is important to specify how run-ups are reported.

Two direct ways to describe run-up are: average (across the width of the flume)

and maximum (the highest point of the run-up front) run-up.

To calculate average run-up, the location and shape of the entire run-up front

need to be known. A run-up front tracing program was developed to determine

average run-ups from recorded run-up videos. The program traces the run-up

front by detecting temporal change in brightness at each pixel location in the

run-up videos (at least 30 frames per second). Since from the grid lines marked

on the slope the actual location of the pixels can be derived, the traced run-up

24



Figure 2.6: Single solitary wave run-up shapes. (a) s = 1/2.47 slope with
glass surface; (b) s = 1/10 slope with glass surface; (c) s = 1/12
slope with concrete surface; (d) s = 1/20 slope with styrene
surface.

Figure 2.7: Double solitary wave run-up shapes. s = 1/20, H/h = 0.201,
and τ/T = 0.818 (a) first run-up; (b) second run-up.
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Figure 2.8: An example of program-traced run-up fronts. s = 1/20, H/h =
0.307, and τ/T = 1.852 (a) program-traced first run-up; (b)
program-traced second run-up.

front can then be averaged and the average run-up computed. An example of

traced run-up fronts is shown in Figure 2.8. The tracing program works well

when the run-up front is well-defined and easily distinguishable, as is the case

with single wave run-ups or the first wave run-ups in the two-wave experi-

ments. When the run-up front is ill-defined and less distinguishable, however,

as is the case with most second wave run-ups, obtaining a continuous and phys-

ical run-up front requires excessive smoothing and manual filtering, which re-

duces the efficiency, objectiveness, and consistency associated with the program

tracing method.

To determine maximum run-up, on the other hand, is much simpler. The fol-

lowing technique was employed to determine the maximum run-up: visually

identify the maximum run-up location in the run-up video, and linearly inter-

polate between the nearest two known grid lines or fiducial marks to find the

actual location of the maximum run-up.
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Although reporting average run-ups seems the more logical choice to address

non-uniform run-up shapes, average run-ups cannot be compared with the ma-

jority of existing data where maximum run-ups were reported, can be difficult

to measure when the run-up front is not well-defined, and require a more so-

phisticated measurement technique (e.g. video camera and a program to trace

and average the run-up front). Thus, to be consistent with existing run-up stud-

ies, in the rest of the discussion we will report maximum instead of average

run-ups.

Nonetheless, it is worth pointing out how significantly average run-ups re-

duce discrepancies between experimental data. Based on his experimental data

for breaking solitary waves, Synolakis [1987] computed empirical equations for

both maximum and average run-ups:

Rmax

h
= 1.109(

H
h

)0.582 (2.4)

Rave

h
= 0.918(

H
h

)0.606 (2.5)

Figure 2.9 compares (2.4) and (2.5) to our data on the s = 1/20 slope. It can be

observed that while noticeable discrepancy shows in maximum run-ups, aver-

age run-ups compare nicely, which also implies that the run-up fronts in our

experiments are more uniform compared to those in Synolakis’ experiments.

The uncertainty associated with the maximum run-up determination method

can be estimated as follows: in facilities where grids on the slope were used, the

grid lines have a thickness of about 2 mm, and so does the visible front of the

run-ups. The uncertainty is therefore estimated to be ±2 mm on the slope. In the

large-scale tank with s = 1/12 slope, where bolts on the slope, of diameter about
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Figure 2.9: Comparison of maximum and average run-ups on a s = 1/20
slope. (—): Synolakis’ maximum run-up (2.4); (- - -): Synolakis’
average run-up (2.5); (◦): our maximum run-up; (×): our aver-
age run-up.

5 cm, were used as fiducial marks, the uncertainty is therefore considered to be

±5 cm on the slope. Converted from length on the slope into vertical height and

normalized by the lowest water depth used, the maximum uncertainty is found

to be ±0.4% on the s = 1/2.47 slope. Table 2.6 lists the uncertainty associated for

each laboratory setup. To ensure the method yields reasonably accurate run-

up, parts of the run-up results are compared to those obtained by direct visual

estimate and by the run-up tracing program; no significant difference shows.
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Table 2.6: Uncertainty associated with run-up determination method.

Slope Smallest Uncertainty Uncertainty Depth-normalized

depth on the slope in run-up height run-up uncertainty

1/2.47 0.20 m ±2 mm ±0.8 mm ±0.4%

1/10 0.20 m ±2 mm ±0.2 mm ±0.1%

1/12 1.75 m ±5 cm ±0.4 cm ±0.2%

1/20 0.13 m ±2 mm ±0.1 mm ±0.08%

2.6 Repeatability

The experiments show high degree of repeatability. More than half of the ex-

periments were conducted at least twice; as shown in Figure 2.10, the measured

surface elevations from repeated trials show nearly no discrepancy. To ensure

accurate and consistent results, sufficient waiting time was allocated for the wa-

ter in the flume to quiesce. The difference between the repeated runs, in terms

of measured wave heights, run-ups, and separation times (in cases of double

solitary waves), are ensured to be less than 1% before the data can be used.

2.7 PIV measurements

To gain further insights into the run-up processes, a set of PIV measurements

(Park [2009]) was carried out on a s = 1/20 glass slope for both single and dou-

ble solitary waves with H/h = 0.15 and h = 13 cm. The τ/T covered ranges

from 0.656 to 1.892. The size of the field of view (FOV) of interest is 70 mm ×
70 mm, set parallel to the sidewalls along the centerline of the wave tank, with
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Figure 2.10: Complete wave gauge measurements including incident
waves and reflected waves measured at the toe of the 1/20
slope, from two repeated runs with identical wave condition,
H/h=0.201 and τ/T=0.818. Each symbol represents measure-
ment from one run.

the shoreward edge 100 mm away from the still-water shoreline along the slope

(thus the FOV covers 100 mm to 170 mm offshore away from the initial shore-

line). Fluorescent particles were used along with a Spectra Physics PIV400-30

Nd:YAG pulsed laser system to obtain PIV velocity field data at 15 Hz. Detailed

description on the PIV setup and analysis has been discussed by Park [2009]. A

total of three acoustic wave gages (Banner Engineering S18U) were used: one at

the center of the FOV and the other two offshore (7 m and 8.2 m away from the

toe of the slope) to measure the reflected waves.
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CHAPTER 3

SINGLE SOLITARY WAVE

3.1 Solitary wave surf parameter

Numerous experimental and analytical studies of the run-up process of sin-

gle solitary wave have been reported in the literature. These studies have cov-

ered a wide range of beach slopes, beach materials, and wave-height-to-water-

depth ratios. As has been discussed in Section 1.3, for non-breaking solitary

waves over a plane beach, based on the condition given in (2.1), Synolakis [1987]

derived a run-up height expression in terms of an integral involving Bessel

functions, (1.11). The approximate theory Synolakis adopted requires the am-

plitude of incident solitary wave be small in the constant depth region. For

s−1
√

H/h 
 0.288 Synolakis further simplified the run-up integral and obtained

the run-up law:
R
h
= 2.831s−

1
2

(H
h

) 5
4

. (3.1)

On the other hand, for breaking solitary waves, Hsiao et al. [2008] incorporated

experimental run-up data on slopes ranging from s = 1/15 to s = 1/60, and

proposed an empirical formula:

R
h
= 7.712s0.632 sin0.618

(H
h

)
. (3.2)

By comparing (3.1) with (3.2), one immediately notices the opposite sign in the

power of s, clearly indicating the difference in the run-up processes of breaking

and non-breaking solitary waves.
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In the conventional run-up height equations as shown in (3.1) and (3.2), the

run-up height is normalized by the constant water depth, h. Alternatively, one

can use the incident wave height, H, as the normalization factor, and express

R/H as a function of H/h and s. Normalizing R by H gives a dynamic relation

that better reflects the change in run-up heights: namely, a fixed value of R/H

inherently implies that the larger the wave amplitude H, the larger the run-up

height R. The disadvantage of using R/H, especially for small waves, is that

experimental error can be greatly amplified, since both R and H are measured

values with greater uncertainty compared to the still-water depth h.

The surf parameter for periodic waves, which has been widely used to seek

similarity in wave breaking (Galvin [1968]) and run-up (Battjes [1974]), can be

expressed as

ξp = s

(
H
λp

)− 1
2

=
sTp√

2π

√
g
H
, (3.3)

where λp is the wavelength and Tp the wave period of the periodic wave in deep

water. Although the parameter was originally proposed empirically by Iribarren

and Nogales [1949], Mei [1989] showed that the surf parameter can be analytically

deduced from Carrier and Greenspan’s [1958] theory of the wave breaking crite-

rion for a standing wave on a slope; the surf parameter is obtained by simply

rearranging the analytical wave breaking criterion.

Kobayashi and Karjadi [1994] and Fuhrman and Madsen [2008] extended the con-

cept of surf parameter for periodic waves to solitary wave. By proposing dif-

ferent ways to evaluate the wave period for a solitary wave in (3.3), they have

suggested different forms of surf parameter for solitary wave. For example,

Fuhrman and Madsen [2008] recommended that the surf parameter can be ob-
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tained by using the effective wave period, (1.2), in (3.3), and find

ξFM = s
(H

h

)−1

, (3.4)

in which the wave celerity has been approximated to be c ∼ √
gh. They demon-

strated that the experimental breaking wave data cited in their paper collapsed

onto the following empirical curve for the normalized run-up height

R
H
= 3.9(ξFM)0.42. (3.5)

However, to formally extend the surf parameter for periodic waves to solitary

waves, we propose herein a different argument. Since Mei [1989] has shown that

the surf parameter is linked to the wave breaking criterion, the same approach

should be taken for solitary waves. As has been reviewed in Section 1.3, the

solitary wave breaking criteria (2.2) and (2.1) have already been theoretically

derived in ways similar to Mei’s for periodic waves, i.e., they are based on Car-

rier and Greenspan’s [1958] theory. Thus, from (2.2) and (2.1) the fundamental

form of the surf parameter for solitary waves can be deduced as

ξs = s
(H

h

)− 9
10

. (3.6)

We note that surf parameter given in (3.6) is similar to that given by Fuhrman and

Madsen [2008] in (3.4); only the powers of (H/h) are slightly different. However,

the present definition does have a stronger theoretical foundation and requires

less approximation. We further note that the surf parameter for solitary wave

can be rewritten in terms of the horizontal length ratio and vertical length ratio

as

ξs =

√
3

2π

(
l
L

) (H
h

)− 2
5

, (3.7)

in which (1.3) has been used.
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3.2 Experimental results

The single solitary wave run-up results in terms of R/h is tabulated in Table

2.2. In Figure 3.1, single solitary wave run-up R/H is plotted against ξ−1
s . Exper-

imental data for both breaking and non-breaking solitary waves, including new

results from the present experiments, are plotted. The theoretical breaking crite-

rion (2.1) is also indicated. Given the definition of ξs, for a fixed depth h, a larger

ξ−1
s suggests a milder slope or a larger wave height. For small ξ−1

s , waves do

not break and are reflected - the smaller the ξ−1
s the stronger the reflection from

the slope. Thus, smaller ξ−1
s gives smaller R/H. On the other hand, for large

ξ−1
s , the larger the ξ−1

s the stronger the energy dissipation due to wave breaking.

Thus, larger ξ−1
s gives smaller R/H. Between the small and the large must exist

a ξ−1
s that corresponds to a maximum R/H - namely, a ξ−1

s that corresponds to a

nearly-breaking wave with minimum reflection from the slope. The run-up of

breaking waves (to the right of the dashed-line in the figure) can be more or less

collapsed with the surf parameter as already suggested by Kobayashi and Karjadi

[1994] and Fuhrman and Madsen [2008]. Based on our surf parameter ξs, a simple

curve-fit equation similar to (3.1) can be computed:

R
H
= 4.1(ξs)

0.43. (3.8)

The result is shown in Figure 3.1 and Figure 3.2. We note that although we

included more experimental data and adopted a slightly different definition for

the surf parameter, (3.1) and (3.8) are very similar.

For non-breaking waves additional slope dependency shows. To illustrate

the slope dependency, the run-up integral (1.11), the run-up law (3.1), and ex-

perimental data are compared on slopes s = 1/2.08, s = 1/10, and s = 1/20, as

shown in Figure 3.3.
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Figure 3.1: Unified single solitary wave run-ups. Only experimental data
are included. LR: Li and Raichlen [2001, 2002]; SY: Synolakis
[1987]; CH: Chang et al. [2009]; BR: Briggs et al. [1995]; HS: Hsiao
et al. [2008]; HW: Hall and Watts [1953]; LA: Langsholt [1981]; JE:
Jensen et al. [2003]; (- - -): wave-breaking criterion (2.1), waves
break for ξs

−1 larger than this threshold; (—) curve-fit (3.8)

We note that our data on the s = 1/20 slope are consistently lower than Syno-

lakis’ and Chang et al.’s. Efforts have been made to ensure this discrepancy is not

a result of experimental misconduct. However, to show that for small waves

R/H greatly amplifies experimental error, we can use the resolution of measure-

ment to estimate the error bar for each data point. As discussed previously, the

resolution of our data in the s = 1/20 tank is 0.2 mm in R (hence Rres = 0.2 mm)

and 0.5 mm in H (hence Hres = 0.5 mm). The following scheme is used to con-

servatively estimate the upper (R/H)u and lower limits (R/H)l of the error bar
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Figure 3.2: Experimental solitary wave run-ups and curve-fit (3.8), in
terms of R/h. LR: Li and Raichlen [2002]; SY: Synolakis [1987];
CH: Chang et al. [2009]; BR: Briggs et al. [1995]; HS: Hsiao et
al. [2008]; HW: Hall and Watts [1953]; LA: Langsholt [1981]; JE:
Jensen et al. [2003]; LO: present study; (—): curve-fit (3.8); (- - -):
wave-breaking criterion (2.1), the curve-fit is applicable to the
right of this threshold.

centered at the reported value (Rr/Hr):

(
R
H

)u =
Rr + Rres

Hr − Hres
, and (

R
H

)l =
Rr − Rres

Hr + Hres
. (3.9)

The result is shown with Synolakis’ [1989] data in Figure 3.4 in terms of H/h
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1/20 slopes only. (—): run-up integral (1.11); (· · ·): run-up law
(3.1); (- - -): wave-breaking criterion (2.1), waves break for ξs

−1

larger than this threshold.

against R/H (we note that Synolakis did not explicitly point out the resolution

of measurement associated with his experiments, but he did point out that he

could measure H as small as 1 mm and R was measured 1 mm above the slope).

It can be observed that the error bar is much bigger for smaller waves than

for bigger waves, again reminding us of how sensitive the dimensionally small

waves are to the resolution of measurement, and dimensionally how small the

seemingly large discrepancy between the two data set really is.

Despite the discrepancy, both the theory and experimental data consistently
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Figure 3.4: Error bars associated with single solitary wave run-up data.
(×): our reported data on s = 1/20 slope; (—): estimated error
bar associated with our data; (◦): Synolakis’ [1987] reported data
on s = 1/19.85 slope.

show that for non-breaking waves R/H increases monotonically as ξ−1
s increases,

whereas for breaking waves the run-up peaks near the transition region. These

observations suggest that a maximum R/H can be found by computing the R/H

from the run-up law at the breaking limit, namely, R/H = 2.831s−
1
2 (H/h)

1
4 where

H/h = 0.8183s
10
9 , which gives

R
H
= 2.693s−

2
9 . (3.10)

Using this method to predict the maximum fractional run-up (R/H) on a given

slope can be useful when a quick and easy design estimate is needed.

While the wave-breaking condition may be inferred from the run-up trend,

no detailed experimental measurements of actual wave shapes are available for
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use to consistently classify breaker types. As an alternative, we classify wave

breaking using Grilli et al.’s criterion (2.3), with the belief that the criterion in-

corporates information on the wave shapes before breaking occurs. The result

is shown in Figure 3.5. In general, the breaker types based on (2.3) appear con-

sistent with the run-up trend, with surging and plunging breakers on the right

of the peak, non-breaking waves on the left, and a non-breaking-to-breaking

transition zone near the peak. Overlaps exist near the transitions between each

breaker type, which can be explained. As Grilli et al. pointed out in their own

study, the classification of breaker types is arbitrary and can never be exact; they

specified their definitions so that they could compute a consistent breaking cri-

terion. Mei [1989] also reminded us that the transition from one breaker type to

another is always gradual, and precise threshold values cannot be defined. In

Figure 3.5 the analytical breaking criterion (2.1) is also marked in terms of ξ−1
s ;

it is not surprising to see that the wave-breaking threshold is to the left of the

peak, since we know (2.1) underestimates the wave height and slope mildness

required for wave breaking, when compared to experiments. It is also interest-

ing to see that the breaking wave data based on Grilli et al.’s criterion (2.3) are

nicely collapsed by the solitary wave surf parameter. Having inspected Figure

3.5, we note that experimental solitary wave run-up data on slopes milder than

s = 1/60 are lacking. To be exact, no experimental run-up data of spilling soli-

tary waves based on (2.3) are available. While setting up such experiments is

difficult due to limited tank length, information on spilling solitary wave run-

ups is needed in order to complete the picture of solitary wave run-ups.
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CHAPTER 4

DOUBLE SOLITARY WAVES

4.1 Experimental results

All double solitary wave run-up results are plotted in Figure 4.1 and Figure

4.2, and tabulated in Table 2.4. In general, the run-ups caused by the first wave

are not affected by the second solitary wave, regardless of the separation time,

τ/T , and are the same as single solitary wave run-ups. The slight variation

in the first run-ups are likely due to the uncertainty in wave heights, which

has been discussed previously. However, for very short separation times, the

first run-ups appear to increase slightly. In such cases the two wave heights at

the toe of the slope are double-checked to ensure this slight increase is not a

result of a larger first wave. Despite the observation, this trend is small and less

significant when compared to the trend of the second run-ups. Thus, the rest of

the discussion will focus on the second run-ups. On the s = 1/10, s = 1/12, and

s = 1/20 slopes, the second run-ups assume a “spoon-shaped” trend. To make

the results more readable and emphasize the trend, plots with second run-ups

normalized by first run-ups are provided in Figure 4.3. When the separation

time is long, as one would expect, the second run-up is identical to the first,

since the two waves are separated long enough so that the interference between

them is minimum. As the separation time shortens, the second run-up first

decreases until a point of lowest run-up, and then the second run-up increases

with respect to decreasing separation time, and eventually become the same as,

or even higher than, the first run-up. A higher second run-up is observed in

one case with H/h = 0.307 on the s = 1/20 slope. Although only one case yields
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significantly higher second run-up, extra attention was paid to this particular

case, to ensure the two wave heights are similar at the toe of the slope and

that no mistakes were made in calculating the two run-ups, thus excluding the

possibility of a severe experimental error. On the other hand, no similar trend

show on the s = 1/2.47 slope. Figure 4.2 shows the results on the s = 1/2.47

slope.
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Figure 4.1: Double solitary wave run-ups on (a) s = 1/10 slope; (b) s =
1/12; (c) s = 1/20. Left panel: first run-up; right panel: second
run-up.
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Figure 4.2: Double solitary wave run-ups on s = 1/2.47 slope. (� ◦ ��):
first run-up; (� • ��): second run-up.

We use the solitary wave surf parameter (3.7) to seek similarity in the run-

ups of double solitary waves. By extending the single-wave analysis to the two-

wave case, for double solitary waves the effective length of the wave front l

becomes half the separation distance between the wave crests. For a fixed wa-

ter depth solitary waves travel at constant speed, and therefore the separation

length and separation time τ can be converted easily. With the new definition

for l, the solitary wave surf parameter ξs becomes:

ξs =

√
3

2π
(

l
L

)(
H
h

)−
2
5 = s(

H
h

)−
9
10 (
τ

T
). (4.1)

For double solitary waves, extra terms to rescale the run-ups are needed to col-

lapse the data. The scattering of data can be reduced by introducing a s−
7
6 term,

and the following curve-fit can be computed:

Γ = (
R2

R1
− 1)s−

7
6 = f (ξs) =

175ξ−0.22
s − 199ξ−0.16

s

1 + 168ξ5.5
s

. (4.2)

The collapsed data and the curve-fit are plotted in Figure 4.4. Equation (4.2) can

be rearranged to calculate R2/R1 directly:

R2

R1
= f (ξs)s

7
6 + 1. (4.3)
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Figure 4.3: Double solitary wave run-ups in terms of R2/R1 on different
slopes. (a) s = 1/2.47; (b) s = 1/10; (c) s = 1/12; (d) s = 1/20.
(—): curve-fit (4.3) for (×); (· · ·): curve-fit for (◦); (- · -): curve-fit
for (+); (- - -): curve-fit for (�).

The curve-fit plotted in terms of R2/R1 against τ/T on different slopes is shown

in Figure 4.3. We remark that while the solitary wave surf parameter ξs char-

acterizes well the run-up trend in terms of separation time (or separation dis-

tance), it does not capture well the run-up heights. As a result, arbitrarily-

chosen curve-fitting terms such as s−
7
6 were needed to rescale the run-ups, ren-

dering (4.2) and (4.3) merely curve-fitted functions that may not possess much

physical significance.
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Figure 4.4: Collapsed experimental double solitary wave run-up data
based on (4.2). (×): s = 1/2.47 slope; (�): s = 1/10 slope; (◦):
s = 1/12 slope; (+): s = 1/20 slope; (- - -): curve-fit (4.2).

4.2 Back-wash breaking

The back-wash breaking of the first wave appears to act as a great visual indi-

cator of the regime the second run-up is in - we define regime I as where R2

decreases with respect to increasing τ/T , and regime II as where R2 increases

with respect to increasing τ/T . Figure 4.5 shows a run-up snapshot of multiple

H/h = 0.307 cases on the s = 1/20 slope, with the time origins synchronized (we

note that the shiny areas near (b) and (d) are reflections of light; they do not

affect the determination of the run-up fronts). As shown in the figure, the back-

wash breaking, indicated by (a), of the first wave can be seen in cases where

τ/T ≥ 2.183. For cases with τ/T < 2.183, the second wave arrives before the first

back-wash breaking occurs. In the case τ/T = 1.852, the second wave arrives
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almost at the same time the first back-wash breaking is about to form, and in-

terestingly this case also produces the lowest second run-up. This relation on

timing of the back-wash breaking and lowest run-ups holds for different H/h

and on different slopes, suggesting that second waves arriving after the for-

mation of the first back-wash breaking cause regime-II run-ups, whereas those

arriving before the formation cause regime-I run-ups.

3.598                         3.114                           2.473                         2.183           τ/T           1.852                         1.507                         1.073                       0.685

(a)

(d)

(b)

(c)

(c)

(c)

(c)

(c)

Figure 4.5: Synchronized double solitary wave run-up snapshot with
H/h = 0.307 on a s = 1/20 slope for different separation times,
τ/T . The waves travel upwards in the picture. (a): the shiny
line, present in τ/T ≥ 2.183, is the back-wash breaking caused
by the first wave; (b): water mark of the first run-up, present in
all cases; (c): the second wave still running up the slope. The
shiny areas near (b) and (d) are merely reflections of light that
do not affect run-up determination.

The back-wash breaking is essentially a transient hydraulic jump, with the

run-down flow receding rapidly from the shore, towards a pool of relatively

calm water. The formation of a hydraulic jump indicates the peaking of this

process, where the velocity difference between the two regions of flow reaches
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its maximum. Since at this moment the receding flow is at its strongest stage, the

second run-up is the lowest if the second wave arrives at the same time. Second

waves arriving at a different moment will face a returning flow not as strong,

thus causing higher run-ups and producing the observed spoon-shaped run-

up trend. For very short separation time where the second wave arrives even

before the first wave starts to recede, a second run-up higher than the first is

possible, since it benefits from the still-shoreward-going momentum generated

by the first run-up. On the steep s = 1/2.47 slope where the spoon-shaped trend

isn’t seen experimentally, the returning flow recedes much faster and the whole

process ends within the time scale 0.47 T , while the adopted wave-generation

mechanism only allows generation of two waves with τ/T > 0.47. As a result,

it cannot be concluded whether or not the spoon-shaped trend exists on steeper

slopes (we also note that waves did not break during run-up on the s = 1/2.47

slope). On the other hand, from observation the back-wash breaking on the

s = 1/2.47 slope is significantly more intense than those on the milder slopes,

causing a greater disturbance in surface elevation near the shoreline. Thus, the

slight variation in the second run-ups on the s = 1/2.47 slope is likely a result of

this disturbance, whose effect is negligible on milder slopes.

4.3 PIV

The above process can be further illustrated by PIV measurements on double

solitary waves on a s = 1/20 slope. We note that during the PIV experiments

run-ups were not measured; the run-ups were measured in separate experi-

ments with slightly different separation times. However, the range of the sepa-

ration times for these two sets of experiments is the same (see Figure 4.6). For
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easy reference, the eight separation times used in the PIV experiments are iden-

tified by letters A-H, as shown in the figure.
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Figure 4.6: The separation times for PIV experiments and run-up measure-
ments. (×): run-up measurements; (↓): separation times where
PIV data are available. For easy reference, the PIV cases are
labelled by letters A-H.

PIV images from three cases will be considered here: case A with the shortest

separation time, τ/T = 0.656, where the second run-up is only slightly smaller

than the first, case D with the lowest second run-up and τ/T = 1.185, and case

H where the two run-ups are nearly identical and τ/T = 1.892. Figure 4.7(a)(b)

shows the PIV results at two consecutive time frames in case A - right before

and after the second wave enters the FOV. In this case the second wave arrives

when the first wave is just about to start receding, as indicated by the near-zero

velocity field right before the second wave arrives. Not surprisingly, the second

run-up is not much lower than the first. On the other hand, Figure 4.7(c)(d)

shows those for case D. Instead of a near-zero velocity field due to the first wave,

49



a receding flow can be seen retarding the second wave, causing a lowest second

run-up. For case H, the second wave arrives after the first wave has completely

receded from the FOV, leaving no water in the FOV. The observation in these

three cases supports the claim that the second run-up is mainly determined by

the flow field left by the first run-up.

Figure 4.7: Snapshots of PIV results. x is the distance on the slope away
from the still-water shoreline. The y-axis points upwards from
the slope face. The wave travels towards the left. (a) Case A,
right before the second wave arrives; (b) case A, right after the
second wave arrives; (c) case D, right before the second wave
arrives; (d) case D, right after the second wave arrives.

All PIV results will be compared in terms of depth-averaged mass and mo-

mentum fluxes at the center of the FOV. Ignoring the effects of air bubbles, we
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can express the mass flux as ρUh, where U is the depth-averaged velocity in the

direction parallel to the slope at the center of the FOV, h the local water depth,

and ρ the density of water. The mass flux is then normalized by the mass in-

flux of a solitary wave in the constant-depth region, ρcH; on the other hand, the

momentum flux can be expressed as ρ(u|u|)h, where (u|u|) is the depth-averaged

sign-preserved velocity squared at the center of the FOV. The momentum flux

is then normalized by ρc2H; the results are shown in Figure 4.8. In case D where

the lowest second run-up exists, the mass flux of the second wave is the lowest,

suggesting less water volume being carried up the slope by the second wave

because of the strongly receding first wave. As the separation time varies away

from that in case D, the mass flux of the second wave increases, corresponding

similarly to the spoon-shaped run-up trend. Although not as obvious, simi-

lar trend in momentum fluxes can be seen in Figure 4.8(c)(d). We remark here

that the computation of momentum fluxes greatly amplifies experimental er-

rors, since velocity squared is used. Thus, the small difference in momentum

fluxes for cases D-H may not accurately represents the reality.

4.4 Reflected waves

With the run-up information known, the reflected waves on the s = 1/2.47 and

s = 1/20 slopes are now examined further. Park [2009] first considered the re-

flection of two solitary waves from a s = 1/20 slope. It appears that for shorter

separation times, only one reflected waves can be identified, whereas for longer

separation times two reflected waves can be distinguished from one another.

However, since the reflected waves from the slopes resemble dispersive and ir-

regular long waves that change shapes significantly by the time they reach from
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Figure 4.8: Normalized mass and momentum fluxes determined from PIV
results. (a) Mass flux for cases A, B, C, and D; (b) mass flux for
cases D, E, F, G, and H; (c) momentum flux for cases A, B, C,
and D; (d) momentum flux for cases D, E, F, G, and H.

the slope the location of measurement, whether one can really distinguish one

reflected wave from another remains questionable. To minimize the effect of

dispersion, reflected waves measured right at the toe of the slope will be con-
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sidered instead. A consistent way to compare the shapes of reflected waves is

devised: a complete surface elevation measurement due to single solitary wave

is treated as the surface elevation standard for solitary waves. When two waves

exist with the separation time τ known, two surface elevation standards are

linearly superposed with a time delay τ between the two, and the superposed

result is then compared to the actual two-wave measurements. Such artificially

superposed measurements have been found to be great indicators of the relation

between reflected waves and the run-up trend. For each case on the s = 1/20

slope with H/h = 0.15, Figure 4.9 compares the two-wave measurements to the

superposed ones, with the correlation coefficient r between the two calculated

for each case. Interestingly, the correlation coefficients are higher, that is, the

two resemble each other better, when the separation time is longer or shorter

than the separation time that gives the lowest run-up, again showing a trend

similar to the spoon-shaped run-up trend (based on Figure 4.6 the lowest sec-

ond run-up occurs near τ/T = 1.233). On the other hand, for the steep slope

s = 1/2.47 where the spoon-shaped run-up trend doesn’t show, the actual mea-

surements and the superposed compare well for all cases, as shown in Figure

4.10 (note that on this slope the reflected wave at the toe of the slope cannot

be separated from the incident wave). Based on the above observations, it can

be suggested that in terms of surface elevation the wave-reflecting process can

be approximated as linear, provided that the wave-wave interaction is minimal;

namely, the two run-ups are not very different.
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Figure 4.9: Reflections of double solitary waves from a s = 1/20 slope
compared to superposed measurements, H/h = 0.15. t/T = 0
corresponds to the peak of the first incident wave. (—): two-
wave measurement; (- - -): one-wave measurement; (· · ·): su-
perposed. r is the correlation coefficient between (—) and (· · ·).
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Figure 4.10: Reflections of double solitary waves from a s = 1/2.47 slope
compared to superposed measurements, H/h = 0.101. t/T = 0
corresponds to the peak of the first incident wave. (—): two-
wave measurement; (· · ·): superposed.
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CHAPTER 5

CONCLUSION

Both single and double solitary waves were studied experimentally. The evolu-

tion and reflection of the waves were examined by monitoring the free surface

elevations, the run-up heights measured by video cameras mounted on top of

the slopes, and the two-wave interaction on the slope analyzed by employing

PIV techniques. A theoretically-justified solitary wave surf parameter was pro-

posed to characterize the run-up height of breaking solitary wave.

When plotting single solitary wave run-up in terms of fractional run-up,

R/H, near the transition from non-breaking to breaking waves exists a maxi-

mum R/H value, which can be seen as the maximum fractional run-up on a

given slope. It can be of value in engineering designs where a quick estimate of

the maximum run-up is needed.

The run-up of double solitary waves was experimentally investigated and

the physics explained. When two identical solitary waves are present, the first

run-up heights remain more or less constant as the separation time between the

two waves varies, whereas the second run-up heights show a “spoon-shaped”

trend. When the separation time is long, the two run-up heights are identical;

the second run-up decreases as the separation time shortens, until a lowest sec-

ond run-up is reached. As the separation time shortens even more, the second

run-up starts to increase instead; a second run-up higher than the first is found

possible for very short separation time. An empirical equation was proposed to

estimate the second wave run-up relative to the first.
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The reflected waves from the slope correspond to the observed “spoon-

shaped” run-up trend. When the two run-up heights are similar, the reflected

two waves can be approximated by superposing two reflected single waves

with specified separation time between the two, suggesting that in terms of free

surface elevations the wave-reflecting process of two waves can be treated as

linear if the two run-up heights are not very different.
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