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I. INTRODUCTION

Since advance in the mean value of a character under selection depends upon
the residual genetic variance from the preceding generation and upon the selection
pressure, a simple recursive model may be used to describe the population mean at
the i'" step in a selection program. Four forms of such a model are presented
below together with estimators and variances of the estimators for various para-
meters., In addition, an application is made to one set of data obtained from the
experiment described by Papa [19611. Further detail on this experiment is given
by Federer, Robson, and Srb [1959] and by Papa and Federer (19601,

For the models described herein, it is assumed that a large number of factors
affect the character under consideration and that the factors affecting a character
are similar in expression. (If few factors control the expression of the character
under consideration, then some such model as described by Federer, Robson, and Srb
[1959} would suffice.) The genotypic effects are assumed to be random variables
identically and independently distributed with mean zero and common variance 052.
The envirommental effects are also assumed to be identically and independently
distributed random variables with zero mean and common variance 0e®. In the
bivariate distribution of environmental and genotypic effects, a zero covariance
is postulated. This implies no genotype x environment interactions for the
environments encountered in the collection of a set of data. Whether or not this
assumption is Justifiable depends upon the genetic material and the environments

encountered.

* In the Biometrics Unit lMimeograph Series, Cornell University, Ithaca, New York
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ITI. SELECTION MODELS

- l. Selection model for known difference between mean of selected population and

mean of unselected population

Let the yield of the jth individual in generation i be expressed as:
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where O = population mean in generation zero (i.e., in the generation in which
selection is first practiced), ¢.® = envirommental variance, ¢,° = genetic variance,
B:cez/cgz, bi-1 are known coefficients from an inbreeding series (e.g., byj-1 =
27**1l in the selfing series for i=1,2,¢¢¢), Xi; = true mean of population of
selected individuals in generation i, Xi. = true mean of entire unselected popula=
tion in generation i, iis-ii. represents the true difference between means of
selected individuals and the unselected population in generation i, €;; are
identically and independently distributed random variables with zero mean and
common variance 0e°, i=1,2,¢*¢,v, and j=1,2,*¢°,n; = number of observations in
generstion i. The total phenotypic variance in the generation in which selection

is first practiced (the zero®®

generation of selection) is 0g°+0.®, and the pheno-
typic variance in generation i is by-104°+0.®. For i=0, bo-1=0; thus, Ybl,-:a-i-eoj.

In practice, the value Xis=Xj. is usually unknown, The experinerter Eould,
however, set Xis=Xj.=(c=a constant)*/*. Then, the selected progeny in generation
i would be all those whase mean i;s exceeded the unselected populstion mean ii.

171, This would require that a large number of individuals be observed in

by ¢
each generation. Because the value for Xjs=Xy. may be difficult or impossible to
obtain, the model in the following section was proposed.

The meaning of the statement that the €;; have common variance ge® requires
amplification. Basically, this statement implies that for a true breeding popula-
tion the expected value of the variance among v observations taken singly in each
of the enviromments in which the 53. are obtained is equal to the expected value

of the variance among v observations in generation i. In the analysis of variance



table, this would mean:

Source of variance d.f. Average value of mean square
Among generations v-1 0e”
Within generations v(n-1) e

Also, this implication could be expressed symbolically as:

V(¥iy/1) = V(Yss)
where
V(¥iy) = E(Ye3=EYy; ° = 0o .

2. Selection model when genotypic and environment effects are independently and

normally distributed

If the genotypic and environmental effects are independently and normally.
distributed, then equation (1) may be rewritten as:

i
bh-lzmh

=1 n-10g +0¢°

Y =Ot+0'g2

+ €15 (2)

where zpn, are constants obtained from Table XX of Fisher and Yates [1938], Tables
2 and 3 of Federer [19511, or Table 1 of Harter [1961], (The last reference is
nore extensive and contains more significant figures than do the first two refer-
ences.) and where the other symbols are as defined for (1) except that the
normality condition on the distribution of the random variables is imposed. The
constant zpy is the average value of the largest member from a sample of size m
from a normal population with zero mean and unit variance. In other words it is
the'expectédjvaluéwa the largest rank order statistic from a sampie.of size m,
Zg1 1S a constant for each generation if m is constant from generati&n to genera-~
tion; otherwise, E,i will vary with m and reflects the selection pressure in
generation i. Also, it may be noted that (Xns=Xn.)/Mbn-10¢°+0e> in equation (1)
is replaced by zZsn in equation (2).
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3. Selection model when (i;s-ii.g is unknown and when the normality assumption
for equation (2) is not tenable

In certain situations the assumption of normal distribution of the genotypic
and the envirommental effects may be untenable. For this case we proceed by

rewriting equation (1) as:

i

Yi; = + B }E e T (3)
n=1 Vbn-1+8

where 8=0g (Xns=Xn. )//bn-1052+0.°7 , where an are known constants reflecting changes
in selection pressure frcm generation to generation (an=1 if selection pressure

is constant throughout all generations of selection), and where the remaining
symbols are defined in the same manner as for equation (1). Also, if the normality
assumption holds Ban=0gZyn from equation (2). The parameters to be estimated are
o, 5, and P. S | N

L, Model for mean progress under selection from generation ito genefation i+l

Suppose that at generation i in a selection program it is desired to know
(using parameters) or to estimate (using estimates) the mean advance to be made
in the i+1°% generation for a given selection pressure. From equation (1) the

following results:

i (Xis1,s=Xisi,s)

Wi-!-l = Viede = Jie = bi+B
Ti41 B,
1 jz 1
- 5 ¢ L
Niee €141, n 1§ e (&)
j=1 =1

For this simple Markovian process the mean advance from generation i to genera-

tion i+l is:

- - by (Xi4155=X44135.)
EW = =i = .
Wis1=Yis1s5.=71. ] oy 4F (5)
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In the above &1. and. §1+1. are the arithmetic means of the observations in
generation i and in i+l and the remaining symbols are as defined for equation (1),
If the genotypic and environmental effects are normally and independently

distributed, equation (5) may be written in the form:

ElFis1. =710 1 = Di0sZn, 141 (6)
Vb4

In order to simplify results and minimize wvariances the nj; should be equal.

ITI. ESTIMATION OF PARAMETERS

1. Estimation of @, g.°, and 0;° from a separate experiment

If the progeny from the different generations of selections are all
compared in one experiment, estimates of @, 0e°, and 0,° may be obtained from v
individuals (spores, strains, etc.) from the unselected population each replicated
n times. Then G= 5 JZIE.IY”/nv%r, and G.° and ¢ may be obtained from the follow-

i=1

ing analysis of variance:

Source of variation d.f. Mean square Elm.s.]
Among individuals v-l A Oe® +n0,°
Within individuals v(n-1) B 0.

A
as 0e2=B and 0g°=(A-B)/n.%
" If the generation means are obtained from a series of experiments, the un-
selected population will necessarily be included in each experiment if the vari-

ance of observations among experiments is different from the varistion among

* There are several estimators for c.® and 0z° in the literature, but a discussion

of these is not pertinent to this paper Lsee Federer, 1962].



individuals within experiments. If the variance of observations among experiments
is equal to the variance within experiments, then a single experiment could be
conducted at the beg{hning of the selection program and estimates of <, 0.°, and
0,° obtained at this stage.

For any of the models postulated by equatlons (1) through (3), or any
veriation of them, an estimator for .~ is simply the sum of squares of devia-
tions between the generation mean and the fitted point on the curve divided by
the degrees of freedom. Whether or not the variance among the n; observations
in generation i is an estimator for 092 depends upon the conditions stated in the

preceding paragraph.

2., Estimation of O and p from equation (1) for (xys=X;.) and by-; known

To obtain the estimators in this and following sections, the least squares
procedure will be used. Four reasons for adopting this procedure are (i) for
the €;; normally and independently distributed with mean zero and common variance
oee; the least squares estimators are also maximum likelihood estimators; (ii)
the form of the distribution need not be specified; (iii) solutions are possible
by least squares procedure which may not be feasible using other procedures; and
(iv) theoretical results from standerd regression theory are applicable.

When the residual sum of squares from equation (1),%*

v By 1
Y Yty -a- ) Bealecep (7)
i=1 J=1 h=1

is differentiated with respect to @ and B, when the resulting equations are
equated to zero, and when some algebraic manipulations are performed the follow=-

ing equations result:

Goy-L Vi ¥ bl ©)

v i

Z(Yi.-niy) an -1 (Xng=Xn.) n bn-1 (Xng=Xno) ,

1=1 p=1 (ba-1+ 5)2 {=1 =1 (bh-l+§)2
i (_ - v i ( ) }
bu-3 xhs-xh. - 1N "br-1 xhs-xh. =0 ., (9)
{ bh—l‘*'g o, Z‘ Z’ S 1+5

% For certain values of Y:; and bj.; equation (7) has a minimum. This may not be
true for values of Y;; outside a given range and, therefore, it would not be pos-
sible to obtain estimators for & and P as described in this section (see section
III-7 for further detail). When the range of Y;; for which equation (7) has a
minimum is determined, the Y;; may be transformed to fall in this range.
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Equation (9) in 3 is solved iteratively, and then & is obtained by inserting the
solution for £ from (9) in (8). If normality holds asymptotic variances for &
and B may be obtained from standard maximum likelihood procedures .

As explained previously an estimator for c.° may be obtained as:

=) 1 [x2) ) sl 6o)

i=1 j=1

with n,-2 degrees of freedom. If the variation from generation to generation

is larger then within generation variance,then 0.° is estimated as:

noGe = Zni <y1.—ot- zbh 1(th-xh' )> : (11)

pb=1  Dbn-1 +5

R ~ 2
where ro=(n, =Zn;?/n, )/ (v-2) and where v-2= degrees of freedom for Ge°.
Having estimates of B and 0., an estimate of o,° is obtained as:

A A
08 = UeB/B 3

In analysis of variance terminology the results may be summgrized as:

Source of variation d.f. Sum of squares
Among generation totals v z Yi.?/ny
Due to fitted regression 2 subtraction
Deviation from fitted regression V=2 Equation (11)
Within generations n, -v Z { z Yy 4® 35 - n
1=1 j=1 !
v ny )
Total n, Yy 2
=1 J=1
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The sum of squares for P eliminating the effect of & is obtained as:

ss(d,B)-ss(@)

= ZYi.‘?/ni - equation (11)
i=1

- (Y.."nzn iZ(an"xha)) ’ (12)

where O is obtained from equation (8) by setting B=0 in equation (7). Likewise,
a sum of squares for 0 (eliminating the effect of B)could be obtgined as:

ss(c,B)-ss(B) (13)

where B is obtained from minimizing equation (7) after setting @=0; thus,
£

4v - -
2 Y,. Ebh-l (th:Xn- )
i=1

p=1 (ba-1+B)?

z (Z by- l(xha"xh-)><2 by-1 (Xns ~Xn. } (14)

h=1 br-1+8 b=t (bu-14B )

3, Estimation of Q, 0e°, and 0,° from equation (2) for Zgy:; and bi_; known
o Ay e 2 2 Lol

Given that the zni and by-1 are known and that the effects are normally and
independently distributed, either @, 0e>, and 0,° could be estimated from minimi-
zation of equation (15) below or @, oy and B could be estimated by minimization

of equation (16) below (provided a minimum exists):

v By . 2
f ) Z b
Z [Yu"a"% Z holrs ] 3 (15)
1=1 =1 1 V/by-10g°+0e>
v ny
z [y“..a-ggz EIL;LZM_T (16)

1=1 j= br-1+8
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If equation (15) is minimized with respect to @, 0¢°, and 0g°, we obtain:

n i
. v o 7z
n,,d + g,° Zni Z_' by {Eﬂhv_ =Y., ; (1)
=1 =1 »/bh-l Uge +Gez

v i - i -
Z{Yi.-m&-&g?m z e =iinb {E Do-12cs } =0; (18)
1=1 h=1vbh-10¢ +Uee 2 )R/2

..10' +0'

and

v i
X br-12 bn-12
Z{Yi"‘nia‘ngége Z —ReoiZen bolZyn
/ 2.~ 3,73
1=1 =1 /bn-10g° +0e”

h=1 /bh 16’ +0e

2 -
bh- 1Znh
h=1 (bh 10’ 240

2 )a/e} =0 . (19)

Something could be done about asymptotic variances for &, ¢,°, and 0e° by maximum
likelihood procedures. .
If 0.® is known or is estimated from another experlmert, equations (17) and
(19) would be solved to obtain estimates of @ .and igg® _ A
The analysis of variance for fitting equations (15) (or equation (16)) is:

Source of variation defe Sum of squares
Among generations v Y, .2 /ny
Due to regression 3 subtraction
v -~
Deviations from regression v-3 z n, Lﬁ',.—&-&se Z bh"vl Zoh
= a=1 Vv bh-l 0.88+0.52

v Dy
Within generations n, =v Z { 2 Yy52=Y.2/ ng}

1=1 =1

Total n,” Z Z Y;s®
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. As in the previous secfion, the following sums of squares could be computed

to eliminate the effects of the other fixed effects:

v v
SS(&’Eez’Esa )-55 (&)= z Y;.%/ng- Zni['i.-&-égz 2 Di-) Zun :r
\ J/‘"“:j;”:jg
1=1 1= h=1 vV bn-10g"+0e

-Y,.?/n, = sum of squares for c.° and 0. eliminating the effect

of Ol ' (20)

S8(8, 56 ,¢2 )~S8(¢,0¢% ) = sum of squares due to e alone. (21)

S5(0, 062 ,0¢° )=S5(0s° ) = sum of squares due to O and 0e® eliminating

the effect of cgéo (22)

S5(&, 0.2 ,0,° )=58(0e? ,0,% ) = sum of squares due to O alone. (23)

4., Estimation of o, B, and d from equation (3) for bu-i and an known

The residual sum of squares from equation (3) is:

Lo, Lo
Lkl amg T @

where a; and by-; are known constants. Upon differentiating (24) with respect to
a, 5, and B, and equating the resulting equations to zero, the following equa-

tions are obtained:

i
Y, n38) n ) 8o (25)
1=1 h=1 VDbn-14p

v n.i i 1-.
5 st ] sl panloo <ee>
1=1 j=1 n=1 Vbu-1+" n=1 vVbn-1+B
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and v o3y )
§ 7 [nss) pas][) mes ] o)

1=1 J=1 (on- 1+5)3/2

From equation (25)

:3loo<

v i
1;1’1i Z ; h-lj; . (-28)

Substitution for & in equation (26) results in:

Ylrons][§ =a]

§ = =1 bn-l"@ . (29)

v

Bo(f peer-3 (§nf pen

1= h= bh 18

Substituting for & and § in equation (27) results in the following equation in B:

- l b -
TR LC Y~ ST TN
1=1 =1 i (lz s 13-h>2 1 /‘v . 12 bh-lah> h=1 Vbh-l“'é
{=1 h=1 vbn-1HB e \1=1 1h \/g;—l-;é

O R = ELRC

b~ 1+ (bp- 1+B)3/a

The value for B satlsfy:.ncr equation (30) is obtained 1terat1ve1y. Since asymptotic
variances for Ot, 6 s and S appear rather formidable and tedlous, we should note
that the V(3|p=8) and V(5|F=p) follow from standard linear ¥#dgression theory.

Also, the analysis of variance fitting regression equation (3) to the dats

is:
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Source of variation A.fe Sum of squares
" Among generations v Y .2 /ny
Due to regression 3 subtraction
) _
Deviations from regression V=3 Z n1<}’1. Q-5 2 —E‘Lﬂé‘-‘-
i=1 1 Vbuo1+6
. v 1
Within generations n, =v Z { Z Y 2 -Y,2/ ni}
1=1 j=1
v! nj
Total n, 2 Z Y 42
1=1 y=1

Here again the various sums of squares given by equations (20) to (23) are
possible for par’citionin'g"'"ﬁhe 5 degrees of freedom due to regression in the above
analysis of variance.

5. Moment estimators for o and B from equation (1) with by-i and X;s=X;. known

From equations (&) to (5) we note that equation (1) may be put in simpler
form by using differences of successive generation means. Thus,

E(W1=y1.) =0 + bo(X1s=%1. )/ (bo+B) (31)
E(Wo=Ys.=y1.) = b1 (Xee=¥e. )/ (01 4B) (32)
E(W3=§3.-373.) = by (55-35"&.‘3‘)/(%'*'5) I (35)

L[]
L]
.

Equating the above differences of observed means to their expected values
results in the following moment estimators:

v=1

é l Z bi(X1+1;s‘x}+1¢‘Yi+1n+Y1-)

i=1 Y1+1-'Y1.

(34)



and

Q= Vi. = M}.E{ﬁb_). (35)
bo +8

There is a positive probability that Wi;i will be zero or negative resulting
in the conclusion that 0,° is zero in the ratio 0.?/0g°=B.
It should be noted that both 0e® and 0,° cannot be estimated from equation

(1), since this equation depends only upon the ratio 0e®/og°.

6. Least squares estimators using mean differences between successive generations

If equation (1) holds and if the n; are equal, least squares estimates could

be obtained by minimizing the following sum of squares:

_bo(Kige=%1. ) Ty by-y (%5 =%, )Y
<W1-oc bo+P > +1ZQ<W*‘ bi-1+P ) ’ (36)
resulting in

G =3, »0Bue-x.) (37)

b5+é

and

E; iy (Xys=%3. T Wibs1 (Xis=%4.) =0 . (38)
1= (bi-14B)® 1= (by-148 )

4
Equation (38) is solved iteratively for B. Even in this form, variances for the
estimators are not straightforward.
From equation &5),ﬁsuccessive differences of generation means could be

obtained and the following sum of .squares could be minimized:

G- 225§ (- BB

172 Vby-148

The resulting equations are:



R -

C\X+'1L6-=-1.=w1; (59)

v v
R (40)

and

v
Wibs-y ___Om -3 z bi-1
1=1 (b1~1+5)3/? (bo+5)?{2 t=1 (b1~1+é)2

v v
_V Wby 3§ M
= N -
1= (by-1+B)*/? 1= (by-14B)°

E;W1b1 1//by - 1+6

C_Wibiy - _t- -0 .
Z by-148)%/2 *Ze (b‘"lié)z {Eb 1/(b1-1+é)} i o

=2

Equation (41) is solved iteratively for p and then solutions for & and B ave
obtained from equations (39) and (40), respectively.

T. Discussion of estimators

The preceding algebra was developed without taking a careful look at the
residual sums of squares and the resulting estimators. This was done to illustrate
some difficulties encountered in non-linear estimation which are not immediately
apparent using the usual procedure for obtaining least squares estimators. A
limited empirical, intuitive, and theoretical investigation of the results in
section III=4 was pursued, and the findings apply to a number of the remaining
sections in much the same manner as for section III-k,

- The first fact observed was that equation (30) in é was equal to zero when
é:w; it is near zero for é=512 and approaches zero asymptotically as P approaches
infinity. The second fact noted for a numerical example was that O increased as

~

B increased; by the nature of these two parameters 8 should stay constant or
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should decrease as é increases. The third item noted was that equation (2k) with
a=a, 5:8, and é:B attained the lowest value for é:o for a particular set of experi-
mental data., This means that the sum of squares of the residuals does not have a
unique minimum for some values of Y;s; and byj~.;. This, howevér, could be overcome
by an appropriate transformation of the Y;; values and would vary with the range
and values of the data obtained.

TFor B known, the ordinary least squares estimators for the intercept and the

x

slore are estimators for & and 8. Since the £Z —Dnoy = a constant = k;, since

h=1/bh-1+5
the bn-1 are of the order of 2°"*!, and since the hth term of this series approach-

es zero, it eppears that the estimators for & and & are not even consistent. That

this is so can be observed from the variance of 5 given B where the denominator

v v 2 i

. bp-)

is of the form I V,°=~ <12 V1> /v for Vi= T - . The V; are ordered and
i=1 =1 h=1 /bh-l"'ﬁ

v v 2
rapidly approach a constant, say Cy. This means that the Zlvig- (;ZIV{D /v does
i= =
N
not become larger as v increases, but is always less than Z£V1-Cl)2, which does
i=

not increase in value for a specified number of significant figures after i =
some number N.

Therefore, in order to have consistent estimators for & and & given B, it
would be necessary to replicate experiments for a fixed number of generations,
i.e., increase the n; at the expense of the number of generations v. fiéffaét,
the first few observations, say generation O, 1, and 2, are much more im?ﬁrtant
generations for estimeting the parameters & and & than the later genefatiégs;
after i=N a specified number of additional generations are essentialiy of'ho value
in estimating 0 and 8. The more efficient statistical procedure must, of course,
be viewed in light of biological considerations. One of the more important bio-
logical considerations is to determine if the postulated model fits for un
"adequate" number of generations ("adequate" is defined here to mean until the
biologist becomes tired of conducting experiments). Thus, from a statistical
point of view the most efficient sampling procedure would be to use replicated
observations from two generations, O and 1, to fit the model postulated by
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equation (3) for a specified B. TFrom certain biological points of view it would
appear that 10 to 15 or more generations would suffice to observe the appropria-
teness of the models postulated herein; certain types of experiments may require
additional generations, say 30 to 100 generations.

For models of the nature postulated by equations (1) to (3), careful thought
must be given to the nature of the parameters being estimated in relation to the
sampling plan and the observations. There appears to be a redundancy for some of

the estimators obtained. For example, consider the following sum of squares:

v By 1 -

‘ Ph~1Z
Z ZEY"'G'%Q z /""h——"—‘*l sh ‘5]2
j=1 j=1 h=1 VDhr-10g"~+0e

In the above there is a temptation to estimate <, 0s°, and 0s° as suggested in
section ITI~-3. But, the above sum of squares divided by v-2 and with the para-
meters replaced by estimates of parameters is defined to be an estimator for oe® .
Since 0e® is contained inside the summation, it appears that an estimate of o.®
must be obtained in another manner; then, 0e° is replaced by its estimate and
estimators for ¢,° and ¢ are obtained.

The genetic basis for models such as those given by equations (1) and (2) is
given in various places (e.g., see Falconer [1960]; Searle [1961]; references at
end. of chapter 23 in Kempthorne [1957]; etc.). However, the estimation problem ani
the model testing problem appear +to have received little discussion in published
literature. Results from several long term selection experiments are available,
but models for response due to selection follow equations (1) and (2) given the
valves of the parameters.

IV. A NUMERICAL EXAMPLE

As explained previously by Pape and Federer [1960] and Papa [1961], the selec-
tion program for each of several inter-~ and intraw-strain crosses and their recip-
rocals was carried out at each of three different temperature levels (18°C., 25°C,
and 35°C.); each cross at each tempersture was replicated. Ten spores or indi-

viduals of each mating type, A and a, were grown in duplicate growth tubes for



each cross at each temperature in each generation. Occasionslly, fewer indivi-
duals were obtained dve to accidents. The fastest growing A individual was
crossed with the fastest growing a individual to obtain the population for the
next generation. In addition, growth measurements from eight tubes were obtained
for the two selected individuals in each generation.

Since a minimum of ten generations of selection from each replicate at each
temperature level was available for the intra-strain cross of the laboratory

stocks of Neurospora crassa (77a/TUA), these data were selected to illustrate

the procedure for comparing experimental dats with a theoreticel model, The
selection surmary data are presented in Table 1. The analyses of variance for
the two replicateé and 10 generations are presented in Table 2, The individual
analyses of variance for the variation among 20 individuals and between dupli-
cate growth tubes for each individual are presented in Table 3, In some cases
not all ten sporesiwere recovered for one or both of the mating types.

For the experimental conditions encountered the variation between duplicate
growth tubes obtained at one time appears to be considerably different from
duplicate growth tubes grown at di¥fferent times. Thereforg, the w;thin mean
sqﬁare is defined to have the expectation o3, a coﬁponent of variance due to
duplicate determinations obtained st one time. Since the degrees of freedom
are essentially equal, for all mean squares a simple average of the 20 within
meén squares for 18°C. from Table 3, equal to .001l%, is an estimate of o3. The
estimates of 03 for 25 C. and 35°C. are .00262 and .0037L4, respectively. If the
deérees of freedom vary, one could pool thé within sums of squares and divide by
the pooled within degrees of freedoms but this was not done here.

The expectation:of the among individuals mean squares is Gq°+20,° (271%1)
=042+271*2¢,% | where 2 is the number of growth tubes for each individual and
27!*1 is the coefficient from an inbreeding series_for generation i. From the
20 analyses of variance for one temperature an estimator for cga is obtained by

minimizing the following sum of squares with respect to gg°:

2

101
Y ) L) (@2 )e0 B,

f=1 i=1

with the result
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Tuble 1. Mean growths in mm./hr. for cross T7a/T4A.

Temperature level
Replicate 18°c. 25°C., 35°C.
and Mean Mean Mean
generation | of 20 Mean A Mean a| of 20 Mean A Mean a | of 20 Mean A Mean a
I- 1 1.97 2.27 2.27 3.46 3,96 3,94 3.65 4,50 4,68
2 230 2.40 2,40 3,98 h,06 4,09 5.2% 5.28 537
3 2,43 2.46 2.48 3.89 3.0k 3.98 5.05 5.12 5.13
N 2.43 2.4k 2,51 3, Th 3,84 3.87 4 .88 Lol 4, ok
5 2.48 2.53 2,56 L,08 Y17 4,21 5.03 5.10 5¢17
6 2.39 242 2,4 k.00 4,03 k,10 h,o1 5.01 5.05
7 2.39 242 2.42 k.16 4,17 4,28 524 5.26 5.29
8 2.46 2.51 2.50 4.05 4,17 h,12 5.39 5ol 5.46
9 2,33 2.50 2.30 4,13 4,18 L, ok 5.15 5420 5.33
10 2,48 2.52 2.50 4,00 4,08 L, ok 5.15 5420 5.26
IT- 1 2.35 2.39 2,42 k,01 L,o7 k11 2,92 4,83 h,o7
2 2.40 2.48 2.42 3.77 3.95 3,92 5.03 5.12 5.16
3 2.30 2.39 2.39 3.98 k.05 L ,ok Lo7T 4,80 4,88
i 2,39 2.43 2.41 4,07 k.13 ok 5425 5¢31 5.32 .
5 2.46 2.50 2.51 h,13 b7 k.26 5.02 5.1k 5.09
6 2.h2 2.46 2.47 h,o4 4,34 k.31 5.27 533 5436
7 2.55 2.60 2.59 4,19 4,0k L 2k 5.29 5.43 5.3
8 2.52 2.57 2.56 k.09 4.30 4,20 5617 5422 5024
9 2.54 2,57 2,62 4,12 4,15 ho17 4,93 5.08 5.01
10 2,45 2.50 2.53% 4.35 4. 42 4 b 4,75 4,78 L 8k
I+II~- 1 2.16 - - 3. Th - - 3.28 - -
2 2.35 - - 3,88 - - 5.13 - -
5 2056 - - 309"" - - L".91 - -
)‘l’ 20“"1 hd - 5.90 - - 5006 - -
5 2,47 - - L.10 - - 5.02 - -
6 2.40 - - 4,12 - - 5.09 - -
7 2,47 - - 4,18 - - 5.26 - -
3 2.4k9 - - k.07 - - 5.28 - -
9 2.4k - - k12 - - 5404 - -
10 2,46 - - 4,18 - - b, o5 - -

Table 2. Anlaysis of variance for means of 20 from Table 1.

Mean squares
Source of variation d.f. 18°C. 25°C, 35°C,

Generations 9 .01883% LOLb7T 67550
Within generations 10 01242 L0324L .05386
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Tabtle 3. Analyses of variance for data of cross TTa/THA .

Replicate I¥ Replicate II*
Among Within Among Within

individuals individuals individuals individuals

Temperature Generation!| d.f. m.s., d.fo m.s. defe mes. d.f. MeS,
16°C. 1 18  .26528 19 .00347 19 .00163 20 .00079
2 19 .01705 20 ,00145 19 .001k6 20  .0013)
3 19 .,00221 20 .,0007T5 19 ,00291:*-20 . 00077
in 19 .00348 20 .000T9 19 .00272-.20 . 00084
5 19 .00320 20 .0007TO 19 .00231 20 .00103
6 18 ,00072 19 .00Ok2 19 .00322 20 00219
7 19 .0007T0 20 .00031 19 .00365 20 .00202
8 19 .00%25 20 ,L00126 19 ,00121 20 . 00046
9 19 .02488 20 .00051 19 .00379 20 +00141
10 19 .00052 20 .00050 19 ,0O0165 20 .00179
25°¢C., 18 65422 18 .00489 19  .008kk 20 .00173
19 .01928 20 L0032 19 ,L00939 20 .006%2
19 .0Ck05 19 .00334 19 ,00331 20 .00166
19 ,01168 20 .00268 19 .00219 20 .00194
19 .03965 20 L,00245 19 .00703 20 .00284
19 .0057T4 20 .00236 19 .00616 19 .00163%
19 .0063% 20 ,0021% 19 .0Ce22 20 00291
19 .01083 20 .00181 19 .01991 20 00169
19 .00385 19 .00246 18 .00098° 19 .00189
19 L,00506 20 .00093 19 ,00753 20 .00%08
35°C, 12 3,34077 12 .00602 19 6.12452 20 .00833

19 L0107+ 20 .0022% 19 ,00890 20 .O0ko2
19 .00998 20 L.00380 19 ,00675 20 .00165
19 .,00637 20 .00221 19 ,00217 20 .00158
19 .00445 20 ,00%349 19 .02333 20 .00891
19 .01189 20 L0026 18 ,00626 18 .00196
19 .,00220 20 ,00086 19 .00kO1 20 .00522
19 .00403 20 ,0018% 19 .00574 20 .00178
19 .00983 20 .00458 19 .0064O 20 .00312
18 .00936 19 ,00483 19 00454 20 .0031k

T~
OWVWE=OWI FWNF OV~ O\ FW D

|_J

e

—pr==

* d.f. = degrees of freedom; m.s. = mean square
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0 ® =§T§_"6')' z Z(Afi"wfi)(zi—g)

=1 1=1
where A}i and Wy, represent the among and within mean squares for the i*? genera-
tiod in the f*® replicate and 2 = number of replicates and 10 = number of genera-
tions. The estimate of 0,2 for the 18°C. data is 0,° = .193. For 25°C. and 35°C.
: #*
respectively, the estimates of ¢,° are .248 and .405.

Another estimator giving more weight to the earlier generations would be

2

10 2 10
x J
0.52 = Z Z (Afi-‘gfi)g-i-be/ Z 22—214-4

t=1 1i=1 £=1 i=1

* \ ° ° °
The estimates of 0,° and Ug° for each replication at 18°C., 25°C., and 35°C. are
presented in the following table:

18°C. 25°C. 35°C.
Rep I|Rep II|Rep I & IX Rep IjRep II|Rep I & II| Rep I{Rep IT{Rep I & II

[M]

R

345 | Lokl 0193 268 | .228 248 .385 | 25 Lo5

2| .,101 | .00 L051 248 | .003 0126 |1.253 |2.295 | 1.T77k

ax
«

From the results it is apparent that quite different estimates of 0,° may be
obtained from the two estimators. In addition, estimates of 0;° using the same
estima@or varied conéiderably between the replications. On observation of the
data, it becomes gpparent that deviant results from only one generation are suf-
ficient to consideréﬁly alter estimates of 0;°. For example, at 18°C. and 25°C.,
generation 1 in replicate I produced by far the greatest contribution to %32, and
generation 9 of replicate I at 18°C. produced the largest contribution to ggz.
Similarly, at 35°C. generation 1 of both replicates produced major contribution
to 352.

From regression theory we could compute the following estimated variances:

~ r v ”
V(.(;'gg) = 2 2 [21-2 (Afi""]fi) hd OSBF/TV(I‘V-:L)
=1 i=1
r v :_' v
V(ggz) = 2 ZEAH-WH'QHZ &* P/ (xv-1) Z ZE_BH‘*
=l i=1 f=1 1i=1
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Applying these equations to the selection data, the following variances are
obtained:

18°c. 25°C, 35°C.
v(§;9) .02k0 .0079 .0290
v(gge) 0030 .00187 2.1550

The large difference between the variances of two estimates at the same tempera-
ture is to a large extent due to an extremely large estimate of 0z in one of 10
generations.

An analysis of variance on the means of the 20 spores for each generation is
given in Table 2. Thewithin generation mean square is an estimate of o,2+cd2/h0

since each mean is obtained from 40 observations. Thus, an estimate of 0e° is:

*

O

. 3 . * 2
within generation m.s. - 0g°/40

.01242 - ,00114/40 = .0121% ,

*

where .01242 is the within generation mean square for 18°C. Similarly, o>
equals .03237 and .05877 for 25°C. and 35°C., respectively. The estimated
envirgngental variance increases with tempersture as might be expected. There=-
fore; “the variances over temperatures should not be pooled.

The Qﬁriance of the mean of 20 individuals at a given temperature level in
dupllcate tubes is estimated by the within generation mean squares in Table B
For the experimental data at 18°C. then B for equatlons (28) and (29) is com-
puted as:

m/uo/;gg = 1012!"‘2/0193 = .061"1" .

For 25°c.“and 35°C,, é = 41305 and .1451, respectively. These relatively large
genetic variances were unexpected.

Since normality of environmental and genetic effects may be unrealistic and
since the selection data were thought to follow equation (3), the parameters Q,
B, and 3 were estimated and theoretical curves were fitted to the data for the

three temperatures.
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| E i
~h+1
W, = 2 - z _t (42)

where the Wy are sums of values from O, 1, 2, up to i for B equal to a specified

Value.

5= Y (taepine /o Zm - P}, (43)
- 5

&=7-58 1ilwi/v . o (44)

The computed values for @ and S for each of the three temperatures are given in
Tebles 4, 5, and 6. The computed curves using equation (3) are given in Figures
1, 2, and 3 for 18°C., 25°C., and 35°C., respectively.

Table k. Computations for P=.06lk and for 18°C. data of Table 1.

Generation of Total for o -
selection = i We Rez i}% I Y}.-2§ o+0Wy z%* - (C+BU, )
0 000000. 4,32 - 484 2.199426 -.039426
1 « 96927k k.70 ~.10k 2.295618 .054382
2 1.634818 4,73 - 0Tk 2.361667 «003333
3 2.,080678 L8 .016 2.405914 004086
in 2,367902 4, ok «136 2.434019 .035581L
5 2.543350 4.81 .006 2,451830 -, 046830
6 2.644393 L, ok .136 2.461858 .008142
7 2.699627 4.98 : A76 - 2.467340 022660
8 2.728699 4.87 . 066 2.470205 -.035225
9 2., 743645 4,93 © ,126 2.471708 - . 006708
20.1412536 Te.ok - 000 x - .000005
y=2.ko2
oy=4 .80k

2{2 Wy - @il ] = 15,2001 )6596

Z (¥; =25 Ws= 1.509569796

i=

5 - 1.509369796 _
T 15.209136396 ~ °

099241

& = 2.402 - 099241 (20.#;2386 = 2,402 - 20257k = 2.199426
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Table 5. Computations for § = .1305 and for 25°C. data of Table l.

Total for

Y.

Generation of Wy Rep I & II  Y;.-2y S+-8W, -Er--(a+5w,)
selection = , = Y;.
0 000000 T 47 -5Th 3,708406 026594
1 .ok0152 7.75 -.204 3.863412 .0115868
2 1.570203 T.87 -.1Th 3,967290 -.032290
3 1.9754%90 7.81 - 234 L,034111 -,129111
L 2,222784 -8421 .166 L.074E83 .030117
5 2.365050 - 8,24 .196 L.098339 .021661
6 2.4ho751 835 <306 4,111149 .063851
T 2,433626 8.1k +096 4,117889 -.047889
8 2.504633 8.25 206 4, 121352 .003648
9 2.515233 835 «306 4,123109 .051891
19.020357 B80. L 000 000060
oy=8.04%
y=k.022

i o, )R
2 L.E?‘z - ﬁjﬂgl— 12.689720042

10

ZW* (Y, .=25)= 2.092189702
1i=1

 2.092189702 _
8 = 15 885720008 = *LO46T3

& = b.022 - 164873 55529%%2212 = 4,022 - .31350% = 3.708406



Table 6. Computations for é = .1451 and for 35°C. data of Table .

2l

Total for
Generation of Rep I & II - Y
selection = 1 Wi = Yo Y; .=2y <52+5Wi -12'." -(a'l'ng )
0 000000 6.57 3.238 3,842060 -.557264
1 .934498 10.26 52 L ,370913 759087
2 1.557023 9.82 012 4, 723078 .186922
3 1.954751 10.13 .322 4, 94807k .116926
i 2.195269 10.05 2U2 5.084136 -.059136
5 2.332441 10.18 372 5.161735 -.071735
6 2.406356 10.5% "W T22 5.203832 .061168
7 2.445830 10.56 752 5.225880 .054120
8 2.465805 10.08 272 5.237180 -.197180
9 2. 4750924 9.90 .092 5.242904 -.292904
18.769397 95.08 000 « 00000k
2y=9.803
y=4.904

: 2
2[ z W% - LZ%-L = 12,276614316

ZW1 (Y o=2y)= 6.944928504

6,9hlLorg50kL

8 = 12 2retatans

& = 4,904 - 565704 18'1383 1) = 4,004 - 1.061736 = 3.842264

565704
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OCbserved results for each of two replicates and for the nean of two

replicates (X's) for data of Table 1 for 18°C., for P=.0644, and for

equation (3) as computed in Table L.
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Figure 2. Observed results for each of two repllcates and mean of two replicates
(Xts) for data of Table 1 for 25°C., for B=.1305, and for equation (3)
as computed in Table 5.
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Figure 3. Observed results for each of two replicgtes and mean of two replicates
(X's) for data of Table for 35 C., for B=.1451, and for equation (3)
as computed in Table 6.
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Although the resulits are variable fairly good fits were obtained for the
data for 18°C. and for 25°C. The 35°C. data do not appeer to fit well. It
may be that temperature sensitivity is being encountered here and this may be
controlled by a few genes. There appears to be little or no progress from
selection after the first cycle of selection pressure.

An estimate of 0,°+04%/2 may be obtained from these data from equation (26):

10 F]

z Ly, ; G-8w, B/ (20~2)
i=1 J=l

with 20~2=18 degrees of freedom.

Also, if normality holds and if selection pressure is constant an estimate
of o, could be obtained by dividing ® by the expected value of the largest vank
order statistic from a sample of size 10, i.e., the largest one out of 10 was

selected, This results in

| '].'.9_;9% = e 06 for 18°C oy or 8‘ 2 = 000’4'
0165 - 1 £ °C e 2 _
']-'_S-E = e 7 or 25 vy or Ug = .029

i%gg = 37 for 35°C.,or 0% = J137 .

The agreement with previcus estimates of 0,® is poor. However, definite cone

clusions must await the outcome of all the data yet to be analyzed,
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