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The ferromagnetic semiconductor EuO, which possesses several record properties 

relevant to devices, has been researched in an attempt to enhance and understand this 

novel material, i.e., raising its Curie temperature (TC) and developing it as a viable 

electronic material, by investigating three distinct research directions for EuO: chemical 

doping via trivalent rare-earth cations, biaxial strain via substrates with varying degrees 

of lattice mismatch, and preservation via application of a well-chosen capping layer.  

 

The use of Lu3+ as a chemical dopant for enhancing the TC of EuO up to 119 K was 

established. The spin-polarization for the Lu-doped EuO thin film was measured to be 

96%, confirming its near-complete spin-polarization. 

 

The effect of biaxial strain on TC for EuO thin films that are commensurately strained to 

the substrate was explored. The use LuAlO3, which imparts an asymmetric tensile strain 

of +0.4% strain and +1.5% strain along the [110] and [110] EuO directions, respectively, 

resulted in the reduction of the TC for commensurate EuO / LuAlO3 thin films of varying 

thicknesses. The strain-dependence was confirmed by comparing the series to an 

identical series grown on the lattice-matched, i.e., unstrained, substrate yttria-stabilized 
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zirconia (YSZ).  

 

Biaxial compressive strain was explored by growing EuO thin films on both single-

crystal diamonds and epitaxial diamond thin films grown on silicon. Diamond is 2.2% 

smaller than EuO, so epitaxial integration of EuO on diamond was attempted in hopes 

of achieving symmetric 2.2% compressive strain. Though the EuO was epitaxial and 

free of extraneous phases and orientations, demonstrating the first instance of a 

ferromagnet epitaxially integrated with diamond, the EuO was not compressively 

strained, and no change in TC was observed. 

 

Finally, the formation of a protective Eu2O3 capping layer by controlled oxidation of the 

surface of EuO in vacuum was studied. The Eu2O3 was effective at preventing the 

degradation of the underlying EuO, as determined by the scanning tunneling electron 

microscopy and electron energy loss spectroscopy analysis. The analysis, in 

conjunction with X-ray diffraction experiments, demonstrated that the oxygen diffusion 

during the capping layer formation is heavily influenced by the presence of defects in 

the film.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 THESIS STATEMENT 

This thesis is on the development of the ferromagnetic semiconductor EuO,1 which 

possesses several remarkable electronic and magnetic properties suitable for device 

applications. For example, it has the largest known metal-to-insulator transition (MIT), 

with a change in resistance of more than 13 orders of magnitude,2 and it has the highest 

spin polarization (>96%)3 of any material that has been directly integrated with 

conventional semiconductors, such as silicon,4 GaAs,5 and GaN.4 

 

Although EuO has been studied for decades because of its intriguing properties, it lacks 

a materials technology base to effectively utilize it as an electronic material and exploit 

its singular properties in emerging device concepts. This thesis is dedicated to 

enhancing and understanding this novel material, i.e., raising its Curie temperature and 

developing it as a viable electronic material, by investigating three distinct research 

directions for EuO: chemical doping via trivalent rare-earth cations, biaxial strain via 

substrates with varying degrees of lattice mismatch, and preservation via application of 

a passivated oxide capping layer.  

 

1.2 EUO BACKGROUND 

EuO combines several interesting phenomena (e.g., ferromagnetism, a metal-to-

insulator transition, and colossal magneto-resistance) in a simple rocksalt cubic 
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structure. So in addition to the interest in device performance, EuO is also an ideal 

system for investigating the fundamental science responsible for the origins of these 

phenomena, and how various stimuli (e.g., strain, electron concentration, temperature) 

affect these phenomena.  

 

This interplay between physical properties and magnetic or electronic properties in EuO 

has been studied extensively since the early 1960’s, but the non-trivial problem of 

synthesizing pure EuO with minimal oxygen vacancies has obscured the intrinsic 

relationship between the structure of EuO and its properties. In the following sections, 

EuO will be described, with specific regards to its crystal structure, magnetism, and 

electronic structure. Then, the primary “knobs” through which the properties of EuO can 

be manipulated will be discussed. And finally, the molecular-beam epitaxy thin film 

deposition technique and the adsorption-controlled growth regime, both of which were 

used to fabricate all of the EuO films in this thesis, will be described. This will provide 

 
Figure 1-1: Ball-and-stick model of the EuO unit cell, illustrating that both the Eu2+ 
(blue) and O2- (red) are in 6-fold coordination. 
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sufficient understanding of the problems and goals governing research in EuO, giving 

perspective to the achievements realized in the body of this thesis.  

 

1.2.1 STRUCTURE 

The structure of EuO is that of the classic NaCl rocksalt crystal structure (Fm3m) as 

shown in Figure 1-1. The system is cubic, and the (001) plane of EuO is composed of 

alternating atoms, (i.e., Eu2+ – O2- – Eu2+ – O2-), giving both cations and anions 6-fold 

coordination. 

 
An experimentally-derived phase diagram is shown in Figure 1-2. At high temperature 

(T > 1300 ºC), stoichiometric EuO does not exist, because thermodynamically-driven 

europium vacancies shift the stoichiometry to oxygen-rich EuO. At lower temperatures, 

 
Figure 1-2: Experimentally-derived phase diagram for the Eu-O system. (Reprinted with 
permission from Shafer et al.)6 
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the structure is tolerant of 1-3% excess oxygen6,7 before forming Eu3O4 or Eu2O3. As 

the temperature continues to drop, the structure becomes increasingly tolerant of 

excess europium, up to between 0.2% and 2% as estimated from bulk chemical and 

electronic measurements.6 Above this concentration, europium metal forms as a 

precipitate.  

 

EuO demonstrates a high degree of solubility with other rocksalt materials, e.g., SrO 

(Refs. 8,9) or BaO (Ref. 10). It can also easily accommodate replacement of the Eu2+ 

cation  with trivalent cations, such as La3+ (Refs. 4,11,12) or Gd3+.11,13–19 It has been 

demonstrated that the trivalent cation, for example, Gd-doped EuO, can exceed 16% 

with no indication of insolubility.20,21 The lattice constant decreases linearly with the 

addition of smaller cations and increases linearly with the addition of larger cations.10,16 

 

In addition to Eu2+, europium can exist as a metal (in vacuum or under highly reducing 

conditions), or it can further ionize to Eu3+. Both europium metal and Eu2+ are easily 

oxidized to the more stable Eu3+ in the presence of oxygen or water (i.e., atmosphere). 

As shown in Figure 1-3, europium in the presence of oxygen forms EuO, Eu3O4, or 

Eu2O3 based on the activity of oxygen.22 Europium can also be hydroxylized by water to 

form Eu(OH)3.23 In fact, forming the EuO compound – that is, without reducing europium 

to metal or oxidizing it to Eu2O3 – was so challenging that it remained undiscovered until 

the 1954,24 where it was first discovered in solution. It was not until 1956 before EuO 

was isolated.25 The instability of EuO arising from the reactivity of the Eu2+ is one of the 

key challenges that ought to be addressed for effective utilization in any practical sense. 
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Bulk EuO is passivated to an extent by the formation of Eu2O3 on the surface, but the 

passivation is poor and the EuO crystal will degrade over time. Thin film EuO, on the 

other hand, reacts immediately and completely as a result of how thin it is. Techniques 

have been employed to overcome this issue, such as depositing a protective “buffer” 

layer on top of the EuO, e.g., amorphous silicon,4,20,26 aluminum,27–29 Al2O3, 4,30 or by 

sacrificing the top layers of EuO to Eu2O3 in a controlled partial vacuum 

environment.13,31–34  

 

As a result of the surface oxidation in bulk EuO and the necessary buffer layers in thin 

film EuO, surface probe techniques, e.g., atomic force microscopy, scanning electron 

 
Figure 1-3: Diagram depicting the stability of various EuxOy phases as a function of 
oxygen fugacity and temperature. (Reprinted with permission from McCarthy) 22 
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microscopy, or photoemission spectroscopy, are nearly impossible for ex situ 

measurement. In bulk EuO, these techniques may be possible immediately after 

polishing the surface to remove the Eu2O3. In thin film EuO, these techniques are 

possibly only by confining the films to high vacuum until the analysis is complete.35,36 

Even under ultra-high vauum, the EuO surface is oxidized in a matter of hours.36 

 

1.2.2 MAGNETISM 

The magnetism of EuO is rooted in the exchange interactions between the 4f electrons 

of the Eu2+ cation. EuO is magnetic when the electron spins from these electrons are 

aligned with respect to one another. Bulk EuO is most easily magnetized in the <111> 

directions as a result of the structure of EuO and the magnetic anisotropy constants of 

EuO,37 whereas in thin films, shape anisotropy dictates that the easy axis lies in the 

plane of the film regardless of the magnetic anisotropy.38 Given that Eu2+ has 7 4f 

electrons, i.e., 7 half-filled f orbitals, the maximum saturation magnetism for EuO is 7 µB 

per Eu cation, which has been experimentally verified many times.1,4,28,39 Experiments 

have implied that the saturation magnetization depends heavily on the sample 

quality,4,27,39 possibly as a result of an abundance of defects present in low-quality 

samples.  

 

The magnetic exchange interactions in magnetic systems like EuO can be categorized 

as direct, superexchange, and indirect virtual exchange. Direct exchange is the effect 

that one magnetic moment, i.e., one centered at a Eu2+ cation in EuO, has on another 

magnetic moment. Indirect exchange is, likewise, the effect of one magnetic moment on 
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another, but this effect is facilitated by an intermediary particle (that does not have to be 

magnetic). In the case of superexchange, a magnetic moment interacts with another (its 

next-nearest neighbor) via the nearest neighbor, such as the classic Kramers-Anderson 

mechanism involving two Mn2+ cations and a neighboring O2- anion.40 In the case of 

indirect virtual exchange, a magnetic moment interacts with another (its nearest 

neighbor) via a virtual transfer involving intermediary orbitals, i.e., from the 4f orbital to a 

5d orbital to 4f orbital on another cation.41 

 

Direct exchange in EuO between neighboring 4f orbitals is minimal; the far more 

important interactions arise from superexchange and indirect virtual exchange. 

Superexchange in EuO utilizes an intermediary oxygen 2p orbital (primarily in the 180º-

orientation given its rocksalt structure) to share spin state between neighboring Eu 4f 

electrons. Superexchange in EuO occurs via 3 mechanisms: first, the classic Kramers-

Anderson mechanism; second, a more complex mechanism involving the 4f – 5d 

exchange interaction; and third, a cross term between the first two mechanisms.42 

Although superexchange tends to antiferromagnetic coupling (such as in the case of 

EuS, EuSe, and EuTe), the special blend of atomic spacing and interactions between 

the O 2p and Eu 4f, 5d, and 6s orbitals in EuO favors ferromagnetic coupling.42,43 

Superexchange interactions, however, account for only ~25% of the exchange energy in 

EuO (JSuperexchange = 1.2×10−6 eV).43,44  

 

Indirect virtual exchange in EuO is responsible for most of the exchange energy 

(JVirtual exchange = 3.5×10-5 eV),44 and arises from interactions involving the 4f and 5d or 6s 
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orbitals. In this case, a 4f electron is virtually excited to a 5d or 6s orbital, and then 

interacts with the neighboring 4f electron.42  

 

A system is ferromagnetic only when the energy saved by aligning the electron spins 

(magnetic exchange energy) surpasses the entropic energy cost of aligning the spins 

(thermal energy). In stoichiometric EuO, these terms are equal at 69 K. Below this 

temperature, called the Curie temperature (TC), is the onset of magnetization, and EuO 

is ferromagnetic. Above this temperature, the electron spins are randomly oriented, and 

EuO is paramagnetic. 

 
Figure 1-4: Representation of the overlap of orbitals in neighboring atoms in EuO and 
EuS. (Reprinted with permission from T. Kasuya, IBM J. Res. Dev. 14, 214-223 
(1970).42 
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Stronger interactions result in higher magnetic exchange energy, meaning that by 

enhancing the magnetic exchange energy, one can raise the TC above its intrinsic 

value. The interaction strength of a material is determined in part by the overlap of the 

electron orbitals and is visualized in Figure 1-4 for the particular case of EuO and its 

homostructural chalcogenide neighbor, EuS.42 Therefore, understanding how to 

manipulate the interaction of the orbitals in EuO is critical for increasing the TC to a 

more practical level.  

 

1.2.3 ELECTRONIC PROPERTIES 

Stoichiometric EuO is a semiconductor with a band gap of 1.12 eV at room 

temperature.45 The Fermi level sits between the valence band (formed by the Eu 4f 

 
Figure 1-5: Resistance as a function of temperature for an EuO1-x thin film sample with 
no applied field, 4 T, and 8 T. (Reprinted with permission from Schmehl et al.)3 
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states) and the conduction band (formed by the Eu 5d and 6s states).46 In the electron-

rich state, however, EuO exhibits a metal-to-insulator transition (MIT) spanning up to 

13 orders of magnitude in bulk2 or up to 8 orders of magnitude in thin films as pictured 

in Figure 1-5.4 Figure 1-5 also illustrates the colossal magnetoresistance (CMR) of up to 

6 orders of magnitude in bulk47 or up to 5 orders of magnitude in thin films.4 The 

incredible change in resistivity, both as a function of temperature and as a function of 

magnetic field is simply unparalleled by any other known system.  

 

The cause of the MIT and CMR is the ferromagnetic transition in EuO. When EuO 

becomes ferromagnetic, the conduction band splits by 0.6 eV (Ref. 48) into a low-

energy electron spin-aligned band and a high-energy electron spin anti-aligned band.49 

Any additional electrons that were previously trapped in a donor state in the band gap, 

as depicted in Figure 1-6, now flow into the conduction band. Therefore, electron-rich 

EuO is insulating in the paramagnetic state and conducting in the ferromagnetic state. 

As the number of electrons increases, the resistivity drops in both the ferromagnetic and 

paramagnetic states.20 The decrease in resistivity in the ferromagnetic state is simply 

due to charge carriers in the conduction band, like any metal. The limited conductivity in 

the paramagnetic state is mediated by a thermally-activated hopping mechanism, and a 

greater density of electrons in the trap states further increases the conductivity, i.e., 

decreases the resistivity. In 2002, empirical evidence suggested that, due to the band-

splitting, electrons in the conduction band are nearly completely spin polarized.48 

Experiments have since proven that EuO has a spin-polarization of at least 96%,3 giving 

it the second highest spin-polarization of all known materials after CrO2.50  
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1.2.4 EFFECT OF DOPING  

Electron-rich EuO was first deliberately manufactured in 1968 by doping with RES, Eu, 

and RE2O3,11 where RE were rare-earth elements, paving the way for future 

experiments. Over the next 40 years, EuO has become electron-rich in a multitude of 

ways, but generally in one of two ways. Electron-rich EuO is made either by deliberate 

Eu-rich off-stoichiometry (i.e., EuO1-x)6,52–54 or by doping with trivalent 

cations.4,12,19,20,51,55–58 Several trivalent cations have been used to dope EuO, such as 

Ag3+,56 Ce3+,58 Cu3+,56 Fe3+,56,59,60 Gd3+,11,14–20,61 Ho3+,11 La3+,4,11,12 and Y3+.11  

 
Figure 1-6: Diagram of the density of states in EuO above (top left) and below (top 
right) the ferromagnetic transition temperature, and a diagram of the conduction band 
splitting as a function of temperature (bottom). The energy  level of an unspecified 
dopant is also illustrated “flowing” into the conduction band below the TC. (Reprinted 
with permission from Mairoser et al.) 51 
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In the case of Eu-rich EuO, oxygen vacancies are created to accommodate the excess 

electrons of the Eu, with each oxygen vacancy containing two electrons. One electron 

has been assumed to exist as a shallow donor, and the other to be held in a deeply 

trapped state.62 In the case of trivalent cations, the single excess electron has been 

assumed to exist as a shallow donor.63 These shallow donor electrons’ spins can align 

with the neighboring 4f electrons, increasing the overall magnetic exchange energy in 

EuO.63 As a result, the TC of electron-rich EuO is enhanced. Experimentally, the TC was 

enhanced up to 200 K in several reports,12,15 but as shown in Figure 1−7, results in the 

literature are erratic regarding, first, how many excess electrons are necessary to 

achieve the maximum TC enhancement, and second, how much the TC can be 

enhanced.  

 
Figure 1-7: Collection of several reports of an increased TC resulting from doped EuO, 
arranged by nominal dopant concentration and reported TC. 4,11,14,16,17,54,56,57,59–61,64–66 
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In many cases, the difficulty arises from simply not knowing the true electron 

concentration in the sample, either from an unknown amount of oxygen vacancies 

inherent in many growth modes or by poor control over the doping level. Furthermore, 

precise knowledge of the number of dopant atoms does not imply precise knowledge of 

the number of extra electrons. In 2010, the number of electrons in the conduction band 

of electron-rich EuO was far fewer than the highly controlled dopant concentration.20 

The percentage of dopants, dubbed the dopant activation, that contribute electrons to 

the conduction band of EuO (instead of some unknown trap state) is at most 30%.20  

 

The experiment hinged upon the definitive knowledge that only trivalent cations 

contributed electrons into the system, which could only be accomplished by fabricating 

the EuO films in an adsorption-controlled growth regime that minimized oxygen 

vacancies. The adsorption-controlled growth regime is discussed in a later section of 

this thesis. 

 

Further work probing the band structure of Gd-doped EuO observed electrons located 

at a defect level below the Fermi surface at the Γ-point of the Brillouin zone in the 

paramagnetic state.36 In the ferromagnetic state, many, but not all, of these electrons 

migrated to the conduction band at the X-point of the Brillouin zone as illustrated in 

Figure 1-8. The mobile electrons corresponded to the shallow donors introduced by the 

Gd-doping that enter the conduction band upon cooling to the ferromagnetic state. The 

immobile electrons that remain trapped in a deeper energy level at the Γ-point, called 

deeply bound states, may be the same as the “inactive” dopants described above.36 
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1.2.5 EFFECT OF STRAIN 

As mentioned in Section 1.2.2, the strength of the orbitals’ exchange interaction is 

determined in part by how much the orbitals overlap. It stands to reason, then, that 

forcing orbitals closer to each other should enhance the exchange interaction, and thus, 

enhance the TC). 

 

One common method to bring orbitals closer is to contract the lattice, e.g., apply high 

pressure to the system. This method has been investigated thoroughly in EuO. Early 

experiments on EuO single crystals demonstrated that hydrostatic pressure increased 

the TC up to  125 K at 10 GPa (Ref. 67) and 200 K at 14 GPa (Ref. 68) before EuO 

undergoes a high-pressure transition to a mixed valence state.  

 

 
Figure 1-8: Diagram of the band structure of EuO in both (a) the ferromagnetic state 
and (b) the paramagnetic state. The blue region in both states depicts the trapped 
"deeply bound states", whereas the shallow donors travel from the conduction band at 
the X-point in the ferromagnetic state (red) to the Γ-point in the paramagnetic state 
(yellow). (Reprinted with permission from Shai et al.)36 
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In 2008, Ingle and Elfimov predicted that a similar but lesser TC enhancement would 

occur as a result of biaxial compressive strain, i.e., from a commensurate EuO thin film 

with the exact in-plane lattice spacing of its slightly smaller substrate.43 The reduced 

enhancement arises from the unconstrained out-of-plane lattice parameter of EuO, 

which increases due to a Poisson effect to roughly conserve volume. Ingle and Elfimov 

further predicted that forcing orbitals apart, e.g., biaxial tensile strain, would reduce the 

TC of EuO.43  

 

Prior to this thesis, EuO had been grown commensurately on YAlO3, which imparts a 

2% tensile strain on EuO, but no reduction in the TC was reported.39 A report of a 1.5 

nm EuO grown on LaAlO3 reported a reduction of the TC to 45 K,69 but this could be 

explained by the reduced magnetism in ultrathin EuO films.29,70,71 

 

1.3 MOLECULAR-BEAM EPITAXY 

Molecular-beam epitaxy (MBE) is a thin film deposition technique employed under ultra-

high vacuum (UHV), where high purity materials are evaporated from effusion cells and 

travel as a “molecular beam,” collision-free, to a heated substrate. The molecular beam 

description, where most molecules travel unobstructed in a line-of-sight path from the 

effusion cell to the substrate, is valid when the mean-free path of gas molecules in the 

system is much greater than the distance the molecules are traveling. A typical travel 

distance for MBE is on the order of one meter, while the mean-free path at a typical 

UHV pressure (~10-9 Torr), is ~105 m. A diagram of a Veeco 930 MBE chamber is 

provided in Figure 1-9.72 
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The  Veeco 930 and Veeco Gen10 MBE systems were used in this thesis, and had 

been carefully designed for reactive oxide thin film growth, referring to the reaction of 

oxygen and metal at the surface of the substrate in order to form the oxide phase from 

its constituent materials. 

 

Crucibles containing the elemental source material are housed within the effusion cells 

(see Figure 1-9) and are heated to a precise temperature (±0.1 ºC). The temperature of 

the material dictates the vapor pressure – and therefore flux – of that particular source 

material. The selection of elemental sources is limited only by the ability to heat a 

 
Figure 1-9: Schematic of a Veeco 930 molecular-beam epitaxy system, highlighting the 
relevant features for thin film growth. (Reprinted with permission from Schlom et al.)72 
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material enough to provide a suitably high flux. That is, the flux must be sufficiently high 

such that the adsorption of source molecules must vastly outnumber the adsorption of 

gas molecules from the vacuum. For example, a flux of ~1×1013 atoms / cm2×s can 

deposit a monolayer in about 30 seconds, while a vacuum pressure of ~1×10-9 Torr will 

deposit a monolayer in about 30 minutes. Compound sources are typically not used, 

since most do not evaporate congruently, creating concerns regarding the exact 

composition of the flux species.72 The geometric consideration of the placement of the 

effusion cells relative to the substrate allow for multiple molecular beams to impinge 

upon the substrate simultaneously. The substrate can be fixed to deliberately create a 

stoichiometry gradient across the substrate,73 or the substrate can be rotated during 

deposition to ensure the same stoichiometry at all points on the substrate. 

 

An oxygen (or ozone) source is used in addition to elemental sources, and is introduced 

into the vacuum system by means of a piezoelectric leak valve. The background 

vacuum pressure is ~10-9 Torr, and the oxygen partial pressure should not surpass 

~10−4 Torr, where the “molecular-beam” fails as the mean-free path diminishes.72 In the 

Gen10 MBE chamber, the oxygen flux can be pointed directly at the substrate from a 

distance of 3.8 inches, increasing the local oxygen concentration (and gradient) at the 

substrate compared to the overall vacuum pressure, or the oxygen flux can be deflected 

at the nozzle to create a more homogenous distribution of oxygen atoms at the 

substrate surface. The oxygen partial pressure is controlled by monitoring the chamber 

pressure, which is a suitable assumption for when oxygen comprises >99% of the 

gaseous species in the vacuum. When lower pressure is desired, the oxygen partial 
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pressure is indirectly controlled by controlling the voltage to the piezoelectric leak valve 

or by controlling the oxygen pressure as it enters the piezoelectric leak valve.  

 

Pneumatically controlled shutters can be inserted between each effusion cell and the 

substrate. Since the molecular beams travel in line-of-sight paths, these shutters, when 

extended, can completely block the beam. So even though multiple effusion cells are 

directing their molecular beams at the substrate, deposition occurs only from the 

effusion cells whose corresponding shutters are open. As a result, one may keep all 

source materials at the desired temperature – and therefore, flux – instead of heating 

and cooling a material every time it is used. Furthermore, changes in composition can 

be controlled instantly (that is, limited by the speed of the shutter as the velocities of the 

molecules in the molecular beam are ~104 m/s). Modulation doping, composition 

control, and multi-layered heterostructures can be accomplished simply by “shuttering” 

open and close the shutters to the relevant source materials. Another layer of control is 

established by choosing the order of the shutters opening and closing. For example, 

growth involving multiple molecular beams can be accomplished either by having all 

shutters open simultaneously (co-deposition) or by opening and closing the shutters 

sequentially. Sequential growths are particularly useful for layered structures (e.g., 

superlattices, Ruddlesden-Popper phases, high TC cuprates, etc.). 

 

The flux is quantified with the use of a quartz-crystal microbalance (QCM) that is 

positioned in front of the substrate in order to provide the most accurate flux 

measurement. The quartz crystal resonates at a different frequency as atoms collect on 
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its surface and add to the mass of the crystal, and this change in frequency over time is 

used to calculate the mass accumulation rate,74 which can then be converted to a flux 

given the density and molecular weight of a material. To balance the speed of growth 

with source material depletion, the flux is typically in the range of ~1-3×1013 atoms / 

cm2×s. The growth rate, then, is approximately one monolayer per minute.  

 

Reflection high-energy electron diffraction (RHEED) is a tool commonly found in MBE 

systems, and it allows for in situ observation of the film surface during growth. An 

electron beam is directed at a variably shallow angle at the substrate, and the diffracted 

beam is collected at a phosphor screen on the opposite side, as depicted in Figure 1-9. 

The angle is sufficiently shallow that only the first few monolayers are probed by the 

RHEED.75 As such, RHEED is acutely responsive to changes in the surface of the thin 

film, conferring a huge amount of information to the viewer. RHEED patterns can be 

used to distinguish the epitaxial quality of a thin film, whether single-crystalline, 

polycrystalline, or amorphous.75 They can also be used to identify the structure and 

crystallographic orientation of a film.75 RHEED patterns can be used to identify the 

morphology and growth mode of a film.75 RHEED patterns can also be used to monitor 

the adsorption of a single monolayer, giving strict control over the thickness and 

signaling when to shutter the sources for abrupt heterostructure changes.76 This is 

especially true given the relatively slow growth rate, since users have nearly a full 

minute per monolayer to react and respond to the incoming information. 

 

MBE is the most sophisticated growth technique for thin films by virtue of the many 
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technologies that work in tandem. The precise flux control of the source materials, the 

relatively slow growth rate, the clean UHV environment, and the ability to monitor and 

react to the film in real time are the key ingredients that directly generate the 

unparalleled control in composition, stoichiometry, and doping along the growth 

direction. 

 

1.4 ADSORPTION-CONTROLLED GROWTH 

Simply having the machinery to create precisely controlled compositions is insufficient. 

An understanding of the kinetics and surface morphology at the substrate surface is 

critical in controlling the composition. This is especially true in systems composed of 

multiple elements, e.g., GaAs,77 PbTiO3,78 and Eu1-xGdxO,20 because each element has 

a unique sticking coefficient, vapor pressure, and reactivity.  

 

In systems where one component has a high vapor pressure in a certain “growth 

window”,79 adsorption-controlled growth can be employed. In an adsorption-controlled 

growth regime, the volatile, high vapor pressure component is provided in excess, and 

the non-volatile components limits the reaction on the substrate. The excessive volatile 

component desorbs. The key is finding and identifying suitable materials systems and 

the specific growth window for these systems.  

 

The advantages of the adsorption-controlled growth technique are the ease with which 

these films are grown, the high fidelity in stoichiometry, and the high quality. The 

disadvantage of the adsorption-controlled growth technique is that this regime is 
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typically only possible for materials containing a constituent having a high vapor 

pressure. Hardware limitations, such as maximum substrate temperatures or minimum 

partial pressures, preclude this technique from more widespread use.  

 

The concept of an adsorption-controlled growth regime was first applied in 1958 to 

polycrystalline GaAs80 and later applied to the growth of epitaxial GaAs in UHV 

conditions.77 GaAs is grown in excess As2 or As4 gas using gallium to limit the reaction. 

Excess As2 or As4 gas desorbs. Insufficient temperature, however, reduces the vapor 

pressure of arsenic enough to nucleate arsenic on the substrate.77 In 1998, the concept 

of adsorption-controlled growth was expanded for the growth of PbTiO3.78 In the case of 

PbTiO3, excess lead flux and oxygen gas are utilized, and titanium limits the growth of 

PbTiO3. Lead first reacts with oxygen at the substrate surface to form PbO. If titanium is 

available and reacts with oxygen to form TiO2, then PbO reacts with it to form PbTiO3. 

Excess PbO desorbs. Here, an intermediary product becomes the desorbing material. 

Insufficient O2 partial pressure, however, fails to oxidize the lead, so only TiO2 remains 

on the substrate, as the lead will also desorb. 

 

In the case of EuO, it would seem that the volatility of EuO in excess oxygen precludes 

such a technique. In previous MBE growth of EuO, great care was taken to balance the 

oxygen flux with the europium flux – so called “flux-matched” growth – yet precise 

stoichiometry control remained difficult. A local or temporary abundance of oxygen 

results in regions of Eu2O3 or Eu3O4. Likewise, a local or temporary dearth of oxygen 

results in regions of europium metal or EuO1-x. The formation of EuO1-x is particularly 
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problematic because it is a source of electron-doping oxygen vacancies, whose quantity 

is difficult to measure or reliably reproduce.  

 

The adsorption-controlled growth regime in EuO was first utilized in 2002, when 

Steeneken witnessed the lack of a MIT in EuO thin films as growth temperature was 

increased.81 In the case of EuO, the desorbing species are europium metal and oxygen. 

Only the oxide products remain on the substrate, since they have a much lower vapor 

pressure compared to the metal (e.g., PEuO = 10-10 Torr at 550 ºC and PEu = 10-3 Torr at 

550 ºC). This was not acknowledged as an adsorption-controlled growth, however, until 

2006, when Ott employed the technique to control the stoichiometry,18 and 2008, when 

Ulbricht proved that it was adsorption-controlled by demonstrating the dependence of 

EuO growth rate on the oxygen partial pressure when applying an overabundance of 

europium.39  

 

In the adsorption-controlled growth regime for EuO, when the oxygen flux limits the 

growth of EuO, unreacted europium atoms simply desorb from the surface instead of 

being incorporated into the EuO lattice and being accompanied by oxygen vacancies. 

Furthermore, if the europium flux is set much larger than the oxygen flux, then the 

formation of Eu2O3 is also precluded since the local oxygen fugacity is too low (refer to 

Figure 1-3). Thus, the adsorption-controlled growth regime enabled scientists to grow 

high-quality EuO for the first time as shown in Figure 1-10, which directly compares the 

rocking curve of an EuO thin film grown in the adsorption-controlled growth regime to a 

rocking curve of an EuO thin film grown using flux-matched conditions. 
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The advancement of EuO deposition science allowed for more sensitive probes into the 

physics underpinning EuO, since they simply were not possible with prior defect-laden 

EuO1-x thin films. The oxygen vacancies or local inclusions of europium metal or Eu2O3 

that plagued EuO since its discovery in the 1950’s are no longer a concern. Since then, 

numerous studies have led to a greater understanding of EuO.20,26,36,51 

 

1.5 CONTRIBUTION OF THE AUTHOR 

The remaining chapters of this dissertation consist of articles submitted to or published 

in refereed journals. The author’s role in these works was the fabrication of the EuO thin 

films using reactive oxide MBE; the structural characterization of said films via X-ray 

 
Figure 1-10: Rocking curve comparison between an EuO film grown in an adsorption-
controlled growth regime (blue) and an EuO film grown under flux-matched conditions 
(red). (Adapted with permission from Schmehl et al.)4 
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diffraction and atomic force microscopy; the magnetic characterization using a 

superconducting quantum interference device (SQUID) magnetometer; and, the 

electronic characterization by patterning contacts and test structures onto the films and 

then characterizing the films using a Keithley 2400 SourceMeter. For some films, the 

magnetic and electronic characterization was performed by Drs. Andreas Schmehl and 

Thomas Mairoser, collaborators from the University of Augsburg in Germany. 

 

1.6 ARRANGEMENT OF MATERIAL 

This dissertation describes the investigation of the properties of EuO when doped with 

trivalent rare-earth cations (Chapter 2) or biaxially strained by the substrate (Chapters 

3-4), and also the investigation of the application and efficiency of an Eu2O3 capping 

layer for EuO (Chapter 5).  

 

The specific arrangement of the contents are as follows:  

 

Chapter 2: This chapter describes the use of Lu3+
 as a novel dopant cation 

for EuO. It characterizes the effects of this dopant on the magnetic and 

electronic properties of EuO, and compares them to the effects caused by 

the La3+ and Gd3+ dopants commonly used in EuO literature. Finally, the 

spin-polarization of Lu-doped EuO is demonstrated to be >96%, the largest 

spin-polarization value for EuO ever reported. 

 

Chapter 3: This chapter describes the use of a novel substrate, LuAlO3, as 
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a template for EuO, which, due to the lattice mismatch, imparts a +1% 

biaxial tensile strain on EuO. The critical thickness for EuO films grown on 

LuAlO3 was established to be 69 nm. The effect of strain was extracted by 

growing a thickness series of identical EuO films on both yttria-stabilized 

zirconia (YSZ), which is lattice-matched to EuO and imparts no strain, and 

LuAlO3. The reduction in TC for EuO thin films under biaxial tensile strain 

was demonstrated, matching theoretical predictions. 

 

Chapter 4: This chapter describes the growth of epitaxial EuO on diamond 

substrates. Although these films could not be commensurately grown on 

EuO, and therefore did not show an enhanced TC, they represent the first 

integration of a ferromagnet with diamond, and they also pave the way for 

future epitaxial oxide growth on diamond.  The optimal growth conditions 

are established and compared for EuO grown on both diamond films on 

silicon and on single-crystal diamonds. Although the epitaxy is confirmed, 

the structural quality is reduced compared to EuO films grown on oxide 

substrates. So while the EuO thin films on diamond are still ferromagnetic 

with a TC of 69 K, the saturation magnetization is also reduced as compared 

to higher quality EuO thin films. 

 

Chapter 5: This chapter describes the application of a passivated Eu2O3 

capping layer for EuO by oxidizing the topmost EuO layers. The Eu2O3 

capping layer was performed for both commensurate and incommensurate 
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thin films grown on YAlO3, and the oxygen was found to diffuse further into 

the incommensurate sample. The effectiveness of the incommensurate 

capping layer was analyzed with scanning tunneling electron microscopy 

(STEM) and electron energy loss spectroscopy (EELS) to structurally and 

chemically confirm the presence of Eu2O3 at only the surface of EuO. Small 

amounts of Eu2O3 were seen at the interface between EuO and the 

substrate in the incommensurate sample, and were attributed either to an 

anomalous growth feature or enhanced oxygen diffusion down stress-

related defect channels, which could also have been responsible for the 

deeper penetration of oxygen during the capping process compared to the 

commensurate film. Magnetic characterization of both the commensurate 

and incommensurate films presented no significant differences, and both 

thin films had magnetic properties that were similar to other high-quality 

EuO thin films. 

 

Chapter 6: This chapter summarizes the accomplishments of the Chapters 2-5, 

highlighting the major achievements. It also considers directions for future work in 

the EuO system, based on the results of this thesis. 
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CHAPTER 2 

LUTETIUM-DOPED EUO FILMS GROWN BY MOLECULAR-BEAM EPITAXY 
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The effect of lutetium doping on the structural, electronic, and magnetic properties of 

epitaxial EuO thin films grown by reactive molecular-beam epitaxy is experimentally 

investigated. The behavior of Lu-doped EuO is contrasted with doping by lanthanum 

and gadolinium. All three dopants are found to behave similarly despite differences in 
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electronic configuration and ionic size. Andreev reflection measurements on Lu-doped 

EuO reveal a spin-polarization of 96% in the conduction band, despite non-magnetic 

carriers introduced by 5% lutetium doping.   
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The ferromagnetic half-metal europium oxide (EuO) has potential for spin-based 

devices like spin-injectors based on its >90% spin-polarization1 or optical devices based 

on its giant magneto-optic Kerr effect2 and a Faraday rotation of 8.5×105 deg/cm in a 

field of 2 T.3 Its low Curie temperature (TC = 69 K),4 however, impedes the incorporation 

of EuO into devices.  

 

The TC of EuO can be increased by doping it with electrons. The interaction between 

the Eu f-electrons and the dopant electrons enhances the ferromagnetic exchange 

energy4,5 and results in an increased TC. To date this has been accomplished through 

the use of trivalent cations including iron,6–8 lanthanum,1,9,10 gadolinium,11–17 and 

holmium.9 Alternatively the TC can be increased by deliberately making oxygen-deficient 

EuO such that the resulting oxygen vacancies donate an electron.6,18–22 In the cation-

doped EuO films an unknown and uncontrolled concentration of oxygen vacancies is 

often included, which may be responsible for the disparate results for the dependence 

of TC on cation doping. For example, in films doped with gadolinium, the maximum 

reported TC varies between 120 K (Ref. 15) and 170 K.14 Films doped with lanthanum 

have a maximum reported TC between 118 K (Ref. 1) and 200 K.10 Likewise, for films 

doped with iron, the reported TC varies between 88 K and 200 K.6,7 For Gd-doped films 

grown in an adsorption-controlled regime, however, the Curie temperatures are 

consistent and similar,15,16 conceivably due to a minimized amount of oxygen vacancies 

realized in this particular growth regime.23 In this Letter we report the behavior of an 

unexplored dopant for EuO, lutetium, which enhances the TC in epitaxial films grown in 

an adsorption-controlled regime. We contrast the magnetic and electronic properties of 
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EuO doped with lanthanum, gadolinium, and lutetium when grown under identical 

adsorption-controlled growth conditions.  

 

Doped EuO thin films were grown directly on (110) YAlO3 substrates via reactive oxide 

molecular-beam epitaxy (Veeco 930 and Gen10) in an adsorption-controlled growth 

regime at a substrate temperature of 350°C to ensure high crystalline quality and 

stoichiometric films.17,23 Pure oxygen gas was introduced during growth to a background 

oxygen partial pressure of 1×10-9 Torr above the base pressure of the vacuum system. 

In the adsorption-controlled regime, the oxygen flux limits the EuO growth rate if the 

incident flux of europium metal is greater than the effective oxygen flux. The adsorption-

controlled growth regime and the growth rate of EuO were determined by measuring the 

areal density of Eu atoms in calibration EuO samples using Rutherford backscattering 

spectrometry (RBS).23 Each film was nominally 35 nm thick, but the uncertainty in the 

exact oxygen flux during each growth corresponds to roughly 10% variability in the EuO 

growth rate and therefore the thickness. Europium and the dopant were codeposited 

from separate effusion cells. Prior to growth, the europium flux was calibrated using a 

quartz crystal microbalance (QCM) to a flux of 1.1×1014 atoms/ (cm2�s). This flux was 

100% higher than the rate at which europium was incorporated into the EuO film. The 

lanthanum, gadolinium, and lutetium fluxes were calibrated by a QCM to correspond to 

4% doping of the EuO for the films characterized by in situ X-ray photoelectron 

spectroscopy (XPS) measurements and 5% for the films characterized ex situ.  

 

Several films were transferred under ultra-high vacuum immediately after growth into an 
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analysis chamber for XPS characterization using Mg Kα radiation (1253.6 eV). The 

remaining films were capped with 20 nm of amorphous silicon to protect the films from 

further oxidation during their ex situ characterization. Structural characterization was 

performed using four-circle X-ray diffraction (XRD) utilizing Cu Kα radiation. The TC was 

determined using superconducting quantum-interference-device (SQUID) 

magnetometry. The films were measured in zero field after applying a demagnetization 

routine at 300 K to minimize the spurious magnetic fields originating from parts of the 

SQUID.16 At this temperature the EuO is in the paramagnetic state without oriented 

ferromagnetic domains. Bridges were patterned into the doped EuO films using 

photolithography in combination with in situ ion etching and sputter deposition.16 Bridges 

1 mm × 0.1 mm in size were used for four-point resistivity measurements from 4 K to 

300 K and Hall measurements at 4 K, and bridges 50 µm × 250 µm in size were used 

across a ramp-type junction between superconducting niobium and metallic Lu-doped 

EuO for differential four-point conductivity measurements for Andreev reflection from 

1.8 K to 12 K. 

 

The effect of the three dopants on the crystallinity of the epitaxial doped EuO films was 

assessed by XRD. Figure 2-1 shows the θ-2θ XRD patterns of typical EuO films doped 

with 5% lanthanum, gadolinium, or lutetium. All samples exhibit only 00ℓ𝓁 EuO peaks in 

addition to the substrate peaks. XRD rocking curves show the full width at half 

maximum (FWHM) of the EuO 002 peaks to be 0.16 ± 0.01° for all samples. These data 

indicate that the doped EuO samples are structurally indistinguishable by XRD. 
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SQUID magnetometry reveals the TC of the 5% doped films to be similar. La-doped 

EuO has TC = 116 K; Gd-doped EuO has TC = 122 K; and Lu-doped EuO has 

TC = 119 K as seen in Figure 2-2(a). The observed kink in the Lu-doped EuO (and to a 

lesser extent, the La-doped EuO) could be consistent with clustering of dopants in the 

film.10 The temperature dependence of the resistivity for the same samples is shown in 

Figure 2-2(b). Hall measurements for these samples reveal that Gd-doped EuO has the 

highest carrier concentration with n = 5 × 1020 cm-3 followed by both the La- and the Lu-

doped EuO with carrier concentrations of n = 2.1 × 1020 cm-3 and n = 1.8 × 1020 cm-3, 

respectively. The difference in TC and carrier concentration is within the accuracy of our 

doping level control, the accuracy of the film thickness, and the strong dependence of 

dopant activation on substrate temperature.1 

 
Figure 2-1: θ-2θ scans comparing epitaxial EuO films with 5% lanthanum-doping (blue), 
5% gadolinium-doping (green), and 5% lutetium-doping (red). All three films are phase-
pure with no indication of dopant insolubility. The curves are offset for clarity and the 
substrate peaks are marked with asterisks. 
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Figure 2-2: (a) Normalized magnetization as a function of temperature of the same 
three samples studied in Figure 2-1. All three dopants increase the TC to approximately 
the same value at 5% doping concentration. (b) Resistivity as a function of temperature 
for the same three samples. Doped EuO exhibits reduced resistivity and a reduced 
metal-to-insulator transition compared to undoped EuO. The change in resistivity is 
comparable regardless of dopant choice. 
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XAS was used to verify the 3+ oxidation state of the gadolinium in the Gd-doped EuO 

films17 and XPS was used to verify the 3+ oxidation state of the lanthanum and lutetium 

in the La- and Lu-doped EuO films, respectively. XAS and XPS were also used to 

confirm that the oxidation state of Eu is nearly completely Eu2+, with a small amount of 

Eu3+ attributed to surface oxidation in uncapped samples as documented in the 

Supplementary Information of Ref. 16. Figure 2-3 shows the XPS intensity of the 

lutetium 4d core-level multiplets for the lutetium in Lu-doped EuO, lutetium metal, and 

Lu2O3. Lutetium metal was deposited at room temperature in vacuum by MBE, and 

Lu2O3 was formed by keeping the lutetium metal in vacuum with a background pressure 

of 2 × 10−9 Torr for at least one hour. Comparing the peak positions to the literature24 

confirmed that the lutetium in the Lu-doped EuO film was indeed 3+ as expected. A 

 
Figure 2-3: Comparison of X-ray photoemission intensity of the lutetium 4d core-level 
multiplets between 4% Lu-doped EuO (blue), lutetium metal (green), and oxidized 
lutetium (red). The dashed lines are guides for the eye to highlight the similarity in peak 
position between the 4% Lu-doped EuO and the oxidized lutetium. 
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similar process was followed for identifying the oxidation state of lanthanum in the La-

doped EuO. From the free carrier concentration, oxidation state, and the doping 

concentration, it is evident rare-earth dopant ions inject far less than one mobile 

electron into the EuO conduction band. The dopant activation is less than 40%, in 

agreement with results for Gd-doped EuO,16 pointing to the possible ubiquity of the 

challenge of achieving high dopant activation in EuO. All samples have comparable 

resistivity curves, reduced dopant activation, and fairly similar carrier concentrations. 

 

Differential conductance measurements were performed on 5% Lu-doped EuO and are 

shown in Figure 2-4. Since Andreev reflection is suppressed at the interface between a 

material with high spin-polarization and a superconducting material, a drop in 

conductivity across the Lu-doped EuO / Nb interface for energies less than the 

superconducting gap of the niobium film at temperatures below the superconducting 

critical temperature is expected. By fitting the drop in conductance to the Blonder-

Tinkham-Klapwijk model25 that has been modified specifically for non-negligible series 

resistance in spin-polarized ferromagnetic semiconductor devices,26–28 one can extract 

the spin-polarization value. The best fit is in accordance with a spin-polarization of 96%, 

which is in agreement with previous reports of the near-complete spin-polarization of 

EuO.1 The high spin-polarization despite 5% doping of nonmagnetic atoms is critically 

important, as it shows that EuO retains its high spin-polarization in the presence of a 

dopant which significantly boosts its TC. This is not so surprising given that doped EuO 

is a half-metal due to the spin-splitting of the conduction band,29–31 so the carriers are 

spin-polarized anyway despite the nature of the dopant. 
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Figure 2-4: Andreev reflection measurements of the contact between a niobium 
electrode and the same 5% Lu-doped sample studied in Figures 2-1 and 2-2. (a) 
Conductance vs. voltage characteristics were measured at different temperatures. 
Below the superconducting gap of the niobium electrode the conductance diminishes 
because Andreev reflection is forbidden for an interface between a 100% spin-polarized 
material and a superconductor. The inset shows a schematic of the ramp-type junction 
used for differential four-point conductivity measurements. (b) Fits to the 1.8 K 
measurement using the Blonder-Tinkham-Klapwijk model are in accordance with a spin-
polarization of 96% (green). For comparison, fits are shown that fix P to 94% (blue) and 
to 98% (red). The inset shows the overlap of the curves near zero voltage bias to better 
illustrate the match of the best fit. The best fit parameters were Z = 0.9, Δ = 1.28 meV, 
R = 77, and P = 96%. 
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In summary, we have explored the properties of Lu-doped EuO. Lutetium donates 

electrons to EuO in the same fashion as lanthanum and gadolinium dopants. 

Furthermore, EuO retains near-complete spin-polarization (P = 96%) despite being 

heavily doped with the non-magnetic ion Lu3+. 

 

The work at Cornell was supported by the AFOSR (Grant No. FA9550-10-1-0123), the 

NSF MRSEC program by cooperative agreement 1120296, and NSF DMR-

0847385, and a Cottrell Scholars Award (20025). The work in Augsburg was supported 

by the DFG (Grant No. TRR 80) and the EC (oxIDes). AM gratefully acknowledges 

support from the NSF IGERT program (NSF Award DGE-0654193) and by the IMI 

Program of the National Science Foundation under Award No. DMR 0843934. EJM 

acknowledges NSERC for PGS support. 

  



 

 44 

REFERENCES 

1 A. Schmehl, V. Vaithyanathan, A. Herrnberger, S. Thiel, C. Richter, M. Liberati, T. 
Heeg, M. Röckerath, L. F. Kourkoutis, S. Mühlbauer, P. Böni, D. A. Muller, Y. Barash, J. 
Schubert, Y. Idzerda, J. Mannhart, and D. G. Schlom, Nat. Mater. 6, 882–887 (2007). 

2 J. C. Suits and K. Lee, J. Appl. Phys. 42, 3258–3260 (1971). 

3 K. Y. Ahn and M. W. Shafer, J. Appl. Phys. 41, 1260–1262 (1970). 

4 T. R. McGuire and M. W. Shafer, J. Appl. Phys. 35, 984–988 (1964). 

5 F. Holtzberg, T. R. McGuire, and S. Methfessel, Phys. Rev. Lett. 13, 18–21 (1964). 

6 K. Lee and J. C. Suits, Phys. Lett. 34A, 141–142 (1971). 

7 T. R. McGuire, G. F. Petrich, B. L. Olson, V. L. Moruzzi, and K. Y. Ahn, J. Appl. Phys. 
42, 1775–1777 (1971). 

8 K. Y. Ahn, K. N. Tu, and W. Reuter, J. Appl. Phys. 42, 1769–1770 (1971). 

9 M. W. Shafer and T. R. McGuire, J. Appl. Phys. 39, 588–590 (1968). 

10 H. Miyazaki, H. J. Im, K. Terashima, S. Yagi, M. Kato, K. Soda, T. Ito, and S. Kimura, 
Appl. Phys. Lett. 96, 232503 (2010). 

11 S. von Molnár and M. W. Shafer, J. Appl. Phys. 41, 1093–1094 (1970). 

12 A. A. Samokhvalov, B. A. Gizhevskii, and M. I. Simonova, Sov. Phys. - Solid State 14, 
230–231 (1972). 

13 A. Mauger, C. Godart, M. Escorne, J. C. Achard, and J. P. Desfours, Le J. Phys. 39, 
1125–1133 (1978). 

14 H. Ott, S. Heise, R. Sutarto, Z. Hu, C. Chang, H. Hsieh, H.-J. Lin, C. Chen, and L. 
Tjeng, Phys. Rev. B 73, 094407 (2006). 

15 R. Sutarto, S. Altendorf, B. Coloru, M. Moretti Sala, T. Haupricht, C. Chang, Z. Hu, C. 
Schüßler-Langeheine, N. Hollmann, H. Kierspel, J. Mydosh, H. Hsieh, H.-J. Lin, C. 
Chen, and L. Tjeng, Phys. Rev. B 80, 085308 (2009). 

16 T. Mairoser, A. Schmehl, A. Melville, T. Heeg, L. Canella, P. Böni, W. Zander, J. 
Schubert, D. Shai, E. Monkman, K. Shen, D. G. Schlom, and J. Mannhart, Phys. Rev. 
Lett. 105, 257206 (2010). 



 

 45 

17 T. Mairoser, A. Schmehl, A. Melville, T. Heeg, W. Zander, J. Schubert, D. E. Shai, E. 
J. Monkman, K. M. Shen, T. Z. Regier, D. G. Schlom, and J. Mannhart, Appl. Phys. Lett. 
98, 102110 (2011). 

18 K. Lee and J. C. Suits, IEEE Trans. Magn. 7, 391 (1971). 

19 Y. Capiomont, Nguyen-Van-Dang, O. Massenet, and B. K. Chakraverty, Solid State 
Commun. 10, 679–683 (1972). 

20 O. Massenet, Y. Capiomont, and N. Van Dang, J. Appl. Phys. 45, 3593–3599 (1974). 

21 H. Miyazaki, T. Ito, H. Im, K. Terashima, S. Yagi, M. Kato, K. Soda, and S. -I. Kimura, 
Jpn. J. Appl. Phys. 48, 055504 (2009). 

22 M. Barbagallo, N. Hine, J. Cooper, N.-J. Steinke, A. Ionescu, C. Barnes, C. Kinane, 
R. Dalgliesh, T. Charlton, and S. Langridge, Phys. Rev. B 81, 235216 (2010). 

23 R. W. Ulbricht, A. Schmehl, T. Heeg, J. Schubert, and D. G. Schlom, Appl. Phys. Lett. 
93, 102105 (2008). 

24 W. C. Lang, B. D. Padalia, L. M. Watson, D. J. Fabian, and P. R. Norris, Faraday 
Discuss. Chem. Soc. 60, 37–43 (1975). 

25 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515–4532 (1982). 

26 S. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhrman, Phys. Rev. Lett. 81, 
3247–3250 (1998). 

27 R. J. Soulen Jr., Science (80-. ). 282, 85–88 (1998). 

28 I. I. Mazin, Phys. Rev. Lett. 83, 1427–1430 (1999). 

29 S. Von Molnár, IBM J. Res. Dev. 14, 269–275 (1970). 

30 M. R. Oliver, J. O. Dimmock, and T. B. Reed, IBM J. Res. Dev. 14, 276–278 (1970). 

31 P. Steeneken, L. Tjeng, I. Elfimov, G. Sawatzky, G. Ghiringhelli, N. Brookes, and D.-
J. Huang, Phys. Rev. Lett. 88, 047201 (2002).  

 
 
 
  



 

 46 

CHAPTER 3 
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The effects of film thickness and epitaxial strain on the magnetic properties of 

commensurate EuO thin films grown on single crystalline (001) yttria-stabilized zirconia 

(YSZ) and (110) LuAlO3 substrates are presented. Magnetic measurements show a 
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reduction in the Curie temperature (TC) for EuO / YSZ films thinner than ~10 nm. 

Additionally, the EuO / LuAlO3 films exhibit a systematically lower TC than the 

corresponding EuO / YSZ films. This further reduction in TC is attributed to the effect of 

biaxial tensile strain arising from lattice mismatch: 0.0% for EuO / YSZ and +1.0% for 

EuO / LuAlO3.   
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Europium oxide (EuO) has a rocksalt structure (a = 5.144 Å)1 with Eu2+ cations whose 

half-filled 4f orbital is responsible for a large ferromagnetic response below its Curie 

temperature (TC) of 69 K.2 This pronounced ferromagnetism induces a metal-to-

insulator transition spanning up to 13 orders of magnitude in resistivity3 and spin-

polarization of 96%,4 as a result of conduction band splitting by 0.6 eV.5,6 This makes 

EuO exceptional and of interest for spintronic applications. 

 

The low bulk TC restricts the utilization of EuO in device applications, so overcoming this 

limitation is one of the key challenges yet to be addressed.  Theoretical predictions 

indicate that the TC can be manipulated by injecting electrons into the system7 or by 

straining the crystal.8 The added electrons enhance the TC by filling the spin-polarized 

conduction band, thus adding to the magnetic exchange energy of the system. In fact, 

doping with 3+ cations like lanthanum,9–11 gadolinium,9,12–15 or oxygen vacancies3,9,16–18 

is a common technique for injecting electrons, increasing the TC up to a maximum 

reported value of 200 K.11,19 The strain-induced TC manipulation is driven by altering the 

distance between the magnetic 4f electrons relative to the bulk spacing. Increasing this 

distance leads to a reduced TC, while reducing this distance causes an enhanced TC. In 

thin films biaxial strain can be achieved via commensurate, epitaxial growth to a well-

chosen substrate with a specific lattice mismatch.  

 

In this Letter we contrast the dependence of the magnetic properties on thickness in a 

series of strain-free epitaxial EuO films with that of +1% biaxially-strained epitaxial EuO 

films to determine the effect of strain on TC. The unstrained films were grown on (001) 
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9.5 mol % yttria-stabilized cubic zirconia (YSZ). YSZ is nearly lattice-matched to EuO 

with a lattice constant of 5.140 Å.20 The epitaxial orientation relationship is cube-on-

cube with (001) EuO || (001) YSZ and [100] EuO || [100] YSZ. For comparison, strained 

EuO films were grown on (110) LuAlO3. LuAlO3 is an orthorhombic perovskite similar to 

YAlO3, and the (110) surface has a rectangular surface net with in-plane lattice 

constants of 7.379 Å along the [110] direction and 7.300 Å along the [001] direction.21 

The expected epitaxial orientation relationship is (001) EuO || (110) LuAlO3 with [110] 

EuO || [001] LuAlO3 and [110] EuO || [110] LuAlO3, with a linear lattice mismatch of 

+0.4% and +1.5% along the EuO [110] and [110] directions, respectively. 

 

All films were grown in a Veeco Gen10 molecular-beam epitaxy chamber with a 

chamber background pressure of ~2×10-9 Torr. The EuO films on YSZ were grown at a 

substrate temperature of 400ºC after annealing the substrates at 650ºC in an oxygen 

background partial pressure of 3×10-7 Torr prior to growth to form a well-ordered 

surface.22 For films thicker than 10 nm, the EuO films on LuAlO3 were grown at 550°C.23 

For films thinner than 10 nm, the EuO films on LuAlO3 were grown at 400ºC, to match 

the growth conditions to the films grown on YSZ. All films were grown within an 

adsorption-controlled growth regime.23 During growth oxygen was introduced yielding a 

chamber background pressure of less than 1×10-8 Torr. The incident flux of europium 

atoms was calibrated to 1.1×1014 atoms / (cm2�s) using a quartz crystal microbalance, 

approximately 20% higher than the EuO growth rate, which had been determined earlier 

from areal density measurements of the europium content of calibration samples using 

Rutherford backscattering spectrometry (RBS). Growth under europium-excess 
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conditions is key to the adsorption-controlled deposition of EuO. The samples were 

capped with 30 nm of amorphous silicon or 100 nm of aluminum immediately after 

growth to prevent further oxidation during ex situ characterization. A series of films with 

thicknesses varying from 1.5 nm to 170 nm (as measured by RBS) were grown both on 

YSZ and LuAlO3 substrates. Structural measurements were made using a four-circle X-

ray diffractometer (XRD) equipped with Cu Kα radiation. Magnetic measurements were 

performed using superconducting quantum interference device (SQUID) magnetometry. 

SQUID measurements to determine TC were made in zero applied field for all 

samples.24 

 

The θ-2θ scan of a 40 nm thick EuO film grown on YSZ, Figure 3-1(a), exhibits only 

peaks at 2θ = 34.9º and 73.8º, consistent with the growth of phase-pure epitaxial EuO. 

The complete overlap of film and substrate peaks occurs because EuO and YSZ both 

have face-centered cubic lattices with nearly identical parameters (aYSZ = 5.140 Å20 and 

aEuO = 5.144 Å1). These features were observed for all EuO / YSZ films. The θ-2θ scan 

of a 170 nm thick EuO / LuAlO3 film is shown in Figure 3-1(b) and reveals only substrate 

peaks and 00ℓ𝓁 EuO peaks, as did all EuO / LuAlO3 films included in this study, 

indicating that these samples are also phase-pure within the resolution of our XRD 

measurements. Figure 3-1(c) shows a ϕ-scan of the 111 off-axis EuO peaks of the 

same film studied in Figure 3-1(b), which, together with the θ-2θ scan, confirm the 

epitaxy of EuO on LuAlO3 with an orientation relationship of [110] (001) EuO || [110] 

(110) LuAlO3. 
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Figure 3-1: θ-2θ scans of (a) 40 nm thick EuO / YSZ and (b) 170 nm thick EuO / LuAlO3 
films. Both scans reveal phase-pure EuO with no indication of Eu metal, Eu3O4, or 
Eu2O3, and are characteristic of all EuO films grown in this study. (c) ϕ-scan of 111 EuO 
diffraction peaks of the same film studied in Figure 3-1(b) at χ = 35.3° showing the 
epitaxial relationship of EuO on LuAlO3 to be [110](001) EuO || [001](110) LuAlO3. 
χ = 90° aligns the diffraction vector perpendicular to the plane of the substrate. ϕ = 45º 
is aligned to be parallel to the [001] in-plane direction of the (110) LuAlO3 substrate. 
(Ref. 38). 
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The interplanar spacings of the (110) and (110) planes of a strained EuO film were 

calculated from the measured θ-2θ positions of multiple reflections from the (001),  

(111), and (111)  planes of a 10 nm thick film. The lattice spacing along [110] EuO was 

3.694 ± 0.005 Å and the lattice spacing along [110] EuO was 3.652 ± 0.005 Å, which 

match the d220 and d002 interplanar spacings of the LuAlO3 substrate within experimental 

error. The out-of-plane spacing was 5.123 ± 0.005 Å, which agrees with the expected 

value (5.122 Å) based on the biaxial strain and the elastic constants of EuO.25 These 

results indicate that the EuO films up to 10 nm in thickness are commensurately 

strained to the underlying substrate. 

 

Rocking curves of the 002 EuO diffraction peak were taken by rocking the substrate 

 
Figure 3-2: The FWHM of the EuO 002 rocking curves made by rocking about both the 
[110] high strain (red triangles) and [110] low strain (blue squares) substrate axes 
plotted as a function of thickness of the EuO / LuAlO3 films. The average FWHM (green 
circles) is also plotted. The arrow indicates the critical thickness for distinguishable 
relaxation, 69 ± 5 nm. 
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along its [110] and [001] axes because the film strain is different along these two 

substrate directions. In Figure 3-2, the full width at half maximum (FWHM) of the EuO 

films along these directions is plotted as a function of film thickness. The FWHM of the 

substrates ranged from 25 to 37 arc sec. The FWHM for the thin films was as low as 

38 arc sec, with a dramatic increase in FWHM for films thicker than 69 nm. This 

broadening of the rocking curve is attributed to film relaxation via the introduction of 

stress-reducing defects, e.g., dislocations.26–28 The critical thickness for the onset of 

observable relaxation in epitaxial EuO on (110) LuAlO3 using our growth conditions is 

thus 69 ± 5 nm. This is nearly twice the critical thickness reported for EuO films grown 

commensurately under similar growth conditions on (110) YAlO3 (38 nm),23 which has 

an average lattice mismatch that is nearly twice that of LuAlO3 (+1.8%). Additionally, the 

onset of relaxation for EuO / LuAlO3 is the same along both the [110] and [001] in-plane 

directions of the substrate, despite a difference in in-plane strain of more than 1%. This 

indicates that the relaxation mechanism for the two directions is coupled. 

 
Figure 3-3 compares the Curie temperatures of these epitaxial EuO films as a function 

of thickness on both YSZ and LuAlO3 substrates. The YSZ series explores the effect of 

film thickness in unstrained epitaxial EuO. The TC is reduced below a film thickness of 

~10 nm, which is expected because of too few neighboring magnetic atoms29,30 and 

consistent with other reports that describe a reduced TC below a thickness of 4-10 nm in 

polycrystalline EuO films.30–32 Furthermore, the reduction in TC matches both the 

prediction of the theory by Schiller et al.,29 and mean-field approximation considering 

nearest neighbors and next-nearest neighbors for films thicker than 5 nm.30,32 These 

calculations are plotted alongside the data in Figure 3-3.  
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To predict the effect of biaxial strain on the TC of an epitaxial (001) EuO film 

commensurately grown on a (110) LuAlO3 substrate, we performed first principles 

calculations using density functional theory (DFT) as implemented in VASP.33 The 

generalized gradient approximation34 together with an on-site Coulomb energy 

(GGA+U) formalism was used in order to better take into account the localized nature of 

the f electrons. An external pressure was applied during the relaxation of the crystal 

 

Figure 3-3: The Curie temperature as a function of film thickness is compared for EuO / 
YSZ (red circles) and EuO / LuAlO3 (blue triangles). The TC is reduced below the bulk 
TC of 69 K for films thinner than 10 nm for EuO / YSZ as a result of size effects. The TC 
of EuO / LuAlO3 is lower than the TC of EuO / YSZ for films below the critical thickness 
for relaxation on LuAlO3, about 69 nm. Films thicker than this exhibit a TC that 
asymptotes to the bulk TC of unstrained EuO (69 K). The theory presented by Schiller et 
al. (Ref. 29) is displayed by the dashed green line; the mean-field approximation 
considering only nearest neighbors (NN) is displayed by the solid purple line (Ref. 32), 
and the mean-field approximation considering both nearest neighbors and next-nearest 
neighbors (NNN) is displayed by the dotted black line (Ref. 30). 
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structure in order to correct for the overestimation of volume by GGA. The pressure 

required was determined by calculations for bulk EuO with cubic symmetry. The 

pressure value obtained from these calculations was applied during subsequent 

calculations in which biaxial strain was imposed on the EuO and its in-plane lattice 

constants were kept fixed, but the out-of-plane one was allowed to relax. 

 

Our calculations cover the biaxial strain range ±2.0%, since EuO is predicted to undergo 

a structural phase transition at large values of biaxial strain, which is beyond the scope 

of this work.35 We confirmed the absence of a structural phase transition within our 

strain range by calculating the frequencies of both the zone center and the zone 

boundary phonon modes. Furthermore, high pressure (and with it the corresponding 

change in lattice parameter) leads to a fluctuating electron configuration between 4f75d0 

and 4f65d1 in EuO and causes a downturn in TC above 14 GPa.36,37 The details of such 

dynamic fluctuations are beyond the reach of standard DFT+U calculations. The strain 

range we consider, however, is sufficiently far from both electron configuration and 

structural transitions such that our calculations should predict the correct trend of TC.  

 

In order to calculate the exchange constants precisely, we built 32 atom supercells for 

each biaxial strain value and fit energies of 8 different spin configurations to an Ising 

model. Calculations for cubic EuO indicated that 3rd and 4th nearest neighbor exchange 

couplings are negligible, so we ignored them in our calculations of EuO under biaxial 

strain. In order to get an estimate of TC, we used a mean-field model. As expected from 

DFT and mean field approximations, TC is grossly overestimated by our calculations; 
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further, TC depends on the exact value of U chosen. As we are interested in the change 

in TC with strain, in Figure 3-4 we present TC / TC0, i.e., the ratio of the Curie 

temperature under biaxial strain to that in bulk. The calculations were performed for a 

range of reasonable U values, the results of which are denoted with different colors and 

shapes in Figure 3-4. The calculated change in TC for different U overlap well, indicating 

that the result is robust and physically meaningful. TC decreases with increasing biaxial 

strain, which is consistent with Ref. 8. 

  

 
Figure 3-4: Calculated effect of biaxial strain on the TC of EuO. The effect of changing 
the on-site Coulomb energy U in the density functional theory on the resulting TC is 
shown by the colored data points. The squares represent the specific case of the biaxial 
strain imparted by a (110) LuAlO3 substrate on a commensurate epitaxial (001) EuO 
film. The inset shows that the reduction in TC for EuO films grown commensurately on 
LuAlO3 is ~6%. 
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In order to explore the effect of the anisotropic strain induced by the (110) LuAlO3 

substrate (+0.4% and +1.5% along perpendicular in-plane directions in a commensurate 

(001) EuO film), we also calculated the exchange constants and the resultant TC for the 

anisotropic boundary conditions corresponding specifically to LuAlO3. The ratio of the 

resultant Curie temperature to that of bulk is presented as the squares at 0.95% strain 

in Figure 3-4. The fact that these squares lie in-line with other points, all calculated with 

isotropic in-plane biaxial strain, indicates that the anisotropy of the substrate surface 

does not lead to an important difference, and that TC is decreased by the same amount 

as it would be on a substrate with an isotropic surface and the same average lattice 

constant. The calculated decrease in TC for commensurate (001) EuO on (110) LuAlO3 

is about 6%, which corresponds to ~4 Kelvin with respect to bulk. We emphasize that 

our standard DFT calculations utilize periodic boundary conditions, corresponding to a 

film that is infinite in all dimensions, such that finite-size effects are not considered. 

 

These calculations match, within the error bars, the TC of the commensurate EuO / 

LuAlO3 films that are unaffected by finite-size effects, that is, films thicker than 10 nm. 

Furthermore, the TC of all commensurate EuO / LuAlO3 films are consistently reduced 

relative to the TC of the EuO / YSZ films. For example, a 1.5 nm EuO film on YSZ has a 

TC of 56 ± 1 K, while a 1.5 nm EuO film on LuAlO3 has a TC of 53 ± 1 K. EuO / LuAlO3 

films thicker than 69 nm are partially relaxed and as the strain diminishes, the TC 

recovers to that of bulk EuO (69 K). As the only difference between these films is the 

strain imparted by epitaxial misfit from the different substrates, the TC reduction is 

attributed to the imposed biaxial tensile strain, which is in agreement with our 
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calculations and the literature.8  

 

Figure 3-5(a) shows the onset of magnetization for a fully commensurate EuO film (10 

nm thick) and a fully relaxed EuO film (170 nm thick) on LuAlO3. The TC of the 10 nm 

 
Figure 3-5: (a) Magnetization as a function of temperature measurements indicate a 
clear onset of magnetization in the absence of an applied magnetic field (Ref. 24)at 64 
K in the 10 nm thick film and 69 K in the 170 nm thick film. (b) Magnetic hysteresis 
curves for the 10 nm and 170 nm thick EuO thin films. 
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thick film was 64 ± 1 K, and the TC of the 170 nm thick film was 69 ± 1 K. This matches, 

within the error, the DFT calculations, which predict a 6% decrease in the TC for the 

case of EuO / LuAlO3. Figure 3-5(b) compares the magnetic hysteresis in the same 

films. The coercive field of the 10 nm thick sample was 55 ± 10 G, and the coercive field 

of the 170 nm thick sample was 47 ± 10 G. The saturation magnetization was 5.5 ± 0.2 

µB per europium atom for the 10 nm thick film and 6.6 ± 0.2 µB per europium atom for 

the 170 nm thick film. These are both close to the theoretical maximum of 7 µB per 

europium atom and other reports of EuO thin films.10,13,23 Though the effect of strain on 

the coercive field and saturation magnetization is likely non-zero, it is not significant and 

could not be determined in our experiment. 

 

In conclusion EuO is shown to grow epitaxially on (110) LuAlO3 substrates with an 

epitaxial orientation relationship of [110](001) EuO || [110](110) LuAlO3 and is 

commensurate below a critical thickness of 69 nm. The TC of EuO / YSZ, which shows 

size effects for films thinner than 10 nm, was compared to the TC of EuO / LuAlO3. By 

comparing the TC vs. thickness of unstrained EuO / YSZ with strained EuO / LuAlO3, a 

reduction in TC caused by the biaxial tensile strain is clearly observed, in addition to the 

reduction in TC from size effects. 
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CHAPTER 4 

Epitaxial growth of europium monoxide on diamond 
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We report the epitaxial integration of phase-pure EuO on both single-crystal diamond 

and on epitaxial diamond films grown on silicon utilizing reactive molecular-beam 

epitaxy. The epitaxial orientation relationship is (001) EuO || (001) diamond and [110] 

EuO || [100] diamond. The EuO layer is nominally unstrained and ferromagnetic with a 
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transition temperature of 68 ± 2 K and a saturation magnetization of 5.5 ± 0.1 Bohr 

magnetons per europium ion on the single-crystal diamond, and a transition 

temperature of 67 ± 2 K and a saturation magnetization of 2.1 ± 0.1 Bohr magnetons 

per europium ion on the epitaxial diamond film. 
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Diamond has many desirable properties including high breakdown strength and 

unparalleled thermal conductivity.1 This makes it a promising substrate for high power 

and high frequency applications. Furthermore, diamond doped with nitrogen contains 

nitrogen-vacancy impurity centers capable of accommodating a long-lived electron spin 

state, which can be optically excited as well as optically read-out.2 As a result, diamond 

is capable of single-photon emissions from a specific spin state, making it a compelling 

platform for solid-state spin-based electronics at room temperature.2  

 

Integrating this multipurpose substrate with functional oxide materials is a natural next 

step, as it can take advantage of the full range of properties found in oxide materials, 

e.g., high dielectric constant, ferroelectricity, ferromagnetism, and even oxides that are 

simultaneously ferroelectric and ferromagnetic.3 To date oxide materials have been 

minimally integrated with diamond for use in surface acoustic wave devices,4–6 or as a 

buffer layer for other oxide materials.7 There has only been one report of the epitaxial 

growth of an oxide on diamond and that is (0001) ZnO on (111) diamond.4 In this Letter 

we demonstrate the epitaxial integration of the ferromagnet EuO with (001) diamond 

single crystals and with epitaxial (001) diamond films on silicon. 

 

Europium oxide (EuO) is a ferromagnetic semiconductor with a spin-polarization of at 

least 96%,8,9 giving it the second highest spin-polarization of all known materials after 

CrO2.10 Furthermore, doped EuO has a metal-to-insulator transition (MIT) involving a 

change in resistivity of up to 13 orders of magnitude11 and exhibits colossal magneto-

resistance (CMR) up to 6 orders of magnitude.12 The MIT and CMR occur around the 
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Curie temperature (TC), which is 69 K in bulk EuO.13 TC can be enhanced dramatically 

by doping with trivalent cations8,9,14–21 or by introducing oxygen vacancies (EuO1-x).22–25 

Theorists predict that a TC of ~200 K is possible by combining doping and compressive 

strain.26  

 

The epitaxial integration of EuO with modern semiconductor materials, i.e., Si,8,27 GaN,8 

and GaAs28 has already been demonstrated. The lattice mismatch between (001) 

diamond and (001) EuO (~2%) corresponds to cube-on-cube growth where the EuO 

grows 45º rotated in-plane compared to the underlying diamond substrate. The diamond 

surface mesh is illustrated in the top left of Fig. 1, and the arrangement of EuO on 

diamond resulting in the ~2% lattice mismatch is illustrated in the top right of Fig. 1. This 

relatively small lattice mismatch compares favorably to the lattice mismatch between 

EuO and Si, GaN, or GaAs. As the lattice constant of diamond is smaller than that of 

EuO, a commensurate EuO film on diamond (if it could be achieved) would be in biaxial 

compression and an enhancement of TC from 69 K to ~80 K would be expected in 

undoped EuO from first-principles calculations.29 Thus, the epitaxial integration of EuO 

with diamond could potentially result in coherently strained EuO films exhibiting a higher 

TC than epitaxial EuO films grown on Si,8,27 GaN,8 and GaAs,28 while still allowing 

favorable substrate qualities such as long spin lifetimes for injected electrons30 or a 

long-lived electron spin state.2 

 

10 mm x 10 mm epitaxial (001)-oriented diamond films were grown by CVD on (001) Si 

utilizing iridium metal and yttria-stabilized zirconia (YSZ) buffer layers;31 
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5 mm × 5 mm × 1 mm diamond single crystals grown by CVD with (001) surfaces were 

obtained commercially.32 The EuO thin films on the epitaxial diamond films were grown 

in a Veeco 930 molecular-beam epitaxy (MBE) system, and the EuO thin films on 

single-crystal diamond were grown in a Veeco Gen10 MBE system. A cryoshroud 

cooled with liquid nitrogen was employed in both MBE chambers to reduce the chamber 

background pressure to less than 1×10-8 Torr. EuO films on both types of (001) 

diamond substrates were grown via reactive oxide MBE in an adsorption-controlled 

growth regime33 to ensure high crystalline quality and stoichiometric films. The europium 

flux, measured by a quartz crystal microbalance, was set to 1.1×1014 atoms/ (cm2s). 

This flux was roughly double that of the EuO film growth rate, as determined by 

measuring the areal density of europium atoms in calibration EuO samples using 

Rutherford backscattering spectrometry (RBS), ensuring an overabundance of 

europium during growth. Under such conditions the EuO growth rate is limited by the 

oxygen flux.33 The oxygen flux was established by flowing oxygen through a 

piezoelectric leak valve set at a constant voltage. This resulted in a slight increase in the 

background pressure during growth that increased gradually over time, but was never 

more than 1×10−8 Torr. After growth the films were capped with ~100 nm of aluminum 

or ~20 nm of amorphous silicon to prevent further oxidation of the EuO films and enable 

their ex situ characterization. Structural characterization was performed after growth 

using four-circle X-ray diffraction (XRD) and X-ray reflectivity utilizing Cu Kα radiation. 

Magnetic properties and the Curie temperature were determined using superconducting 

quantum interference device (SQUID) magnetometry. 
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For the growth of EuO on epitaxial diamond films with a diamond surface mesh as 

shown in the upper left of Figure 4-1, the EuO grew with two epitaxial orientations under 

growth conditions similar to those used to grow high-quality EuO on YAlO3 

(T = 590 ºC).33 The dominant orientation as determined by XRD measurements was 

(111) EuO || (001) diamond with [011] EuO || [010] diamond as illustrated in the bottom 

image of Figure 4-1, and the secondary orientation was (001) EuO || (001) diamond also 

 

Figure 4-1: Diagram showing the epitaxial orientation relationship between the surface 
mesh of the (001) EuO film and underlying (001) diamond substrate. The top left image 
is the diamond surface mesh with two unit cells highlighted. The top right image 
corresponds to the epitaxial alignment of EuO on diamond corresponding to ~2% lattice 
mismatch, with two EuO unit cells highlighted. This orientation relationship is (001)[110] 
EuO || (001)[100] diamond and corresponds to a σEuO 1 : σdiamond 2 interface. The 
bottom image corresponds to the epitaxial alignment of EuO on diamond with less 
strain, but with a near-coincident site lattice, with four EuO unit cells highlighted. Here, 
the epitaxial alignment is (111)[011] EuO || (001)[010] diamond. This corresponds to a 
σEuO 4 : σdiamond 7 interface. 
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with [110] EuO || [100] diamond as illustrated in the top right image of Figure 4-1.  

 

The optimal growth conditions for growing (001)-oriented EuO on epitaxial diamond 

films was achieved by first growing two monolayers to establish the orientation at lower 

growth temperatures (350 ºC < T < 400 ºC). Once the orientation was seeded, the 

growth temperature was ramped up to 650 ºC (while continuing growth) for better 

crystallinity. In this case, only the orientation relationship (001)[110] EuO || (001)[100] 

diamond was found as illustrated in the top right of Figure 4-1. This relatively low 

starting temperature was established as the lower limit of the adsorption-controlled 

growth regime by depositing europium in the absence of oxygen on a hot substrate for 

an hour and confirming absence of an accumulation layer of europium by RBS.  

 

For the growth of EuO on the single-crystal diamond, the EuO also grew with two 

epitaxial orientations with a dominant orientation as determined by XRD measurements 

of (111) EuO || (001) diamond with [011] EuO || [010] diamond under the adsorption-

controlled growth conditions similar to those used to grow high-quality (001) EuO on 

(110) YAlO3 (T = 590 ºC).33 In contrast to growths on the epitaxial diamond films, 

however, films grown at lower growth temperatures (T < 590 ºC) on single-crystal 

diamonds were almost exclusively composed of the epitaxial orientation of (111) EuO || 

(001) diamond with [011] EuO || [010] diamond. The optimal growth conditions for 

growing (001) EuO on single-crystal diamond was to grow at higher growth 

temperatures (T = 760 ºC), where only the orientation relationship (001)[110] EuO || 

(001)[100] diamond was found.  
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The difference in EuO growth conditions could be related to differences in structural 

perfection of the epitaxial diamond film vs. single-crystal diamond (diamond film 004 

peak FWHM of 0.2° as compared to the single-crystal diamond 004 peak FWHM of 

0.005°) or the difference in surface roughness (RRMS(diamond film) = 13.3 nm as 

compared to RRMS(single-crystal diamond) = 1 nm).  

 

Epitaxial orientation relationships that change with growth temperature have been seen 

in other oxide systems, e.g., in the epitaxial growth of YBa2Ca3O7-δ on yttria-stabilized 

zirconia (YSZ).34–36 In that system the out-of-plane orientation relationship, (001) 

YBa2Cu3O7 || (001) YSZ, was found to remain constant, while the in-plane orientation 

relationship was observed to change with growth temperature.36 At low substrate 

temperature the dominant in-plane epitaxial orientation relationship observed was [100] 

YBa2Ca3O7-δ || [100] YSZ while films deposited at high temperature had [110] 

YBa2Ca3O7-δ || [100] YSZ.36  

 

The  (111) EuO || (001) diamond orientation has a slightly lower mismatch, +1.8% for 

[211] EuO || [100] diamond and -2.1% for [011] EuO || [010] diamond, than the expected 

(001) EuO || (001) diamond orientation, which has a lattice mismatch of -2.1% for both 

[110] EuO || [100] diamond and [110] EuO || [010] diamond. Although better lattice 

matched, the (111) EuO || (001) diamond orientation has a larger near-coincident site 

surface mesh cell corresponding to a Coincident Site Lattice / Displacement Shift 

Complete (CSL/DSC) model37 interface of σEuO 4 : σdiamond 7  as shown at the bottom of 

Figure 4-1. And though films with the better lattice-matched orientation are epitaxial, the 
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(111) EuO is undesirable, as it contains four distinct in-plane twin variants, resulting in a 

multitude of twin boundaries. The (001) EuO || (001) diamond orientation is preferred as 

there is only one in-plane orientation and the films are free of twin boundaries. 

Furthermore, this latter orientation relationship has a coincident site lattice, 

corresponding to a CSL/DSC model interface of σEuO 1 : σdiamond 2 as shown at the top 

right of Figure 4-1. 

 

 

Figure 4-2: RHEED images of a 25 nm thick EuO film grown at 350 ºC < Tsub < 400 ºC 
for two monolayers then ramped to Tsub = 650 °C on an epitaxial diamond film along the 
(a) [100] azimuth and the (b) [110] azimuth. RHEED images of a 37 nm thick EuO film 
grown at Tsub = 760 °C on a single-crystal diamond along the (c) [100] azimuth and the 
(d) [110] azimuth. 
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Having established the optimal conditions for the growth of (001) EuO on both single-

crystal diamond and on epitaxial diamond films, the remainder of the paper will focus on 

these (001) EuO films. Reflection high-energy electron diffraction (RHEED) images 

were taken of both types of EuO films. Figures 4-2(a) and 4-2(b) show the RHEED 

images with the incident electron beam along the [100] and [110] azimuths, 

respectively, of (001) EuO on the epitaxial diamond films, and Figures 4-2(c) and 4-2(d) 

show the RHEED images along the [100] and [110] azimuths, respectively, of (001) 

EuO on the single-crystal diamond. In all four cases, there is no evidence of other 

phases or orientations. The transmission diffraction pattern evident in the (001) EuO on 

single-crystal diamond (Figures 4-2(c) and 4-2(d)) suggest that the film is atomically 

rough. 

 

The θ-2θ scans in Figures 4-3(a) and 4-3(b) reveal only 00ℓ𝓁 EuO peaks and capping 

layer peaks, indicating that the films are single phase with the desired (001) EuO out-of-

plane orientation. From calculations of the out-of-plane lattice constant expected for a 

commensurate (2.1% biaxial compression) EuO film on diamond utilizing the elastic 

coefficients of EuO,38 we expected an out-of-plane lattice constant of c = 5.188 Å as 

compared to the bulk-value of c = 5.141 Å.39  

 

Nelson-Riley analysis40 on the 002, 004, and 006 EuO peaks on the epitaxial diamond 

film, however, yields c = 5.137 ± 0.001 Å, and Nelson-Riley analysis on the 002, 004, 

and 006 EuO peaks on single-crystal diamond yields c = 5.135 ± 0.001 Å. Our epitaxial 

(001) EuO films are clearly not commensurate. The reduced out-of-plane spacing from 
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that of bulk EuO indicates that the films are under slight biaxial tensile strain, likely due 

to thermal strain imparted during cooling after growth due to the much larger linear 

thermal expansion coefficient of EuO compared to that of the single-crystal diamond 

and silicon substrates over relevant temperatures.41–43 

 

Figure 4-3: (a) A θ-2θ scan of the same 25 nm thick EuO film grown on an epitaxial 
diamond film as shown in Figures 4-2(a) and 4-2(b) reveals phase-pure EuO with only 
an (001) out-of-plane orientation. (b) A θ-2θ scan of the same 37 nm thick EuO film 
grown on a single-crystal diamond as shown in Figures 4-2(c) and 4-2(d) reveals phase-
pure EuO with only an (001) out-of-plane orientation. There is no indication of europium 
metal or europium oxides with higher oxygen content in either film. (c) Rocking curve 
comparison between 002 EuO and 004 diamond of the same EuO film grown on an 
epitaxial diamond film as shown in Figure 4-3(a). (d) Rocking curve comparison 
between 002 EuO and 004 diamond of the same EuO film grown on a single-crystal 
diamond as shown in Figure 4-3(b). 
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that of bulk EuO indicates that the films are under slight biaxial tensile strain, likely due 

to thermal strain imparted during cooling after growth due to the much larger linear 

thermal expansion coefficient of EuO compared to that of the single-crystal diamond 

and silicon substrates over relevant temperatures.41–43 

 

Rocking curve measurements of the film and underlying substrate were compared using 

the EuO 002 peak and diamond 004 peak. For the EuO on the epitaxial diamond film, 

Figure 4-3(c), the EuO 002 peak has a full width at half-maximum (FWHM) of 1.2° in 

omega compared to the diamond 004 peak FWHM of 0.17°. For the EuO on single-

crystal diamond, Figure 4-3(d), the EuO 002 peak has a FWHM of 1.8° in omega 

compared to the diamond 004 peak FWHM of 0.005°. The large EuO peak FWHM 

further suggests that the films contain high densities of dislocations and are therefore 

not commensurate with the underlying substrates. Since the films were not 

commensurately strained, we could not test the prediction of an enhanced TC in 

compressively strained EuO.26  

 

Figure 4-4(a) shows ∅-scans of the 111 Si, 111 Ir, 111 diamond, and 222 EuO peaks of 

the EuO film on the epitaxial diamond film. As expected the diamond, iridium, YSZ, and 

silicon layers are arranged cube-on-cube with (001)[100] diamond || (001)[100] Ir || 

(001)[100] YSZ || (001)[100] Si.31 EuO is also arranged cube-on-cube, but rotated 45° 

with respect to the underlying diamond film as discussed earlier. The 45° rotation is 

denoted by the displacement of the four 222 peaks of EuO relative to the four 111 

diamond peaks. The YSZ layer could not be resolved by XRD due to its small thickness 
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of just 20 nm. Together the θ-2θ scan and ∅-scans indicate an epitaxial film of EuO on 

diamond with an orientation relationship of (001)[110] EuO || (001)[100] diamond. A 

schematic depicting the orientation relationship between the layers in this epitaxial 

heterostructure is shown in Figure 4-4(b). 

 

  

Figure 4-4: (a) Azimuthal ∅-scans of the same 25 nm thick EuO film grown on an 
epitaxial diamond film as shown in Figure 4-3(a) for the 111 Si, 111 Ir, 111 diamond, 
and 222 EuO diffraction peaks at χ = 54.7°, where χ = 0° aligns the diffraction vector 
perpendicular to the plane of the substrate. ∅ = 0° corresponds to the in-plane 
component of the diffraction vector aligned parallel to the [100] direction of the (001) 
EuO film. The scans are offset for clarity. The positions of the phi peaks indicate that the 
orientation relationship between the layers is (001)[110] EuO || (001)[100] diamond || 
(001)[100] Ir || (001)[100] Si. (b) An atomic model illustrates the orientation relationship 
between all components in the heterostructure. (c) Azimuthal ∅-scans of the same 37 
nm thick EuO film grown on a single-crystal diamond as shown in Fig. 3(b) for the 111 
diamond and 111 EuO diffraction peaks at χ = 54.7º.  The scans are offset for clarity. 
The positions of the phi peaks indicate that the orientation relationship between the 
layers is (001)[110] EuO || (001)[100] diamond. 
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of just 20 nm. Together the θ-2θ scan and ∅-scans indicate an epitaxial film of EuO on 

diamond with an orientation relationship of (001)[110] EuO || (001)[100] diamond. A 

schematic depicting the orientation relationship between the layers in this epitaxial 

heterostructure is shown in Figure 4-4(b). 

 

Figure 4-4(c) shows ∅-scans of the 111 EuO and 111 diamond reflections of the EuO on 

single-crystal diamond. EuO is arranged cube-on-cube, again rotated 45° with respect 

to the underlying diamond. The 45° rotation is denoted by the displacement of the four 

111 peaks of EuO relative to the four 111 diamond peaks. Together the θ-2θ scan and 

∅-scans indicate an epitaxial film of EuO on diamond with an orientation relationship of 

(001)[110] EuO || (001)[100] diamond. The d-spacing of the (110) EuO plane was 

d110 = 3.647 ± 0.003 Å, as calculated from the measured θ-2θ positions of multiple 

reflections from the (111) EuO planes. This value is larger than the bulk value 

(d110 = 3.635 Å),39 providing further evidence that the film is under tensile strain as a 

result of the lattice mismatch being relaxed at the high growth temperature. The 

observed tensile strain, 0.3 ± 0.08 %, is expected to reduce the TC of EuO by about 

1.5 K according to first-principles calculations.29 

 

Magnetic measurements were performed in zero applied field and the Curie 

temperature was determined from the derivative of the magnetization with respect to 

temperature.44 The TC was found to be 67 ± 2 K for EuO grown on the epitaxial diamond 

film (Figure 4-5(a)) and 68 ± 2 K for EuO grown on the single-crystal diamond (Figure 4-

5(b)), which is within experimental error of the expected Curie temperature of EuO given 
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the slight TC shift from the observed tensile strain.26,29 Magnetic hysteresis of the films 

reveals a saturation magnetization of 2.1 ± 0.1 µB per europium ion and a coercive field 

of 50 ± 50 G at 40 K for the EuO grown on the epitaxial diamond film (Figure 4-5(c)) and 

a saturation magnetization of 5.5 ± 0.1 µB per europium ion and a coercive field of 

105 ± 10 G at 5 K for the EuO grown on single-crystal diamond (Figure 4-5(d)). At 5 K, 

 

Figure 4-5: Magnetization as a function of temperature of (a) the same 25 nm thick 
EuO film grown on an epitaxial diamond film as shown in Figure 4-3(a) revealing a TC of 
67 ± 2 K and (b) the same 37 nm thick EuO film grown on a single-crystal diamond as 
shown in Figure 4-3(b) revealing a TC of 68 ± 2 K. (c) Magnetic hysteresis 
measurements show that the same 25 nm thick EuO film grown on epitaxial diamond 
film as shown in Figure 4-3(a) is ferromagnetic with a coercive field of 50 ± 50 Gauss 
and a saturation magnetization of 2.1 ± 0.1 Bohr magnetons per europium ion at 40 K. 
(d) Magnetic hysteresis measurements show that the same 37 nm thick EuO film grown 
on single-crystal diamond as shown in Figure 4-3(b) is ferromagnetic with a coercive 
field of 105 ± 10 Gauss and a saturation magnetization of 5.5 ± 0.1 Bohr magnetons per 
europium ion at 5 K. 
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the EuO grown on the epitaxial diamond film has a maximum magnetization at 30,000 G 

of 3.7 ± 0.1 µB per europium ion. These values are considerably lower than the 6.9 µB 

per europium ion found in bulk EuO and in high-quality EuO epitaxial films,8,9,17,28,33,39 

and is indicative of our films on diamond not yet being the quality of epitaxial EuO films 

grown on YAlO3,8,33 LuAlO3,29 Si,8 and GaAs.28 

 

In summary, the epitaxial integration of ferromagnetic EuO on epitaxial diamond films 

and single-crystal diamond was achieved. The epitaxy of the EuO film on (001) diamond 

exhibited a temperature-dependent orientation as seen in other heteroepitaxy oxide 

systems. The magnetic hysteresis and Curie temperature of epitaxial EuO films on 

diamond are comparable to those of bulk EuO.13 Although the growth conditions used 

yielded relaxed EuO films, the predicted enhancement of TC by compressive strain26 

motivates the achievement of commensurate EuO films on diamond – a challenge for 

future studies. 
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CHAPTER 5 

PROTECTIVE AMORPHOUS EU2O3 BARRIER FOR EUO THIN FILMS 

 

Originally submitted to Thin Film Science 2014 
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The efficacy of a Eu2O3 capping layer was examined for its ability to protect undoped 

EuO thin films. After exposing the heterostructure to water under conditions typical for 

lithographic patterning, the structural, chemical, and magnetic properties of the EuO thin 

film and Eu2O3 capping layer were investigated by structural, chemical, and magnetic 

techniques. The EuO film remains highly crystalline after the exposure, despite the 

incomplete conversion of EuO to Eu2O3. Importantly, the magnetic properties of EuO 
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are unaffected by the Eu2O3 capping layer, indicating that forming a protective Eu2O3 

overlayer after growth is effective in maintaining the properties of EuO. 
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The fantastic and in many ways unparalleled properties of europium oxide (EuO) have 

been investigated since its discovery as a ferromagnetic semiconductor in 1961 (Ref. 1) 

with a Curie temperature (TC) of 69 K.2 It was found that the TC can be enhanced by 

doping with trivalent cations3–10 or by introducing oxygen vacancies (EuO1−x).11–14 

Theorists predict a maximum TC of about 200 K by combining doping and compressive 

strain.15 In 1971, a metal-to-insulator transition (MIT) was demonstrated in non-

stoichiometric or doped EuO to change the resistivity by more than 13 orders of 

magnitude.16 The MIT is caused when the EuO becomes ferromagnetic, resulting in the 

conduction band splitting by 0.6 eV and excess  electrons in the system flow into the 

conduction band.17 The large spin-splitting of the conduction band means that EuO is 

nearly fully spin-polarized;17 transport measurements reveal its spin polarization to be 

greater than 96%.18,19 Moreover, epitaxial integration of EuO with modern 

semiconductor materials has already been demonstrated.18,20–23 

 

Unfortunately, the instability of europium monoxide (EuO) has precluded many 

characterization techniques in EuO thin films, since EuO reacts in air to form the 

paramagnetic Eu2O3 or Eu3O4 phases.24 The reaction proceeds to different depths in 

different samples consuming several monolayers of EuO,2,25–27 and in small samples, 

such as thin films and powder, it could create an oxidized region of Eu3+ that could 

penetrate the entire volume.28 This is a significant problem for probing the surface of 

EuO, as it decomposes to Eu2O3 or Eu3O4 before the EuO can be characterized. 

Furthermore, several quantitative measurement techniques rely upon a known volume 

of the EuO layer. Since the extent of decomposition of EuO is unknown, the margin of 
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error for these calculations is unknown and could vary wildly from sample to sample. 

 

The solution for thin films fabricated in vacuum is either simply to conduct the 

experiment in vacuum if possible,17,29–31 or to apply a protective “capping” film on top of 

the EuO. Eu2O3 was an obvious choice since it is a common precursor for the growth of 

EuO by sputtering or evaporation.5,11,32 It is, furthermore, not magnetic or conducting, 

making it useful for both probing the magnetic properties and electronic properties of the 

underlying EuO film. Although Eu2O3 as a deliberate capping layer has been utilized in 

the past,25,32–36 a thorough investigation of the structural properties has yet to be 

performed, and it is uncertain how well this buffer layer protects the underlying EuO 

films. In one report, films with a buffer layer of Eu2O3 degrade over a period of several 

days.34 In other reports, the films are stable under “wet air” conditions for more than 20 

hours up to 200ºC.36 These studies did not comment, however, on the durability of 

these films when exposed to liquid water - a key component to common lithography 

techniques that are necessary for further characterization and utilization of EuO thin 

films.8,9,18,19,37  

 

 Other buffer layers have been explored, often with no comment on their effectiveness 

at preventing oxidation of the EuO film. Most commonly metals, such as 

aluminum,20,38,39 titanium,18 platinum,40 , copper,41 or silver,41 have been employed, 

which also act as a convenient top electrode. MgF2,42,43 CaF2,44 Al2O3,18,45 and 

silicon8,9,18,19 have also been used to prevent oxidation, but are not conducting and offer 

varying degrees of optical transparency. These buffers can also be used, therefore, for 
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patterning the heterostructures for electronic characterization.18,44 

 

In this Letter we characterize the efficacy of applying an Eu2O3 cap in the method 

described by Lee and Suits,32 which may be able to protect the underlying EuO film 

from exposure to atmosphere and liquid water. Structural characterization of the Eu2O3 

cap and determining its penetration depth into the EuO film was performed by four-circle 

X-ray diffraction (XRD) and X-ray reflectivity (XRR) utilizing Cu Kα radiation, and 

scanning transmission electron microscopy (STEM) in conjunction with electron energy 

loss spectroscopy (EELS). Atomic-resolution high angle annular dark field (HAADF) 

STEM images and EELS line scans were performed on a 200 keV FEI Technai F-20, 

with a 1.6 Å STEM probe size and an EELS energy resolution of 0.7 eV.  

 

The cap’s effectiveness at preventing further oxidation during lithographic processing, 

e.g., a rinse step used to remove residual photoresist, was simulated by submerging the 

sample in liquid water for three minutes before performing the structural 

characterization. No degradation was observed, so the magnetic properties of the films 

were then measured using superconducting quantum interference device (SQUID) 

magnetometry. SQUID measurements to determine TC were made in zero applied field 

for all samples.37 

 

The EuO films were grown in a Veeco Gen10 molecular-beam epitaxy chamber on 

single-crystalline (110) YAlO3 substrates. The rectilinear surface mesh of YAlO3 is 

slightly larger than that of EuO and imparts a +2% linear lattice mismatch to EuO, such 
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that only EuO films under 38 nm can be grown commensurately to the substrate.46 All 

films were grown within an adsorption-controlled growth regime. The oxygen partial 

pressure corresponded to a vacuum chamber pressure of less than 1×10-8 Torr. The 

incident flux of europium atoms was calibrated to 5.5×1013 atoms / (cm2s) by a quartz 

crystal microbalance, 20% higher than the EuO growth rate, which had been 

determined earlier from areal density measurements of europium on calibration samples 

by Rutherford backscattering spectrometry (RBS). The overabundance of europium 

atoms prevents the oxidation of Eu2+ ions to Eu3+, and the substrate temperature of 

400ºC prevents the absorption of Eu metal. Two undoped films, ~30 nm and ~60 nm, 

were grown. After growth, the Eu2O3 cap was introduced by cooling the films in a 

vacuum chamber pressure of less than 1×10-8 Torr to below 200ºC, at which point the 

oxygen partial pressure was set to 1×10-7 Torr for 5 minutes in accordance with Ref. 47. 

The samples were then removed from the vacuum chamber for ex situ characterization. 

 

The θ-2θ scan of the EuO thin films after exposure to water are shown in Figure 5-1(a). 

The nominally 30 nm and 60 nm thick EuO films exhibit only substrate peaks and 00ℓ𝓁 

EuO peaks, consistent with the phase-pure growth of EuO. There is no evidence of 

Eu2O3 or Eu3O4 peaks, suggesting that (a) the Eu2O3 cap was amorphous or not 

present, and (b) the EuO was not completely oxidized in atmospheric conditions or 

liquid water. 

 

Rocking curves of the EuO 002 peak for the nominally 30 nm and 60 nm thick EuO films 

are shown in Figures 5-1(b) and (c), respectively, and are compared to the rocking 
dddfdfdfdddfdfdfdfdfdfdfdfdfdddd dfdfdfdfd EuO  
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of the corresponding YAlO3 220 substrate peak. Since the nominally 30 nm thick EuO 

film is thinner than the critical thickness of 38 nm, it is no surprise that the full-width half 

maximum (FWHM) of the EuO 002 peak rocking curve is 34 arcseconds, comparable to 

the 30 arcseconds FWHM of the substrate peak. On the other hand, the nominally 

60 nm EuO film is thicker than the critical thickness and has a FWHM of 

1050 arcseconds, compared to the 30 arcseconds FWHM of the substrate peak. The 

 
Figure 5-1: (a) XRD scans of the nominally 30 nm thick EuO film (blue) and the 
nominally 60 nm thick EuO film (red) after exposure to 3 minutes of running water. No 
Eu2O3 peaks or other impurity peaks are visible. (b) Rocking curve comparison between 
the 220 YAlO3 substrate peak (FWHM = 30 arcseconds) and the 002 EuO peak (FWHM 
= 34 arcseconds) for the nominally 30 nm thick EuO film. (c) Rocking curve comparison 
between the 220 YAlO3 substrate peak (FWHM = 30 arcseconds) and the 002 EuO 
peak (FWHM = 1050 arcseconds) for the nominally 60 nm thick EuO film.    



 

 92 

30 nm thick EuO film is commensurate with the substrate, whereas the 60 nm thick EuO 

film is relaxed due to the formation of line defects to mediate the strain energy in 

crystals thicker than the critical thickness.46,48–50 These additional dislocations in the 

thicker sample could act as fast diffusion channels to enhance oxygen diffusion into the 

film during the capping process.51 

 

The thickness of the films was determined by XRR analysis for the nominally 30 nm 

thick EuO film and by HAADF-STEM imaging for the nominally 60 nm thick EuO film. 

XRR of the nominally 30 nm thick EuO film revealed ~15 nm of EuO and ~15 nm of 

Eu2O3. The HAADF images of the nominally 60 nm thick EuO film are shown in 

Figures 5-2(a) and (b) and show that the bottom ~15 nm of the EuO film is qualitatively 

different than the top 45 nm. The 15 nm thick bright region near the substrate interface 

is highly ordered down the zone axis, while the 45 nm dark region is not. Selected area 

diffraction (not pictured) in each of these regions confirms that the film in the bright 

region is crystalline, whereas the film in the dark region is amorphous as opposed to 

ordering along a different zone axis. In consideration of the XRD data, however, the 

15 nm thick crystalline region most likely corresponds to the highly crystalline EuO and 

the 45 nm amorphous region most likely corresponds to the Eu2O3. The discrepancy in 

the thickness of the capping layers (despite identical growth conditions) is attributed to 

the superior film quality in the thinner film as denoted by the rocking curves. 

 

The abundance of EuO and Eu2O3 in these regions could not be determined simply 

from XRD and HAADF-STEM images alone, so two distinct EELS fingerprints of the Eu-
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N4,5 edge, corresponding to a valence change in the Eu cation, were taken at several 

points along a line similar to the one drawn in Fig. 2(b). The EELS data are shown in 

Fig. 2(c) and (d). These fingerprints were analyzed by multivariate curve resolution to 

extract the contribution of the Eu2+ signal (green) and the Eu3+ signal (blue) to determine 

the relative abundance of each valence, shown in Fig. 2(d). The line profile denotes a 

strong Eu2+ signal beginning at the YAlO3 interface and continuing ~15 nm along the 

ace and continuing  

  

Figure 5-2: (a) HAADF image of the nominally 60 nm thick EuO film showing the highly 
crystalline EuO beneath the ~45 nm thick mixed-phase region of amorphous Eu2O3 and 
EuO. (b) Zoomed in image of the same film in Figure 5-2(a) revealing a dark region at 
the substrate / film interface. An example EELS line map is also drawn on the image for 
reference. (c) EELS spectra for both the Eu2+ and Eu3+ signals at several points along 
the line shown in Figure 5-2(b). (d) Depth profile of the relative abundance of Eu2+ and 
Eu3+ cations as a function of position along the line shown in Figure 5-2(b), where 0 nm 
is within the substrate and 50 nm is within the capped region. 
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N4,5 edge, corresponding to a valence change in the Eu cation, were taken at several 

points along a line similar to the one drawn in Fig. 5-2(b). The EELS data are shown in 

Figures 5-2(c) and (d). These fingerprints were analyzed by multivariate curve 

resolution to extract the contribution of the Eu2+ signal (green) and the Eu3+ signal (blue) 

to determine the relative abundance of each valence, shown in Figure 5-2(d). The line 

profile denotes a strong Eu2+ signal beginning at the YAlO3 interface and continuing 

~15 nm along the line scan, whereas the Eu3+ signal is negligible (except briefly at the 

interface). At that point, the Eu2+ signal rapidly decreases and the Eu3+ signal rapidly 

increases for the remaining ~45 nm. The presence of Eu3+ and the lack of crystalline 

Eu2O3 peaks in the XRD confirm our suspicion that the dark region in HAADF 

corresponds to amorphous Eu2O3. In other words, the post-growth oxidation of EuO was 

successful in creating a capping layer of Eu2O3 at the surface. The concentration of 

Eu2+ does not drop to zero, however, suggesting that the post-growth oxidation did not 

fully oxidize the EuO, leaving EuO intermixed with the Eu2O3 cap.  

 

Another dark region appears at intervals along the substrate interface (Figure 2(b)). Its 

location corresponds to the small uptick in Eu3+ in the EELS data. Unfortunately, the 

origin of this region of Eu2O3 at the interface could not be inferred from the data 

collected. The Eu2O3 may have been caused by a large fluctuation in the oxygen 

pressure at the surface of the substrate that is common at the beginning of growth. In 

the adsorption-controlled growth regime, higher oxidation states of Eu will form if the 

flux of oxygen locally exceeds the flux of Eu. This was not, however, observed in the 

identically grown (although commensurate) EuO / YAlO3 film imaged in Ref. 52. The 
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Eu2O3 at the interface may also have been caused by a combination of (1) the high 

dislocation density of an EuO film that is thicker than the critical thickness, and (2) the 

post-growth oxidation. In this model, the oxygen reacted at the surface of the EuO film, 

but also diffused down the dislocations. Diffusion along dislocations was demonstrated 

to be several orders of magnitude faster than single-crystal diffusion in other rocksalt 

systems.53–55 Given sufficient time, the oxygen would diffuse entirely down the EuO film, 

and then diffuse at the interface, which is another fast diffusion pathway.56–58 The 

evidence would only appear at the interface boundary, since STEM scans columns of 

atoms and is insensitive to dislocations whose Berger vectors run parallel to the zone 

axis (e.g., along the beam direction). Future studies are necessary to determine the 

origin of the Eu2O3 at the substrate interface, and it is beyond the scope of this paper to 

discuss the possibility of oxygen diffusion along fast diffusion pathways in EuO. 

 

Finally, the magnetic properties of the films were measured. Figure 5-3(a) illustrates 

that, as expected, both films have a Curie temperature of 69 K, within the error bars. 

Figure 5-3(b) shows the magnetic hysteresis and saturation magnetization taken at 5 K. 

Since the conversion of Eu2+ to Eu3+ appears to be incomplete above the highly 

crystalline EuO region, the total number of Eu ions in the film was considered, including 

the nonmagnetic Eu3+ within the capping layer. Thus, the saturation magnetization 

values appear depressed compared to the theoretical maximum of 7 µB / Eu ions 

because there is an uncertain volume of Eu2O3 within the capping layer that fails to 

contribute to the magnetic signal. The saturation magnetization was 4.0 ± 0.1 µB / Eu 

ion for the nominally 30 nm thick EuO film and 3.9 ± 0.1 µB / Eu ion for the nominally 
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60 nm thick EuO film, and the coercive field was 70 ± 10 G for the nominally 30 nm thick 

EuO film and 110 ± 10 G for the nominally 60 nm thick EuO film. The coercive fields are 

comparable to those found in other high-quality EuO thin films.18,39,46,59 By fitting the 

magnetization to 7 µB / Eu ion and assuming that the first 15 nm in both films is 100% 

EuO, one can extract the percent conversion of magnetic EuO to nonmagnetic Eu2O3 in 

the capping layer. In the nominally 30 nm thick EuO sample, 87% of the EuO in the 

capping layer converted to Eu2O3, and in the nominally 60 nm thick EuO sample, 59% 

of the EuO in the capping layer converted to Eu2O3. The significant pipe diffusion in the 

thicker sample could be responsible for the limited transformation of EuO to Eu2O3 in 

the capping layer by allowing oxygen to bypass EuO in the capping layer and instead 

react deeper in the film. 

 

Future work should analyze the effectiveness of the Eu2O3 capping layer for doped 

films, as several questions remain unanswered for that system. Uncertainty exists over 

whether or not the inclusion of rare-earth dopants would enhance the diffusion of 

oxygen in the sacrificial region. It is possible that the dopant-induced defects or local 

strain-fields would enhance oxygen diffusion, similar to the strain-induced line defects 

found in the incommensurate EuO case. Perhaps a dopant-free sacrificial region on top 

of the electroactive, doped EuO region is necessary. Furthermore, if there is increased 

oxygen diffusion near dopants, how would the TC enhancement or dopant activity be 

affected? 

 

In conclusion, the robustness of the Eu2O3 capping layer was investigated by structural, 
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chemical, and magnetic analysis. Although the Eu2O3 layer was incomplete and 
dfdfdfdfdfdfdfdfdfdfdfdfdfdfdfdfdfdfdfdfdfdfdfsdfsdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfadsf 
 

amorphous, it was sufficient for protecting the underlying EuO film from exposure to 

liquid water under similar conditions to lithography processes. The magnetic data further 

confirms the incomplete Eu2O3 layer and the preservation of the EuO. Utilization of this 

 
Figure 5-3: (a) Magnetization as a function of temperature of the same films from 
Figure 5-1 reveals a bulk-like TC of 68.5 ± 1 K for the nominally 60 nm thick EuO film 
and 67.5 ± 2 K for the nominally 30 nm thick EuO film. (b) Magnetic hysteresis 
measurements at 5 K show that the same EuO films are ferromagnetic with a saturation 
magnetization of 3.9 ± 0.1 µB / Eu ion and a coercive field strength of 110 ± 10 Gauss 
for the nominally 60 nm thick EuO film and a saturation magnetization of 
4.0 ± 0.1 µB / Eu ion and a coercive field strength of 70 ± 10 Gauss for the nominally 
30 nm thick EuO film. 
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capping layer in thin films may be a poor choice for magnetic and electronic 

characterization, since unreacted EuO in the sacrificial layer interferes with the 

characterization of the EuO in the non-sacrificial layer. The problem is significantly 

reduced for bulk samples, where the passivation layer represents a small percentage of 

the overall sample volume. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 SUMMARY 

This thesis has presented research findings investigating the relationship between the 

structure and composition of EuO and its magnetic and electronic properties. It utilizes 

an adsorption-controlled growth method to fabricate ultra-high quality EuO samples by 

molecular-beam epitaxy. The aims of this thesis are three-fold. First, it looks at and 

compares the effect on the electronic and magnetic properties of EuO using magnetic 

and non-magnetic trivalent cations. Second, it explores the effect of biaxial strain on the 

magnetic properties of EuO, experimenting with tensile strain via LuAlO3 substrates and 

with compressive strain via diamond substrates. Finally, a capping method that utilizes 

a sacrificial EuO layer in order to form a protective Eu2O3 capping layer was examined 

for its effectiveness at protecting the underlying EuO thin film from water and 

atmosphere. 

 

In Chapter 2, the addition of a novel dopant cation, Lu3+, was examined for its role in 

enhancing the TC and altering the electronic properties of EuO. In a film with 5% Lu-

doping, the TC was found to be 119 K. The MIT occurred across the elevated TC, but the 

resistivity changed only by a single order of magnitude. These effects were similar to 

the effects of doping EuO by 5% with Gd3+ or La3+. Despite the lack of magnetism in the 

Lu3+ dopant, the 5% Lu-doped EuO thin film had a spin-polarization of 96%, the highest 

value reported for EuO. 
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In Chapter 3, the effect of biaxial tensile strain imparted from a novel substrate, LuAlO3, 

was examined for its role in reducing the TC of EuO as predicted by theoretical 

calculations. This experiment removed all other possible sources of a reduced TC (e.g., 

size effects)  by comparing a series of identical EuO thin films with varying thickness for 

both unstrained EuO, grown on YSZ substrates (0.0% strain), and inhomogeneously 

strained EuO, grown on LuAlO3 substrates (+1.0% strain). The reduction in TC for 

inhomogeneous strain was also calculated for EuO. A reduced TC was observed for 

unstrained EuO / YSZ thinner than 10 nm, corresponding to the reduced magnetism 

expected in such ultrathin ferromagnetic samples. A greater reduction in TC was 

observed for strained EuO / LuAlO3 thinner than 20 nm, indicating that the difference in 

TC must have been caused by the imparted biaxial strain. Furthermore, the reduction in 

TC matched the calculated value. This experiment additionally discovered that the 

critical thickness for EuO / LuAlO3 was 69 nm, and that relaxation for these films occurs 

simultaneously in both directions, despite the difference in strain along perpendicular 

directions.  

 

In Chapter 4, this thesis attempted to elucidate the effect of biaxial compressive strain 

on the magnetic properties of EuO. Epitaxial EuO films were grown for the first time on 

both single-crystal diamond substrates and diamond films on silicon. The orientation of 

the EuO crystal on diamond depended heavily on substrate temperature during growth, 

and differed between the single-crystal diamond and the thin film diamond. The (001) 

orientation was stabilized and its growth optimized for both substrates. The rocking 
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curves and in-plane lattice constants of the EuO on both types of substrates indicated 

that the EuO was not compressively strained, most likely due to a combination of 

defects in the film and a large thermal expansion coefficient mismatch between EuO 

and these substrates. The TC of EuO was unaffected by the substrates, remaining, 

within error, the bulk value of 69 K. The saturation magnetization, however, was 

affected by film quality, being reduced in both the EuO grown on single-crystal 

diamonds and also the EuO grown on diamond films. 

 

In Chapter 5, a procedure for transforming the upper monolayers of EuO into a 

protective Eu2O3 capping layer was optimized and examined. The Eu2O3-capped EuO 

thin films endured exposure of the heterostructure to both water and atmosphere to 

confirm the effectiveness of the capping layer. Following these tests, the thin films were 

examined by STEM  and XRD to confirm that EuO remained. Significant differences 

were discovered in the diffusion depth of oxygen into the EuO during the Eu2O3 capping 

procedure between commensurate thin films and relaxed thin films. The oxygen diffused 

deeper in relaxed thin films, conceivably along the stress-related defects that were 

present in much higher concentration than in the commensurate thin films. As a result, 

the conversion of EuO to Eu2O3 at the surface of the thin films was lower in the relaxed 

films. In both cases, the Eu2O3 capping layer was rather effective at preventing the 

annihilation of EuO via oxidation or hydroxylation, and magnetic measurements of both 

cases confirmed the presence of high quality EuO. The lack of a thorough conversion 

and absence of an abrupt EuO / Eu2O3 interface may, however, pose a challenge for 

effectively analyzing the magnetic properties, given the presence of EuO in the capping 
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layer and an uncertainty in the EuO thin film volume. 

 

6.2 FUTURE DIRECTIONS 

The future direction for research investigating EuO is clear. Although this work made 

significant progress in the field of EuO, it generated more questions than it answered.  

 

Though the choice of dopant ions was investigated, more work remains. For example, 

there is insufficient knowledge of the solubility limits for different dopants, or the optimal 

dopant material and doping level. The existence of inactive dopants has been 

discovered, but its origins remains a mystery. Solving this mystery requires the same 

high-quality EuO found in this thesis, as well as a significant devotion of resources 

toward identifying the physical origin of the inactive dopants (e.g., defects, dopant 

segregation). Moreover, only rare-earth dopants were explored in this thesis, but 

trivalent cations exist in the transition metals and the other elements. How do these 

dopants, with huge variations in ionic size and electronic structure, affect the magnetic 

and electronic properties of EuO? 

 

In the work on straining EuO, the obvious future direction is successfully applying 

compressive biaxial strain to EuO. One may consider using an as-of-yet undiscovered 

substrate that imparts less strain than the diamond substrates used in this thesis. Also, 

choosing an oxide substrate would effectively remove the disparity in thermal expansion 

coefficients, as well as provide an ionic surface for improved chemical compatibility at 

the surface. Another direction to explore is pushing the strain to higher values, such as 
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the +5% strain or -4% strain predicted to generate ferroelectricity in EuO.1 Thus far, 

preliminary evidence suggests that radical changes in growth dynamics may be 

necessary to impart such large strains in EuO, but the existence of a ferromagnetic 

ferroelectric rocksalt is tremendously alluring and well-worth the effort. 

 

Finally, the effect of simultaneously doping and straining EuO has neither been explored 

nor optimized. The combination will most likely enhance the TC to values even higher 

than by any single method. Is it even possible to impart such large strains while 

simultaneously doping up to 16%? This is one of the most exciting future directions for 

EuO, as it is the most likely to thrust EuO into the realm of practical application.  
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