THE APPROACH TO HOMOZYGOSITY IN A DIPLOID SELFING SERIES
WITH NO MUTATION OR SELECTION

D. S, Robson
BU-162-M March, 1964

Abstract

In a diploid selfing series the expected rate of loss of heterozygosity
is 50 percent per generation, provided that mutations and selection do not
occur, If the heterozygous loci are randomly distributed over the n chromo-
some pairs then deviations from this mean rate must be gpproximately normally
distributed and hence essentially dependent only on the cross-over probebilities
between pairs of loci. The variance in this case indicates that a large number
of linked loci will effectively behave the same as 1.5 nk unlinked loci, where
50 k is the average chromosome length measured in cross-over units. For N
independently segregeting loci the most probable number of generations required
to reach complete homozygosity is approximstely log2 N, and there is a 50 per-
cent chance of achieving this state before - Z!.og2 [1 - 2- iy :l generations
have elapsed., The mathematical analysis of this system is facilitated by its

representation as a Markov chain,
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Introduction

A single line of descent in a selfing series executed under constant
environmental conditions forms a simple Markov chain whe:e the probability
distribﬁﬁion of genotypes in any generation depends only on the genotype of
the parent of that generation. In the gbsence of mutation and selection this
conditioﬁal probability distribution for the offspring of any given parental
genotype depends only on the linkage relationships among the segregeting loci.
Although rates of corssing-over may in general be influenced by genotype, the
present‘analysis Will.presums these to be constant for ell genotypes, as in
classical linkage anéiysis.

The approach to homozygosity, irrespective of the particular genes being
fixed and the order in which the differentlipci reach fixation, must ultimately
be analyzed as 8 stoéhastic process of traﬁsition between states of non-
decreasing degrees of heterozygosity. A selfed parent which is heterozygous
at exactly N loci qgn:only produce progeny which are heterozygous at N or

fewer loci; thus, if S, 1s the state defined by

i

Si = the collection of genotypes &y heterozygous at exactly i loci

then parent - offspring transitions of the form Si - SJ are possible only if

12 j. Although the process of transition between specific gemotypes g - gj

heterozygous at 1 and j loci, respectively, is e simple Markov process, the



-2-

7 T
process- on the combined statés Si will have the simple Markov structyre if
and only if the parent - offspring transition g ~ Sj has the same probability

Pij for every genotype 8y in Si; that is, if and only if

z: P {progeny genotype = gj | parent genotype = 8 } giesi pij
gsle,es, -

With linkege operating to determine the transition probabilities between
individual genotypes, however, two different parental genotypes 8y and gi
which are hetefozygous at different sets of i1 loci will have different proba-
billities of producing offspring which are heterozygous at exactly j loei.
Explbitation of Markov structure in computing transition probabiiities for the
Si-process therefore requires the introéuction of an intermediate Markov pro-
cess with sgtates SAi specifying not only the degree i of héterézygogity but
also the collection Ai of loci at which heterozygosity occurs. The previously
mentioned assumption that the probability distributioﬁ of crosé?overs 1s inde-
pendent of genotype sssurss that individual genotypes may be combined to this
extent, -- .

S, = the collection of genotypes g heterozygous &t the 1 loci in the

Ay

set A, and homozygous elsewhere,

i

while fefaining simple Markov structure.



One generstion transition probabilities

A parent which i1s heterozygpus at the particular set Ai of 1 loci and
homozygous at all other loci may, fér present purposes, be regarded as a pair
of homologous chromosomes, each bearing i genes but of unlike allelic form,
and with one of the "chromosomes" representing the male gametic contribution
of the grandparent, the other representing the female gamete of the grand-
parent. This second classification of allelesaccording to gametic origin is
redundant since the two unlike allelic forms at each locus necessarily originate
from unlike gametes; for any homozygous locus outside of Ai’ however, classifi~ -
cation according to allelic form would faill to distinguish the two genes at
that locus. With one such homozygous locus A, appended to the "ehromosome"
in question, the transition from the state SAi éf the parent to the state SAJ

of the offspring paxrtitions into two events:

SA - SA and the offspring receives a gene at Al from each grandparéntal

gamete

SA - SA and the offspring receives both genes at Al from the same grand~

parental gamete

Because cross~over probabilities are assumed to be independent of allelic
forms, the probabilities of .these two events would be unaltered if the two
alleles at the Al locus were unlike; hence, transition probabilities in this

Markov process are related by the recursion



a

A P { offspring in SA l ‘Parent in SA'. }

b
Ai’ J J i

P { offspring in SAj +A

| parent in S }
1 Bythy

+ P { offspring in sAj | parent in SA:I. +y }

P + P
A:'._-FA:L SA 3 +Al Ai+Al ’Aj
Wheﬁ rearranged in the form
(1) P =D - P
Aj_‘,Aj | Ai Al’Aj Ai’A,j+Al

where Al is now an element of Ai-AJ. » repeated application of this recursion to

the terms on the right hand side of the equation produces the relation

i-j

(2) L7V P Z<-l>k Z FA A

179 w20 : -
k=0 A, CA-A,

With relation (2) established, one-generation transition probabilities
PAi,A~ need be defined in terms of cross-over probabilities only for the case
J

Ai=A,j' The transition SAi—' SA:'. will occur if, for any set of loci A‘_.j c Ai’

the male gamete of the parent carries paternal grandparental genes at the loci

in AJ. and maternsl grandparental genes at the loci in A "Aj vhile the female

i



gamete of the parent carries the reverse configuration of pate:t;mal grand-~

parental genes at the loci in Ai;Aj and genes from the maternal grandparental

gamete at the loci in A Since these two kinds of gametes have the same

J.
probability of occurrence, say CAi Aj’ then the probability of their pairing is
2

2 - .
CAi A » and since SAi SA:L is the union of all such mutually exclusive events
for which A 3 c Ai then
(3) :
3 P - z z 2

Agshs CAi,Aj

J=0 A 3 c Ai

where

c C

Ai’AJ Ai’Ai'Aj
and

i

z C =1 .

A:L’Aj

=0 A, |Aj cA,
Transition probabilities for the reduced, non-Markovian process may now

be expressed in terms of the trapsition probabilities pAi’ Ay » but only for trans-

iticns out of a maximal state SN’ which is equivalent to SAN

the genotype of the initial parent of the selfing series. Thus,

, and which denotes

A
N

N1 P { offspring heterozygous at exactly i loci | parent heterozygous
b4

at N loci }

- L

A A, c
1 1
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- Z('l)J Z Z Pp+a_ A +A

= 17377177
j=0 A, C Ay Aj < AA,

or

) Ty, Z(lf’"() N
ACA.N

t-generation transition probabilities

The probability pgt)A that a line which has achieved the state SAi will
1775
be in state Sy  after t more generations may be readily computed from the
J

preceding results. The basic relation (1) among the one~generation transition
probabilities applies, by the same argument, to the t-generation transition
probaebilities, and the corresponding relation (2) then expresses p.g ’) Aj in
terms of Pfﬁzz Ak Since transitions SAk(E) SAk' occur if and only if the system

remains in state SAk for t generations then, by the Markov property,

(t) t

fwk " Pk,

(5) Pzgt)A Z( )" z : pzj-!-Ak;Aj+Ak

k=0 Ak c AJ._-Aj

so0 that

@ g- Tt () T .

J=i A, CA.N



Rates of approach to fixation

The expected 50 percent reduction in heterozygosity per generation is a
well known characteristic of the diploid selfing series; if a parent is
heterozygous et N loci then the gverage number of heterozygous loci per off-~
spring is N/ 2, This result is seen to hold rega.rdless of the linkage relstion-
ships or even of any relatlonship between genotype and cross-over probabllities,
since the average loss in heterozygosity at N loci is the sum of the average
losses at each of the individual loci, and each individual locus has probability
1/2 of bégéming homozygous in one generation., Likewise, the expected nunber of
loci remainiﬁé he'l;erbzygous after t generations of selfing is N/“.Zt, irrespective
of the linkage pattern. A formal, 1f awkward demonstration of this fact based

on the preceding result (6) is given by

N
Yo n) - Z<1>"’ N Z(l) 1()

i=0 j=0 A CAN 1=0
where
=1l for j = '
S Cut s (1)
i=0 Ofor J#1
80

M yrgde § o5 . v



=8~

since any single locus A, has probability l/ 2 of remaining heterozygous in

1
one generation of selfing.
The variation about an average 50 percent loss of heterozygosity per
generation is, of course, profoundly affected by linkage; with no linkage the
variance in the proportion lost is l/ 4N while complete linkage would result in
a corresponding variance of 1/4, In general, the variance of the number Q‘N
of loci becoming homozygous in one generation of selfing will exceed 1/4N by
an amount equal to twice the sum of the covariances among the N loci., Thus,

if ¢ denofes the probability thet effectively one cross~over occurs between

1y
the 1“‘ and Jth locus (c = 1/2 if the i*® and j*® loci are on different

chromosomes) then the veriance of Qg will be

3, - Lewen [3- 70 )

where c(l-c) is the average variance of the number of effective cross-overs

(0 or 1) between pairs of loci,

c(il~c) (_”2’—3 z ij(l c

and could also be expressed as

c(i~c) = c¢(1~c) - di .

The veriance of the proportion H = (N-Q,N)/ N of heterozygotes remaining after

one generation is therefore



-0

)(g-Tma)

|

G-inr G-

a result which may be obtained from (4) in the same manner that (7) was
derived.

A rough indication of the magnitude of the effect which linkage might be
expected to haye on the varistion of QN is illustrated by the case where the
initial parent, heterozygous at N loci, is obtained by crossing two "unrelated"
homozygotes. In such circumstances the distribution of the N sites of hetero-h
zygosity mey be expected to be random (uniform) on the scale of c‘ross-over
units and randomly sllocated among the n chromosome pairs. Thus, if the A

chromosome includes 50 k N crogs~over units it mey be expected to include

S
Nk j_/ = kj of the heterozygous loci randomly distributed along its length. The
1

expected value of the cross~over probability c¢,. for a random pair of such

i3
loci would then be

v ._._:L<.I.1..)2 L (-2
Bleggd =350 ) *&; G ) o

the first term on the right representing the expected contribution from palrs
more than 50 cross-over units apart, which ocecur with probebility (l - i‘— )2,

' i
and the second representing the contribution of those less than 50 units apart.

Similsrly,

so that expected variance of Q‘N becomes



N N(e1) (1)
6(031\1) "R 2lnk?

or

{GRE-RCES Db
where k = Zki/n.

Since QN is, in fact, & sum of n independent random veriables of bounded
variation then the distribution of H must be approximetely normal with mean
1/2 and the indicéted veriance, thus further implying that the characteristics
of the distribufion of H are essentially determined by the linkage relation~
ships simply between pairs of loci, If N is large relative to the number n of

chromosome pairs then the expected variance of H reduces to

2) M- 1 1
R~ m  F ( 62/ (4-1) )

which, when compared to the expression 1/L4N arising with N independently
segregating loci, implies that the linked system behaves essentially the same
as )

1 1- _ 6nk® -

TN = —= i ~——— ~ 1.5 ok
1-ke(I-c) lrhc(l-c)+ho§ bk-1

unlinked loci.
A more detalled description of the stochastic approach to homozygosity

is already contained in expression (6), and particularly in the special case

j=0 A, CA
J dJd

N
- Tt 3 s,
N
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giving the probability that a line will reach complete homozygosity on or before

the t*® generation, Thus, if TN o 1s & random verisble denoting the number of
b4 .

generations required for a line to first reach the homozygous state then the

cumulative probability distribution of 'JIN 0 is
2

t)
P S %)= (
(TN,O ) ,0
so that

B(Ty o= t) = n§f2, - (fél)

N _
= § oyt z t-1 o
Z( 1) B, (1 ijAj)
J=1 A 3 c AN
The expected number of generations required to reach fixation is therefore

©

ey o) = 1+Y G-t

t=1
N oo L Pyoa,
=1+ z (~1)9° z —-'U-l_p .
=1 Aj CAN AjAj

In the case of independently segregating loci, ij’ Aj=(1'/ 2)j and the

probability distribution of TN 0 1s then
2

(0 < 4) = A1) = (27
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with a mean value of

| . |
e(Ty o) =1+ z (g) (-1t

k=1

The modal or most probable value of TN 0’ found as the solution to the equation
? .

is epproximately log,N (= log N/log 2) or, more exactly, the solution to the

equation
(t) (t-1)
y,0 _ Y,e
dt at
is
L
N-1
mode ~ log 1.5 T
N-1

and the medisn, feund as the solution to

o

is

I

=
-/

medlan = - log2 <§ - 5
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The relation median < mode < mean obtains for all N but, as shown by Figure 1,

a8 N gets large these three measures cf central tendency become indistinguish-
able. o
It is comforting to note that in accord with the rate of reduction in

heterozygosity of 50 percent per geperation, the modal nunber of generations

required to first achieve homozygosity at half of the N loci,

n(t)
NNz,
dt? ~

is approximetely given by

b 10%2‘[%*‘0(7110]?1 y



(1)

'Appeﬁdix

Some of the mathematically convenient properties of Maxrkev chains which
have been employed in this analysis of the selfing series are not mentioned in

such standard references as Feller's Introduction to Probebility Theory, and

because these techniques have general applicability in the anslysis of mating‘
systems they perhaps deserve special mention here. These properties concern
the approach to fixation or, in the terminology of a general Markov chain, the
probebility of sbsorption into a closed set of states. In a finite chain
consisting of n different states E ,F,,***,E & subset C = {Eil,-.a,Eim} of

m = n states is said to be cloged if transitions from states in C to states
outside of C are impossible., The set C is therefore a trap; once the system
enters C there is no escape, end the system is then sgid to have been absorbed
in C. An individual state E, is absorbing if transition out of E

i

or, in other words, if the transition Ei - Ei g )—l. Such &

1 is also classed as recurrent, since recurrent states are defined as

1 is impossible
has probability p
state E
those to which ultimate return 1s certain, and every finite Mexkov chain in-
cludes at least one recurrent (thcugh not necessarily absorbing) state. The
remarks here willl pertain primarily to the process of absorption into a closed
set C taken to include all recurrent states. Asterisks will indicate new -
or at least not widely known results.

(t) denotes the conditional probability that the system will be in
state Ej after t steps, given that it starts in state Ei’ then for s Markov
process the n x n matrix {pg )} cen be computed as {p( )}t, the t*" power of

the matrix of one-step transition probebilities. The conditional probability,
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say Fi(t), that the system will be in the closed set C after t steps, given

that E; 1s the starting state, is therefore

Fy(t) = ng) ’

j'EJeC

and the corresponding conditional probability, say fi(t), of reaching C for
the Pirst time on the t'P step is

dF('b)b

(#) £,(t) = F,(t) - F(t-1) » —2r— .

If C contains all of the recurrent states then Fi(t) is the cumulative
probability distribution of the random variable Ti representing the number of

steps required to first reach C from the state Ei; that is,

(*) (1, < ) = F, (%)

Such cheracteristics as the medien (tmed) and mode (tmod) of this distribution
are therefore‘ciosely epproximeted by treating t as a continuous veriable and
solving for t‘in the equations

2

a Fi(t

mod) -

() 7y (b 0) = 3 0

at?

ILikewlise, the moments of the distribution Fi(t) of time to absorption may be

computed as



(i11)

(%) o) = ) €2, (b) = z ztr[P(t) pgg l)
t=

JE&C t=1

or closely approximated by
[}

() t)) = [ Far(e) .
1

The method suggested by Feller for computing the probability f 1(’c.) has

been to solve the recursion relations

£, (t+1) = 2 (l)f(t) 5
k|E eC

this method .has the advantage of not requiring the calculation of the t*® power
of the matrix {pg‘)}. On the other hand, if {p%)}t is to be computed for
other purposes then the relation f i(t) = Fi('b) - Fi(t-l) may be employed
directly without resorting to recursions.

A rather odd consequence of the above recurrence relation is that the .
moments of the random verisbles T, may be computed as linear functions of the
one-gtep transition probabilities p_g') s without ever computing the probability
distributions of the Ti'
then summing over t from 1 to « gives

Multiplying both sides the above equation by t and

thi(t+l)= Z pg_;) thk(t)'

t=1 k|E_eC t=1



(iv)

where - - o &
thi(t+l) = Z(t+l)fi('b+l) - Zfi(tﬂ)
t=1 =1 t=1
= thi(t)Q Zfi(’c)
t=1 t=1
= e(cui) - 1 .
Thus,
() er) -1= ) 2 e(n)
klEkc-:C

Similarly, for the second moments,

2]

thfi(t+l) = z (t+l)2fi(t+l) -2 z (t+1)z, (t+1) + Zfi(t+l)

t=1 t=1 t=1 t=1
so that
(#) &(z2) . 26(T,) + 1 = z pg) &(T)
k|E, eC

and so on to give, consecutively, as many moments as desired.
Note that if C partitions into k disjoint closed sets of states,

C= {01,02,--«,ck}, then



(v)

k
6(T§) = E:Fij(m)ej(Tij | process is ultimately absorbed into Cj)

5=1
where
- (t)
Fy4(t) = Z Pip
hlEhc-:c:j
ZPthhj“'l)* 2 Pin
m|EdC hlEheCj
and

Fyy(=) = 2 PPy (=) + Z Pip *
hlEhéC hlEheCj

Conditional moments of the time Tij of absorption into Cj may then be computed

as before but using the definitions : -

Y 47Ty (6) - By (6-1)] = 7 (o), ()
t=1
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