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In a diploid selfing series the expected rate of loss of heterozygosity 

is 50 percent per generation, provided that mutations and selection do not 

occur. If the heterozygous loci are randomly distributed over the n chromo-

some pairs then deviations from this mean rate must be approximately normally 

distributed and hence essentially dependent only on the cross-over probabilities 

between pairs of loci. The variance in this case indicates that a large number 

of ],inked loci will effectively behave the same as 1. 5 Ilk unlinked loci, where 

50 k is the average chromosome length measured in crass-over units. For N 

independently segregating loci the most probable number of generations required 

to reach complete homozygosity is approximately log2 N, end there is a 50 per­
. l 

cent chance of achieving this state before- log2 [1- 2- N J generations 

have elapsed. The mathematical analysis of this system is facilitated by its 

representation as a Markov chain. 
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A single line of descent in a selfing series executed under constant 

environmental condi tiona forms a simple Markov chain where the probability 

distribution of genotypes in any generation depends only on the genotype of 

the parent of that generation. In the absence of mutation and selection this 

conditional probability distribution for the offspring of any given parental 

genotype depends only on the linkage relationships among the segregating loci. 

Although rates of corssing-over may in general be influenced by genotype, th~_ 

present analysis will presums these to be constant for all genotypes, as in 

classical linkage analysis. 

T.he approach to homozygosity, irrespective of the particular genes being 

fixed and the order in which the different loci reach fixation, must ultimately 

be analyzed as a stochastic process of transition between states of non-

decreasing degrees of heterozygosity. A selfed parent which is heterozygous 

at exactly N lqci can . only produce progeny which are heterozygous at N or 
").~ 

fewer loci; thus, if si is the state defined by 

Si = the collection of genotypes gi heterozygous at exactly i loci 

then parent ~ offspring transitions of the form Si ~ Sj are possible only if 

Although the process of transition between specific genotypes g. -g. 
l. J 

heterozygous at i and j loci, respectively, is a simple Markov process, the 



. ) : 

process'on the combined states Si will have the simple Markov struct¥re if 

and only if the parent ~ offspring transition gi ~ S. has the same probability 
. J 

pij for every genotype gi in s1; that is1 if and only if .. 

2: p {progeny genotype ~ gj I parent genotype ~ gi } gi~i Pij 

gjlgjeSj 

With linkage operating to determine the transition probabilities between 

individual genotypes, however, two different parental genotypes gi and gi 

which are heterozygous at different sets of i loci will have different proba-

bilities of producing offspring which are heterozygous at exactly j loci. 

Exploitation of Markov structure in computing transition probabilities for the 

Si-process therefore requires the introduction of an intermediate Markov pro­

cess with states SA specifying not only the degree i of heterozygosity but 
i . 

also the collection Ai of loci at which heterozygosity occurs. The previously 

mentioned assumption that the probability distribution of cross-overs is inde-

pendent of genotype assures that individual genotypes may be combined to this 

extent, 

SA = the collection of genotypes gi heterozygous at the i loci in the 
i 

set Ai and homozygous elsewhere, 

while retaining simple Markov structure. 
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~ generation transition probabilities 

A parent which is heterozygous at the particular set A. of i loci and 
' . 1 

homozygous at all other loci may, for present purposes, be regarded as a pair 

of homologous chromosomes 1 each bearing i genes but of unlike allelic form, 

and with one of the "chromosomes 11 representing the male gametic contribution 

of the grandparent, the other representing the female gamete of the gran~ 

parent. This second classification of alleles according to gametic origin is 

redundant since the two unlike allelic forms at each locus necessarily originate 

from unlike gametes; for any homozygous locus outside of Ai, however, classifi­

cation according to allelic form would fail to distinguish the two genes at 

that locus. With one such homozygous locus A1 appended to the 11cbromosome 11 

in question, the transition from the state SAi of the parent to the state SAj 

of the offspring partitions into two events: 

or -

SA -+ SA and the ofiapring receives a gene at A1 from each grandparental 
i j 

gamete 

SA -+ SA and the offspring receives both genes at A1 from the same gra.nd­
i j 

parental gamete 

Because cross-over probabil~~ies are asswmed to be independent of allelic 

forms, the probabilitie~ pf' :tl;l(;!se two events would be unaltered if the two 

alleles at the ~ locus were unJ..ike; hence, transition probabilities in this 

Markov process are related by the recursion 
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PA A = P { offspring in SA I parent in sA:· } 
1' j j i 

. = P { offspring in SA +A I parent in SA +A } 
j l i l 

+ P { offspring in SA I parent in SA +A } 
j i l 

When rearranged in the form 

(1) 

where A1 is now an element of A.-A., repeated application of this recursion to 
J. J 

the terms on the right hand side of the equation produces the relation 

(2) 

With relation (2) established, one-generation transition probabilities 

pAi,Aj need be defined in terms of cross-over probabilities only for the case 

Ai=Aj. The transition SA(• SA:L will occur if, for any set of loci Aj c Ai' 

the male gamete of·the parent carries paternal grandparental genes at the loci 

in A. and maternal grandparental genes at the loci in Ai·A. while the ·temale 
J J 
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gamete of the parent carries the reverse configuration of pate~~ grand­

parental genes at the loci in A.-A. and genes from the maternal grandparental 
l. J 

gamete at the loci in Aj. Since these two kinds of gametes have the same 

probability of occurrence, say CA A , then the probability of their pairing is 
il j 

C2 and since SA ... SA is the union of all such mutually exclusive events 
A1,Aj 1 i i . 

for which Aj c Ai then 

(3) 

where 

and 

i 

PAi,Ai:;:: L 
j=O 

i 

I 
j=O 

Transition probabilities for the reduced, non-Markovian process may now 

be expressed in terms of the transition probabilities pA A , but only for trans-
. i' i 

iticns out of a maximal state SN' which is equivalent to SA , and which denotes 
N 

the genotype of the initial parent of the selfing series. ThUs, 

nN i = p { offspring heterozygous at exactly i loci I parent heterozygous , 
at N loci } 

= L PA.__,A. 
A lA c A__ -~ J. 

i i -""N 
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or 

t-generation transition probabilities 

The probability pA(t)A that a line which has achieved the state sA. will 
i' j ~ 

be in state SA. after t more generations may be readily computed from the 
J 

preceding results. The basic relation (1) among the one-generation transition 

probabilities applies, by the same argument, to the t-generation transition 

probabilities, and the corresponding relation (2) then expresses Plt)A in 
i' j 

terms of pA(t)A • Since transitions SA.. (~) SA. occur if and only if' the system 
k' k .. K. k 

remains in state SAk for t generations then, by the Markov property, 

and 

i-j 

(5) = L (-l)k L - P!.+~,A.+~ 
k=O A. c A. -A . J J 

-"k ~ J 

so that 
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Bates .9! approach to fixation 

The expected 50 percent reduction in heterozygosity per generation is a 

well known characteristic of the diploid selfing series; if a parent is 

heterozygous at N loci then the average number of heterozygous loci per off-

spring is N/2. This result is seen to hold regardless of the linkage relation-

ships or even of any relationship between genotype and cross-over probabilities, 

since the average loss in heterozygosity at N loci is the sum of the average 

losses at each of the individual loci, and each individual locus has probability 

1/2 of be6oming homozygous in one generation. Likewise, the expected number of 
' ' ' ,. t 

loci remaining heterozygous after t generations of selfing is N/2 , irrespective 

of the linkage pattern. A formal, if awkward demonstration of this fact based 

on the preceding result (6) is given by 

where 

so 

(7) 

N N 

~ i n<t) == 
~ N,i r c-l)j 

j==O 1=0 

j -

L c-l)i 
i==O 

{
-1 for j = 1 

i(i)= 
0 for j I= 1 
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since any single locus A1 has probability 1/2 of remaining heterozygous in 

one generation of selfing. 

The variation about an average 50 percent loss of heterozygosity per 

generation is1 of course, profoundly affected by linkage; with no linkage the 

variance in the proportion lost is l/4N while complete linkage would result in 

a corresponding variance of 1/4. In general, the variance of the number ~ 

of loci becoming homozygous in one generation of selfing will exceed l/4N by 

an amount equal to twice the sum of the covariances among the N loci. Thus, 

if c~j denotes the probability t~t effectively one cross-over occurs between 

the ith and jth locus (c = 1/2 if the ith and jth loci are on different 
.. . ~ . 

chromosomes) then the variance of ~ will be 

where c{l-c) is the average variance of the number of effective cross-overs 

(0 or 1) between pairs of loci1 

and could also be expressed as 

c(l-c) = c(l-c) " ~ • 

T.he variance of the proportion H = (N-~)/N of heterozygotes remaining after 

one generation is therefore 
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a result which may be obtained :f'rom (4) in the same manner that (7) was 

derived. 

A rough indication o:f' the magnitude o:f' the e:f'fect which linkage might be 

expected to have on the variation o:f' ~ is illustrated by the case where the 

initial parent, heterozygous at N loci, is obtained by crossing two "unrelated" 

hamozygotes. In such circumstances the distribution o:f' the N sites of hetero­

zygosity may be expected to be random (uniform) on the scale of cross-over 

units and randoml;y allocated among the n chromosome pairs. Thus, i:f' the ith 

chromosome includes 50 k1. cross-over units it may be expec~ed to include 
.n 

Nkrl L k. of the heterozygous loci randomly distributed along its length. The 
1 J 

expected value o:f' the cross-over probability cij :f'or a random pair o:f' such 

loci would then be 

the :f'irst term on the right representing the expected contribution from pairs 

more than 50 cross-over units apart, which occur with probability (1 -~ 'j-, 
and the second representing the contribution of those less than 50 units apart. 

Similarly, 

so that expected variance of ~becomes 
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or 

where k = EK./n. 
J.: 

Since ~ is, in fact, a sum of n independent random variables of bounded 

variation then the distribution of H must be approximately normal with mean 

1/2 and the indicated variance, thus further implying that the characteristics 

of the distribution of H are essentially determined by the linkage relation-

ships simply between pairs of loci. If N is large relative to the number n of 

chromosome pairs then the expected variance of H reduces to 

e-(~) 4k-l _1( ·1 ) 
H ~ 24nk2 - 4 6nk2/(4k-l) 

which, when compared to the expression 1/4N arising with N independently 

segregating loci, implies that the linked system behaves essentially the same 

as 
1 . 1. 6n:k2 -

N == :_--7~::::;: == ~ - ~ 1. 5 nk 
l-4c(l-c) l-4c(l-c)+4a2 4k-l c 

unlinked loci. 

A more detailed description of the stochastic approach to homozygosity 

is already contained in expression (6), and particularly in the special case 
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giving the probability that a line will reach complete homozygosity on or before 

the ttb generation, Thus, if TN,O is a random variable denoting the number of 

generations required for a line to first reach the homozygous state then the 

cumulative probability distribution of TN 0 is , 

P(T._ s: t) = rrCt) 
~,o --w,o 

so that 

P(T._ = t) = rr(t) _. rrCt-1) 
"-N,O --w,o -~,o 

N 

= ~ (-l)j-1 \' pt-1 
L L AjA. 

j=l A c A__ J 
j -~ 

(l-pA A ) 
j j 

The expected number of generations required to reach fixation is therefore 

e(~,o) = 1 + L 0--~~~) 
t=l 

::::1+ • 

In the case of independently segregating loci, p'A· A =(1/2)j and the 
J' j 

probability distribution of TN 0 is then 
1 
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'With a mean value of 

N 

e(TN,o) = 1 + L ( ~) (-lf-l(it-1,-1 • 
k=l 

The modal or most probable value of TN 0, found as the solution to the equation 
1 

is approximately log~ (-= log N/ log 2) or 1 more exactly, the sO>lution to the 

equation 

is 

diT(t) diT(t-1) 
. . N,o = rf,e 

dt dt 

mode~ log 

and the median, found as the solution to 

is 1 

median = - log2 (1 - .5N) 
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The relation median < mode < mean obtains fer all N but, as shown by Figure 1, 

as N gets large these three measures ef central tendency become indistinguish-

able. 

It is comforting to note that in accord with the rate of reduction in 

heterozygosity of 50 percent per geperation, the modal number of generations 

required to first achieve homozygosity at half of the N loci1 

is approximately given by 
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Appendix 

Some of the mathematically convenient properties of Mark~v chains which · 

have been employed in this analysis of the selfing series are not mentioned in 

such standard references as Feller's Introduction to Probability Theory, and 

because these techniques have general applicability in the analysis of mating 

systems they perhaps deserve special mention here. These properties concern 

the approach to fixation or, in the terminology of a general Markov chain, the 

probability of absorption into a closed set of states. In a finite chain 

consisting of n different states E1,E2,•••,En a subset C = {Ei1,•••,E~} of 

m s n states is said to be closed if transitions from states in C to states 

outside of C are impossible. The set C is therefore a trap; once the system 

enters C there is no escape, and the system is then said to have been absorbed 

in c. An individual state Ei is absorbing if transition out of Ei is impossible 

or, in other words, if the transition Ei ~ Ei has probability pi~)=l. Such a 

state Ei is also classed as recurrent, since recurrent states are defined as 

those to which ultimate return is certain, and every finite Markov chain in­

cludes at least one recurrent (though not necessarily absorbing) state. The 

remarks here will pertain primarily to the process of absorption into a closed 

set C taken to include all recurrent states. Asterisks will indicate new -

or at least not widely known results. 

If pi~) denotes the conditional probability that the system will be in 

state Ej after t steps, given that it starts in state Ei' then for a Markov 

process the n x n matrix (pi~)} can be computed as {pi~)}t, the tth power of 

the matrix of one-step transition probabilities. The conditional probability, 
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say Fi(t), that the system will be. in the closed set C after t steps, given 

that Ei is the starting state, is therefore 

and the corresponding conditional probability, say fi(t), of reaching C for 

the first time on the tth step is 

(*) 

If C contains all of the recurrent states then Fi(t) is the cumulative 

probability distribution of the random variable Ti representing the number of 

steps required to first reach C from the state Ei; that is, 

(*) 

Such characteristics as the median ( t d) and mode ( t d) of this distribution me mo 

are therefore closely approximated by treating t as a continuous variable and 

solving for t in the equations 

(*) 
d2F i (tmod) = 0 

dt2 

Likewise, the moments of the distribution Fi(t) of time to absorption may be 

computed as 
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CIO CIO 

(*) .e(~}-= Lt7ri(t) ~ L L tr(pi~)- Pi1·l)J 
t=l jjEj€C t=l 

or closely approximated by 

(*) e(~) = J trdFi(t) • 
1 

The method suggested by Feller for computing the probability f i ( t) bas 

been to solve the recursion relations 

fi (t+l) = L pg> fk<t> ; 

ki·Ek£0 

this method has the advantage of not requiring the calculation of the tth power 

of the matrix (p~jl)}. On the other hand1 if {p~~)}t is to be cotqputed for 
1 ~ . 

other purposes then the relation fi(t) = Fi{t) - Fi(t-1) may be employed 

directly without resorting to recursions. 

A rather odd consequence of' the above recurrence relation . is that the ... 

moments of the random variables Ti may be computed as linear functions of the 

one-step transition probabilities pi~)~ without ever computing the probability 

distributions of the Ti. Multiplying both sides the above equation by t and 

then summing over t from 1 to CIO gives 

CIO CIO 

L: tf'i (t+l) = L: pg> 2: tfk<t> 
t=l kiEk€C t=l . 
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where c:o c:o c:o 

I tf1 (t+l) = L (t+l)fi (t+l) - 'L f 1 (t+l) 
t=l t=l t=l 

c:o c:o 

= I tfi(t) - L f 1(t) 
t=l t=l 

Thus, 

(*) 

Similarly, for the second moments, 

so that 

(*) 

c:o c:o c:o 

L: t 2fi (t+l) = 2: ct+l)2 f 1 ct+l) - 2 z: (t+l)f1 (t+l) + l: t 1 (t+l) 
t=l t=l t=l t=l 

e(~) - 2e.(T1 ) + 1 = L P~) e(~) 
ki~€C 

and so on to give, consecutively, as many moments as desired. 

Note that if C partitions into k disjoint closed sets of states, 

c = (c1,c2,••G,~}, then 



where 

and 

(v) 

k 

e(~) = ~ F ij ( CXl )ej {~j I process is ultimately absorbed into c j) 

j=l 

• 

Conditional moments of the time Tij of absorption into Cj may then be computed 

as before but using the definitions · .. · 

CXl 

I tr[F1j(t) ~ F1j(t-l)] = F1j(CXl)ej(~j) • 
t=l 
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