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I. INTRODUCTION 

Since advance in the mean value of a character under selection depends upon 

the residual genetic variance from the preceding generation and upon the selection 

presstTe, a simple recursive model may be used to describe the population mean at 

the ith step in a selection program. Four forms of such a model are presented 

belovT together with estimators and variances of the estimators for various para­

meters. In addition, an application is made to one set of data obtained from the 

e4~eriment described by Papa [1961]. Further detail on this experiment is given 

by Federer, Robson, and Srb [1959] and by Papa and Federer [1960]. 
For the models described herein, it is assumed that a large number of factors 

affect the character under consideration and that the factors affecting a character 

are similar in expression. (If few'factors control the expression of the character 

under consideration, then some such model as described by Federer, Robson, and Srb 

[1959] would suffice.) The genotypic effects are assumed to be random variables 

identically and independently distributed with mean zero and common variance ag2 • 

The environmental effects are also assumed to be identically and independently 

distributed random variables with zero mean and common variance Oe 2 • In the 

bivariate distribution of environmental and genotypic effects, a zero covariance 

is postulatedc This implies no genotype x environment interactions for the 

environments encountered in the collection of a set of data. ~ihether or not this 

assumption is justifiable depends upon the genetic material and the environments · 

encountered. 

* In the Biometrics Unit Mimeograph Series, Cornell University, Ithaca, New York 
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II. SELECTION MODELS 

l. Selection model for knovm difference between ~ of selected population and 

~ of unselected po~ulation 

Let the yield of the jth individual in generation i be expressed as: 

i 

YiJ=a+a~:2 L 
h=l 

' 
(1) 

where a = population mean in generation zero (i~e., in the generation in which 

selection is first practiced), cre 2 = environmental variance, crg 2 = genetic variance, 

~=O'e 2 /crg 2 , bt-l are k~own coefficients from an inbreeding series (e.g., b1 - 1 = 
2-i+l in the selfing series for i=l,2,•••), x15 =true mean of population of 

selected individuals in generation i, Xi· =true mean of entire unselected popula­

tion in generation i, Xis-x1 • represents the true difference between means of 

selected individuals and the unselected population in generation i, E 1 J are 

identically and independently distributed random variables with zero mean and 

common variance O'e 2 , i=l,2,••~,v, and j=l,2,••e,nt =number of observations in 

generation i. The total phenotypic variance in the generation in which selection 

is first practiced (the zeroth generation of selection) is O"g 2 +ae2 , and the pheno­

typic variance in generation i is bt-lO'g 2 +cre2 • For i=O, bo- 1 =0; thus, ·Yo j=<l+e03 • 

In practice, the value Xt s -x1• is usually unknown. The experimer.tcr could, 
- - ( )1/ i however, set Xts-Xt•= c=a constant • Then, the selected progeny in generation 

i would be all those whase mean x1 s exceeded the unselected population mean Xi• 
by c1 ' 1 • This would require that a large number of individuals be observed in 

each generation. Because the value for Xts-x1 • may be difficult or impossible to 

obtain, the model in the following section was proposede 

The meaning of the statement that the e 1 .l have common variance O"e 2 requires 

amplification. Basically, this statement implies that for a true breeding popula­

tion the expected value of the variance among v observations taken singly in each 

of the environments in which the Yt• are obtained is equal to the expected value 

of the variance among v observations in generation i. In the analysis of variance 
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table, this would mean: 

SoU:"ce of variance Average value of mean square 

Among generations v-1 

Hi thin generations v(n .. l) 

Also, this implication could be expressed symbolically as: 

where 

• 

2. Selection ~odel when genotypic and environment effects ~ independently and 

normally distributed 

If the genotypic and environmental effects are independently and normally. 

distributed, then equation (1) may be rewritten as: 

, (2) 

where Zmh are constants obtained from Table XX of Fisher and Yates [1938], Tables 

2 and 3 of Federer [1951], or Table 1 of Harter [1961]$ (The last reference is 

more extensive and contains more significant figures than do the first two refer­

ences.) and where the other symbols are as defined for (1) except that the 

normality condition on the distribution of the random variables is imposed. The 

constant z111 is the average value of the largest member from a sample of size m 

from a normal population with zero mean and unit variance. In other words it is 

the eX);lected-'valu~ .bf the largest rank order statistic from a sample _of size m. 
-z81 is a constant for each generation if m is constant from generation to genera-

tion; otherwise, z11 1 will vary vrith m and reflects the selection pressure in 

generation 1. Also, it .may be noted that (Xhs .. Xh• )//b~- 1 cr, 2 +cre 2 in equation (1) 

is replaced by Zmh in equation (2). 
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3. Selection model~ (xis -xt.:l ~ unknown and when~ normality assumption 

f2!. eguation _(gl .f.! ~ tenable 

In certain situations the assumption of normal distribution of the genotypic 

and the environmental effects may be untenable. For this case we proceed by 

rewriting equation (1) as : 

1 

y 1 J = a: + a I bh -1 9.h + e: 1 J 

h=l Jbh-l +f3 
, (3) 

where 5=a,(xhs-Xh• )//bh- 1 a, 2 +ae2 , where ah are known constants reflecting changes 

in selection pressure frcm generation to generation (ah=l if selection pressure 

is constant throughout all generations of selection), and where the remaining 

symbols are defined in the same manner as for equation (1). Also, if the normality 

assurnption holds 5ah=a1 Zmh from equation (2). The parameters to be estimated are 

a:, B, and f3. 

4. Model !2£ ~ progress under selection f!2! generation ~ to seneration ~ 

Suppose that at generation i in a selection program it is desired to know 

(using parameters ) or to estimate (using estimates) the mean adv:ance to be made 

in the i+l8 t generation for a given selection pressure. From equation (1) the 

following results: 

• (4) 

For this simple Markovian process the mean advance from generation i to genera­

tion i+l is: 

• (5) 



-5-

-In the above y1 • and Yi+l• are the arithmetic means of the observations in 

generation i and in i+l and the remaining symbols are as defined for equation (1). 

If the genotypic and environmental effects are normally and independently 

distributed, equation (5) may be written in the form: 

E[- - ] __ bi O'g Zm t1 tl 
Yi+l·-Yi• (6) 

/bi+t3 

In order to simplify results and minimize variances the n1 should be equal. 

III. ESTIMATION OF P.A.R.AMmrERS 

1. Estimation of~' cre 2 , ~ cr 11 2 from§ separate experiment 

If the progeny from the different generations of selections are all 

compared in one experiment, estimates of a:, cre 2 , and crg 2 may be obtained from Y 

individuals (spores, strains, etc.) from the unselected population each replicated 
~ v n A 

n times. Then O:= Z ~ Yij/nv=y, and cre 2 and ~s 2 may be obtained from the follow-
1 =l j =l 

ing ~Dalysis of variance; 

Source of variation d.f. Mean square 

Among individuals v-1 A 2 2 
O'e +ncrg 

Within individuals v(n-1) B 

as ~e 2 =B and ~s 2 =(A-B)/n.'~ 
If the generation means are obtained from a series of experiments, the un­

selected population will necessarily be included in each experiment if the vari­

ance of observations among experiments is different from the variation among 

~~ TherG are several estimators for cre 2 and C1g 2 in the literature, but a discussion 

of these is not pertinent to this paper [see Federer, 1962]. 
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individuals within experiments. If the variance of observations among experiments 

is equal to the variance within experiments, then a 9ingle experiment could b.~ 

conducted at the begi_nning of the selection program and estimates of a, ae 2 , and 

Og 2 obtained at this stage. 

For any of the models postulated by equations (1) through_()), or any 

variation of them, an estimator for cre 2 is simply the sum of squares of devia­

tions bet¥reen the generation mean and the fitted. point on the curve divided. by 

the degrees of freedomo vfuether or not the variance among the n1 observations 
2 in generation i is an estimator for ae depends upon the conditions stated. in the 

preceding paragraphe 

To obtain the estimators in this and. following sections, the least squares 

procedure will be used.. Four reasons for adopting this procedure are (i) for 

the € 1 J normally and independently distributed. with mean zero and common variance 

cre 2 , the least squares estimators are also maximum likelihood estj.mators; (ii) 

the form of. the distribution need not be specified; (iii) solutions are possible 

by least squares procedure which may not be feasible using other procedures; and. 

(iv) theoretical results from standard regression theory are applicable. 

i·fuen the residual sum of squares from equation (1),* 

v n 1 1 

I I [yi J -a- I bh-1 {xbs-xh. ~:F (7) 
bh-1+13 ' 1 =l J =l h=l 

is. differentiated vrith respect to a and. 13, when the resulting equations are 

equated to zero, and when some algebraic manipulations are performed the follow­

ing equations result: 

" -a:::y 1 (8) 
n. 

(9) 

if- For certain values of Y1 J and. b1- 1 equation (7) has a minimum. This may not be 
true for values of Y1 j outside a given range and., therefore, it would not be pos­
sible to obtain estimators for a and. 13 as described. in this section (see section 
III-7 for further detail). When the range of Y1 J for which equation (7) has a 
minimum is determined., the Y1J may be transformed to fall in this range. 
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~ ~ 

Equation (9) in 13 is solved iteratively, and then c:t is obtained by inserting the 

solution for 8 from (9) in (8). If normality holdS asymptotic variances for a ... 
and 13 may be obtained from standard maximum likelihood procedures. 

-As explained previously an estimator for ae2 may be obtained as: 

(10) 

with n.-2 degrees of freedom. If the variation from generation to generation 

is larger then within generation variance,then cre 2 is estimated as: 

where r~=(n.-~n1 2 /n. )/(v-2) and where v-2= degrees of freedom for ~e 2 • 
Having estimates of 13 and ae 2 , an estimate of ag 2 is obtained ·as: 

~ 2 
Og = ~ z;~ O"e 13 • 

In analysis of variance terminology the results may be summarized as: 

Source of variation d.f. Sum of squares 

Among generation totals v 

(11) 

Due to fitted regression 2 subtraction 

Deviation from fitted regression v-2 Equation (11) 

Within generations n.-v 

Total n. 
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The sum of squares for ~ eliminating the effect of a is obtained as: 

ssca,B)-ss(a) 

v 

= I Yt• 2 /n1 - equation (11) 
1:1 

n 1 

-a (Y •• - In1 I (xhs-Xhe)) 
1=1 h=l ' 

(12) 

where a is _obtained from equation (8) by setting ~=0 in equation (7). Likewise, 

a sum of squares for a (eliminating the effect of ~)could be obtained as: 

' (13) 

,.. 
where ~ is obtained from minimizing equation (7) after setting a=o; thus, 

(14) 

3. Estimation £! ~~ O'e 2 , ~ a6 2 ~ equation jgl !.2!:, Zet ~ bt-l k.."lown 

Given that the Zmt and b1-1 are known and that the effects are normally and 

independently distributed, either a, aa 2 , and O'g 2 could be estimated from minimi­

zation of equation (15) below or a, O'g and ~ could be estimated by minimization 

of equation (16) below (provided a minimum exists): 

(15) 

; (16) 
1=1 J=l 



1f equation (15) is minimized with respect to a, cre 2 , and Og 2 , we obtain: 

and 

.., .., 2 
n •• a + as 

v 2 

- .£s._ 
2 

= Y. • ; (17) 

(18) 

• (19) 

Something could be done about asymptotic variances for a, Og 2 , and Oe 2 by maximum 

likelihood procedures. 

If cre 2 is known or is estimated from another experiment, equations (17) and 

(19) vould be solved to obt~in estimates of <X .. ~9.j1g 2 • --·· 

The analysis of variance for fitting equations (15) (or equation (16))·is: 

Source of variation d.f. - Sum of squares 

Among generations v 

Due to regression 3 subtraction 

Deviations from regression v-3 

Within generations n.-v 

Total n. 
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As in the previous section, the following sums of squares could be computed 

to eliminate the effects of the other fixed effects: 

-Y •• 2 /n. = sum of squares for C10 2 and a8 a eliminating the effect 

~a. ~o) 

the effect of a, 2 • 

( v v 2 ., 2) (- a - 2) SS a,ae ,a, -ss cre ,a, = sum of squares due to a alone. 

4. Estimation£!~~ ~~ and.§.~ equation i2.l £2! bh-1 and~ known 

· Ti1e' residual sum of squares from eqti'ation (3) is: 

, 

(22) 

(23) 

(24) 

where a 1 and b1 - 1 are known constants. Upon differentiating (24) with respect to 

a, B, and ~' and equating the resulting equations to zero, the following equa­

tions .are obtained: 

(25) 

(26) 



and 

From equation (25) 

'-' - B a=y-­n, 
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• 

Substitution for a in equation (26) results in: 

v 1 
~ [Y1.-n1Y] [ L ~] .... 1=1 h=l h l j3 a = 

v 1 

~)2-~ 
v 1 ~ 

'I ni CI ( L ni L bh-l at)~ 
i=l h=l h l ~ • 1 =l h=l /bh-l +(3 

• (27) 

(28) 

• (29) 

.... .... .... 
Substituting for a and a in equation (27) results in the following equation in~: 

' ~· ~ 

1 

{l: 
h=l 

bh-lah 

/bh-l~ 

• (30) 

.., 
The value for ~ satisfying equation (30) is obtained iteratively. Since asymptotic 

.... .... . .., ~· 

variances for a, a, arid ~ appear rather formidable and tedious, we should note 

that the V(al~=f3) and v(51~=!3) follow from standard line·a:J P~l±ression theory. 

Also, the analysis of variance fitting regression equation (3) to the data 

is: 



Source of variation 

~eng generations 

Due to regression 

Deviations from regression 

Within generations 

Total 
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Sum of squares 

v 

3 subtraction 

v-3 

n.-v 

n, 

Here again the various sums of squares given by equations (20) to (23) are 

possible for partitionirigthe 3 degrees of freedom due to regression in the above 

analysis of variance. 

5. Moment estimators !9!. £: ~ ~ ~ equation ill ~ b1-1 ~ Xts -xp known 

From equations (4) to (5) we note that equation (1) may be ·put in simpler 

form by using differences of successive generation means. Thus, 

• • • 

, 

, 

, (31) 

(32) 

(33) 

Equating the above differences of observed means to their expected values 

results in the following moment estimators: 

- - (34) 
Y1 +l• .. Y1• 
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and 

(35) 

There is a positive probability that W1 +1 will be zero or negative resulting 

in the conclusion that a,2 is zero in the ratio Oe 2 /as 2 =~· 

It should be noted that both ae2 and a, 2 cannot be estimated from equation 

(l), since this equation depends only upon the ratio ae 2 /a,2 • 

6. Least squares estimators usins ~ differences between successive generations 

If equation (l) holds and if the n1 are equal, least squares estimates could 

be obtained by minimizing the following sum of squares: 

, (36) 

resulting in 

(37) 

and 

(38) 

, 
Equation (38) is solved iteratively for ~. Even in this form, variances for the 

estimato:rs ,are ,.not . straightforward • . :. . . .. . :. .. . . . . .... ·-·. . . .. ~ ·- ..... 

From equ~~i~n .k~)t.:·~uccessive differences of generation means could be 

obtained and the follo!firg sum of .. sq.ua.res could be m~nimized: 

• 

The resulting equations are: 
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v 

=L 
1=2 

v 

=I 
1=2 
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' 

v 

_W_.1._b_.1.._--=l-- _ 5 L bt -1 

(b1-l+~)312 1=2 (bi-1+~)2 

v 

_w;.;...i....,;b;;..~i,.;;-;.:l__ _ L 
(bt-l+~)312 1=2 

• 

' ' Equation (41) is solved iteratively for ~ and then solutions for a and o are 

obtained from equations (~9) and (4o), respectively. 

7. Discussion£! estimators 

(39) 

(40) 

(41) 

The preceding_algebra was developed without taking a careful look at the 

residual sums of squares and the resulting estimators. This -vras done to illustrate 

some difficulties encountered in non-linear estimation 1-1hich are not immediately 

apparent using the usual procedure for obtaining least squares estimators. A 

limited empirical, intuitive, and theoretical investigation of the results in 

section III-4 was pursued, and the findings apply to a number of the remaining 

sections in much the same manner as for _section III-4. 

The first fact observed was that equation (30) in ~ was equal to zero when 

~=00; it is near zero for ~=512 and approaches zero asymptotically as ~ approaches 

infinity. The second fact noted for a numerical example was that o increased as 
~ ~ 

~ increased; by the nature of these two parameters o should stay constant or 
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"' should decrease as ~ inc~eases. The third item noted was that equation (24) with 
"' "" ""' ..., a:::a:, o=5, and 13=~ attained the lm·rest value. for ~=0 for a particular set of experi-

mental data. This means that the sum of squares of the residuals does not have a 

unique minimum for some values of Y1 J and b1 - 1 • This, however, could be overcome 

by an appropriate transformation of the Y1 J values and vTOuld vary with the range 

and values of the data obtained. 

For ~ knmm, the 011 dinary least squares estimators for the intercept a.t·ld the 
00 

slope are estimators for a and 5. Since the E bh-l =a constant= k1 , since 
h=l/bh-1 +13 

the bh-l are of the order of 2-h+l, and since the hth term of this series approach-

es zero, it appears that the estimators for a and 5 are not even consistent. That 
"' this is so can be observed from the variance of 5 given 13 where the denominator 

is of the form ~ V12 - (~ V1):a /v for V1= ~- bh-l • The V1 are ordered and 
1=1 =l h=l/bb-1+13 

rapidly approach a constant, say C1 • This means that the 1 ~1V 1 2 - (~1v1 ):a/v does 

not become larger as v increases, but is always less than ~(V1 -C1 )2 , which does 
1 =l 

not increase in value for a specified number of significant figures after i = 
some number N. 

Therefore, in order to have consistent estimators for a and 5 given 13, it 

would be necessary to replicate experiments for a fixed number of generations, 

i.e., increase the n1 at the expense of the number of generations v. 'tilj fact, 
. r .. ::· 

the first fe\<T observations, say generation o, 1, and 2, are much more imJ2ortant 

generations for estimating the parameters a and 5 than the later gen~ratib~s; 

after i=N a specified nt®ber of additional generations are essentially of no value 

in estimating a and 5. The more efficient statistical procedure must, of course, 

be viewed in light of biological considerations. One of the more important bio­

logical considerations is to determine if the postulated model fits for an 

"ac1.c;qtcate" number of geDerations ("adequate" is defined here to mean until the 

biologist becomes tired of conducting experiments). Thus, from a statistical 

point of view the most efficient sampling procedure would be to use replicated 

observations from two generations, 0 and 1, to fit the model postulated by 
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equation (3) for a specified 13. From certaj.n biological points of view it vrould 

appear that 10 to 15 or more generations would suffice to observe the appropria­

teness of the models postulated herein; certain types of experiments may require 

additional generations, say 30 to 100 generations. 

For models of the nature postulated by equations (1) to (3), careful thought 

must be given to the nature of the parameters being estimated in relation to the 

sarnpling plan and the observations. There appears to be a redundancy for some of 

the estimators obtained, For example, consider the following sum of squares: 

v 

I 
1=1 

In the above there is a temptation to eS.timate a, as 2 , and cre 2 as suggested in 

section III-). But, the above sum of squares divided by v-2 and with the para­

meters replaced by estimates of parameters is defined to be an estimator for cre 2 • 

Since cre 2 is contained inside the summation, it appears that an estimate of cre 2 

must be obtained in another manner; then, cre 2 is replaced by its estimate and 

estimators for crs 2 and a are obtained. 

The genetic basis for models such as those given by equations (1) and (2) is 

given.in various places (e.g., see Falconer [1960]; Searle [1961]; references at 

end of chapter 23 in Kempthorne [1957]; etc.). However, the estimation problem ani 

the model testing problem appear to have received little discussion in published 

lite:..1 ature. Results from several long term selection experiments are available, 

but r,todels for response due to selection follow equations (1) and (2) given the 

values of the parameters. 

"N. A NUMERICAL EXAMPLE 

As explained previously by Pa;pa and Federer [1960] and Papa [1961], the selec­

tion program for each of several inter- and intra•strain crosses and their recip­

rocals was carried out at each of three different temperature levels (18oc., 25°C, 

and 35°C.); each cross at each temperature was replicated. ~en s~ores or indi­

viduals of each mating type, A and a, vrere grown in duplicate grovrth tubes for 
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each c~oss at each temperature in each generation. Occasionally, fewer indivi­

duals vrere obtained due to accidents. The fastest growing A individual was 

crossed with the fastest growing a individual to obtain the population for the 

ne}~t generation. In addition, growth measurements from eight tubes were obtained 

for the two selected individuals in each generation. 

Since a minimum of ten generations of selection from each replicate at each 

temperat~e level was available for the intra-strain cross of the laboratory 

stocks of Neurospora crassa (77a/74A), these data were selected to illustrate 

the procedure for comparing experimental data with a theoretical model. The 

selection summary·data are presented in Table 1. The analyses of variance for 

the two replicates and 10 generations are presented in Table 2. The individual 

a~alyses ot variance for the variation among 20 individuals and between dupli­

cate growth tubes for each individual are presented in Table ;. In some cases 

not all ten spores. were recovered for one or both of the mating types. 

For the experizoontal conditions encountered the variation betvreEm duplicate 

growth tubes obtained at one time appears to be considerably different from 

duplicate growth tubes grown at different times. Therefore, the within mean 

sq~e is defined to have the expectation oa, a component of variance due to 

duplicate determinations obtained at one time. Since the degrees of freedom 

are essentially equal, for all mean squares a simple average of the 20 within 

mean squares for 18•c. from Table ), equal to .00114, is an estimate of aa. The 

estin~tes of aa for 25•c. ~,a 35•c. are .00262 and .00374, respectively. If the 

degrees of freedom vary, one could pool the within sums of squares and divide by 

the pooled within degrees of freedom, but this was not done here. 

The eA~ectation.of the among i11dividuals mean squares is a4 2 +2ag 2 (2-i+l) 

=a4 2 +2- 1 +2 ag2 1 where 2 is the number of growth tubes for each individual and 

2-i+l is the coefficien,~from an inbreeding ser.i~s::for generation i. From the 

20 analyses of variance for one temperature an estimator for ag 2 is obtained by 

minimizing the following sum of squares With respect to ag2 : 

2 10 I I [(A, 1 _,.Tt 1 ) (21 -a )-as ]2 , 
t =l i=l 

with the result 
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Table 1. 1'1ean growths in rm.n./hr. for cross 77a/74A. 

__ T_e"""'"'mp=-e_r_at_ur_e_l_e_v_e1 __ ,;---·---
180C. 25°Co 5°C 

Replicate ---------------~----------------~~--------'---·-------
and an Mean Mean 

generation , of 20 Mean A Mean a of 20 lviean A Mean a 
1

. of 20 Nean A Mean a 

I- 1 1.97 2.27 2.27 3.46 3.96 3.94 3~65 4.50 4.68 
2.30 2.4o 2,4o 3.98 4.o6 4.09 I 5.23 5.28 5.37 
2.43 2.46 2.48 3.89 3.94 3.98 5.05 5.12 5.13 
2.43 2.44 2.51 3.74 3.84 3.87 1 4.88 4.94 4.94 
2.48 2.53 2.56 4.08 4.17 4.21 I 5.03 5.10 5.17 
2.39 2.42 2.41 4.00 4.03 4.10 4.91 5.01 5.05 

2 
3 
4 
5 
6 
7 
8 
9 

10 
II- 1 

2 
3 
4 
5 ,.. 
0 

7 
8 
9 

10 
I+II- 1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

2.39 2.42 2.42 4.16 4.17 4.28 5e24 5.26 
2.46 2.51 2.50 4.05 4.17 4.12 5-39 5.44 
2.33 2.50 2.30 4.13 4.18 4.24 5-15 5.20 
2.48 2.52 2.50 4.00 4e08 4.04 5.15 5.20 
2.35 2.39 2.42 4.01 
2.40 2.48 2.42 3-77 
2.30 2.39 2.39 3-98 
2.39 2e43 2.41 4.07 
2.46 2.50 2.51 4.13 
2.42 2.46 2.47 4.24 
2-55 2.60 2.59 4.19 
2.52 2.57 2.56 4.09 
2.54 2.57 2.62 4.12 
2.45 2.50 2.53 4.35 
2.16 ).74 
2.35 3.88 
2~36 3-94 
2.41 3·90 
2.47 4.10 
2.40 4.12 
2~47 4.18 
2.49 4.07 
2.44 4.12 
2.46 4.18 

4.07 
3·95 
4.05 
4.11 
4.17 
4.34 
4.24 
4.30 
4.15 
4.42 

4.11 
3-92 
4.04 
4 .. 14 
4.26 
4 .. 31 
4.24 
4.20 
4.17 
4 .. 42 

2.92 
5-03 
4.77 
5.25 
5.02 
5o27 
5-29 
5.17 
4.93 
4.75 
3.28 
5-13 
4.91 
5.06 
5.02 
5-09 
5 .. 26 
5.28 
5.04 
4.95 

4.83 
5.12 
4.80 
5.31 
5.14 
5-33 
5.43 
5.22 
5.08 
4.78 

Table 2. An1aysis of variance for means of 20 from Table 1. 

t-----
Mean squares 

Source of variation d.f. l8°C., 25oC. 35oC. 

Generations 9 .01883 .o4477 .67550 
vli thin generations 10 .01242 .0324!~ .. 05886 

5.29 
5.46 
5-33 
5.26 
4.97 
5.16 
4.88 
5-32 
5.09 
5.36 
5.34 
5.24 
5.01 
4.84 
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Table 3. Analyses of variance for data of cross 77a/74A. 

Replicate I* Raplieo:te II~~ 

Among Within Among Hi thin 
individuals individuals individuals individuals 

Temperature Generation d.f. m.s. d.f. m.s. d.f. m.s. d.f. m.s. 

1a·c. 1 18 .26528 19 .00347 19 .00163 20 .00079 
2 19 .01705 20 .00145 19 .00146 20 .0013~ 
3 19 .00221 20 .. 00075 19 • 00291· ,. ·20 .00077 
4 19 .00348 20 .00079 19 .o021e- 20 .00084 
5 19 .00320 20 .00070 19 .00231 20 .00103 
6 18 .00072 19 .00042 19 .00322 20 -.00219 
7 19 .00070 20 .00031 19 .00365 20 .00202 
8 19 .00325 20 .00126 19 .00121 20 .oooJ+6 
9 19 .02488 20 .00051 19 .00379 20 .00141 

10 19 .00052 20 .00050 19 .00165 20 .00179 
25°Co 1 18 .65422 18 .oo489 19 .oo844 20 .00173 

2 19 .01928 20 .00312 19 .00939 20 .00692 
3 19 .oo4o5 19 .00334 19 .00331 20 .00166 
4 19 .01168 20 .00268 19 .00219 20 .00194 
5 19 .03965 20 .00245 19 c00703 20 .00284 
6 19 .00574 20 • 00236 19 .oo6r6 . 19 .00163 
7 19 .Oo634 20 .00214 19 .OC222 ;20 .00291 
8 19 .01083 20 .00131 19 .01991 20 .o<h69 
9 19 .00385 19 .00246 18 .00098' 19 .00189 

10 19 .00506 20 .00093 19 .00753 20 .00308 
35·c. ·1 12 3.34077 12 .00602 19 6.12452 20 .00833 

2 19 .01074 20 .00224 19 .00890 20 .60492 
3 19 .00998 20 .00380 19 .00675 20 .00165 
4 19 .00637 20 .00221 19 .00217 20 .00158 
5 19 .oo445 20 .00349 19 .02333 20 .00891 
6 19 .Oil89 20 .00426 18 .00626 18 .00196 
7 19 .00220 20 .00086 19 .00401 20 .00522 
8 19 .00403 20 .00183 ·19 .00574 20 .00178 
9 19 .00983 20 .00458 19 .oo64o 20 .00312 

10 18 .00936 19 .00483 19 .00454 20 .00314 

-~~ d.f. = degrees of freedom; m.s. = mean square 
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whe~e Ar1 and Wr 1 represent the among and within mean squares for the ith genera­

tion in the fth replicate and 2 = number of replicates and 10 = number of genera-
z 0 -r~ 2 " " tions. The estimate of crg for the 18 c. data is crg = .193. For 25 C. and 35 c., 

. *z respectively, the estima~es of C1g are .248 and .405. 

Another estimator giving more weight to the earlier generations would be 

2 l 0 2 10 

~ga = L L (An-Wn )2-1+2/ L I 2-21+4 
t =l 1 =1 f =1 1 =l 

* . The estimates of crg 2 and ~g 2 for each replication at l8"c., 25"c., and 35"c. are 

presented in the following table: 

18"c. 25"C. 35"C. 

Rep I Rep II Rep I & II Rep I Rep II Rep I & II Rep I Rep II Rep I & II 
Jl .. 

" "' C1 ·~ 
g .345 .041 .• 193 .268 .228 .21J.8 .385 .425 .405 

X 2 
Og .101 .001 .051 .248 .003 .126 1.253 2.295 1.774 

From the results it is apparent that quite different estimates of crg 2 may be 

obtained from the two estimators. In addition, estimates of C1g 2 using the same 

estimator varied co~iderably between the replications. On observation of the 

data, it becomes apparent that deviant results from only one generation are suf­

ficient to co:nsiderably alter estimates of C1g 2 • .For example, at 18"c. and 25°C., 

generation 1 in replicate I produced by far the greatest contribution to ~g 2 1 and 

generation 9 of replicate I at 18"Co produced the largest contribution to tg 2 • 

Similarly, at 35"c. generation 1 of both replicates produced major contribution 
X 2 to Cig • 

From regression theory we could compute the following estimated variances: 

,. r v 
-1'- I L [21 - 2 (An -vr n ) * v<as 2 > = - crg 2 J2 /rv(rv-1) 

t =1 1=1 

r v r v 

V(~gz) = I L CAr 1 -w r 1 -~ +z ~g 2 ] 2 / (rv-1) I I 2-21+4 

f =l i=l t =l 1=1 
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Applying these equations to the selection data, the following variances are 

obtained: 
18°C. 25°Co 35°C• 

A 

* .0240 V (crg 2 ) .0079 .0290 
,.. 

V(~g2) .0030 .00187 2.1550 

The large difference bet\veen the variances of two estw..ates at the same tempera­

ture is to a large extent due to an extremely large estimate of Og 2 in one of 10 

generations. 

An analysis of variance on the means of the 20 spores for each generation is 

given in Table 2. Thewithin generation mean square is an estimate of oe 2 +crd 2 /40 

since each mean is obtained from 40 observations. Thus, an estimate of Oe 2 is: 

= .01242 - .00114/40 = .01214 
' 

where .01242 is the within generation mean square for l8°C. 

equals .03237 and .05877 for 25°C. and 35oC., respectively. 

* ":l Similarly, O'e-

The estimated 

envir_~~ental variance increases with temperature as might be expected. There­

fore~/tb.e--vaf"iances over temperatures should not be pooled. 

The·v~iance of the mean of 20 individuals at a given temperature level in 

duplic~:te tubes is estimated by the within ge~r:ation mean squares in Tab~e ;. 

For the-experimental data at 18°C. then~ for equations (28) and (29) is com­

puted as: 

• 

For 
0 0 .., 

25 C. ~nd 35 c., j3 = .1305 and .1451, respectively. These relatively large 

genetic variances were unexpected. 

Since normality of environmentai and genetic effects may be unrealistic and 

since the selection data 1-rere thought to follow equation (3), the parameters a, 
p, and 5 were estimated and theoretical curves were fitted to the data for the 

three temperatures. 
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' 
(42) 

OJ 

wheTe the W1 are sums of values from o, 1, 2, up to i for ~ equal to a specified 

" value. 

V T 

;;r~ = I (Yp~2Y)Ht/2{ I W1 2 -(Lvh )2 /v} ' 
(43) 

i=l 1==1 

and 

v 

a = y - ~ L: vl1/v • (44) 
1=1 

The computed values for a and 5 for each of the three temperatures are given in 

Tables 4, 5, and 6. The computed curves using equation (3) are given in Figures 

1, 2, and 3 for 18~c., 25~C., and 35°C., respectively. 

r . v 

Table 4.: Computations. for 13=.0644 ~ for 18cc. data of Table 1. 

Gener·ation of Total for 
Rep I &: II OJ .... 

y1 • -(ii+Bt-Tt) selection = i Wt Yt.-2! 0:+8\Vi = y1• 2 
0 000000 4.32 -.484 2.199426 - .. 039426 
1 .969274 4.70 -.104 2.295618 .054382 
2 1.6:34818 4.73 .... 074 2.361667 .003333 
3 2.086678 4.82 .016 2.405914 .oor~o86 
4 2.367902 4.94 .136 2.434419 .035581 
5 2.543350 4.81 .oo6 2.1~51830 -.046830 
6 2.644393 4.94 .136 2.461858 .008142 
7 2.699627 4.98 .176 . 2.467340 .022660 
8 2.728699 4.87 .o66 2.470'225 -.035225 
9 2.743645 4.93 .126 2.471708 •.Oo6708 

20.412336 ·~ 000 -.000005 
y=2.402 

2Y-:4.8o4 

2(I Wt• (~1 )2 ] = 15.2091363~ 
10 

L (Yi .-:2y)W1= 1.509369796 
1=1 

1.509369796 4 
5 = 15.209136396 = •0992 1 

a = 2.4oe - .o99241 <20• 4i~386 ) = 2.402 - .202574 = 2.199426 
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..... 
Table 5. Compu~ations for (3 = .1305 and for 25°C. data of Table l. 

Gene:cation of ''h 
selection = .:~ 

0 000000 
1 .940152 
2 1.570203 
3 1.975490 
4 2.222781~ 
5 2.365050 
6 2.442751 
7 2.4836~6 
8 2.504633 
9 2.515288 

19.020337 

Total for 
Rep I & II 

= yi. 

7.47 
7.75 
7.87 
7.81 
-8.21 

. 8.24 
8.35 
8.14 
8.25 
8.35 

8o'M 
2y=8.o44 
Y.=4.022 

2 [ LW1 2 - (i6 t} 12.689720042 

10 

L Wt (Yi .-2y)= 2.092189702 
1=1 

2. 0921897CY2 
~ = 12.689720042 = •164873 

Y1.-2y a+~1 y. • ('" ~ ) ~- CH W1 2 

-.574 3-708406 .026594 
-.294 3.863412 .011588 
-.174 3-967290 -.032290 
-.234 4.034111 -.129111 

.166 4.074883 .030117 

.196 4.098339 .021661 

.306 4.111149 .063851 

.o96 4.117889 -.047889 

.206 4.121352 .003648 

.306 4.123109 .051891 
000 .oooo6o 
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Table 6. 
~ 0 

Computations for ~ = .1451 and for 35 C. data of Table • 

Total for 
Generation of Rep I & II 
selection = i i:h = yi• yi·-2Y a+~\-~1 X1..!. -<a+~d 2 

0 000000 6.57 3.238 3.842264 -.55r{264 
1 .934498 10.26 .• 452 4.370913 .7590S7 
2 1.557023 9.82 .012 4.723078 .186922 
3 1.954751 10.13 .322 4.94807'+ .116926 
4 2.195269 10.05 .242 5.084136 -.059136 
5 2.332441 10.18 .372 5.161735 -.071735 
6 2.406856 10.53 .722 5.203832 .061168 
7 2.445830 10.56 .752 5.225880 .054120 
8 2.465805 10.08 .272 5.237180 -.197180 
9 2.475924 9·90 .092 5.242904 -.2929o4 

18.768Y.J7 98.08 000 .ooooo4 

2y=9.808 
Y=4.904 
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Figure 2. Observed results for each of twooreplicat~s and mean of two replicates 
(X 1s) for data of Table 1 for 25 c., for ~=.1305, and for equation (3) 
as computed in Table 5· 
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Although the results are variable fairly good fits were obtained for the 

data for 18°C. and for 25°C. The 35oC. data do not appear to fit well. It 

may be that temperature sensitivity is being encountered here and this may be 

controlled by a few genes. There appears to be little or no progress from 

selection after the first cycle of selection pressure. 

An estimate of a8 2+ad2/2 may be obtained from these data from equation (26): 

10 :a 

L L [Yt j ...a~5wt J~ I (2o-2) 
1 =l 3 =J. 

with 20-2=18 degrees of freedom. 

Also, if normality holds and if selection pressure is constant an estimate 

of crg could be obtained by dividing 5 by the expected value of the largest ~ank 

order statistic from a sample of size 10, i.e., the largest one out of 10 was 

selected. This results in 

.099 
1.54 = .o6 for l8°C., or a 2 

& = .oo4 

.165 .17 for 25°C., or 0 "" .029 1.54 = 
a ~ = g 

~ .37 for 35°C.,or 0 2 = .137 1 • .., = Gg • 

The agJ..'eement with previous estimates of a,:a is poor. Hmrever, definite con­

clusions must await the outcome of all the data yet to be analyzed. 
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