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Abstract

The research presented in this dissertation focuses on the measurement and

analysis of subjective probability distributions over stochastic outcomes, a

central issue in the study of decision-making under uncertainty. The empiri-

cal setting is rural Tanzania, where the degrees of risk and uncertainty char-

acterizing both human capital and productive investment decisions are exac-

erbated by widespread dependence on rain-fed agriculture, inadequate social

safety nets, and a poorly developed information infrastructure. I present a

sequence of methodological, theoretical and empirical chapters in which I

estimate subjective returns distributions in an existing data set, develop and

explain a new method of collecting subjective distributions data, characterize

the information content of the data collected, and make use of the data to

estimate a structural agricultural production model.

Chapter 1 explores the role of estimated, rather than measured, subjec-

tive returns to education in schooling choice decisions. Using an existing

panel survey from Tanzania, I estimate earnings-education distributions sep-

arately for 1991, 2004 and 2010. I then use individual-level predictions of the

first two moments of the earnings distribution to estimate a random effects

probit model on binary enrollment decisions for school-aged children in the

years 1991-1994. I find that the returns to education have been and remain

high for women, while for men the returns increased over the twenty study

years to nearly match those of women. In addition, the probability of enroll-

ment is increasing in the subjective conditional expectation of earnings, and

decreasing in the subjective conditional variance of earnings.

Chapter 2 describes the phone-based survey method that I used to gather



subjective probability distributions data from a sample of Tanzanian cotton

farmers. I describe the various technical issues faced in the implementation of

this method, outline the lessons learned and the numerous refinements made

over the course of the study, and speculate on the feasibility of phone-based

data collection in other settings in low income countries.

In Chapter 3, I analyze the information content of subjective distribu-

tions data gathered in the way that has become standard in development

economics, i.e., by having respondents allocate a fixed number of counters

to boxes that represent the intervals of a histogram. I use inference about

the respondents’ choice problem to analyze the partial identification of the

underlying belief. I provide bounds on the density in subsets of intervals,

provide bounds on the underlying CDF, define the joint identification re-

gion for the measure vector, and develop and implement a feasible numerical

method for jointly bounding the moments of the unobserved distribution. I

also provide simulation evidence for the optimal design of survey instruments

and the optimal way to approximate these data with smooth distributions.

Lastly, Chapter 4 makes use of the regularly spaced within-season mea-

sures of subjective yield and price distributions collected from Tanzanian cot-

ton farmers to study the farmer’s dynamic resource allocation problem. Using

these data, I develop a novel method for estimating a stochastic production

function when error parameters are observed at the plot-level throughout the

cultivation season.
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Chapter 1

Introduction

Economists generally believe that appropriately regulated markets, operating

with the support of sufficient physical and institutional infrastructure, do

a better of job of allocating capital and channeling goods and services to

households than do large-scale government planning programs. In recent

decades, this belief has underpinned a historically unparalleled shift away

from government intervention and toward market liberalization in most of

the developing world. In retrospect, that shift relied more on theoretical

assumptions than on hard empirical evidence about how markets function,

especially in rural areas of low-income countries. In this dissertation I address

this broader issue by focusing on a foundational microeconomic topic that is

critical to market operation, both in the empirical setting of rural East Africa

and elsewhere: agents’ formation of and response to subjective probability

distributions over uncertain future outcomes.

It has long been known that subjective expectations matter as much as

1
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preferences in determining the choices people make.1 Subjective beliefs play

a particularly important role in investment and production decisions in rural

East Africa, where uncertainty has an outsized effect on household welfare.

Consumption in this environment is closely linked to the outputs of subsis-

tence and cash crop agriculture, rain-fed production processes that are highly

stochastic and subject to a long lag between investment and outcome. Infor-

mation systems are inadequate or lacking altogether, preventing widespread

knowledge dissemination and efficient updating of priors. And, lastly, the

costs associated with misinformation or incorrect beliefs are relatively higher

than in wealthy countries: mis-allocation of productive resources due to in-

correct subjective expectations can lead to catastrophic welfare losses for

households struggling to meet subsistence requirements.

Despite the prominent role of subjective probability distributions in re-

source allocation and investment decisions, the collection and analysis of

subjective distributional data was professionally taboo for most of the 20th

century. It has only recently become acceptable for economists to gather ex-

pectations data and treat them with the same sanctity as choice data. The

reasons for this bias against expectations data are not entirely clear, though

they are most likely related to the rise of rational expectations theory in the

1970s, and the perception that choice data is in some sense more objective

than reported expectations. Manski (2004) speculates on these issues at some

length.

1For a classic example, see Marshall (1895).
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Regardless of the true history, there are exciting new strains of research

that attempt to measure agents’ expectations, understand how they are

formed, and investigate their importance for decision making. In Malawi,

Delavande and Kohler (2008a, 2008b) study expectations over events such as

HIV contraction, market participation and experience of shocks using both

a simple Likert scale (Very likely, Somewhat likely, Likely, etc.) for point

estimation of expectations, and more sophisticated methods of eliciting distri-

butions by dividing a fixed number of counters into piles representing various

outcomes. The method of dividing counters such as stones or beans into piles

representing the likelihood of different outcomes is also used by Hill (2010) in

Uganda to collect expectations about coffee prices, by Lybbert et al (2007)

and Luseno et al (2003) to collect Kenyan and Ethiopian pastoralists’ expec-

tations about rainfall in the coming season, and by Santos and Barrett (2010)

to elicit state-conditional herd size distributions in southern Ethiopia. Cole

and Hunt (2010) and Camacho and Conover (2011) study price expectations,

and find in separate studies that provision of price data to farmers via SMS

significantly improves the accuracy of subjective price distributions, but has

no measurable effect on production practices.

The work presented here makes important theoretical and empirical con-

tributions to this literature. The data underlying all but the first empirical

chapter of this dissertation came from a 16-month study of cotton farmers in

Tanzania. The Tanzanian cotton sector is something of a flagship for mar-

ket liberalization in Africa. The sector exhibits a number of characteristics
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that make it especially suitable for a study of investment under uncertainty.

Cotton is an inedible cash crop, so that producer objectives are not compli-

cated by the possibility of consuming their output. Cotton takes six months

to grow, and growth over the cultivation period depends critically on both

chosen inputs and on the outcomes of stochastic rainfall and pest processes.

Farmers’ expectations about these processes figure substantially in their re-

source allocation decisions. Also, cotton prices are entirely unsecured and

are unknown to farmers for the majority of the growing season. The value

of output is therefore a random variable over which there is significant het-

erogeneity in beliefs.

The last two decades have seen the near complete retreat of the Tanza-

nian government from the sector, reducing rent-seeking and some forms of

inefficiency, while simultaneously increasing the exposure of farmers to the

vagaries of the world market. The collapse of the government-sponsored in-

put allocation system has left cotton growers more susceptible to drought,

severe weather events and pest infestation. In this atmosphere of consider-

able uncertainty, nearly half a million small scale Tanzanian farmers cultivate

cotton without the support of formal insurance institutions, sophisticated in-

formation services or publicly funded social safety nets, all of which would

serve to mitigate the negative effects of uncertainty. The choice behavior of

these farmers, who produce for what is arguably the most liberalized output

market in East Africa, offers an important window into the choice behavior

of all producers who operate at the intersection of centuries old subsistence
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traditions and modern, globalized markets.

The data set collected for this project focused on subjective distributions.

From July 2009 until November 2010, we gathered both high frequency input

allocation data and subjective probability distributions over all of the major

sources of uncertainty in the crop revenue function: prices, yields, rainfall and

pest pressure. From the pre-planting period until the final sale of cotton, we

observe both choice data and individual-level subjective beliefs. We use these

data to better understand the role of uncertainty in agricultural production

in Tanzania, and to improve estimation of structural agricultural production

functions.

The emphasis on agriculture connects this dissertation to the broad lit-

erature on the fundamental role of expectations and risk attitudes in agri-

cultural activity. Agricultural production is inherently forward-thinking, as

investments are usually undertaken many months or even years in advance

of outcomes, with little scope for recovery or reversibility of sunk costs. Out-

put is subject to a high degree of uncertainty, stemming from price changes

and the effect of exogenous and/or unobserved biological inputs. Moschini

and Hennessy (2001) survey these issues in detail, and Chavas (2004) cov-

ers the connection between theoretical models of risk and empirical speci-

fications for testing predictions. Because subsistence agriculture and home

production play such a fundamental role in the lives of people in low income,

agrarian countries, and because realizations of the downside risks facing poor

households often lead to dire consequences for health and the probability of
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survival, the development economics literature has long been concerned with

the role of risk and expectations in individual behavior. Nerlove and Bessler

(2001) review the primary methods used to recover expectations from agri-

cultural choice data, including structural models of adaptive, implicit and

rational expectations, and empirical time series models. Absent from their

work is any discussion of directly measured subjective expectations, precisely

because this line of work is new.

With choice under uncertainty and the analysis of subjective probabil-

ity distributions as the thematic backdrop, this dissertation proceeds in four

chapters. In Chapter 2, “Subjective Returns to Education and Schooling

Choice: Evidence from Tanzania”, we use an existing panel survey from

northwest Tanzania to estimate subjective distributions of the returns to ed-

ucation for children for whom parents make school enrollment decisions in the

early 1990s. We estimate subjective returns by looking at the future, realized

outcomes of adults similar to the school-aged children from the early 1990s.

The first two moments of the estimated subjective returns distributions are

then used to study the original enrollment decision. While the findings are

in line with our priors and are robust up to the chapter’s numerous para-

metric assumptions, this chapter demonstrates the identification problems

and heavy parametric burden placed on even a detailed micro data set when

subjective distributions are estimated from choice data rather than observed

directly.

Chapter 3, titled “Using Mobile Phones to Collect Panel Data in De-
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veloping Countries”, which is forthcoming in the Journal of International

Development, describes the methods used to gather subjective probability

distributions data from the sample of Tanzanian cotton farmers. High fre-

quency data are required in order to study the role of subjective beliefs in

a stochastic control process that persists for over six months and is subject

to the gradual revelation of information about states of nature. Lacking re-

sources to embed enumerators in numerous remote villages for months at

a time, we opted instead to gather high frequency survey data by mobile

phone. This novel data collection method only recently became possible,

with the rapid proliferation of mobile network coverage throughout rural

northwest Tanzania. Chapter 2 describes the various technical issues faced

in the implementation of this method. We outline the lessons learned and the

numerous refinements made over the course of the study, and speculate on

the feasibility of phone-based data collection in other settings in low income

countries. For dissertation purposes, Chapter 2 provides a record of the field

work undertaken.

In Chapter 4, “Identification of Underlying Beliefs from Subjective Dis-

tributions Data”, we analyze the information content of subjective distri-

butions data gathered in the fashion that has quickly become standard in

development economics, i.e., by having respondents allocate a fixed number

of counters to boxes on a visual aid that represent the intervals of a histogram.

We first argue that regardless of the method used to gather subjective dis-

tributions data, all such data should be viewed as the outcome of a choice
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problem solved by respondents. This is because it is impossible for even fully

informed and honest respondents to communicate their infinite-dimensional

probabilistic beliefs to researchers. In this chapter we use inference about

the respondents’ choice problem to analyze the partial identification of the

underlying belief. We provide bounds on the density in any subset of the in-

tervals, provide bounds on the underlying CDF, define the joint identification

region for the measure vector, and describe a method for jointly bounding

the moments of the unobserved distribution. We also provide simulation ev-

idence for the optimal design of survey instruments and the optimal way to

approximate these data with smooth distributions.

Lastly, Chapter 5 makes use of the regularly spaced within-season mea-

sures of subjective yield and price distributions collected from Tanzanian

cotton farmers to study the farmer’s dynamic resource allocation problem.

Using these data, we develop a novel method for estimating a stochastic

production function when error parameters are observed at the plot-level

throughout the cultivation season. We then use the estimated model param-

eters to calculate the value of price uncertainty, defined as the profit loss from

having incorrect beliefs about the end-of-season output price distribution, for

every farmer, at each major stage of cultivation. Results are compared with

results based on the method in Fafchamps (1993), which studied a similar

problem without the benefit of subjective distributions data.

In broad terms, the work presented here brings together three lines of

inquiry. We contribute to the literature on market liberalization by directly
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confronting the issues of information transmission and expectations forma-

tion in a rural, low income setting. We study farmer choice under uncer-

tainty, an issue with a long empirical and theoretical tradition in agricultural

economics, using a novel data set in which subjective distributions are ob-

served in a high frequency panel, rather than modeled and estimated by the

researcher. Lastly, we add to the rapidly growing literature on the measure-

ment and analysis of subjective expectations by studying the evolution of

farmer’s beliefs over a full cultivation cycle, and by characterizing the partial

identification problem that every researcher faces when dealing with data of

this kind.

If we take standard microeconomic theory seriously, we know that choice

data in situations characterized by uncertainty is best understood if accom-

panied by a density function that can be indexed at the individual and time

period level with actual data, rather than with distributions generated by

the researcher using highly restrictive, untestable assumptions. This disser-

tation, then, represents an attempt to take seriously the issues of heterogene-

ity and inter-temporal variation in subjective probability distributions, with

specific applications in rural East Africa. We provide empirical results from

an existing data set in which expectations are not observed, methodologi-

cal findings that pave the way for high frequency collection of distributional

data, econometric theory that characterizes the information content of the

data collected in this and numerous other studies, and structural estimates

of the parameters of a dynamic agricultural production model that make use
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of the observed inter-personal and inter-temporal variation in beliefs. To

our knowledge, the work described in this dissertation is the first attempt

to go beyond static measures of subjective expectations, and investigate the

evolution of full subjective distributions over time. As such it represents an

important contribution to the new literature on subjective expectations, and

to the longstanding issue of agricultural production under uncertainty.



Chapter 2

Conditional Returns to

Education and Schooling

Choice: Evidence from

Tanzania

2.1 Introduction

Human capital theory suggests an important role for education in both pro-

moting growth at the macro level and improving earnings and welfare out-

comes at the individual level. An extensive body of empirical development

work has studied the effect of educational attainment on cognitive skills,

wages, earnings from self-employment, and other outcomes such as fertility

11
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and health (Glewwe 2002, Glewwe and Kremer 2005). Additional work has

separately studied the effect of cognitive skills, when separately identifiable

from educational attainment, on earnings and other outcomes (Boissiere et

al 1985). This literature is guided by a clear policy goal: to identify the

education policies most likely to raise incomes and improve welfare in less

developed countries.

A separate, but clearly related, goal, is to better understand the choice

behavior of households when making educational choices for school-aged chil-

dren. A small body of theoretical and empirical literature on the linked

fertility and education decisions explicitly models and tests parents’ educa-

tional choices for their children (Ejrnæs and Portner 2004). Given that the

estimated private return to education in low income countries is typically

very high, particularly the returns to completion of primary and secondary

school, it is an open question as to why more households in poor countries

do not undertake greater educational investments. One candidate explana-

tion for sub-optimal investment in education is widespread misperception of

the conditional returns distribution. Recent experimental work by Jensen

(2010) and Nguyen (2008) demonstrates that providing information to stu-

dents in the form of average returns or anecdotes increases enrollment and

attendance.

There are other explanations for seemingly sub-optimal levels of edu-

cational investment, including credit constraints and high implicit costs. In

this paper we explore the possibility that households may actually be making
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reasonable choices given the subjective returns distributions that they face.

When making an enrollment choice for a child, household members have in-

formation about the child’s ability that is unobserved to the researcher. In

this paper we make use of a panel of children whose parents made enrollment

decisions in successive years in the early 1990s to control for these unobserved

effects. We explicitly model and estimate the marginal conditional return

to education 10 and 16 years after the observed educational investments.

We then use the predictable components of the first two moments of the

conditional return distribution to study the original educational investment.

In essence, we treat both contemporaneous and future conditional earnings

distributions as candidate subjective distributions of educational returns,

and compare each distribution’s ability to explain educational investments.

The paper’s broad contribution is to take seriously the household’s perceived

child-specific conditional return to education, so as to better inform policies

that seek to increase educational investments and/or the returns to education

in a particular sector.

Throughout this paper we maintain the assumption that the subjective,

or perceived, returns to education are equivalent to the individually hetero-

geneous, conditional returns to education that we estimate using observed

individual characteristics. This is admittedly a strong assumption, requir-

ing not only a well-specified and fully identified returns equation, but also

observation of all of the primary determinants of the earnings-education dis-

tribution. However, it represents a substantial loosening of the restrictive
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assumption of a constant return to education across persons and marginal

education years, which is implicit in many existing studies of educational

returns. Therefore, from here on we use the term “subjective” to refer to the

objective, estimated conditional returns that we estimate in the first half of

the paper.

To address the questions of interest in this paper we have to overcome two

identification problems that are endemic to studies of education. First is the

difficult task of unbiased estimation of the effect of education on earnings.

Card (1999) discusses the problems in great detail; the primary issue is the

endogeneity of education, as both earnings and education are surely deter-

mined in part by a measure of ability that is unobserved to the researchers.

We deal with this by instrumenting for education using the only instrument

available in our data, father’s education. In developing countries, researchers

often estimate the effect of education on earnings using samples consisting of

only formal sector wage-earners, despite the fact that the majority of persons

in low income countries do not make use of their education in a waged job.

The resulting selection bias often goes uncorrected due to limitations in the

data. In this paper, by utilizing all age-eligible workers in the data regardless

of sector of employment, we mitigate any selection problem at the earnings

estimation level.

The second identification problem relates to the schooling choice deci-

sion.1 Glewwe and Kremer (2005) describe in detail the barriers to unbiased

1By which we mean the choice of the number of years of education to acquire, not the
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estimation of the determinants of school choice. They posit that without

complete observation of all child, community and school characteristics, as

well as relevant price vectors and education policies, studies that seek to ex-

plain schooling choice are sure to suffer from omitted variable bias. They

advocate for the use of natural experiments (as in Duflo, 2001) and random-

ized control trials (as in Glewwe et al, 2009) to overcome these challenges.

However, essentially all of the estimation problems identified by Glewwe and

Kremer (2005) can be overcome with panel data, if we accept the probability

of enrollment in the marginal grade, rather than the total number of years

of schooling chosen, as the outcome variable of interest. With panel data we

can control for the effect of time-invariant individual, household, community

and school characteristics, as well as any observed time-varying determinants

of enrollment (such as costs).

Our interest in this paper is in two sets of hypotheses. The first relates to

the subjective perception of household members when they make educational

decisions. If the distribution of returns to education is non-stationary, then

the parents’ capacity to forecast changes in the distribution when making

educational choices has a significant effect on future child welfare. Over the

course of the 1990s, the Tanzanian education system underwent a substantial

overhaul at the behest of donor nations and international organizations. Uni-

versal primary education became an explicit goal of the central government,

and numerous education policies were changed. We test the extent to which

choice of a particular school from a menu of options.
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the earnings-experience-education distribution may have changed between

1991, the earliest year of data, and 2010, the most recent, by estimating

the first two moments of the conditional returns distribution separately in

1991, 2004 and 2010. If the distributions of conditional earnings changed

substantially over the twenty survey years, educational investment decisions

made using the contemporaneous (i.e., the early 1990s) distribution will be

sub-optimal.

Second, we explore the degree to which both the expectation and the

variance of the subjective returns distribution explain school choice. While

we have omitted a stylized choice model from the paper in order to focus

on the numerous estimation results, at the heart of the paper is a standard

investment model with utility concave in wealth. We hypothesize that the

children with higher subjective variances of returns - i.e. children who look

like people who grow up to have high variance future earnings, based on char-

acteristics known at the time of educational investments - are less likely to

invest in additional school. This hypothesis follows naturally from a standard

assumption of risk aversion over future earnings in an educational investment

model. Obviously, we also hypothesize that the higher the first moment of

the subjective returns distribution, conditional on other determinants of en-

rollment, the greater the probability of enrollment in school.

It is our particular interest in the second moment of the returns distri-

bution that merits the parametric approach in the first half of the paper, in

which we estimate the returns in the three cross-sectional years for which
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we have adequate data. If we were only interested in expected earnings, we

could use average realized earnings within subgroups as an estimator of the

first moment of the subjective returns distribution. But to do so would be

to ignore information on the stochastic component of returns, i.e. the dis-

tributional information contained in the 1991, 2004 and 2010 cross-sections.

Instead, we parameterize the variance of earnings, so as to have a means of

forecasting its predictable component. If we had a very large sample, we

could perhaps do this non-parametrically, by using the observed mean and

variance of earnings within age-education-gender subgroups. But these cells

are too sparsely populated in the data, so that the within-cell variance of

earnings is surely subject to substantial sampling error.

The paper proceeds as follows. In the next section we discuss the data. In

Section 2.3 we discuss possible ways of specifying Mincerian returns functions,

given the data limitations and requirements for the second stage, and we

present the empirical results for each of the three cross-sectional years of

interest. Section 2.4 presents the empirical model and the results of the

second stage of the paper, in which we study enrollment decisions. Section

2.5 concludes.

2.2 Data

Data for this project are from the Kagera Health and Development Survey

(KHDS). From 1991-1994 the KHDS collected four waves of panel data from
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912 households2 and 6,204 individuals in northwest Tanzania. In 2004 a

follow-up survey was conducted, with 4,441 of the original respondents suc-

cessfully re-interviewed, as well as all members of households that they had

formed or joined in the intervening 10 years. An additional round of follow-

up data was gathered in 2010. The KHDS gathered standard household data,

including demographics, health and anthropometry, education, time use and

labor experience, assets, land, agricultural production, livestock, credit and

remittances, migration, consumption, income, and shocks. Most modules

were enumerated in all survey years, however some key data were not gath-

ered in 2010. We discuss this further below.

Table 2.1 provides summary statistics for the sample of school-aged chil-

dren from each wave, as well as for the subset of children who appear in

all four waves. The table is weighted at the individual level, thus the char-

acteristics of households with greater numbers of school-aged children are

disproportionately represented. The sample is almost exactly 50% male.

The average respondent age is a little over 13 and increases slightly over the

course of the survey. Birth order is defined with respect to all household

members under the age of 30, because some household heads have no direct

children, and because the presence in the household of young adults who are

no longer school-aged could have some bearing on the educational status of

school-aged youth. Literacy of the household head is defined as the stated

ability to both read and write a letter. Household size grows steadily over the

2759 households were interviewed in all four rounds.
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course of the survey, though this may be due to a combination of births, entry

into the household and enumerator efforts to list all previous household mem-

bers even if they have left the household. Average household employment

income is very low in all four survey waves, largely because many households

report zero outside employment. The average number of household members

working on the farm is over 4 in all years, about half of household members.

Average numbers of household members working in the market or in self-

employment are much lower, around 0.45 and 0.26, respectively. Average

hours worked per household member per sector falls across all survey waves.

This is almost certainly an artifact of the increasing household size.

Comprehensive earnings data were not gathered in all rounds of the

KHDS. We therefore impute individual earnings from household consumption

data, using the proportional share of income contributed by (gender)-(age)-

(status in the household) subgroups in the 2004 cross-section. Methodologi-

cal details are discussed in the Appendix. Given that the consumption recall

period in rounds 2-4 differed from that used in 1991, 2004 and 2010, we

use only the latter three years to construct earnings-education-experience

distributions.
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Table 2.1: Summary statistics for age-eligible individuals in 1991-1994

Wave 1 Wave 2 Wave 3 Wave 4

Male 0.50 0.50 0.50 0.51

(0.5) (0.5) (0.5) (0.5)

Age in years 13.07 13.25 13.27 13.42

(4.2) (4.2) (4.3) (4.2)

Birth order among those <= 30 yrs 3.18 3.19 3.18 3.10

(1.9) (2) (1.9) (1.9)

Muslim 0.13 0.12 0.12 0.12

(0.3) (0.3) (0.3) (0.3)

Catholic 0.59 0.61 0.61 0.61

(0.5) (0.5) (0.5) (0.5)

Christian 0.24 0.24 0.24 0.25

(0.4) (0.4) (0.4) (0.4)

Number of HH businesses 0.38 0.63 0.80 0.92

(0.7) (0.8) (1) (1.2)

Tropical livestock units 1.81 2.22 2.27 2.25

(7.2) (8.1) (8.7) (10.2)

Age of head 49.47 50.56 50.80 51.09

(15.8) (15.8) (15.1) (14.6)

Head is literate 1.30 1.29 1.28 1.27

(0.5) (0.5) (0.5) (0.4)

Acres cultivated 5.44 5.87 5.85 5.87

(4.8) (5.4) (5) (5)

Asset index 0.08 0.07 0.04 0.06

(0.9) (1) (0.9) (0.9)

HH size 8 01 8 57 9 14 9 68HH size 8.01 8.57 9.14 9.68

(3.6) (4.1) (3.9) (4)

HH annual employment income (TZS) 26869.36 11690.14 12215.20 13203.47

(85268.1) (31568.4) (33403.1) (36504.2)

Number HH members working for govt 0.13 0.11 0.10 0.09

(0.4) (0.4) (0.3) (0.3)

Farm: total number of HH workers 4.26 4.45 4.84 4.51

(2.3) (2.3) (2.4) (2.3)

Market: total number of HH workers 0.42 0.44 0.50 0.46

(0.7) (0.7) (0.8) (0.8)

Self-emp: total number of HH workers 0.28 0.28 0.25 0.26

(0.7) (0.7) (0.6) (0.6)

Ag work hours per HH member 44.47 35.43 34.36 29.40

(30.6) (24.7) (22.2) (20)

Mkt work hours per HH member 7.52 7.28 6.53 5.88

(17.8) (15.4) (14.6) (13)

Self work hours per HH member 3.68 3.06 2.66 2.45

(10.9) (9.2) (8.3) (7.8)

Agricultural equipment (TZS) 1369.82 21799.67 9180.65 7505.90

(5167.2) (190371.2) (27851.6) (21685.5)

N 1388 1405 1407 1305

Notes: standard deviations in parentheses
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2.3 Estimating the Effect of Education on Earn-

ings

The reduced form equation relating earnings to educational attainment, based

on the human capital earnings function of Mincer (1974), typically takes the

form

log yi = β0 + β1Ai + β2A
2
i + β3ei + εi (2.1)

where y is earnings, A is age which proxies for workforce experience, e

is years of schooling completed, and ε is a statistical residual. This is the

workhorse model for estimating the effect of education on earnings. Under-

lying this general specification is the assumption that log y ∼ N(µ, σ2
ε ), with

µ = β0 + β1A + β2A2 + β3e and ε ∼ N(0, σ2
ε ). Because both yi and ei are

determined in part by unobserved ability, E(ε|e) "= 0. Therefore, OLS esti-

mation of (2.1) is biased. If suitable instruments can be found for ei, β3 can

be interpreted as the average causal effect of education on earnings.3

In this section our aim is to estimate (2.1), or a similar equation, in a

way that allows us to predict the future earnings of school-aged children, as

plausibly forecast by parents in 1991-1994.4 We will estimate (2.1) separately

on KHDS cross-sections from 1991, 2004, and 2011. In order to do this we

3The literature on estimation of (2.1) and similar specifications of the joint earnings-
experience-education distribution is voluminous. See Card (1999) and Carneiro et al
(2010) for recent treatments that also discuss the literature in detail.

4Results are not provided for the wide variety of models discussed in this section but
not ultimately used in the paper. All results available upon request.
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must decide how the education variable e should enter (2.1), balancing the

paper’s aims and data limitations against the need for consistent estimation.

In the development literature, dummy variables for completion of primary

and secondary school are often used in place of the single schooling vari-

able e. This is both because sample sizes tend to be smaller in developing

country data sets, and because the signaling and/or sheepskin effects from

completion of schooling phases are considered particularly important in coun-

tries where government jobs with minimum educational requirements figure

prominently in the formal labor market, and where the amount of learning

and skills acquisition that takes place in schools is questionable. Because

such discontinuities may very well be present in Tanzania, we could replace

ei in (2.1) with the pair of dummy variables (Pi, Si) that take a value of 1

if an individual completes primary or secondary school, respectively, and 0

otherwise:

log yi = β0 + β1Ai + β2A
2
i + β4Pi + β5Si + εi (2.2)

There are numerous drawbacks to this approach. The first is that under

(2.2), a marginal year of education only increases earnings if it represents

completion of primary or secondary school. While this may be true in the

labor market, such a specification does not recognize that at the time the

annual enrollment decision is made, the value of a non-terminal year of school

is the option value it holds for eventual completion of a given schooling phase.



CHAPTER 2. SUBJECTIVE RETURNS TO EDUCATION 23

If we were going to model the marginal enrollment decision - the decision

to acquire another year of schooling - in a structural setting, then option

value would naturally be built into the model. But we will estimate the

schooling choice decision in reduced form, and there is no way to derive an

option value for non-graduation schooling years from (2.2) without adding

numerous assumptions into what is already a heavily parameterized model.

One possible remedy is to include both ei and (Pi, Si) in the specification.

We estimated a variety of such models, however, and in nearly all cases the

positive effects of education are subsumed in the dummy variables, and the

coefficient on e is negative. This is probably driven by the small but not

inconsequential number of respondents who quit school just before comple-

tion of primary or secondary school. These individuals may have suffered a

negative shock that both interrupted schooling and reduced future earnings.5

Whatever the correct interpretation, it is likely that the negative coefficient

on e is a result of omitted variable bias, and does not represent the true effect

of education on earnings in non-graduation years.

We could circumvent this shortcoming if we could simultaneously instru-

ment for (ei, Pi, Si). However, for reasons discussed momentarily, we only

have one reliable instrument: father’s education, fi. While fi performs well

as an instrument for ei alone, it is a very poor predictor of Pi and Si. Func-

tions of fi, such as dummy variables for father’s completion of primary and

5Or causality may run in the other direction: the shock could itself be a reduction in
household earnings due to catastrophic loss of health or assets, which is transmitted to
the next generation.
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secondary school, fare no better. The instrument seems to do well on aver-

age, but not around the thresholds for completion of primary and secondary

school.

A simpler way to allow for both marginal effects of non-graduation years

and discontinuities at completion of primary and secondary school would be

to include a full suite of dummy variables, one for each year of completed

education. The marginal effect of each year of schooling would then be esti-

mated as the mean effect, within education years, conditional on experience

and its square. Again, because of small sample sizes in some education-year

cells, this technique produced unreliable estimates in all of the estimated

cross-sections.

Lastly, it may be possible to improve on (2.1) by including a second or

third degree polynomial in education on the right hand side. Unfortunately,

this approach tended to produce negative marginal returns in some (or many)

educational years, so it too was abandoned.

Given all of the above shortcomings, and noting that for studying the

schooling choice problem it is critical that the marginal value of schooling

reflect to some degree both the causal effect of education on earnings, if there

is one, and the option value for future continuation of schooling, we opt for

the simple linear specification of (2.1), with the addition of a gender dummy

and a gender-education interaction term:

log yi = β0 + β1Ai + β2A
2
i + β3ei + β4Mi + β5Miei + εi (2.3)
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where Mi = 1 if person i is male, and 0 otherwise. If we can consistently

estimate (2.3), then β3 gives the average effect of a marginal year of schooling

on women’s earnings, and β3 + β5 gives the average effect of a marginal year

of schooling on men’s earnings.

Of course, if we use OLS to estimate (2.3), then the usual omitted variable

problem biases our estimates of β3 and β5 downwards. We need to instru-

ment for ei. Unfortunately, there are very few instruments available in all

survey rounds that are exogenous to earnings but not to education. Parents’

levels of educational attainment are the only (arguably) reliable instruments

that were gathered in 1991, 2004 and 2010, and only father’s education was

observed for a large enough number of respondents. Father’s education is

only a reliable instrument under the assumption that it does not determine

child’s earnings directly, e.g. through family connections or better farm man-

agement prior to inheritance, but only indirectly via the household taste for

or access to education. If we were to restrict the 2004 and 2010 cross-sections

to individuals who were school-aged during 1991-1994 - i.e., to the population

of interest for the school choice problem - we could use various characteris-

tics from individuals’ childhood homes and communities to instrument for

education.6 However, we lose nearly 75% of the 2004 and 2010 sample if

we remove individuals not interviewed in 1991-1994.7 Also, we cannot use

6For example, we could make use of supply side schooling characteristics, as has been
done in numerous papers.

7This is because a very costly and substantial effort was made in 2004 to interview all
of the original KHDS respondents and all members of all of the households that they had
formed or joined in the intervening decade. The latter group turned out to be significantly
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supply-side or childhood IVs in the 1991 earnings-education estimation, so

we would end up with different specifications in different cross-sections, mak-

ing the predicted earnings incomparable. We are therefore left with only fi

as an instrument for ei.

Unfortunately, fi is also the only variable not already in (2.3) that is both

known at the time of educational investments in 1991-1994 and gathered, via

recall, from everyone interviewed in every round of KHDS. Because we want

to estimate subjective returns to education using information known at the

time of schooling decisions, it would be advantageous to add as many vari-

ables as possible to (2.3), to increase the degree of subjective variation in

earnings forecasts. This is an argument for including fi directly in the earn-

ings equation, rather than using it as an instrument. We therefore do both,

for sake of comparison. One interpretation of specifications that include fi

directly and are estimated via OLS is that father’s education proxies for un-

observed ability. If we believe that inclusion of fi solves the omitted variable

problem, the estimated coefficient vector is unbiased and consistent.

2.3.1 Results: earnings and education

In Table 2.2 we show the results of various specifications of the earnings

equation, estimated separately for each cross section. The dependent vari-

able in all regressions is average monthly individual earnings in 2010 Tanzania

shillings. Within each year, the first column shows the results of OLS es-

larger than the former.
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timation of equation (2.3). The second column shows the same regression,

limited to respondents for whom father’s education is available. The results

in columns 1 and 2 are largely similar both within and across survey years; a

marginal year of education is associated with an 8-10% increase in earnings,

except for men in 1991 for whom the increase is 4%. Column 3 shows OLS

results with fi and fi×Mi included on the right hand side. In 1991 and 2004

the sum of the coefficients on these two terms is essentially zero. If father’s

education is indeed a reliable proxy for unobserved ability, this suggests that

for men in the sample, ability is exogenous to either earnings or education

(or both). More likely is that fi picks up the effects of numerous determi-

nants of education. Column 4 shows the IV results, with fi instrumenting

for ei. The IV results place the return to a marginal year of education in the

neighborhood of 16-17% for women and 9-16% for men.

The estimated returns, though very high, are not unprecedented in the lit-

erature from developing countries (Psacharapolous and Patrinos, 2002). The

marginal year results, as well as the returns implied by annual compounding

of 4 and 8 marginal years of education,8 are shown in Table 2.3.9 Only the

IV results and the OLS results from column 3 are shown. The IV results for

women imply that conditional on experience, female primary school gradu-

8In the data, primary and secondary school graduates have on average 4 and 8 more
years of education, respectively, than those who do not complete primary school.

9The results for “Primary” and “Secondary” completion in Table 2.3 are not directly
comparable to the results one gets by using dummy variables for completing these phases
of education, because the former rely on the conditional expectation across all education
years, while the latter compare the conditional expectation between education subgroups.
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Table 2.3: Marginal and threshold returns, calculated from Table 2.2

Marginal year Primary Secondary Marginal year Primary Secondary

1991 OLS 8.2% 37.1% 87.9% 4.7% 20.2% 44.4%

1991 IV 16.5% 84.2% 239.3% 9.3% 42.7% 103.7%

2004 OLS 7.6% 34.0% 79.7% 7.5% 33.5% 78.3%

2004 IV 18.0% 93.9% 275.9% 11.1% 52.4% 132.1%

2010 OLS 7.6% 34.0% 79.7% 6.5% 28.6% 65.5%

2010 IV 16.3% 82.9% 234.7% 16.0% 81.1% 227.8%

Women Men

Notes: "Marginal year" columns are estimated coefficients; primary and secondary returns are the annually 

compounded return from 4 and 8 years of education, respectively

ates earn 85-90% more than women with only some primary education. On

average, secondary school graduates earn nearly 2.5 times as much as those

who do not finish primary. The comparable figures for men are lower, and

are less stationary across the three survey years, but the estimated expected

returns are nonetheless very substantial.

It is worth noting that after 1991, the gender-education term is insignif-

icant in all specifications except the 2004 IV. This, however, reflects an in-

crease in the gender difference in returns across the years of the KHDS.

In 1991, men with no education earn approximately 2.3 times as much as

women with no education, but that gap narrows with each successive year of

schooling. In specifications from later years, except the 2004 IV, men earn

2-2.1 times as much as women, regardless of education. The key implication

of these findings is that across cross-sectional years and specifications, the

returns to education are especially high for girls.

If there is a trend in the returns results, it is that for women the returns to
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education have been and remain high across the 20 years of KHDS, while the

returns for men have increased steadily to match the figures for women. The

female earnings-experience-education distribution is more or less stationary.

This suggests that, at least with regard to expected log earnings, the pre-

dicted marginal effect of education is invariant to the choice of cross-sectional

results used to make the prediction. For men, steady increases in the returns

to education from 1991-2010 suggest that educational choices made in 1991-

1994, conditional on the contemporaneous returns distribution, would have

been sub-optimal.

2.3.2 Estimating the variance of log earnings

The results of the previous subsection can be used to construct predic-

tions of expected log earnings conditional on a marginal educational choice,

E(log y|X, β̂, e), for children who are school-aged in 1991-1994. Let µ̂ = Xβ̂

denote predicted expected log earnings. We also need a predictor of the

subjective variance of log earnings, σ̂2
ε , in order to fully characterize the dis-

tribution in levels.10 Following Hildreth and Houck (1968) and Just and

Pope (1978), we calculate r2
i = log yi −Xiβ̂, where Xi and β̂i are the design

matrix and estimated coefficient vector from one of the regressions in the pre-

vious section, respectively, and then run regressions based on the following

specification:

10If y ∼ log−N(m, s2), then (µ, σ2
ε ) such that log y ∼ N(µ, σ2) are sufficient statistics

for (m, s2).
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r2
i = γ0 + γ1Ai + γ2A

2
i + γ3ei + γ4Mi + γ5Miei + νi (2.4)

That is, for each of the regressions of log y on individual characteristics

reported in the previous section, we square the residuals and regress them

back on the same set of independent variables (or instruments, depending

on the specification). This is a two-step method for modeling conditional

heteroskedasticity. The very premise under which we estimate (2.4) - the

premise that the variance of the stochastic component of log earnings is

not constant across individuals - implies that the results of the previous sub-

section are inefficient, though unbiased. However, while we take some interest

in the returns equations themselves, we are not particularly concerned with

hypothesis testing in this first estimation stage, so we accept the inefficiency

in the log earnings regressions as the cost of explicitly modeling both the

expectation and the variance of earnings.

Table 2.4 shows the results of OLS and IV estimation of (2.4), using the

squared residuals from the corresponding Mincerian returns estimate. The

explanatory powers of the models are low, suggesting that the variance of

the stochastic component of log earnings is largely orthogonal to individual

characteristics. Education does, however, have a statistically significant ef-

fect on the variance of log earnings in many specifications. For women in

1991 and 2004, increases in education are associated with a small but sta-

tistically significant decrease in the variance of log earnings. For men, the
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IV results in 1991 and 2010 suggest that education is associated with an

increase in the variance of earnings.11 Like the gender difference in the log

earnings equations, this gender difference is not surprising. Anecdotal and

observational evidence suggests that labor markets for men and women in

Tanzania are characterized by substantial gender discrimination, though less

so in 2010 than in 1991. It appears that education has a stabilizing effect on

female earnings, likely by providing access to waged formal sector jobs. For

men the effect is the opposite, though this may be due to a greater number of

men seeking secondary and advanced education without a corresponding in-

crease in demand from employers, leaving numerous well-educated men with

second-best employment on farms or in low pay manual labor.

11We use the IV specification to estimate (2.4) because the consistency results in Just
and Pope (1978) require that we use the same set of explanatory variables in the first stage
and in the squared residual regression. However, if preferences for stable waged income,
relative to the higher variance income observed from farming and self-employment in
Tanzania, are correlated with educational attainment, then the IV is justified on its own
merits.
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2.3.3 Predicting the expectation and variance of earn-

ings in levels

In this final sub-section our aim is to recover estimates of the first two

subjective, conditional moments of the level earnings distribution, ŷi =

E(yi|xi, β̂, γ̂) and σ̂2
i = V ar(yi|xi, β̂, γ̂), where xi is the vector of explana-

tory variables used in (2.3) and (2.4), and (β̂, γ̂) are the corresponding co-

efficient vectors. We use only the results from columns 3 and 4 within each

cross-sectional year, i.e. only the OLS results with father’s education proxy-

ing for ability, and the IV results with father’s education instrumenting for

education.

There is a small literature on the recovery of E(yi|xi, β̂) from the log-

normal regression log yi = xiβ + ε, ε ∼ N(0, σ2
ε ).

12 It is well known that the

naive, backwards transform ŷi = exp(xiβ̂) is biased downwards. Bradu and

Mundlak (1970) derive the uniformly minimum variance unbiased (UMVU)

estimator of E(y|x, β̂), conditional on the estimated parameters of the log-

linear distribution. El-shaarawi and Viveros (1997) derive an alternative

estimator that corrects for bias in the first stage restricted maximum likeli-

hood estimation of the log-linear mean (xβ̂) and variance (σ̂2). More recently,

Shen and Zhu (2008) develop two estimators of E(yi|xi, β̂), one that mini-

mizes bias and the other that minimizes mean-square error. All of these

12The papers cited in this paragraph are concerned exclusively with unbiased estimation
of the mean E(yi|xi, β̂). To my knowledge there is no work specifially on unbiased recovery
of V ar(yi|xi, β̂).
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estimators depend on xiβ̂ and σ̂2
ε , the expectation and variance of ε from the

log-linear stage, which are sufficient statistics for ŷi and σ̂2
i . These estima-

tors, however, are derived with an eye toward unbiased estimation of only the

expectation ŷi, not (ŷi, σ̂2
i ) together. Furthermore, while a subjective compo-

nent to the variance is built naturally into each estimator through the term

x′i(X
′X)−1xi, which enters σ̂2

ε , such estimators cannot defensibly be used to

make out-of-sample predictions, which we will do for children in 1991-1994

who were not re-interviewed in later rounds of KHDS. Therefore, rather than

rely on these estimators, we make direct use of our linear predictions for the

expectation and variance of log earnings, xiβ̂ and xiγ̂, and calculate:

ŷi = exp(xiβ̂ +
xiγ̂

2
) (2.5)

σ̂2
i = [exp(xiγ̂)− 1] exp(2xiβ̂ + xiγ̂) (2.6)

Estimators (2.5) and (2.6) are derived directly from the definition of the

log-normal distribution. Equation (2.5) gives an unbiased predictor of the

subjective expectation of yi if the estimators β̂ and γ̂ are unbiased (Shen and

Zhu, 2008).13 To my knowledge, the efficiency properties of these estimators

under the assumption of conditional heteroskedasticity in the log earnings

13Because we have not explicitly modeled the variance of the stochastic component
of the variance equation, σ2

ν , it is likely that the variance prediction is biased slightly
downwards. To attempt a fix for this bias here would take us well beyond the scope of the
paper. However, because the bias suppresses variation in σ̂2

i , any significant effects of the
predicted second moment on enrollment decisions can be considered lower bounds on the
true effect.
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equations are not known.14

Using (2.5) and (2.6), we build subjective distributions of log-normal

earnings, evaluated at the future age of 30 years, conditioning on the char-

acteristics of school-aged children in the early 1990s. Recall that with age

fixed, these earnings distributions are subjective only up to gender, father’s

education, and current grade (or marginal grade, if not enrolled in school).

Table 2.5 displays correlation coefficients of the predicted moments for

the OLS results with father’s education and the IV results, across the three

cross-section years. For a given estimation method (OLS or IV), the corre-

lations between expected earnings in the three survey years are all greater

than 0.9. This suggests that the predictable component of the expectation

of the earnings distribution is essentially stationary from 1991 to 2010. How-

ever, the correlation in expected earnings across estimation methods and

years taken together is lower, ranging between 0.6 and 0.92. Thus, the de-

gree to which we believe father’s education is better used as an instrument

for education rather than a proxy for unobserved ability has some bearing

on the predicted first moment. The inter-year correlations of the predicted

variance of earnings are uniformly lower, except for the IV results which are

highly correlated. The inter-method and within-OLS correlation coefficients

range between 0.1 and 0.77. This implies that to the degree that the pre-

dictable component of the variance of future earnings factors into educational

14What is known is that (2.5) is not the same as the minimum variance estimator of
yi under the assumption of homoskedasticity; this would be the UMVU of Bradu and
Mundlak (1970).
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Table 2.5: Correlation coefficients of expectation and variance estimates

1991 

OLS

2004 

OLS

2010 

OLS

1991 

IV

2004 

IV

2010 

IV

1991 

OLS

2004 

OLS

2010 

OLS

1991 

IV

2004 

IV

2010 

IV

1991 OLS 1 1

2004 OLS 0.99 1 0.91 1

2010 OLS 0.93 0.93 1 0.68 0.49 1

1991 IV 0.70 0.74 0.90 1 0.19 0.10 0.68 1

2004 IV 0.76 0.80 0.92 0.99 1 0.30 0.23 0.77 0.94 1

2010 IV 0.60 0.64 0.84 0.98 0.95 1 0.13 0.05 0.56 0.97 0.83 1

A. Estimated E[earnings] at age 30 B. Estimated Var[earnings] at age 30

investment decisions, better schooling choices15 will be made by those who

anticipate the future distribution of returns.

Figures 2.1 and 2.2 depict the variation in the predicted moments. Figure

1 shows 4 log-normal distributions for each year and estimation method: the

earnings distributions associated with the minimum and maximum predicted

ŷi distributions (with their associated σ̂2
i ), the distribution formed by the

average ŷi and σ̂2
i , and the observed distribution of earnings among 30 year-

olds in 2010, for sake of comparison. The lack of variation across years and

estimation methods is evident, although some underlying variation is not

viewable in a graph of only the minimum, maximum and mean.

What is most striking in Figure 2.1 is the substantial degree of variation

between the predicted distributions, driven by gender, father’s education and

marginal year of education. Clearly it makes little sense to speak of a single

marginal return to education, when the stock of education and other child

characteristics critically affect the subjective distribution of returns. If we

were able to condition on more of the observed heterogeneity in child charac-

15“Better” in the sense that they will have higher expected utility ex ante.
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teristics when we fit the returns distributions, and if we allowed for essentially

zero return to some of the middle years of primary and secondary school by

using categorical dummies for educational phases rather than the linear edu-

cational term,16 the variation in subjective returns distributions would likely

be even more striking.

The increase in variance associated with higher levels of education is

partly mechanical, as the variance of earnings increases exponentially with

the mean. To adjust for this, Figure 2.2 shows the average coefficient of

variation from the OLS and IV estimates for each of the three cross-sectional

years. The precipitous increase at grade 13 can be ignored, as it is caused

by the small number of enrollees at that grade. There is no clear pattern

in Figure 2.2. After normalization, it appears that the average subjective

variance based on the 1991 and 2004 OLS results falls with grade, while the

variance based on the 2010 IV results increases with the grade. However, the

most we can conclude from Figure 2.2 is that the increase in expected value

and the increase in variance as education increases are largely off-setting. The

effect this has on enrollment decisions will depend on parents’ and students’

attitudes toward risk.
16Results using dummy variables for various educational achievement categories are

shown in an Appendix.
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Figure 2.1: Subjective earnings distributions
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Figure 2.2: Average coefficient of variation from subjective distributions
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2.4 Enrollment Decisions

We now turn to the educational investment decisions made in the early 1990s.

Because of overlap in interview years, we observe a maximum of 3 years of

school enrollment (or non-enrollment) for each school-aged child. Although

the panel is short, it does allow us to control for unobserved individual ef-

fects in school choices.17 This bypasses most of the identification concerns

in Glewwe and Kremer (2005), who emphasize the confounding effects of

unobserved individual ability in most studies of school choice in developing

countries. In addition to controlling for unobserved ability, we also control for

school costs by including the median total school fees within district-gender-

grade subgroups as a regressor. And of course, we control for the subjective

return to the marginal year of education by conditioning on ŷi and σ̂2
i from

the previous section.

It is well known that conditional fixed effects estimation of a binary re-

sponse model with panel data is not feasible, because of the incidental pa-

rameters problem, and that unconditional fixed effects estimation in a panel

is biased. Instead, we posit a random effects probit model. Let αi be the

time invariant, unobserved individual effect, Ŵit be the matrix of enrollment

determinants, including the predicted expectation and variance of earnings,

cit be the outcome dummy, which takes a value of 1 if individual i is enrolled

in school in period t and 0 otherwise, and Φ be the cumulative standard nor-

17Because the panel is so short, we also make no attempt to correct for the unbalanced
nature of the data.
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mal distribution. The key assumptions of the random effects probit model

are:

P (cit = 1| Ŵi, αi) = P (cit = 1|Wit, αi) for t = 1 . . . T (2.7)

P (cit = 1| Ŵit, αi) = Φ(Witδ + αi) for t = 1 . . . T (2.8)

ci1 . . . ciT independent conditional on (Wi, αi) (2.9)

αi|Ŵi ∼ N(0, σ2
α) (2.10)

In Assumption (2.7), the term Ŵi contains (Ŵi1 . . . ŴiT ) for each indi-

vidual i = 1 . . . N . This assumption, in essence, states that Ŵit is strictly

exogenous conditional on the unobserved effect αi. Assumption (2.8) is the

usual probit assumption that the probability of a positive outcome is given

by the value of the cumulative standard normal distribution, with the lin-

ear index term Ŵiδ + αi as the argument. Assumption (2.9) states that

the observed determinants Ŵi and the unobserved αi fully characterize the

predictable component of the school choice decision, so that enrollment deci-

sions within-person are independent after conditioning on (Ŵi, αi). The last

assumption is the strongest of the four, asserting both that the αi and Ŵi

are independent and that the unobserved effects are normally distributed.

Independence of Ŵi and αi is necessary to identify the random effects probit
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model.18

Under assumptions (2.7) - (2.10), we maximize the conditional likelihood

of (δ, σ2
α) after integrating out α:

L(δ, σ2
α|xi, ci) =

∫ ∞

−∞

[ T∏

t=1

Φ(Ŵitδ+αi)
cit [1−Φ(Ŵitδ+αi)]

1−cit

]( 1

σα

)
φ
( αi

σα

)
dαi

(2.11)

Taking the log of (2.11) and multiplying across individuals gives the con-

ditional log likelihood of (δ, σ2
α). Although sample sizes are not small for

a developing country survey, we bootstrap the standard errors to mitigate

the effects of sampling error, small-sample biases, and the presence of the

predicted regressors in Ŵit.

2.4.1 Results of random effects probit model

Tables 2.6 and 2.7 display the coefficients and marginal effects from the

estimation of (2.11). Results are reported separately for values of ŷi and

σ̂2
i constructed from each cross-sectional year (1991, 2004 and 2010) and

from each method (OLS and IV). Repeat conditioning on father’s education

and gender in the random effects probit estimation, after their inclusion in

the first-stage estimates of the expectation and variance of earnings, is not

problematic, given that the first-stage predicted values are determined by at

18Alternative specifications are possible, if we are willing to parameterize the relationship
between ci and Ŵi. See Chamberlain (1980), or Wooldridge (2002) for a discussion.
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Table 2.6: Coefficients from random effects probit models

1991 2004 2010 1991 2004 2010

Male -3.399 -3.334 -1.427 -0.241 -0.722 0.209

0.86*** 0.91*** 0.38*** 0.26 0.28*** 0.19

Age -0.227 -0.245 -0.226 -0.213 -0.239 -0.187

0.03*** 0.03*** 0.02*** 0.02*** 0.03*** 0.03***

Asset index 0.169 0.167 0.171 0.177 0.159 0.193

0.07** 0.06*** 0.07** 0.07*** 0.06*** 0.08**

Birth order 0.036 0.029 0.021 0.021 0.026 0.019

0.04 0.05 0.04 0.05 0.03 0.04

School fees (x 10e-3) -0.122 -0.129 -0.118 -0.119 -0.123 -0.12

0.02*** 0.02*** 0.02*** 0.02*** 0.02*** 0.02***

Father's education -0.014 -0.003 0.014 0.066 0.06 0.07

0.04 0.03 0.02 0.02*** 0.02*** 0.02***

E(y) at age 30 (x 10e-6) 66.978 77.152 31.041 16.307 33.492 5.875

12.87*** 12.73*** 7.77*** 6.13*** 8.74*** 3.17*

Var(y) at age 30 (x 10e-12) -39.185 -50.535 -24.451 -4.076 -30.028 0.215

10.42*** 15.53*** 12.69* 7.17 16.29* 3.24

District effects Yes Yes Yes Yes Yes Yes

N 2592 2592 2592 2592 2592 2592

Prediction accuracy 67.5% 67.7% 67.5% 67.3% 67.6% 66.9%

Note:* sig at 10%, ** sig at 5%, *** sig at 1%; random effects probit model with bootstrapped standard 

errors; dependent variable is dummy for school enrollment; district effects and constant not shown

E(y) and Var(y) from OLS E(y) and Var(y) from IV

least one excluded variable (age = 30) and passed through highly non-linear

transforms, (2.5) and (2.6).

Most coefficients in Table 2.6 have the expected sign. Younger students

are more likely to be enrolled in school; conditional on age, birth order does

not have a significant effect on the probability of enrollment. As we would

expect, the coefficient on father’s education is insignificant when used as a

proxy for ability in the first stage, but positive and significant when used as
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Table 2.7: Marginal effects from random effects probit models

1991 2004 2010 1991 2004 2010

Male -0.902 -0.896 -0.516 -0.094 -0.277 0.082

0.094*** 0.106*** 0.116*** 0.13 0.108** 0.073

Age -0.09 -0.097 -0.089 -0.084 -0.094 -0.074

0.011*** 0.009*** 0.012*** 0.013*** 0.013*** 0.010***

Asset index 0.067 0.066 0.068 0.07 0.063 0.077

0.024*** 0.022*** 0.022*** 0.029** 0.029** 0.026***

Birth order 0.011 0.009 0.006 0.006 0.008 0.005

0.02 0.018 0.017 0.016 0.02 0.013

School fees (x 10e-3) -0.048 -0.051 -0.046 -0.047 -0.049 -0.047

0.008*** 0.008*** 0.006*** 0.007*** 0.007*** 0.007***

Father's education -0.006 -0.001 0.006 0.026 0.024 0.028

0.016 0.018 0.01 0.010** 0.008*** 0.009***

E(y) at age 30 (x10e-6) 26.311 30.354 12.208 6.414 13.167 2.309

6.028*** 5.622*** 2.911*** 3.160** 4.113*** 1.390*

Var(y) at age 30 (x10e-12) -15.359 -19.83 -9.604 -1.602 -11.795 0.085

4.371*** 6.000*** 5.429* 4.202 9.351 1.793

District effects Yes Yes Yes Yes Yes Yes

N 2592 2592 2592 2592 2592 2592

Note:* sig at 10%, ** sig at 5%, *** sig at 1%; marginal effects from random effects probit model with 

bootstrapped standard errors; dependent variable is dummy for school enrollment; district effects and 

constant not shown

E(y) and Var(y) from OLS E(y) and Var(y) from IV
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an instrument for education in the first stage. Higher school fees reduce the

likelihood of enrollment. Most interestingly for this paper, the coefficients on

the expectation and variance of earnings at age 30 are highly significant in

most specifications, and they have the expected signs. It is noteworthy that

the explanatory power of the model is invariant to the year and the first-stage

estimation method. Thus, despite the observed variation in the moments of

subjective returns distributions across years, we have no evidence to indicate

whether households are more likely to make enrollment decisions using the

forecasted distributions from 2004 and 2010 or the contemporaneous distri-

bution from 1991.

Table 2.7 shows the marginal effects from the coefficients in Table 2.6,

evaluated at the mean of each variable. To put the results in context: the pre-

dicted values of ŷi from the 1991 OLS results range from 27, 347 to 183, 766

TSH/month, and an increase in 1,000 TSH expected earnings per month

leads to a 2.6% increase in the probability of enrollment. Correspondingly,

σ̂2
i from the 1991 OLS results ranges from 1, 139.85× 106 to 242, 972.7× 106,

and an increase in variance of 1, 000 × 106 TSH/month is associated with

a 1.5% decrease in the probability of school enrollment. Results from other

years and estimation methods are similar. Considering the substantial het-

erogeneity in predicted earnings distributions, these results have considerable

economic significance. Furthermore, given that enrollment falls gradually as

the marginal grade increases, these results cannot be driven by grade effects.

Higher variance in earnings, conditional on expected earnings, school fees
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and other characteristics, has an economically significant negative effect on

enrollment. The opposite is true for higher expected earnings.

2.5 Conclusion

The results in this paper point to two general conclusions. First, while the

economic returns to education did change to some degree over the study pe-

riod, the changes were not significant enough (in the sense that they were too

weakly correlated with conditional enrollment decisions) to have an effect on

the predictability of school choice. Second, the expectation and the variance

of the subjective earnings distributions have significant positive and nega-

tive effects, respectively, on the probability of school enrollment. This is in

keeping with our initial hypothesis regarding investment under uncertainty

by risk averse individuals.

These findings depend heavily on our use of particular parametric specifi-

cations for the returns distributions and the schooling choice process. Clearly

it would be of interest to study problems of investment under uncertainty

- such as educational enrollment decisions - with a firmer grasp on the role

of subjective distributions of returns in school choice. Rather than explore

other heavily parametric avenues, or resort purely to natural experiments

and randomized control trials, one potentially fruitful direction for this line

of research involves the measurement and analysis of subjective returns dis-

tributions. Gathering such data would allow us to further explore the effect
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of heterogeneity in both realized and perceived conditional returns distribu-

tions on school choice.
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2.6 Appendix

Calculation of individual-level consumption measure

Unfortunately, most of the questions that covered agricultural production

and labor income in KHDS 1991-1994 and 2004 were removed from KHDS

2010, making it impossible to use earnings data from 2010 to fit an earnings-

experience-education distribution to the data. Instead we use consumption

(expenditure) data, which was collected in detail in all KHDS rounds. In

developing countries, where home production of food is prevalent, consump-

tion is closely correlated with the permanent component of household income

(and is thus less volatile than income). In KHDS 1991-1994, consumption

has a higher mean and a lower variance than income across all survey rounds.

Most consumption data was gathered at the household level; we needed to

assign consumption levels to individuals. In order to do so, we calculated

the average share of household income, θmas, contributed by individuals of a

particular gender, m, age group, a, and status in the household, s, in 2004:19

θmas =

∑N2004

j=1 θjh · I(Mjh = m) · I(Ajh = a) · I(Sjh = s)
∑N2004

j=1 I(Mjh = m) · I(Ajh = a) · I(Sjh = s)
(2.12)

where I is the indicator function; N2004 is the 2004 cross-section sample

size; θjh is the share of household income contributed by person j in house-

19See the next Appendix section for a discussion of the calculation of the 2004 income
shares.
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hold h. The triplet (Mjh, Ajh, Sjh) gives the gender, age group, and status in

the household of person j in household h. Age group categories are: less than

or equal to 15 years, 16-25 years, . . ., 55-65 years, and 65+. Status in the

household is divided into four categories: head, spouse of head, child of head,

and other. We use only the 2004 cross-section to identify income shares be-

cause the individual-level earnings data in 2004 is more comprehensive than

in 1991-1994, and because the tracking and interviewing of additional re-

spondents in 2004 greatly increased the sample size. We use these shares

to assign a proportion of household consumption to individuals in the 1991,

2004 and 2010 cross-sections, after re-normalizing to ensure that household

consumption shares sum to 1. Note that this is a measure of the consump-

tion share generated, not consumed, by each individual. The key assumption

underlying this method is that the average proportion of income contributed

by members of gender-age-status subgroup is stable from 1991-2010. Given

that our interest is in the capacity for households to forecast education re-

turns in the mid-term future, this assumption is not overly restrictive. We

do not assume stationarity in the distribution of educational attainment by

subgroup members, nor in the returns to education in particular sectors or

for particular gender-age-status subgroups. Changes in these distributions

will be picked up as changes in total household consumption, and assigned

proportionally to individual household members. Some variation will be sup-

pressed if the relative returns between subgroups changes substantially over

the twenty study years, but there is nothing that can be done about this in
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the absence of 2010 earnings data.

Estimating earnings in 2004

Because individual-level earnings is not observed for all rounds of KHDS,

the relationship between earnings and consumption in 2004 plays a critical

role in determining individual income measures for the three cross-sectional

years of interest (see previous sub-section). In this section we discuss the

construction of total individual returns in 2004.

Individual on-farm earnings are not directly observable. To assign earn-

ings from own-farm agricultural labor to household members in the 2004

cross-section, we estimate a production function in logs and assign the es-

timated share of earnings to each family member. For robustness we run a

variety of production specifications and compare the resulting earnings pro-

files. We include in these regressions all 2,079 households from the 2004

cross-section that list positive, non-trivial agricultural revenues. The general

form of the estimated farm revenue production function, with h indexing

households, is the following:

log Yh = β1 log Kh + β2 log Ah + β3 log Lh + β4Zh + εh (2.13)

⇐⇒ yh = β1kh + β2ah + β3lh + β4zh + εh (2.14)

where Y is the total value of agricultural output, K is the self-reported

value of agricultural tools and equipment, A is the number of acres cultivated,
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L is household labor, which is divided into male and female labor in most

specifications, Z is other inputs such as Tropical Livestock Units (TLU) and

the total value of purchased variable inputs such as seeds, labor, pesticides

and transport, and ε is mean-zero error assumed to be uncorrelated with

the independent variables. Lowercase variables are in logs. The estimated

coefficient vector β assigns shares of agricultural earnings to the independent

variables. Y includes the value of food consumed at home, as well as revenue

from crop sales and from the sales of livestock products and processed crop

products. Revenue from livestock sales is not included, as this is considered

part of the household capital account. Labor is measured as the sum across

all household members of monthly hours working with crops or livestock. In

most specifications we allow for male and female labor (Lm and Lf , respec-

tively) to enter separately. When combined, L = Lm +Lf . Tropical livestock

units are measured in the standard fashion, with 1 TLU = 1 cattle = 10

sheep or goats.

Table 2.8 shows the results from a variety of specifications of the produc-

tion function. Columns 1-4 include only households with positive values of all

independent variables (ensuring that the log is defined). The specifications

in columns 5-8 are the same as those in columns 1-4, with the exception that

the level value of each independent variable is increased by 1, so that the

log of all variables is defined for all households. The female labor share is

substantially larger than the male share in the first 3 columns. Controlling

for livestock holdings (column 3) eliminates the contribution of male labor,
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most likely because limiting the sample to households with positive livestock

holdings disproportionately weights the contribution of young boys tending

livestock in relatively poor households. The explanatory power of the model

is essentially constant across specifications. The row labeled “Sum of shares”

gives the sum of the coefficients, excluding the constant. In order to fully

apportion all revenue across the various inputs, we re-normalize the share

coefficients by dividing each by the sum of shares. The adjusted shares of

revenue for male, female and total labor (as applicable) are shown in the

three rows below “Sum of shares”.

Using the shares from the 8 regressions shown in Table 2.8, the agricul-

tural earnings of individual i in 2004, denoted yai, are given by:

Gendered labor: yai =

(
MαihmβLm + (1−M)αihfβLf

+ HβK

)
Y

(2.15)

Total labor: ‘yai =

(
αihβL + HβK

)
Y (2.16)

where M = 1 for male workers and 0 otherwise; αihj for j ∈ {m, f} is

the percent of total male or female work hours, respectively, in household

h, worked by individual i; βLj for j ∈ {m, f} is the coefficient on male or

female labor, respectively, in model 1-3 or 5-7; βL is the coefficient on total

labor in model 4 or 8; H = 1 if the individual is the head of the household,

0 otherwise; βK is the sum of non-labor coefficients in the regression, nor-

malized by the sum of the shares; and Y is the total value of agricultural
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Table 2.8: Agricultural revenue production shares in the 2004 cross-section

Model (1) (2) (3) (4) (5) (6) (7) (8)

Male labor hours 0.049 0.054 -0.009 0.034 0.024 0.035

0.03 0.03 0.04 0.01*** 0.01*** 0.01***

Female labor hours 0.112 0.09 0.068 0.03 0.022 0.032

0.03*** 0.04* 0.05 0.01*** 0.01** 0.01***

Ag capital value 0.368 0.317 0.301 0.312 0.227 0.212 0.213 0.229

0.03*** 0.03*** 0.04*** 0.02*** 0.01*** 0.01*** 0.01*** 0.01***

Acres cultivated 0.26 0.248 0.185 0.285 0.244 0.234 0.239 0.252

0.04*** 0.04*** 0.05*** 0.03*** 0.02*** 0.02*** 0.02*** 0.02***

Total variable inputs 0.067 0.02

0.02*** 0.00***

TLU 0.143 0.085

0.03*** 0.02***

Total labor hours 0.186 0.058

0.02*** 0.01***

R
2

0.309 0.338 0.33 0.304 0.296 0.307 0.306 0.291

N 1039 851 519 1813 2079 2079 2079 2079

Sum of shares 0.789 0.776 0.697 0.783 0.535 0.512 0.604 0.539

Male L share (adj) 0.062 0.070 0 0.064 0.047 0.058

Fem L share (adj) 0.142 0.116 0.098 0.056 0.043 0.053

Total L share (adj) 0.238 0.108

Note:* sig at 5%, ** sig at 1%, *** sig at 0.1%; constant not reported; all variables in logs; dependent variable is log of 

agricultural output (TZS)
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Table 2.9: Correlation between earnings, Models (1)-(8) from Table 2.8

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Model 1 1

Model 2 0.99 1

Model 3 0.91 0.85 1

Model 4 0.86 0.89 0.67 1

Model 5 0.88 0.94 0.61 0.88 1

Model 6 0.89 0.95 0.64 0.88 1.00 1

Model 7 0.89 0.94 0.63 0.88 1.00 1.00 1

Model 8 0.86 0.89 0.67 1.00 0.88 0.88 0.88 1

output. This method of apportioning earnings attributes the return to all

non-labor inputs to the head of the household, and divides the labor shares

across household members in accordance with the contribution of each to

total household agricultural labor. Table 2.9 shows the correlation in labor

earnings - excluding the returns to other inputs that are allocated to the head

- across the 8 specifications. All correlations not involving model 3, which

assigned a share of 0 to male labor, are greater than 0.86.

Despite these high correlations, the choice of model still has important

consequences for estimated earnings and subsequent regressions, because

these high correlation coefficients mask significant level differences. Across

models (1)-(8), the total value of agricultural earnings assigned to the head

of the household ranges from 76− 90%. Thus, in many households the labor

earnings of a non-head will be twice as much under some specifications as

under others. In general, the method is likely to overstate the head’s earn-

ings, since some household livestock or capital inputs are sure to be at least
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jointly owned by other household members. For this reason we opted to use

the results of model 1 to estimate earnings, as these have the highest labor

share among models that allow male and female labor to enter separately.

As mentioned previously, we add the value of agricultural employment

earnings in 2004, for which we have wage data, to these estimated on-farm

individual earnings to arrive at total agricultural earnings for each individual

in the 2004 cross-section.

Construction of the Asset Index

To control for household wealth, we estimate a single index of underlying

wealth using a vector of observed asset holdings and household characteris-

tics. This procedure, which has quickly become standard in empirical de-

velopment economics, is explained in detail in Sahn and Stifel (2003) and

Filmer and Pritchett (2001). We calculate both wave-specific indexes and

a single index pooled across survey waves. We use the pooled measure in

regressions, because the values of these indexes are unitless and therefore

impossible to interpret in anything but relative terms. The asset index is

constructed from the first principal factor underlying a vector that includes

the number of various durable goods owned by the household and dummy

variables indicating characteristics of the physical dwelling. Table 2.10 lists

the within-wave and pooled means of the assets included in the index. Table

2.11 shows the factor loadings for all 5 asset indexes. All factor loadings in

all waves have the expected sign. The value of most loadings is consistent
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across waves, with the exception of the dummy variables for different types

of lighting and some of the indicators for wall type, which vary across waves.
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Table 2.10: Summary statistics for variables used in asset index, 1991-1994

Mean SD Mean SD Mean SD Mean SD Mean SD

Floor: dirt 0.84 - 0.85 - 0.85 - 0.84 - 0.84 -

Floor: other 0.16 - 0.15 - 0.15 - 0.16 - 0.16 -

Light: candle 0.20 - 0.62 - 0.77 - 0.83 - 0.59 -

Light: electric 0.06 - 0.05 - 0.06 - 0.05 - 0.06 -

Light: lamps 0.73 - 0.33 - 0.18 - 0.12 - 0.35 -

Roof: grass 0.37 - 0.37 - 0.36 - 0.35 - 0.36 -

Roof: solid 0.63 - 0.63 - 0.64 - 0.65 - 0.64 -

Toilet: flush 0.01 - 0.01 - 0.01 - 0.01 - 0.01 -

Toilet: none 0.09 - 0.06 - 0.06 - 0.04 - 0.06 -

Toilet: pit latrine 0.90 - 0.93 - 0.94 - 0.95 - 0.93 -

Walls: bamboo 0.40 - 0.55 - 0.51 - 0.63 - 0.52 -

Walls: mud 0.39 - 0.26 - 0.35 - 0.21 - 0.31 -

Walls: other 0.10 - 0.04 - 0.02 - 0.04 - 0.05 -

Walls: stone 0.12 - 0.15 - 0.12 - 0.12 - 0.13 -

Water: lake, stream 0.72 - 0.74 - 0.76 - 0.74 - 0.74 -

Water: private tap 0.04 - 0.04 - 0.04 - 0.04 - 0.04 -

Water: public tap 0.10 - 0.08 - 0.08 - 0.06 - 0.08 -

Water: well 0.14 - 0.14 - 0.11 - 0.15 - 0.13 -

Windows: none 0.28 - 0.25 - 0.25 - 0.21 - 0.25 -

Windows: open 0.09 - 0.08 - 0.08 - 0.07 - 0.08 -

Windows: sealed 0.15 - 0.13 - 0.10 - 0.14 - 0.13 -

Windows: shuttered 0.48 - 0.54 - 0.57 - 0.58 - 0.54 -

Bicycles 0.29 0.5 0.33 0.6 0.35 0.6 0.38 0.7 0.34 0.6

Small electronics 0 05 0 3 0 05 0 3 0 05 0 3 0 06 0 3 0 05 0 3

Wave 1 Wave 2 Wave 3 Wave 4 Pooled

Small electronics 0.05 0.3 0.05 0.3 0.05 0.3 0.06 0.3 0.05 0.3

Motorbikes 0.02 0.1 0.02 0.1 0.02 0.2 0.03 0.2 0.02 0.2

Number buildings 1.19 0.5 1.18 0.5 1.18 0.4 1.18 0.5 1.18 0.5

Number rooms 4.72 2.5 4.90 2.4 5.02 2.5 4.96 2.5 4.90 2.5

Radios 0.26 0.5 0.28 0.5 0.31 0.6 0.33 0.6 0.29 0.5

Sewing machines 0.05 0.2 0.06 0.3 0.05 0.2 0.06 0.2 0.06 0.3

Stereos 0.15 0.4 0.16 0.4 0.16 0.4 0.19 0.5 0.17 0.4

Stoves 0.30 0.6 0.03 0.2 0.01 0.1 0.01 0.1 0.09 0.3

Vehicles 0.02 0.2 0.03 0.2 0.02 0.2 0.02 0.2 0.02 0.2
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Table 2.11: Factor loadings for the asset index, 1991-1994
Wave 1 Wave 2 Wave 3 Wave 4 Pooled

Floor: dirt -0.751 -0.768 -0.764 -0.786 -0.769

Floor: other 0.751 0.768 0.764 0.786 0.769

Light: candle -0.100 -0.390 -0.351 -0.534 -0.289

Light: electric 0.289 0.273 0.251 0.385 0.288

Light: lamps -0.066 0.271 0.237 0.357 0.158

Roof: grass -0.689 -0.664 -0.641 -0.605 -0.665

Roof: solid 0.689 0.664 0.641 0.605 0.665

Toilet: flush 0.287 0.303 0.396 0.326 0.322

Toilet: none -0.272 -0.216 -0.214 -0.174 -0.224

Toilet: pit latrine 0.157 0.094 0.064 0.032 0.094

Walls: bamboo -0.286 -0.518 -0.497 -0.604 -0.461

Walls: mud 0.069 0.148 0.179 0.264 0.151

Walls: other -0.243 -0.161 -0.139 -0.097 -0.171

Walls: stone 0.557 0.632 0.573 0.624 0.599

Water: lake, stream -0.192 -0.146 -0.225 -0.202 -0.185

Water: private tap 0.478 0.440 0.476 0.422 0.454

Water: public tap -0.011 -0.040 0.038 0.160 0.026

Water: well -0.008 -0.042 -0.038 -0.093 -0.049

Windows: none -0.571 -0.525 -0.508 -0.462 -0.530

Windows: uncovered -0.191 -0.159 -0.177 -0.185 -0.176

Windows: sealed 0.207 0.211 0.173 0.178 0.199

Windows: shuttered 0.471 0.396 0.438 0.352 0.420

Bicycles 0.414 0.386 0.364 0.324 0.369

Small electronics 0.377 0.459 0.459 0.453 0.428

Motorbikes 0 276 0 290 0 281 0 293 0 281Motorbikes 0.276 0.290 0.281 0.293 0.281

Number of buildings 0.131 0.175 0.186 0.169 0.162

Number habitable rooms 0.338 0.357 0.398 0.353 0.363

Radios 0.383 0.370 0.326 0.335 0.352

Sewing machines 0.418 0.476 0.425 0.437 0.433

Stereos 0.531 0.528 0.516 0.519 0.519

Stoves 0.474 0.179 0.137 0.191 0.264

Vehicles 0.280 0.362 0.312 0.325 0.317

Notes: unrotated factor loadings from principal factor method with a single factor; factor analysis run separately for 

each survey wave
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Alternative approach to returns estimation

In the main body of the paper we discuss the value of re-estimating the re-

turns equations using categorical variables that represent particular phases

of education, rather than the linear educational term. This method allows

the marginal value of a year of education to vary across grades; in particu-

lar it allows for discontinuities associated with graduation from primary or

secondary school. In this section we estimate a standard Mincerian returns

function in logs, with dummy variables for different levels of educational

attainment, separately for each cross-section:

log Ei = β0+β1Ai+β2A
2
i +β3Mi+

∑

g∈G

[
δmgMiDgi+δfg(1−Mi)Dgi

]
+εi (2.17)

where Ei is earnings in 2010 Tanzania shillings,20 Ai is the age of person i,

Mi = 1 if person i is male, 0 otherwise, and the vector [D1i . . . DGi] contains

dummy variables corresponding to the educational groups in G = {None,

Some primary, Primary, Some secondary, Secondary, More than secondary}.

We assume ε ∼ N(0, σ2), and E(ε|A, M,D) = 0. Time subscripts are present

but not shown for all components of (2.17), including the parameters. The

parameter vector to be estimated via OLS is (β0, β1, β2, β3, δm, δf ) where m

and f index “male” and “female” respectively, and δm and δf are 1× 6, with

a separate parameter for each educational attainment group.

202010 prices are used to value consumption bundles in 1991 and 2004.
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Table 2.12 gives the results of (2.17). The first column estimates are from

the sample of all persons aged 15 or older in the 1991 cross-section. Column

2 was estimated using all persons aged 15 or older in 2004, while column 3

uses only persons aged 20-35 in 2004, because this group was school-aged (age

7-22) in 1991. Columns 4 and 5 are analogous to columns 2 and 3, for the

2010 cross-section rather than the 2004. The estimated coefficients (a)− (e)

apply to women; the sum of coefficients (a)− (e) and (f)− (j), respectively,

apply to men. The “No education” group is excluded. F -statistics for the

overall significance of the education group dummies for men are provided at

the bottom of the table. Note that the results in column 3 are included only

for completeness. The column 3 sample includes a substantial number of

unemployed persons and persons with relatively poor occupational matches.

This is because many children who are school-aged in 1991 are still in school,

or just out of school and searching for work, in 2004. We therefore restrict

our attention to the other 4 columns.

The results in Table 2.12 indicate some clear patterns. The fit of all mod-

els is very good for a cross-section in a developing country context, with R2

ranging from 0.398 in column 1 to 0.514 in column 5. The effect of experi-

ence, captured by the coefficients on Age and Age2, is essentially stationary.

In keeping with most results in developing countries, the expected returns

to education are, in general, very high. For women, the expected return to

primary education falls from 72% to 54% over the years 1991-2010. The

lowest expected return to primary education for women is 40%, in column
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Table 2.12: Regression results: log earnings on education and experience

1991

Age 15+ Age 15+ Age 20-35 Age 15+ Age 26-41

Log E Log E Log E Log E Log E

Some primary (a) 0.347 0.216 0.314 0.276 0.197

0.08*** 0.06** 0.08*** 0.05*** 0.08*

Primary (b) 0.715 0.596 0.415 0.54 0.397

0.07*** 0.06*** 0.06*** 0.10** 0.12*

Some secondary (c) 1.058 1.078 0.771 0.947 0.802

0.17*** 0.11*** 0.14*** 0.20** 0.33*

Secondary (d) 1.051 1.137 0.955 1.13 1.144

0.16*** 0.10*** 0.11*** 0.16*** 0.17***

Above secondary (e) 1.761 1.185 0.989 1.618 1.555

0.86* 0.21*** 0.23*** 0.18*** 0.20***

Some primary x Male (f) -0.174 -0.473 -0.227 -0.228 -0.081

0.13 0.08*** 0.09* 0.04** 0.04

Primary x Male (g) -0.654 -0.248 -0.189 -0.159 -0.031

0.10*** 0.07*** 0.08* 0.04** 0.03

Some secondary x Male (h) -0.378 -0.65 -0.451 -0.111 0.02

0.27 0.11*** 0.18* 0.13 0.18

Secondary x Male (i) -0.518 -0.385 -0.455 -0.334 -0.381

0.25* 0.11*** 0.14** 0.10* 0.12*

Above secondary x Male (j) -0.626 0.051 0.111 -0.272 -0.12

0.87 0.22 0.27 0.13 0.08

Age 0.138 0.138 0.335 0.118 0.149

0 01*** 0 00*** 0 03*** 0 00*** 0 03**

2004 2010

0.01*** 0.00*** 0.03*** 0.00*** 0.03**

Age
2

-0.001 -0.001 -0.005 -0.001 -0.002

0.00*** 0.00*** 0.00*** 0.00*** 0.00**

Male 1.31 1.242 1.265 1.305 1.437

0.10*** 0.06*** 0.07*** 0.03*** 0.02***

R
2 0.398 0.456 0.445 0.466 0.514

N 2466 7001 3613 7161 3586

F: (a) + (f) = 0 3.463 15.606 0.974 1.02 2.621

F: (b) + (g) = 0 0.425 33.684 9.936 24.552 14.189

F: (c) + (h) = 0 13.167 34.138 6.11 55.407 26.541

F: (d) + (i) = 0 11.539 63.749 16.098 11.453 10.152

F: (e) + (j) = 0 51.775 125.819 54.783 21.975 37.926

Note:* sig at 5%, ** sig at 1%, *** sig at 0.1%; standard errors clustered at region level in 2010, village level in 

1991 and 2004; constant not shown
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5, indicating that for school-aged youth in 1991 the expected return to fin-

ishing primary school was lower than it was for their parents.21 For women,

the same general pattern holds for partial completion of secondary school,

though the reduction in expected returns over 1991-2010 is smaller for the

overall population than it is in the case of primary completion. Importantly,

for women, the expected returns to partial completion of secondary school

are substantially greater than the expected returns to primary school across

all years.22 This indicates that the expected returns to secondary education

are not exclusively due to sheepskin effects or satisfaction of application cri-

teria for high-wage government or private sector jobs: skills attainment in

each year of secondary school, and/or ability-based sorting into secondary

education, is clearly taking place. The expected returns to secondary educa-

tion for women increase slightly over the survey period, from 105% in 1991

to about 114% in 2004 and 2010. For women, no clear pattern is discernible

for education beyond secondary school, although the expected returns are

greater than the expected returns to secondary education in all columns. In

general, the marginal expected return to additional schooling at lower levels

of female education appears to fall steadily over the period 1991-2010, while

the marginal expected return at higher levels of female education increases

slightly or remains flat.

21This is in keeping both with the increased average levels of educational attainment in
Tanzania without concurrent increase in skilled labor employment, and with the structural
reforms in the Tanzanian educational system.

22One-sided t-tests reject the null hypothesis of zero difference between coefficients (b)
and (c) in all five regressions.
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Table 2.13 shows the total effects for men for each educational group.

Entries in Table 2.13 are the sums of the appropriate coefficients from Ta-

ble 2.12. For men, the expected returns to lower levels education do not

exhibit the same clear pattern as those for women. In 1991 the expected

return to partial primary education, 17%, is greater than the expected re-

turn to completed primary education, which is only 6%. This is a puzzling

result. One possible interpretation is that men with high-quality land in-

heritances and/or demonstrated farming aptitude are likely to select out of

the final years of primary school. In addition, anecdotal evidence suggests

that older generations of Tanzanians grew up with the norm that 4 years

of education was sufficient for farmers. Thus, in 1991, the composition of

men aged 15+ is a mix of older Tanzanians with the benefits of long years

of experience and land acquisition, but with less than primary education on

average, and younger adults with less land but higher average education. By

2004 the situation is reversed: partial completion of primary school actually

lowers male earnings relative to no education, and the expected return to

primary completion is nearly 35%. This is consistent with the interpretation

of the 1991 results, since changes in the sample composition from 1991 to

2004 are largely driven by the death of older Tanzanians and the expansion

of the sample to include more young and middle-aged adults. In 2010 the

expected returns to primary education are even higher, at 38% overall and

36% for the age-group sample, while the expected returns to partial primary

school are 4% adn 11%, respectively (though the latter two results are not
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Table 2.13: Sum of earnings coefficients for men in Table 2.12

1991

Age 15+ Age 15+ Age 20-35 Age 15+ Age 26-41

Log E Log E Log E Log E Log E

Some primary x Male 0.173 -0.257 0.087 0.048 0.116

Primary x Male 0.061 0.348 0.226 0.381 0.366

Some secondary x Male 0.680 0.428 0.320 0.836 0.822

Secondary x Male 0.533 0.752 0.500 0.796 0.763

Above secondary x Male 1.135 1.236 1.100 1.346 1.435
Coefficients are the sum of coefficients from previous table.  F-stats for significance are in previous table.

2004 2010

significant). The expected return to higher levels of male education follow

more intuitive patterns, although we see the same anomaly in 1991 with re-

gard to secondary education as with primary education: partial completion

raises expected returns more than full completion. This pattern is reversed

in 2004, and reappears in both 2010 columns, but in the latter two columns

the difference is insignificant.23 Importantly, the marginal expected returns

for men to secondary and advanced education increase steadily from 1991 to

2010. This is the same pattern that we observed for women.

Once the constants are factored in, the overall trend is that the expected

return to education increased slightly over the study period. This is appar-

ent in Figure 2.3, which shows the results from Table 2.12 depicted as the

predicted log earnings for men and women, as a function of educational at-

tainment, for each year and sub-group. The vertical intercept is evaluated at

age 30 for all figures. The male expected earnings function lies strictly above

23F -stats from tests of equality of parameters on Some secondary ×Male and Secondary
× Male in columns 4 and 5 are 0.780 and 0.528, respectively.



CHAPTER 2. SUBJECTIVE RETURNS TO EDUCATION 66

!
"
#

"
"

"
$

"
%

# & "# "&
'()*+,-.,(/01)23-4

"!!",5-6(4 "!!",6(4

$##7,5-6(4,)8(,"&9 $##7,6(4,)8(,"&9

$#"#,5-6(4,)8(,"&9 $#"#,6(4,)8(,"&9

$#"#,5-6(4,)8(,$:!7" $#"#,6(4,)8(,$:!7"

;

Figure 2.3: Expected log earnings, using the results of Table 2.12

the female expected earnings function in all periods. Earnings in every year

is valued using 2010 prices, so the upward trend in both the male and female

series reflects real changes in the value of education.



Chapter 3

Using Mobile Phones to Collect

Panel Data in Developing

Countries

3.1 Introduction

This paper1 describes the experience of a study entitled Research on Ex-

pectations in Agricultural Production (REAP), a survey conducted in rural

areas of western Tanzania from July 2009-September 2010. The primary aim

of REAP was to gather quantitative data on the evolution and effect of the

subjective expectations that farmers hold over uncertain future outcomes,

1This is the pre-peer reviewed version of an article of the same title which is forthcoming
in the Journal of International Development, and has been early published in final form
at http://onlinelibrary.wiley.com/doi/10.1002/jid.1771/abstract.

67
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such as weather, pest intensity and crop yields. Such a project called for

high frequency data collection. Instead of embedding enumerators in survey

villages for an extended period of time, the REAP team used mobile phones

to collect detailed agricultural, economic and demographic data from rural

households on a high frequency basis.

The aim of this paper is to describe the mobile phone-based research

design and highlight the lessons learned from REAP. Insights presented here

can hardly be called best practices, as they are based on the experience of

only one project. Nevertheless, it is hoped that this paper will help others

avoid some of the challenges that the REAP team has encountered during

the planning and execution of a phone-based survey in a remote setting.

The paper is organized as follows: in Section 3.2 we describe the project, in

Section 3.3 we analyze the methods strengths and weaknesses, and in Section

3.4 we conclude.

3.2 REAP Project Description

During preliminary visits to the study area in 2008 and July 2009, the re-

search team carried phones from each major mobile network in Tanzania,

and carefully noted signal availability. We found that one of the network sig-

nals was widely available throughout the study area. This did not guarantee

network access in every sample village, but it gave us reason for optimism.

When the survey began, we were fortunate to find a signal in at least part of
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every sample village. The network did not reach some respondents homes,

but all households were within a few minutes walk from a signal.

Our sample consisted of 300 cotton farmers in 15 villages. During initial

village meetings, we explained the project and provided phone-related train-

ing. REAP team members emphasized that the phones were not gifts, but

were research tools that would be left in respondents safekeeping. Partici-

pants were told that they could use the phones for personal use, and that

they could keep the phones once the project was complete. From among the

20 sample farmers in each village, 13 were chosen to participate in the phone

survey, for a total of 195 phone survey participants.2 To reinforce the notion

of random selection, we fully involved the farmers in this stage of selection,

by inviting them to draw names from a hat. Prior ownership of a mobile

phone did not exclude participants from receiving a project phone.

Phones were distributed on a later day, in the households, after comple-

tion of the baseline interview. Respondents also received laminated sheets

with the village-specific call schedule and contact numbers for the research

team. With 15 villages receiving calls on a Monday-Friday schedule, each

village had a calling day once every three weeks.

While none of our sample villages was on the electric grid, some source

of power was available everywhere, be it a generator at the school, a house

with a solar panel or an individual with a small collection of car batteries.

The owners of these power sources operated them as businesses, collecting a

2The seven non-phone households constitute a control group for another study.
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small fee to charge a phone. We signed a contract with a charging station in

each village, paying for survey participants to receive one free charge during

the two days prior to each scheduled call.

From September 2009-July 2010, enumerators called respondents on the

prearranged days. We made use of a special block price on within-network

calls, paying about $1.50 per phone for four hours of calls. On most days, one

calling block per enumerator was sufficient to complete all interviews. Inter-

view time ranged from 10 minutes to just over an hour, depending on the

length of the round-specific questionnaires and the answers given. Average

interview time across the 14 rounds of the survey was 27 minutes. Question-

naires included pre-coded, quantitative questions on subjective expectations,

labor on- and off-farm, crop sales, livestock sales and purchases, cultivation

of cotton and other crops, changes to household composition, health shocks,

expenditure on school fees, land holdings, weather, pest intensity, availabil-

ity of inputs, phone usage, prices, and sources of information. Some of these

data were gathered every 3-6 weeks, others less frequently.

Most phone companies will cancel a SIM card if no pre-paid credit is

assigned to it for a period of months. Many REAP respondents were un-

likely to purchase phone credit on a regular basis, if at all. Both to prevent

the cancellation of project SIM cards and to compensate respondents for

participating, we transferred 1,000 shillings (about $0.76) of credit to each

phone after each completed interview. The ability to make such transfers is

standard in most countries.
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We reached an average of eight respondents on the scheduled day. A host

of small obstacles prevented interviews from taking place as scheduled, such

as illness, family events, network outages, and phone problems. Despite these

challenges, virtually all respondents who were not interviewed on schedule

were interviewed in the ensuing few days. Village leaders, charging station

owners and other participants sometimes assisted us by contacting missing

respondents and arranging interviews. Respondents who lost their phones,

or whose phones were not working properly, were usually able to participate

by borrowing the phone of a friend or neighbor.

A few months after completion of the baseline survey, we re-visited the

survey villages and held short meetings with respondents and village lead-

ers. We replaced broken phones, faulty batteries and malfunctioning SIM

cards, and topped up our charging station contracts. These visits allowed

us to receive additional feedback from respondents, and to demonstrate our

commitment to the project.

3.3 Challenges, Solutions and Lessons Learned

In this section I analyze the REAP experience, and speculate more generally

on the feasibility of phone surveys in developing countries. I divide the

discussion into five subsections: Costs; Infrastructure Issues; Selection and

Participation; Data Quality; and Replacement of Materials.
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3.3.1 Costs

Relative to a traditional survey, the cost savings from a phone survey are most

substantial if the project calls for the collection of panel data over relatively

short time horizons. Some field costs cannot be avoided, as researchers must

conduct baseline interviews and distribute phones. This involves many of

the same budget items as a traditional survey, with the addition of phone-

related costs. However, researchers can reduce the time of the initial visit

by enumerating sections of the questionnaire that are not time-sensitive at

a later time, over the phone. Such an arrangement can reduce field time by

days, weeks or even months.

The phones used in REAP cost about 20each, andeachSIMcardcost0.38.

The average cost of each of the 2,677 phone survey interviews was $6.98,

including office rental, phone and SIM card purchases, phone charging ex-

penses, air-time, respondent compensation and staff costs. By contrast, the

average cost of each of the 195 baseline interviews was approximately $97,

including staff costs, vehicle rental, food and accommodation, printing and

other supplies.3 While these estimates are not indicative of the overall cost

difference between methods, because they do not assign to the phone survey

the costs of the requisite baseline visit, they highlight the key point: once

a survey is operational, the marginal cost of gathering additional rounds of

data by phone is only a small fraction of what it would be to gather the data

3These cost estimates exclude training, overtime, bonuses, fieldwork permits and some
other extra costs, either because such costs were very REAP-specific, or because they
applied to both phone and non-phone aspects of the research.
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face-to-face.

For the discipline as a whole, phone-based enumeration has the potential

to make new types of high frequency data collection feasible in a wide variety

of settings, without requiring a substantial increase in funding for field sur-

veys. Individual or household data that may be subject to substantial recall

bias in a traditional survey can be gathered more accurately from a high

frequency survey. The timing of particular events, such as the employment

of inputs or the sale of assets, can be elicited with greater precision. And

time-varying data on perceptions and expectations can be gathered in a high

frequency panel setting. Such data cannot be reliably gathered with a recall

survey. Furthermore, phone surveys are extremely cost effective for research

questions that require data at levels of aggregation above the household or

individual, such as market price data, quantities available at trading lots or

auctions, road or weather conditions.

3.3.2 Infrastructure Issues

Charging the Project Phones

We were fortunate that although none of the REAP villages was con-

nected to the electrical grid, some power source was available in each. Anec-

dotal evidence suggests that these independent sources of electric power have

proliferated alongside mobile phones, in response to the demand for electric-

ity by phone users in rural villages. If true, this bodes well for the feasibility

of phone surveys elsewhere. However, a pre-existing source of electricity is



CHAPTER 3. USING PHONES TO COLLECT DATA 74

not required for participation in a phone survey. If necessary, researchers can

establish charging stations specifically to support the research. Large solar

panels cost on the order of $200-$500, including installation costs. Alterna-

tively, a number of companies produce small solar chargers for prices as low

as $10, which could be distributed to each participating household.

REAP participants reported a substantial number of faulty batteries. We

replaced about 10% of the original batteries during follow-up visits. Some

battery problems, such as those caused by irregular voltage from the power

source, were unavoidable given the available infrastructure. Other problems,

however, were due to a lack of proper training. During the baseline visit, we

did not advise participants to turn their phones off when battery power is

very low, rather than letting the phones die completely. Nor did we instruct

respondents to turn their phones off when outside the network. We also found

that some charging station owners took advantage of respondent ignorance

by unplugging phones once they display full bars on screen, even though the

battery was only 75-80% charged at this point. During follow-up visits we

tried to remedy these shortcomings by providing additional training.

Network Access

The limitations of the mobile network may present the most definitive

challenge to the feasibility of phone-based data collection. It is impossible

to provide a network signal to villages not covered by the existing mobile

infrastructure.4 Inconsistent mobile network coverage effectively creates a

4The only alternative would be to provide respondents with satellite phones, which cost
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sampling problem by introducing bias at the village selection stage. This is

important for many research questions, since network access is likely to be

correlated with other important characteristics, such as distance from major

towns, road quality, water supply and average wealth.

Researchers who find that network shortcomings preclude sampling from

the original population of interest face tough choices about their project. One

possibility is to scrap the phone idea altogether and gather data in the tra-

ditional fashion. Another is to draw the sample for the baseline survey from

all areas of interest, regardless of network coverage, and then continue the

phone survey in those villages with network availability, using characteristics

observed during the baseline to construct sample weights. Unfortunately,

such weights are only useful if the observables used to construct them are

not substantially correlated with network access, and such correlations can-

not be measured without first committing to this method of data collection.

A third possibility is to establish a calling station as close as possible to a

sample village. Unfortunately, this will replace one form of selection bias

with another, if the capacity to travel to the calling point is correlated with

age, disability, gender, domestic responsibilities, employment status, or other

variables of interest.

3.3.3 Selection and Participation

Sampling

$500-$1500 each.
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We sampled from a list of cotton farmers that we constructed from the

official village registry. Village leaders assisted us by removing individuals

who had died or moved away, and adding individuals who had moved into

the village or formed new households since the most recent registry update.

We found that it was best not to mention the phones until after the sample

was drawn, to prevent village leaders from tampering with the list in order

to increase the likelihood that they or their friends would receive a phone.

For questions related to poverty and household agriculture production,

there are few situations in which researchers could justifiably sample from an

available list of mobile phone users. SIM cards are inexpensive and widely

available, and many phone users own multiple lines. More importantly, phone

ownership is highly non-random, and rarely observed among the very poor.

To prevent the introduction of substantial sampling bias, REAP was designed

with the intention of providing phones to respondents. Although some re-

spondents owned a mobile phone prior to their selection for the study, we did

not make use of these phones for REAP, because we did not want to engen-

der ill-will among those who were asked to use their personal phone. Also,

although the wealth effect is small, we wanted to endow all participating

households with goods of equal liquidity and market value.

In other situations it may be possible to rely on respondents personal

phones for enumeration. In Tanzania, phone ownership is nearly ubiqui-

tous among traders, transporters, merchants, university students, govern-

ment workers and urban formal sector workers. Studies that require sam-
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pling from these populations may find that phone distribution is unnecessary.

However, attrition rates may be higher under such a design, both because

phone endowment appears to engender a deep sense of commitment to the

project, and because the opportunity cost of frequent survey participation

will be higher among members of wealthier, phone-owning subpopulations.

Attrition and Participation

Potential rates of attrition and periodic non-response5 are particularly

high when researchers are out of sight for much of the survey period. We

anticipated substantial attrition from REAP, due to lack of interest, net-

work problems, or sales of project phones. However, on this point we were

pleasantly surprised. Across all rounds of the survey, an average of 191.2 of

the 195 respondents were interviewed each round. Missed interviews were

due primarily to temporary circumstances, such as severe illness. Only one

respondent completely abandoned the survey.

By chance, certain features of the study helped maintain high partici-

pation rates. The REAP sampling frame was explicitly restricted to cotton

farmers, and we introduced the project as a study of cotton production.

Farmers were excited to see interest in their cultivation of the crop they call

“white gold” in their language. Also, all of the respondents in the REAP sam-

ple lived in relatively small, culturally homogenous villages. Villagers were

accustomed to cooperation and neighborliness, and thus were very willing

5“Periodic non-response” denotes failure to complete one or more rounds of the survey,
while still participating in later rounds.



CHAPTER 3. USING PHONES TO COLLECT DATA 78

to help find missing respondents. Such a high degree of cooperation among

survey participants was made possible by clustered sampling. It seems very

unlikely that response rates would have been so high if respondents had been

selected from a higher level of geographic aggregation.

Compensation

Low rates of attrition and non-response were also due to the direct benefits

of participation. Many respondents looked forward to the 1,000 Tanzanian

shilling (about $0.76) credit transfer6 that they received as compensation

for each completed interview.7 Some respondents viewed the free battery

charge as an additional form of compensation, rather than a practical means

of ensuring participation. There was nothing wrong with this perception,

however, we were concerned at the outset that some respondents might try

to rush through the interview in order to preserve battery life. Fortunately

we saw no evidence of such behavior.

Timing

The phone survey did not begin until the 2-month baseline survey was

near completion. This introduced a potentially harmful asymmetry into the

experiences of respondents, as some waited many weeks for their first phone

call, while others waited only a few days. To mitigate the effect of the delay,

6These transfers were in the form of air-time credit, which can be used to make calls
or send SMS messages, but may also be sold or transferred to other phones.

7We learned that it was best to use different phones for calling and for credit transfers.
Otherwise an enumerator had to top up her phone with “transfer” credit, exceeding that
needed to purchase a daily call bundle. But should she over-run the bundle, the credit
intended for transfers was consumed very rapidly at the out-of-bundle rate.
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while we were still in the field, enumerators called respondents from the first

villages, to greet them and to remind them of their first scheduled calling

dates. However, we did not prearrange these calls, and many respondents

were unreachable. We learned later that this was largely because their phones

did not have any power. This method would have been more successful

if we had formally scheduled these calling days, and provided free battery

charges. Another way to avoid this problem would be to have a team of

phone-based enumerators already in place when the baseline visits begin.

Such an arrangement, however, requires enough resources to simultaneously

manage data collection in the field and over the phone.

While designing REAP, we also had to decide how often to call respon-

dents. Calling very often over an extended period of time is not only annoy-

ing, it is also costly. However, calling too infrequently could raise attrition

rates, if respondents lose touch with the project. The optimal lag between

calls is clearly related to the research content, the length of the project and

the length of each interview. Calling many times a week for two or three

weeks is not likely to be such an annoyance as calling many times a week

for an entire year. Likewise, interviews that last only a few moments will be

tolerated more frequently than those that last close to an hour. The decision

to call once every three weeks was made after considering budget constraints,

the expected length of each interview, and the nature of the data.
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3.3.4 Data Quality

Multiple Languages

It is not uncommon in East Africa for research teams to interview a

proportion of respondents in their tribal language, rather than the national

language. When necessary, a translator for a face-to-face interview is often

selected by the respondent from among his friends and family. In a phone

survey, translation can be avoided if an appropriate proportion of the enu-

merators are fluent in local languages. If a phone enumerator who does not

speak a tribal language doubts his ability to communicate effectively with

a particular respondent, he or she can transfer the interview to an enumer-

ator who speaks the local language. In practice this was only necessary at

the beginning of the REAP phone survey, because during the baseline inter-

view and the first round of REAP calls we identified respondents who were

not fluent in Swahili. An enumerator who spoke Kisukuma, the local tribal

language, always called these households.

Supervision

The responsibilities of a traditional field survey supervisor generally in-

volve logistics, training and the maintenance of survey quality. In a phone

survey, these tasks can usually be accomplished more quickly and at lower

expense than in a traditional survey. If interviewers directly enter data into

a computer while gathering it over the phone, which is advised for reasons

discussed below, questionnaire checking can be automated and performed

almost instantly. Supervisors can directly evaluate enumerator performance
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by listening to the interviews. In our experience, most community lead-

ers have phones, so the supervisor can remain in contact with local leaders

throughout the survey period. All of this can be done from one office, rather

than throughout the research areas. The end result is that one supervisor

in a phone survey can do the work of many in a traditional survey, without

incurring per diem expenses in the field.

Confidentiality and the Interview Environment

Experienced face-to-face enumerators read the body language and facial

expressions of the respondent, to see if he is tired, frustrated, confused or

intentionally deceptive. Also, traditional interviews are conducted in private,

to protect the confidentiality of the data. Unfortunately, phone enumerators

cannot observe the respondent during the interview, and they cannot directly

ensure confidentiality. This may introduce willful error by a respondent, if

the questionnaire content is sensitive. For this reason, researchers studying

issues of gender, domestic violence, corruption or other sensitive matters may

have difficulty gathering reliable data via phone.

However, to some degree the very nature of a phone interview actually

enhances confidentiality. If no one other than the respondent is able to

hear the interviewer, and questions require a yes, no, or otherwise innocuous

response, respondents can participate in the survey without revealing ques-

tionnaire content. The one-sided privacy of a phone conversation is likely not

sufficient protection for truly sensitive personal data, but for other topics it

may be enough.
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Additionally, although a phone interviewer surrenders some control of

the interview environment, he surrenders it to the respondent. This can

raise response rates and improve data quality, since it allows respondents to

easily reschedule interviews. Traditional enumerators often spend substantial

time walking to respondents homes. If a respondent is not at home or not in

the mood to talk, then a costly re-visit must be scheduled, or the interview

must be conducted with an anxious, hurried respondent. These problems are

avoidable over the phone.

Data Entry

With regard to data entry, phone surveys seem unambiguously superior

to face-to-face paper surveys. Data gathered on paper is transcribed twice:

once by the enumerator during the interview, and again by the data entry

technician. This creates additional costs, and introduces a delay between

data collection and analysis. More importantly, this two-stage transcription

of data increases the expected number of errors in the raw data. REAP phone

enumerators entered the data directly into a computer during the interview,

eliminating the time, expense and potential errors from entry of paper data.8

Clarification and Additional Questions

After completion of a traditional field survey, researchers often discover

that despite their best efforts, some of the questions were misunderstood by

respondents, enumerators or both. Even more frustrating is the realization

8The REAP questionnaires were almost exclusively quantitative. Data entry called
for input of numeric responses, usually from a menu of pre-coded options, rather than
extensive typing of qualitative answers.



CHAPTER 3. USING PHONES TO COLLECT DATA 83

that the inclusion of one or two additional questions would have allowed

researchers to test unanticipated, yet interesting, hypotheses. Both of these

setbacks can be avoided in a phone survey, provided that researchers remain

actively engaged with the incoming data. Instantaneous data entry allows

identification of potential problems, and interesting new questions, in real

time. If REAP enumerators discovered mid-interview that they were unsure

of the meaning of a question, or did not know how to handle a particular

response, they asked for immediate guidance. Sometimes, enumerators called

back respondents to clarify a response. If necessary, a clarification question

was inserted into the next round.

3.3.5 Replacement of Materials

It was inevitable that over time, some of the phones and batteries provided by

the project would be damaged or lost. Over the nine and half months of the

REAP phone survey, eight percent of respondents reported a lost, damaged

or malfunctioning phone. These respondents continued to participate in the

survey, using the phones of their friends or neighbors. During follow-up visits,

research team members replaced most lost or damaged materials.

Replacement of survey materials introduces an element of moral hazard,

as respondents are more likely to be careless or to sell the phone and claim

that it was lost if they believe it will be replaced. Minimizing the expenses

induced by this moral hazard, while still maintaining a spirit of good faith

between researchers and respondents, was one of the key challenges of REAP.
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To deter sales of the project phones, we told respondent from the outset that

we could exchange malfunctioning phones and batteries for new ones, but

we could not replace items that were lost. If a respondent lost the project

phone but had another phone, we asked him to continue participating in

the survey using his personal phone. If a respondent lost the project phone

and did not have another phone, we made a determination on a case-by-case

basis. We asked about the availability of other phones in the household, and

assessed the likelihood of the respondents ongoing participation. If he lived

very near to other participants, we usually asked him to continue working

with the project using his neighbors phones. However, in a few of these cases

we violated our strict policy on replacements, and provided a second phone.

We were more likely to replace the phones of those who lived in more isolated

areas.

It was clear that some of the lost phones were actually sold. From a re-

search perspective this was not problematic, as long as respondents continued

to participate in the survey. It is not clear a priori whether individuals who

own another phone are more or less likely to sell the project phone before

the survey is complete. The marginal value of a second phone is very low,

suggesting that owners of personal phones would be more likely to sell their

project phone. However, phone owners are also wealthier in expectation than

those who do not own phones, and thus likely to benefit less from a quick sale

of the phone for cash. The net effect of these opposing forces is ambiguous.
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3.4 Conclusion

On balance, the experience of the REAP study suggests that phone-based

enumeration of complex economic surveys in low income countries is not

only feasible, but also, under some circumstances, superior to traditional

data collection methods. Relative to a traditional survey, the cost savings of

a phone survey are substantial, as long as the questions of interest call for

high frequency panel data. In addition, the centralized nature of phone-based

data collection allows for rapid detection and correction of errors, interactive

participation by the primary researchers in real time, and streamlined data

entry.

There are situations in which a phone survey is infeasible. Network cover-

age throughout the study area should be investigated prior to committing to

the phone method, so as to prevent the introduction of substantial sampling

bias. Elicitation of sensitive data over the phone is unlikely to be successful,

as it is impossible for phone enumerators to completely ensure confidentiality.

Lastly, its unlikely that the phone survey method will be cost effective for

studies that do not require relatively high frequency enumeration of a single

set of respondents.

Perhaps the most exciting aspect of mobile phone-based research is the

potential it offers for collecting new types of data sets. Current best practices

in questionnaire design and data collection methodology are based on the

traditional field survey. With the proliferation of mobile telephony comes
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the possibility of collecting high frequency panel data at reasonable costs.

This should expand the range and number of high frequency panel data sets

gathered by development economists, without requiring a large inflow of new

research funding.



Chapter 4

Identification of Underlying

Beliefs from Subjective

Distributions Data

4.1 Introduction

Subjective probabilities over uncertain future outcomes occupy a prominent

place in the standard von Neumann-Morgenstern (1947) model of expected

utility, and in other theories of choice under uncertainty. Nevertheless, in

the second half of the 20th century, theoretical and empirical economic re-

search concentrated on modeling and estimating expectations in observed

choice data, rather than directly gathering subjective probabilities from eco-

nomic agents. Manski (2004) speculates on possible reasons for the taboo

87
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among economists against the collection and analysis of subjective expecta-

tions data. Whatever the reasons may have been, over the last decade the

taboo has lifted, and significant efforts have been made to directly measure

agents’ expectations rather than impose them on choice data by assuming

rational, adaptive, or other expectations processes.

A number of widely used data sets from the US, such as the Health and

Retirement Survey, the National Longitudinal Survey of Youth, the Michi-

gan Survey of Consumers and the Survey of Economic Expectations, include

questions about subjective point expectations or distributions. Question-

naire modules to elicit subjective probability distributions in these surveys

typically gather between 2 and 10 points on the cumulative distribution func-

tion or probability density function of person j’s unobserved belief about the

distribution of random variable z. In the Survey of Economic Expectations

(see Dominitz 1998, Dominitz and Manski 1997), this was accomplished by

asking respondents the likelihood of their income in some future period falling

below fixed values {z1, . . . , zN}, with z1 < z2 < · · · < zN .

More relevant for the current paper is the rapid growth of the devel-

opment economics literature on the measurement and analysis of subjective

distributions data.1 In data sets gathered in low income countries, visual aids

are usually used to elicit distributional data from populations with lower av-

erage levels of education. The method that has quickly become standard is

to ask respondents to allocate a fixed number of counters or other counters

1See Delavande et al (2010) for a review.
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to boxes that represent the intervals of a histogram. The proportion of coun-

ters allocated to each “bin” represents the density in that interval. The same

method is often used when the boxes represent qualitative outcomes, such

as the values of a Likert scale (“Very bad”, “Bad”, “Ok”, “Good”, “Very

good”).

Subjective distributions data gathered with either of these methods are

different from other survey data in one critical respect: even perfectly formed

beliefs about the distribution of an unknown variable cannot be communi-

cated from the respondent to the researcher. Given the limitations on survey

time, researchers can only collect a finite number of points on the PDF or

CDF of the stochastic variable. The questions used to collect these data are

in essence choice problems that the researcher poses to the respondent. In

a strict sense, all survey data can be described as the outcome of a choice

problem. The respondent must choose an answer to report, and he must

decide how much effort to exert recalling bygone events. In a lab or field

experiment, he must make choices that we hope reflect the same underly-

ing preferences that he uses to make choices in authentic markets. In these

scenarios, however, the respondent is generally able to provide a full and com-

plete answer to the question if he so chooses, because he is not attempting

to map infinite-dimensional information into a finite number of answers.

When providing subjective probability distributions, however, that is pre-

cisely what the respondent is doing. There is simply no way for the respon-
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dent to fully communicate a non-degenerate belief to the researcher.2 There-

fore, in order to analyze the information content of subjective probability

distributions survey data, we first have to understand the choice problem

solved by the respondent. Our understanding of this problem, and its effect

on the identification of the respondent’s underlying belief, has implications

both for survey design ex ante and data analysis ex post.

In this paper, we focus on the bin-and-counter choice problem most com-

monly used to gather subjective distributional data in low income countries.3

Data gathered using this method partially identifies the underlying subjec-

tive distribution, the CDF of which we denote by Fj(z), and the PDF by

fj(z). Our main goal is to characterize this partial identification problem.

To date, researchers have employed a wide range of different tactics to re-

cover moments and/or fit continuous approximations to these “binned” data.

None of these tactics is based on rigorous consideration of the underlying par-

tial identification problem. This has serious consequences for the findings of

any research project that employs these data, because the higher central

moments of the estimated subjective distribution - “higher” being anything

greater than the first - are very sensitive to distributional assumptions. Table

2There is substantial work in psychology and marketing on the cognitive aspects of the
survey response process, which have additional implications for the interpretation of survey
data. See McFadden et al (2005) for a discussion. We momentarily ignore these additional
complicating factors in order to emphasize that even in a world with fully competent, self-
aware and honest respondents, non-degenerate subjective probability distributions data
cannot be communicated in their entirety from one person to another.

3As we will see, data gathered in this fashion have lower information content than data
gathered in the manner described above for the Survey of Economic Expectations. The
latter will be a limiting case of the bin-and-counter data.
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Table 4.1: Subjective Distributions in Some Recent Papers

Reference

Random 

variable N k

Method of constructing 

bins Distributional assumptions

Hill (2010) Coffee prices 3 20 Fixed by researcher Density concentrated at 

midpoint of bin

Delavande et al 

(2010b)

Fishermen's 

daily catch

10 10,20 Fixed by researcher Stepwise uniform

Cole and Hunt 

(2010)

Commodity 

prices

5 20 Elicit E(p), construct 

quartiles around E(p)

Stepwise uniform

Attanasio and 

Kaufmann (2009)

Income 2 100? Elicit max, elicit min, 

divide in half

Stepwise uniform, triangular, 

bi-triangular

Gine et al (2008) Monsoon 

timing

11 10 Fixed by researcher Each stone is a random draw 

from beliefs distribution

McKenzie et al 

(2007)

Income after 

migration

4 NA Elicit max, elicit min, 

divide into quartiles

CDF method, log normal 

wages

4.1 lists the random variables of interest and the distributional assumptions

employed in a number of published and working papers that use subjective

distributions data. The lack of standard practice is evident.

There are no asymptotics in this paper, because the data in question are

generated by a single respondent (or, more accurately, many respondents,

but each one considered in isolation) assigning a small number of counters

(usually 10-20) to a small number of bins (anywhere from 2 to 10). We are not

concerned with any population-level phenomena, but with the identification

of a single respondent’s belief about the distribution of an uncertain outcome.

We focus on the individual-specific distribution because data of this type are

most often used to better understand choice behavior by exploiting observed

heterogeneity in subjective beliefs. This is in contrast to the literature that

uses probabilistic information gathered from experts to make inference about
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an unobservable population distribution (see Kiefer 2010).

Despite the apparent similarity to interval data, subjective distributions

data are inter-dependent, and thus do not satisfy most of the properties of

standard observational data. With standard interval data, each data point

represents a single independent draw from a population, and the appropriate

interval for any unobserved value is invariant to changes in the number of

intervals or boundaries of the intervals to which it does not belong. However,

the interval data generated by a single person allocating counters to bins is

not invariant to changes in the number of bins, the number of counters, or

the boundaries of the bins. When considering where to place a counter,

the respondent compares the bins to each other and determines, in essence,

the relative likelihood of the unknown outcome taking on a value in each

interval. For this reason, recent developments in the partial identification of

interval data are not directly applicable to the current problem.4 In the next

section, after formalizing the respondent’s allocation problem, we consider

an example that makes this point more clear.

This paper makes a number of contributions to the analysis of subjective

distributions data. We first provide evidence that a number of reasonable

heuristics that a respondent might follow when allocating the counters are all

equivalent to the minimization of absolute loss between the allocation and the

unobserved fj(z). We then provide bounds on the density in any subset of the

4The results in Stoye (2010), however, apply to some types of subjective distributions
data. We will elaborate below.
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bins, bounds on the subjective CDF, and a complete characterization of the

joint identification region for the vector of unobserved densities, as a function

of the numbers of counters and bins. The boundaries of this identified region

are sharp in the sense that they exhaust all of the information provided by the

respondent. I define a non-parametric estimator that can be used to bound

unobserved information signals when subjective distributions are gathered

in a panel. The identification region for the measure vector is then used to

generate joint bounds on the moments of fj(z). Lastly, we provide Monte

Carlo evidence for the appropriate way to fit a continuous approximation to

a respondent’s allocation of the counters, and simulation results of the effect

of different numbers of counters and bins on the size of the mean-variance

identification region.5

The paper proceeds as follows. In the following section we consider the

respondent’s choice problem, and argue that a minimization of absolute loss

allocation rule is consistent with numerous allocation heuristics that the re-

spondent might use. In section 4.3 we derive bounds on the density in subsets

of the bins, bounds on the CDF and a characterization of the joint identifica-

tion region. Section 4.4 describes a numerical method for joint identification

of the expectation and variance of fj(z), conditional on the response. In

section 4.5 we provide simulation evidence both for the choice of smoothing

technique ex post and the selection of the number of bins and counters ex

5Estimation of a subjective distribution that follows a known parametric form may be
desirable for use in a structural model, or for mixing two subjective distributions (such as
price expectations and quantity expectations).
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ante. Section 4.6 concludes.

4.2 The Respondent’s Choice Problem

4.2.1 Preliminaries

Suppose that a respondent is presented with N bins, each representing an

interval on the support of the distribution of unknown outcome z ∈ R. The

unknown z may be continuous or discrete. Bin i is defined as [di, di], i =

1 . . . N , with di = di+1 for i = 1 . . . N − 1. Extensions to situations in which

di "= di+1 are straightforward, though less common empirically. It does not

matter whether the bins are of equal size. Call the vector of lower bounds

d ∈ RN , and the vector of upper bounds d ∈ RN .

From here onwards we suppress the j subscripts denoting a particular

respondent. A respondent’s belief about the distribution of z is denoted by

density function f(z), which satisfies the usual assumptions. The support

of f(z) is bounded by [a, a], so that
∫ a

a f(z)dz = 1. I make the additional

assumption that d1 ≤ a < a ≤ dN , i.e. the entire positive mass of f(z)

lies within the interval covered by the bins. This may not be the case in

practice, if the respondent places positive probability on values outside the

range anticipated by the researcher. However, if z has natural bounds (such

as a non-negativity constraint), or if the lowermost and uppermost edges of

the visual aid are left open-ended, the researcher can check results for various

choices of d1 and dN to ensure that results are not overly sensitive to change
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in the assumed boundaries of z.6

The respondent is given k > N counters and asked to allocate them

among the N bins, so as to represent his belief f(z) as closely as possible.

One can think of the value 1
k ∈ (0, 1) as the “raw value” of a counter, the

proportion of the total probability represented by each counter. However, we

will see below that in general, not all counters represent this exact proportion

of the total probability.

Define an allocation x = (x1, . . . , xN) to be the respondent’s division of

the k counters among the N bins, such that:

1. xi ∈ Z+, i = 1 . . . N

2.
∑N

i=1 xi = k

In order to coherently make such an allocation, the respondent must parse

his belief f(z) into an N -vector of probabilities p = (p1, . . . , pN), satisfying:

1. pi =
∫ di

di
f(z)dz

2. pi ∈ [0, 1] i = 1 . . . N

3.
∑N

i=1 pi = 1

where 2. and 3. follow from the definition of f(z). Each pi represents

the respondent’s belief about the likelihood of z taking on a value in bin

6The estimated higher moments of f(z) can be very sensitive to assumptions about the
support, especially if the respondent places counters in the first or last bin. The first best
solution is to develop a visual aid with uppermost and lowermost intervals that are very
unlikely to receive a counter.
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i. Note that we can split each element of p into two components: pi =
(
floor(kpi) · ( 1

k )
)
+ri ≡ qi+ri, where the function floor : R+ → Z+ is defined

as floor(r) = max{z ∈ Z+|z ≤ r}. The first component qi is a multiple of

the raw value of a single counter. The second component ri ∈ [0, 1
k ) is the

“residual” or the “remainder”, the density in bin i over and above that which

can be accounted for by an integer number of counters. Denote r ∈ [0, 1
k )N

as the residual vector.

Hereinafter we refer to the probability vector p as a measure. We assume

that the respondent is able to conceptualize the measure that is consistent

with his belief f(z), and that he does not make any errors in allocating the

counters. In so doing, we assume that the respondent does not extract any

information from the visual aid when making his allocation. In practice,

a respondent may adjust his subjective expectations on the spot if he is

presented with a visual aid that suggests, implicitly, that z has a support

very different from that of his prior f(z). Such a response would be similar

to the “bracketing effects” discussed in the psychology literature (Schwartz

et al 1998). While it is plausible that a respondent might be influenced by

such an effect when making his allocation, this paper does not take up this

possibility formally.

Lastly, define a location w ∈ RN to be a vector of values satisfying wi ∈

[di, di] for i = 1 . . . N . A location is an N -vector with a single element in

each bin. Different locations correspond to different discrete distributions for

which the measure is “stacked” at different points in [di, di], i ∈ {1, . . . , N}.
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There is no reason to think that beliefs are, in general, discrete. However, it

is easy to see that the bounding values in the sections to follow - bounds on

bin probabilities, on the cumulative distribution function of f(z), and on the

moments of f(z) - are associated with discrete distributions for which some

or all elements of w are located at the boundaries of their respective bins.

We therefore restrict attention in much of the paper to discrete distributions,

characterized by a measure p and a location w.

As is clear from the definition of p, there is a single measure that rep-

resents the respondent’s belief f(z). In non-boundary cases, there is also a

single allocation x that represent p. For finite k, neither representation is

1:1. Therefore, there are infinite beliefs f that correspond to any observed

allocation x. The researcher’s task is to learn as much as possible about

f(z) from the observation of x, by bounding the set of measures p that are

consistent7 with an observed allocation.

4.2.2 Four Allocation Heuristics

In order to make progress on this problem, we first have to understand the

decision rule that the respondent uses to allocate the counters to the bins.

With no assumptions about the allocation process, none of the order, spread

or location statistics of f is identified. Absent the assumption made above,

that f(z) is entirely contained by the range of the bins, none of these statistics

7There are no asymptotics in this paper, so I use the term “consistent” in the non-
statistical sense.
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is even bounded.

Consider the following four allocation heuristics, all of which have been

discussed in the literature or suggested by other researchers:

A1. Iterative Allocation

In order to track the iteration, rename vector p as p0. The respon-

dent places a counter in bin j such that p0
j = maxi=1,...,N{p0

i }. If the

maximum is not unique, the respondent randomly chooses one of the

maximum-probability bins. He then forms the vector p1, with p1
i = p0

i

for i "= j, p1
j = max{p0

j − 1
k , 0}, and repeats the process by placing the

second counter in the new maximum-probability bin. He iterates until

all k counters have been placed.

A2. Initial and Residual Allocation

The respondent places the counters in the two stages. He allocates

floor(kpi) = kqi counters to each bin in the “initial stage”. There will

be kr ∈ {0, . . . , N} counters left over. Unless kpi ∈ Z+ ∀i, it will be

the case that kr > 0. In the second “residual stage”, the respondent

allocates the remaining counters to the kr bins with the highest valued

residuals ri. As in [A1.], he randomizes in the event of a tie.

A3. Rounding

Before allocating counters, the respondent rounds each pi to the nearest

1
k . This gives the rounded measure p, for which pi = qi if ri < 1

2k ,

and pi = qi + 1
k otherwise. For example, if k = 20, the respondent
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rounds the measure in each bin to the nearest 0.05. If
∑N

i=1 pi = 1,

which will not always be the case, the respondent places kpi counters

in each bin i. If
∑N

i=1 pi < 1, each bin receives kpi counters, and

the remaining k(1 −
∑N

i=1 pi) counters are allocated to those bins j

for which pj = qj and rj is greatest (that is, some of the “rounded

down” bins are given an extra counter, as if they had been rounded

up). Similarly, if
∑N

i=1 pi > 1, each bin receives kqi counters, and the

remaining k(1−
∑N

i=1 qi) counters are allocated to those bins j for which

rj is greatest (some of the “rounded up” bins are rounded back down).

A4. Uniform Opening, with Redistribution

The respondent begins in stage s = 0 with a uniform allocation, by plac-

ing x0
i = k

N counters in each bin i. Suppose for simplicity that k
N ∈ Z++,

so that this allocation is feasible.8 The respondent considers the abso-

lute loss in stage s, given by Ls =
∑N

i=1 |
xs

i
k − pi|. He classifies the bins

into two sets, the set of “over-weighted” bins Is
l = {i ∈ 1, . . . , N | pi <

xs
i

k }, and the set of “under-weighted” bins Is
u = {i ∈ 1, . . . , N | pi ≥ xs

i
k }.

In each of these sets define the most over-weighted (under-weighted)

bin as, respectively, xls
i = {xs

j | j ∈ Is
l and

xs
j

k −pj = maxc∈Is
l
{xs

c
k −pc}},

and xus
i = {xs

j | j ∈ Is
u and pj−

xs
j

k = maxc∈Is
l
{pc− xs

c
k }}. In stage s = 0,

xl0
i is associated with the bin that has the minimum measure pi across

all bins, and xu0
i is associated with the bin that has the maximum mea-

8All results go through if this assumption is relaxed, but by invoking it we shorten an
already arduous and repetitive proof in the Appendix.
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sure, because these are the bins with measure on either side of initial

measure k
N that contribute most to the loss under a uniform allocation.

To move to stage s = 1, the respondent re-allocates one counter from

xl0
i to xu0

i , so that xl1
i = xl0

i −1 and xu1
i = xu0

i +1, and re-calculates the

loss. If L1 < L0, he repeats the process, starting at s = 1. Otherwise,

he returns the counter and considers the allocation complete.

Consider an example, in which the respondent employs heuristic [A2.].

Suppose that N = 3, k = 8, and p = (0.3, 0.5, 0.2). The raw value of a

counter is 1
8 = 0.125. In the initial stage, the respondent makes the ini-

tial allocation (2, 4, 1), to account for the densities (0.25, 0.5, 0.125) that are

multiples of 0.125. One counter remains un-allocated. The residual vector

is (0.05, 0, 0.075), so the final counter is placed in the third bin, resulting in

final allocation x = (2, 4, 2).

In fact, facing the same situation, a respondent using any of the other

three allocation heuristics defined above would provide the same allocation,

x = (2, 4, 2). Proposition 1 formalizes the equivalency between these alloca-

tion heuristics.

Proposition 1. For any measure p corresponding to underlying beliefs f(z),
heuristics [A1.]-[A4.] induce the same allocation x, up to the randomization
that occurs if more than one bin satisfies the conditions for receipt of the
marginal counter. Furthermore, a respondent employing any one of these
heuristics allocates the counters so as to minimize absolute loss, given by
L =

∑N
i=1 |

xi
k − pi|, subject to the restriction that

∑N
i=1 xi = k.

A proof of Proposition 1 is given in the Appendix.
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Proposition 1 provides a compelling rationale for treating the data as if

the respondent takes his own beliefs p as given, and chooses the allocation x

so as to minimize absolute loss L =
∑N

i=1 |
xi
k −pi|, conditional on the require-

ment that all counters be allocated. As we have just seen, this allocation rule

is consistent with a wide range of heuristics. Although the logic underlying

this paper could be used to study other allocative processes,9 the formal re-

sults depend critically on the assumed allocation rule. The allocation rule

defines the relationship between the unobserved measure p and the observed

allocation x, and so provides the channel through which we can analyze the

identification of f(z).

The condition in Proposition 1 that
∑N

i=1 xi = k, which requires the

respondent to allocate all of the counters, will in some cases preclude the

unconditional minimization of absolute loss. For example, suppose that N =

3, k = 10, and p = (0.92, 0.04, 0.04). After placing nine counters in the

first bin, one counter remains, and absolute loss prior to placing the final

counter is |0.02| + |0.04| + |0.04| = 0.1. However, the minimum value of

absolute loss after the final counter is allocated is 0.12.10 Thus, respondents

using the above allocation heuristics are minimizing absolute loss subject to

9One possibility is that respondents penalize the density in high probability bins so as
to place a counter in bins with low, but non-zero probability. For example, after placing
9 of 10 counters in bin i for which pi = 0.96, a respondent may feel compelled to place
the final counter in bin j with pj = 0.04, to indicate that he does place some positive
probability in a bin other than i. This is a sort of reverse probability-weighting. Another
possibility relates to the bracketing effects already discussed. We do not study either
of these possibilities formally, yet both are conceivable deviations from the fully rational
minimization of absolute loss rule.

10The final counter can be placed in either bin 2 or bin 3.
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the requirement that all counters be placed. We maintain this restriction

because, to date, those gathering subjective distributions data of this type

have always required respondents to allocate all of the counters.

In the discussion to follow I will primarily use the language of heuristic

[A2.], that of “initial stage” and “residual stage” allocations. I use this

terminology because it emphasizes a key component of the identification

problem. Recall that we can write pi = qi + ri, where qi is divisible by ( 1
k ).

Unless ri = 0, all counters but the last one placed in any given bin are placed

to account for the measure qi. Each of these counters represents the exact

density 1
k , the raw value of a counter. The final counter in any bin i, however,

is placed because the residual probability in bin i is sufficiently great, relative

to the residual probabilities in the other bins, to merit placement of another

counter. Most of the bounds derived below are determined by considering

the extreme values of residual vector r that are consistent with observed

allocation x. Thus, it is the residual stage allocation that receives most of

our attention.

4.2.3 Implications of Respondents’ Decision Rule

Before moving on, we consider the implications of the allocation rule for the

relationship between p and x. Let X0 = {pi|xi = 0} indicate the set of bin-

measures corresponding to the “empty bins”. Likewise, let X1 = {pj|xj > 0}

be the set of measures corresponding to the non-empty bins. We make this

distinction because the measure in any empty bin is naturally bounded below
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by 0, whereas the measure in any non-empty bin is not. We will use N0 to

denote the number of empty bins, and N1 to denote the number of non-empty

bins, so that N0 + N1 = N . Let lsi = |xi
k − pi| be the contribution to the

absolute loss from bin i.

Proposition 2 formalizes some of the relationships between the measure

in empty and non-empty bins, and between p and x, that are implied by

minimization of absolute loss.

Proposition 2. Minimization of absolute loss during allocation of the coun-
ters implies the following:

xi ∈ {kqi, kqi + 1} ⊂ Z+ for all bins i (4.1)

li =

{
ri if xi = kqi

1
k − ri if xi = kqi + 1

(4.2)

pi ≤ pj for any pi ∈ X0, pj ∈ X1 (4.3)

pj >
xj − 1

k
for any pj ∈ X1 (4.4)

pj − pl ≤ xj − xl

k
+

1

k
for any pj, pl ∈ X1 (4.5)

Statement (4.1) indicates that each bin i receives either floor(kpi) or

floor(kpi) + 1 counters. Statement (4.2), which asserts that the value of the

error from each bin is a function of the residual measure in that bin, follows

immediately. Statement (4.3) is trivial. Statement (4.4) is equally trivial,

but it is provided to emphasize the fact that all but the final counter placed

in non-empty bin j accounts for measure xj−1
k . Statement 4.5 is critical in

the analysis below, as it bounds the difference between the measure in any

two non-empty bins.
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Figure 4.1 gives a stylized example that emphasizes the inter-dependence

discussed in the introduction. Suppose that two respondents have the same

underlying beliefs f(z). One is presented with the visual aid shown on the

left, for which N = 2. The other is presented with the visual aid on the right,

for which N = 3. Both are given k = 4 counters to allocate. Note that the

bounds of bin 1 are the same in both cases. Suppose furthermore that the

boundaries of the bins are placed such that beliefs f(z) correspond to measure

p = (0.34, 0.66) in panel A, and to p = (0.34, 0.33, 0.33) in panel B. Under the

absolute loss rule, the first respondent provides allocation x = (1, 3), while

the second provides allocation x = (2, 1, 1). A naive read of the data might

lead one to conclude that respondent 2 believes Pr(z < d1) is twice as great as

does respondent 1, even though the underlying beliefs, the number of counters

and the values d1 and d1 are the same in both cases. This example highlights

the importance of thinking hard about the interdependence between N , k

and the allocation process, before making inferences about f(z).

Before moving on, it is useful to lay to rest another concept borrowed from

experience with observational data. Intuition may suggest that symmetric

beliefs f(z) induce symmetric allocations x, and that, consequently, the ob-

servation of a symmetric allocation x is evidence of symmetric underlying

beliefs f .11 However, from an identification perspective, there is no positive

relationship between symmetry of allocations and symmetry of beliefs. If the

11We use the term “symmetry” exactly as one would expect. For example, (2, 4, 2) and
(4, 0, 4) are symmetric allocations, while (1, 1, 6) is not.
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Figure 4.1: Measure parsing with identical beliefs, for N = 2 and N = 3

boundaries of the bins are “off-center” with respect to the median of sym-

metric f(z), beliefs may be represented with a highly skewed allocation. In

the sections to follow I will repeatedly use an example in which underlying

beliefs are symmetric, but the allocation is not. Asymmetric allocations do

in some cases exclude the possibility of symmetric beliefs; but asymmetry of

beliefs can never be excluded.

4.3 Bounds on Bin Probabilities

In this section we identify bounds on the elements of p ∈ [0, 1]N that are

consistent with a given allocation x ∈ ZN
+ . These bounds are functions of

N and k. As intuition suggests, the bounds narrow as the number of bins

and/or the number of counters increases. We first consider the bounds on the

measure in any single bin. From there it is a simple extension to provide joint

bounds on any subset of the bins, which allows us to bound the CDF of the
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underlying f(z). Lastly, we fully characterize the identified set P ∈ [0, 1]N .

4.3.1 Single bin bounds

Statement (4.4) in Proposition 2 highlights the point that when considering

bounds on p, we need only consider the residual stage allocation. We can

therefore divide the full measure P = 1 into initial measure PI and residual

measure PR, such that PI + PR = 1. These are defined as follows:

PI =
∑

j∈X1

xj − 1

k
(4.6)

PR = 1− PI =
N1

k
(4.7)

The initial measure PI is that which is accounted for by all but the final

counters placed in the bins. There is nothing uncertain about such measure,

because it would not have been optimal to place an additional counter in

bin i if pi ≤ xi−1
k . The residual measure PR is the object of interest. In

order to distinguish between empty and non-empty bins, let A = {pi|i ∈ X0}

be the set of contributions to PR from the N0 empty bins, and let B =

{pj − (xj−1
k )|j ∈ X1} be the set of contributions to PR from the N1 non-

empty bins. These have typical elements ai and bi, respectively, which we

refer to as residual measures.

Note that PI and PR are defined from the perspective of the researcher,

not the respondent. Thus the identified region will include measures p for
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which the final counter placed in any bin was an initial placement, rather

than a residual placement.12 However, measures for which the second-to-last

counter placed in any bin was placed to account for the residual ri are always

excludable from the identified region.

As an example, suppose that N = 5, k = 10, and the bins are the

non-overlapping intervals of width 200 spanning [0, 1000] ⊂ R. Suppose

the respondent provides the allocation x = (0, 1, 5, 4, 0) (this will be the

“standard example” that we follow below). We know with certainty that

p ≥ p̃ = (0, 0, 0.4, 0.3, 0). Then the initial measure is PI = 0.7, and the

residual measure is PR = 0.3. In considering the identification problem, our

focus is on the placement of the final 3 counters.

Bounds on empty bin measures

It should be clear without proof that the minimum residual measure in any

empty bin i is ai = 0. Consider the researcher’s problem to identify the max-

imum value of the residual measure ai in an empty bin i. Note that maxi-

mization (minimization) of ai is tantamount to maximization (minimization)

of pi, for i ∈ X0. Given allocation x, the researcher’s maximization problem

12Clearly, such bins did not receive a counter in the residual allocation.
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can be written as follows:

max
(a1,...aN0 , b1,...,bN1 )∈[0,1]N

ai s.t. Pr =
N0∑

m=1

am +
N1∑

j=1

bj (4.8)

bj − bl ≤ 1

k
∀ j, l ∈ X1 (4.9)

am ≤ bj ∀m ∈ X0, j ∈ X1 (4.10)

am, bj ≥ 0 ∀m ∈ X0, j ∈ X1 (4.11)

Constraints (4.9)-(4.11) follow directly from Proposition 2. Note that x

only enters the problem indirectly, via N0 and N1. The objective function in

(4.8) is linear and the bounds defined by the constraints constitute a closed,

compact domain D ⊂ [0, 1]N for choice vector (a, b). Therefore, by the

Weierstrass theorem, the objective function ga(a, b) = ai achieves a maximum

on D.

The solution to the problem in (4.8)-(4.11) is derived in the Appendix.

The residual vector at the optimum is given by:

a∗i = N1
k(N1+1)

b∗j = N1
k(N1+1) ∀ j ∈ X1

a∗l = 0 ∀ l ∈ X0\i

(4.12)

which leads immediately to Proposition 3:

Proposition 3. Given any allocation x ∈ ZN
+ and the ensuing values N0, N1 ∈

Z+, the measure pi in any empty bin i satisfies pi ∈ [0, N1
k(N1+1) ].
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The intuition behind this result is clear. Recall that PR = N1
k , so the

upper bound in Proposition 3 can be written as PR
N1+1 . Consider the standard

example, with x = (0, 1, 5, 4, 0). Recall that we are only interested in the

allocation of the final counter to each of bins 2, 3 and 4, and the PR =

0.3 residual probability that they represent. Suppose we want to know the

maximum value of p1 that is consistent with the observed x. The maximum

value of empty bin 1 is that for which the other empty bin has measure 0, i.e.,

p5 = 0, and the final counter placed in bins 2, 3 and 4 could have been placed

in bin 1, but was not due to sheer randomization. This corresponds to the

beliefs for which the residual probability PR = 0.3 is distributed uniformly

across the N1 + 1 bins 1, 2 3 and 4, i.e., p1 = 0.3
4 = 0.075. Therefore, the

unique vector of beliefs that includes the maximum identified value of p1,

and induces allocation x = (0, 1, 5, 4, 0), is p = (0.075, 0.075, 0.475, 0.375, 0).

Bounds on non-empty bin measures

We turn now to the bounds on the measures in the non-empty bins. The

example just provided for empty bins provides helpful intuition. The lower

bound on the measure in any non-empty bin i is the measure for which the

final counter could have been placed somewhere else, but bin i was randomly

chosen from the set of bins that merited the marginal counter. Similarly, the

upper bound on pi for non-empty bin i is the measure which was randomly

selected to not receive an additional counter, even though residual probability

ri made it a candidate to receive one more counter.
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Using the notation from the previous section, the researcher’s maximiza-

tion problem for the non-empty residual measure bi is similar to that for

ai:

max
(a1,...aN0 , b1,...,bN1 )∈[0,1]N

bi s.t. Pr =
N0∑

m=1

am +
N1∑

j=1

bj (4.13)

bj − bl ≤ 1

k
∀ j, l ∈ X1 (4.14)

am ≤ bj ∀m ∈ X0, j ∈ X1 (4.15)

am, bj ≥ 0 ∀m ∈ X0, j ∈ X1 (4.16)

The minimization problem is identical, except the signs with which the

constraints enter the Lagrangean are reversed. Once again, all of the action

is in the constraints and the complementary slackness conditions, rather than

the objective function. Solution to both the minimization and maximization

problem are guaranteed by the Weierstrass theorem. The intuitive arguments

to reduce the number of cases under consideration are essentially the same

as in the previous subsection. First order conditions and derivations are

provided in the Appendix.

The solution to maximization problem (4.13)-(4.16) is as follows:

b∗i = 2N1−1
kN1

b∗j = b∗i − 1
k = N1−1

kN1
∀ j ∈ X1\i

a∗l = 0 ∀ l ∈ X0

(4.17)
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The solution to the similarly formulated minimization problem, for which

bi is the measure to be minimized, is given by:

b∗i = 1
kN

b∗j = b∗i + 1
k = N+1

kN ∀ j ∈ X1\i

a∗l = b∗i = 1
kN ∀ l ∈ X0

(4.18)

Note that there is a more direct route to these answers, bypassing the

Kuhn-Tucker problem, if we accept some further intuition. At the measure

p that includes the upper bound on bi, it is clear that all of the empty bins

must contain measure 0. Furthermore, for this p, the final counter placed

in any bin j ∈ X1\i could have been placed in bi, but was not due to sheer

randomization. This is tantamount to saying that if we were to remove the

measure 1
k represented by the final counter in bin i, the residual allocation

in bin i would still be exactly equal to that in all bins j ∈ X1\i. That

is, bi − 1
k = bj for all j ∈ X1\i. Putting these insights together, we have

bi + (N1− 1)(bi− 1
k ) = PR = N1

k , which rearranges to the solution above. An

analogous line of argument provides the lower bound on bi.

These results lead directly to Proposition 4:

Proposition 4. Given any allocation x ∈ ZN
+ and the ensuing values N0, N1 ∈

Z+ and PR ∈ [0, 1], the probability measure in any bin j ∈ X1 satisfies
p∗j ∈

xj−1
k +

[
1

Nk , 2N1−1
N1k

]
.

Consider our standard example, with x = (0, 1, 5, 4, 0). The seven coun-

ters in bins 3 and 4 that were not the final counter placed in their respective
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bins account for PI = 0.7, and we know that p ≥ p̃ = (0, 0, 0.4, 0.3, 0). The

maximum value of, for example, b2 is that for which bin 2 could have received

a second counter, but did not due to sheer randomization. This suggests that

bmax
2 = bj + 1

k for j = {3, 4}. The corresponding p2-maximizing measure is

p = (0, 0.166, 0.466, 0.366, 0). Similarly, the minimum value of b2 is bmin
2 =

0.02, which gives the p2-minimizing measure p = (0.02, 0.02, 0.52, 0.42, 0.02).

The maximum and minimum values of b3 and b4 are the same as those for

b2.

Width of the identified region

The bounds derived in the previous two subsections depend on N and k,

characteristics of the beliefs elicitation module, and on N1, a characteristic

of the response. Therefore the bounds vary across individuals. The full width

of the identified intervals are easily calculated as the following:

1. Empty bin width: N1
k(N1+1)

2. Non-empty bin width: 1
k (2− 1

N1
− 1

N )

Note that the width of the identified interval for an empty bin is always

less than 1
k , the raw value of a counter. This is because the density in empty

bin i is naturally bounded below by xi
k = 0. Conversely, the width of the

identified interval for a non-empty bin is always greater than or equal to 1
k ,

unless there is only one non-empty bin (i.e., N1 = 1).
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Figures 4.2 and 4.3 show the bounds of the identified regions, for empty

and non-empty bins, respectively, holding N = 5 and allowing k to range

from 8 to 50.13 Figure 4.2 depicts the upper bounds on the measure in an

empty bin, for the cases N1 = 1 and N1 = N − 1. The value of 1
k is also

depicted, for reference. Figure 4.3 shows the upper and lower bounds on

the measure in any non-empty bin i, centered around xi
k ≡ 0, for the cases

N1 = 2 and N1 = N .14 The value of 1
k is also shown in Figure 3. Note that

the lower bound of the residual measure in a non-empty bin is invariant to

N1 (see Proposition 4), so the series of lower bounds in Figure 4.3 applies to

both N1 = 1 and N1 = N − 1.

It is clear in Figures 4.2 and 4.3 that as the number of bins receiving

a counter increases, the identified region for any particular bin actually in-

creases in size. This is yet another feature of these data that runs counter

to our intuitions from working with sample data. We are accustomed to

the notion that increased variation in any observed variable serves to better

identify, for instance, the coefficients of a regression. However, with inter-

dependent beliefs data, from the perspective of any bin i, allocation of the

counters to a greater number of bins increases the total residual probability

that might be occupied by the other bins, thereby increasing the range of

values of pi that are consistent with the observed allocation.

13In practice k is rarely above 20, but we include the higher values of k for sake of
comparison.

14We begin with N1 = 2 because the bounds on the non-empty bin measure are less
interesting when N1 = 1, because the upper bound is clearly xi

k = 1.
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4.3.2 Bounds on subsets of bins

Using the logical tools developed in the previous section, we now derive

bounds on the total measure represented by any subset of the bins. We focus

only on the maximization of the measure in any group of the bins, because

any minimization problem can be written as the maximization of the measure

in the complementary subset.

Let α ⊆ X0 be any subset of the set of empty bins, and β ⊆ X1 be any

subset of the set of non-empty bins. The problem of maximizing the total

measure in the members of α and β can be written as:

max
(a1,...aN0 , b1,...,bN1 )∈[0, 1k ]N

∑

i∈α

ai +
∑

j∈β

bj s.t. Pr =
N0∑

m=1

am +
N1∑

j=1

bj (4.19)

bj − bl ≤ 1

k
∀ j, l ∈ X1

am ≤ bj ∀m ∈ X0, j ∈ X1

am, bj ≥ 0 ∀m ∈ X0, j ∈ X1

where the constraints are familiar from the previous subsection. Once

again, the number of cases is extremely large, but intuition serves to reduce

the problem to a few manageable possible solutions. The solution to any

problem like (4.19) is unique, unless α = ∅ and β = X1.15 In any other case,

15There are infinite measures p, consistent with the observed x, for which the total
measure in the empty bins is 0.
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the solution to (4.19) is the unique vector satisfying:

(a1, . . . aN0 , b1, . . . , bN1)
∗ ∈

[
0,

1

k

]N
s.t.






al = 0 ∀ l ∈ X0\α

ai = bm ∀ i ∈ α, m ∈ X1\β

bj − bm = 1
k ∀ j ∈ β, m ∈ X1\β

PR =
∑N0

m=1 am +
∑N1

j=1 bj

(4.20)

Letting A be the number of elements in α and B be the number of ele-

ments in β, some algebra reveals the solution to (4.19):

b∗j = 2N1+A−B
k(N1+A) ∀ j ∈ β

a∗i = b∗m = N1−B
k(N1+A) ∀ i ∈ α, m ∈ X1\β

a∗l = 0 ∀ l ∈ X0\α

(4.21)

The intuition behind (4.20) is similar to that from the previous section.

At the maximizing p, all ai corresponding to i ∈ α must have measure exactly

equal to that in bj ∈ X1\β, so that these bins could have received a counter,

but did not due to sheer randomization. Otherwise, all al ∈ X0\α are zero,

and all bj ∈ β are 1
k greater than all bm ∈ X1\β.

Using the standard example of x = (0, 1, 5, 4, 0), Table 4.2 gives the

bounding residual probabilities for a variety of subsets α and β.
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Table 4.2: Upper bounds on sum of bin measures, x = (0, 1, 5, 4, 0), PR = 0.3

α β Residual vector Corresponding p Bounding sum
{1, 5} ∅ (0.06, 0.06, 0.06, 0.06, 0.06) (0.06, 0.06, 0.46, 0.36, 0.06) p1 + p5 = 0.12
∅ {2, 3} (0, 0.133, 0.133, 0.033, 0) (0, 0.133, 0.533, 0.333, 0) p2 + p3 = 0.666

{1} {2} (0.05, 0.15, 0.05, 0.05, 0) (0.05, 0.15, 0.45, 0.35, 0) p1 + p2 = 0.2
{1, 5} {2} (0.04, 0.14, 0.04, 0.04, 0.04) (0.04, 0.14, 0.44, 0.34, 0.04) p1 + p2 + p5 = 0.22
{1} {2, 3} (0.025, 0.125, 0.125, 0.025, 0) (0.025, 0.125, 0.525, 0.325, 0) p1 + p2 + p3 = 0.675

{1, 5} {2, 3} (0.02, 0.12, 0.12, 0.02, 0.02) (0.02, 0.12, 0.52, 0.32, 0.02) p1 + p2 + p3 + p5 = 0.68

Bounds on the CDF of f(z)

With (4.20) in hand, it is straightforward to bound the cumulative distribu-

tion function of underlying beliefs f(z). Consider any y ∈ R, and suppose

that dj < y ≤ dj, so that y lies in bin j. The maximum value of Pr(z < y)

corresponds to a measure p that maximizes the sum of the density in bins

1 . . . j. Bin j is included in the summation because the upper bound measure

is one for which all of the density in bin j lies to the left of y, including, in

the extreme case, the discrete distribution with location element wj = dj.

Similarly, the minimum value of Pr(z < y) corresponds to a measure p that

maximizes the sum of the density in bins j . . . N . Bin j is included in this

summation as well, because the bounding measure is one for which all of the

density in bin j is assumed to lie to the right of y, including the discrete

distribution with location element wj = dj.

Consider the allocation x = (0, 1, 5, 4, 0). To bound any y in bin 3,

for example, we need only find the measure p that maximizes p1 + p2, and

the measure p that maximizes p3 + p4 + p5. Then it will be the case that
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p
1
+ p

2
< (Pr(z < y)) < p1 + p2 + p3. Using (4.20), we can easily calculate

the result: 0.025 < (Pr(z < y)) < 0.675.

For any bin i, let Li
1 and Ri

1 be the number of non-empty bins to the left

and right of bin i, respectively. Similarly, let Li
0 and Ri

0 be the number of

empty bins to the left and right of bin i, respectively. Propositions 5 and 6

give general characterizations of the bounds on the value of Pr(z < y), for

any given y ∈ support(z), for non-empty and empty bins, respectively.

Proposition 5. Let x ∈ ZN
+ be an allocation with related values N0, N1 ∈ Z+,

and let y ∈ R be any scalar lying in non-empty bin i, such that di < y < di.
Then the value of Pr(z < y) corresponding to underlying beliefs f(z) satisfies

Pr(z < y) ∈ 1
k

∑i−1
j=1 max{0, xj − 1} +

[ (Li
1)2

k(N1+Ri
0)

, xi
k + 1

k (Li
1 + iRi

1

N1+Li
0
)
]
.

Proposition 6. Let x ∈ ZN
+ be an allocation with related values N0, N1 ∈ Z+,

and let y ∈ R be any scalar lying in empty bin i, such that di < y < di.
Then the value of Pr(z < y) corresponding to underlying beliefs f(z) satisfies

Pr(z < y) ∈ 1
k

∑i−1
j=1 max{0, xj − 1} +

[ (Li
1)2

k(N1+Ri
0+1)

, 1
k (Li

1 + iRi
1

N1+Li
0+1

)
]
.

Proofs of Propositions 5 and 6 are given in the Appendix. Note that for

given values of N1, Li
1, R

i
1 and Li

0, the bounds on Pr(z < y) for y in an empty

bin are always less than those for y in a non-empty bin.

Figures 4.4 and 4.5 show the bounds on the value of Pr(z < y), when

underlying beliefs are z ∼ N(570, 110), for the cases of N = 5 and N = 10,

respectively. The support of z is restricted to the interval [0,1000].16 We use

this f(z) because when N = 5, it leads to the allocation x = (0, 1, 5, 4, 0), our

16To satisfy the assumption that the region of f(z) with positive support lies entirely
within the range of the bins, the normal distribution was truncated at 0 and 1000, and
the total tail probability,

∫ 0
−∞ F (x)dx +

∫∞
1000 F (x)dx = 0.00004643 was redistributed

uniformly across the interval [0, 1000].
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Figure 4.4: Bounds on Pr(z < y), N = 5, f(z) = N(570, 110)

standard example. In both figures, bounds are shown for k = {10, 15, 20}.

The bounds depicted do not themselves constitute CDFs that are consistent

with the observed x, because the bounding p for y in bin i is inconsistent

with the bounding p for y in any other bin j "= i. Instead, the bounds shown

are the outer envelopes of the 5 (in Figure 4.4) or 10 (in Figure 4.5) bounding

CDFs that are consistent with the bounds in Propositions 5 and 6 for a y

that falls in each of the N bins.
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Figure 4.5: Bounds on Pr(z < y), N = 10, f(z) = N(570, 110)



CHAPTER 4. IDENTIFICATION OF UNDERLYING BELIEFS 122

4.3.3 Bounds on the median of f

Using (4.20) and (4.21), it is a simple task to bound the median M of f(z).

Recall that by definition, F (M) =
∫ M

− inf f(z)dz = 0.5. Then the lowest value

of the median that is consistent with x is dj, where j is the leftmost bin such

that max
(∑j

i=1 pi

)
≥ 0.5. This lower bound is quickly found by iteratively

applying the results in (4.21) to subsets of bins {1}, {1, 2}, . . . , {1, 2, . . . i},

until a bin is located that satisfies the criteria. By an exactly analogous

argument, the upper bound on M is dl, where l is the rightmost bin such

that min
(∑l

i=1 pi

)
≤ 0.5.

4.3.4 Joint Identification Region for p

The bounds (4.1)-(4.5) from Proposition 2 provide a means for characterizing

the joint identification region of the elements of p, which we refer to as

Φ ⊂ [0, 1]N . As is clear from the previous section, the extreme values of the

measures in more than one bin are not mutually attainable in any p that is

consistent with x.17 The identified set, therefore, will not be “rectangular”

in the N -dimensional sense. Instead, it is a convex set characterized by the

intersection of closed half spaces.

Result (4.5) implies that for all ij pairs, any p ∈ RN that is in the

identified set must lie in the lower half18 of the half-space φij, defined as

17The exceptions are the minimum measures of 0 in the empty bins, which are jointly
attainable.

18The side containing the origin 0 ∈ RN .
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φij ≡ [qij · p ≤ αij], for scalar αij and 1×N vector qij satisfying:

qij = [ 0 . . . 0 1 0 . . . 0 −1 0 . . . ]

i j
(4.22)

αij =
xi − xj + 1

k
(4.23)

There are N(N − 1) such φij supporting vectors. However, only those

for which bin j is non-empty are binding. When j is empty the lower bound

pj ≥ 0 supersedes the restrictions imposed by (4.22)-(4.23). Therefore there

are only N1(N − 1) half-spaces defined by the above that actually bound Φ.

In addition, the lower bounds pl ≥ 0 on empty bins l can be represented by

the N0 half-spaces [ql · p ≤ 0] where ql
l = −1 and ql

m = 0 ∀ m "= l. The joint

identification region Φ, then, is the intersection of these N0 +N1(N −1) sets.

Consider some examples for the case N = 3, k = 10. The adding up

constraint
∑N

i=1 pi allows us to represent an N -dimensional measure vector

in (N−1)-space. Without loss of generality we exclude the 3rd bin.19 Figure

4.6 shows the identified region Φ for x = (2, 6, 2), x = (0, 6, 4), x = (4, 6, 0)

and x = (10, 0, 0). The origin of each graph is (max{0, x1−1
k }, max{0, x2−1

k }).

Because the restrictions embodied in (4.22) and (4.23) are linear in x and

k, the polyhedron structure of the Φ in these figures is a general feature of

subjective distributions data. For comparison, all four identified regions are

19The supporting vector for half-spaces that involve the excluded bin can be easily
adjusted by substituting 1−

∑N−1
i=1 pN for pN .
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also displayed on a single set of axes, with the origin at (0, 0).

There is no reasonable way to compare the size of the identified region as

N increases, because the dimension of Φ changes with N . Comparisons across

N would be analogous to comparisons between the area of a 2-dimensional fig-

ure and the volume of a 3-dimensional figure. However, we can study changes

to the size of Φ as k increases, for a given N . Figure 4.7 gives an example for

N = 3. For an underlying normal distribution with (µ, σ) = (5.3, 1.8), and

bin bounds d = (0, 3.33, 6.67, 10), the figure shows the joint identification

region for 10, 15, 20 and 30 counters. The value of p1 is on the horizontal

axis, and p2 is on the vertical axis. The true p is represented by a black dot.

All 4 polyhedrons have the familiar structure. It is noteworthy that while

the region corresponding to k = 15 is nested inside that corresponding to

k = 10, the regions are not in general nested as k increases. This is a general

feature of the problem as k increases with N fixed.

In Figure 4.7, the area of the identified region shrinks as k increases. This

is generally the case, because the maximum difference between pi and pj, for

any x and any bins i and j, is non-increasing in k. However, whenever the

increase from k counters to k + 1 counters leads to an increase in N1, the

size of the identified region Φ increases. This is because the researcher does

not know which bin would not have received a counter if k were reduced

by 1. Therefore, from an identification perspective, she cannot rule out the

possibility that the marginal counter represents density greater than 1
k . This

is a counterintuitive finding, as we would not generally expect that providing
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Figure 4.7: Identified region Φ as k increases
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the respondent with more tools to convey information would actually reduce

the amount of information conveyed.

Table 4.3 gives summary statistics for the percent decrease in the size of

the identified region as k increases from 10 to 30, by 5, for N = 3, 5, and

10, for a sample of 200 underlying normal distributions.20 Proportionally

speaking, larger gains are observed for greater N , but this is partly due to

the higher dimensionality of the problem. Unsurprisingly, the size of the

gain decreases as k increases. Negative changes indicate that the size of

the identified region actually increases with k. Such cases are more likely,

and in general more severe, for small N . However, because we cannot make

meaningful comparisons across N , the usefulness of Table 4.3 is limited. In

the following section we will compare the size of the joint identified region

for the moments of f(z) as both N and k change, an exercise that will prove

more useful for making recommendations about the choice of N and k.

The bounds that define Φ are sharp, in that they exhaust the distribu-

tional information provided by the respondent. Without additional infor-

mation about the respondent’s beliefs, all points in Φ are equally likely to

be true representations of the underlying f(z). Therefore, we can use Φ to

bound the moments of f(z), by considering the mean-variance pairs that are

consistent with points in Φ and the boundaries of the N bins.

20Exact volumes for the identified polytopes were not calculated, as the computational
burden is substantial, particularly for the 10 bin case. Instead, we constructed grids in
RN and counted the number of grid points inside Φ for each value of k.
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Table 4.3: Percent change to size of Φ as k increases

k Mean SD Min Max Mean SD Min Max Mean SD Min Max

10 - - - - - - - - - - - -

15 0.51 0.15 -0.31 0.57 0.76 0.11 0.35 0.82 0.90 0.08 0.50 0.98

20 0.41 0.15 -0.66 0.71 0.62 0.15 -0.08 0.82 0.85 0.08 0.39 0.94

25 0.33 0.13 -0.89 0.37 0.54 0.16 -0.31 0.85 0.76 0.15 -0.21 0.97

30 0.29 0.13 -1.10 0.33 0.50 0.16 -0.46 0.85 0.65 0.23 -0.22 0.91

N=3 N=5 N=10

!"#$%&'($)*'+%'#,$')-$.)/$'.$012#+"*'+*'%+3$'"4'5'6,$*'k  is increased by 5; area approximated by counting number of grid points inside the 

joint identification region; grid step sizes = 0.02 for N=10, 0.0025 for N=5, 0.001 for N=3; author's calculation from 200 randomly selected 

underlying normal distributions, with the same 200 distributions used for each N

4.4 Bounds on the Expectation and Variance

In determining bounds on the moments of f(z), the researcher faces a pro-

gramming problem with choice vector (p, w) and constraints imposed by the

boundaries of the bins and the requirement that p ∈ Φ. While it turns out to

be a straightforward task to bound the expectation by itself, the problem to

bound the variance conditional on the mean taking a particular value, which

is tantamount to jointly bounding the mean and variance, has no closed

form analytical solution. In this section I first derive bounds on the mean

for given allocation x and bin-boundary vectors d and d. I then characterize

the problem of jointly bounding the mean and variance, prove a Lemma that

simplifies the numerical algorithm to derive the joint identification region,

and give examples of the joint identification region for particular cases.
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4.4.1 Bounds on the expectation of f

It is intuitively clear that the minimum (maximum) expected value that is

consistent with x will be the expectation a discrete distribution for which the

density in all of the bins is stacked at the leftmost (rightmost) boundaries,

given by the vector d (d). The minimizing measure vector is then the measure

p ∈ Φ that minimizes p′d. Given that the initial measure zi = max{0, xi−1
k }

is already accounted for in each bin i, the contribution z′d to the mean is

invariant to our choice of p. Therefore, the mean-minimization problem over

p is equivalent to the following choice problem over the residual density vector

r= (a, b):

min
(a1,...aN0 , b1,...,bN1 )∈[0, 1k ]N

∑

i∈X0

aidi+
∑

j∈X1

bjdj s.t. constraints (4.8)−(4.11) hold

(4.24)

We can solve problem (4.24) in a manner that follows the spirit, if not

the letter, of a proof by induction.21 Suppose that ri−1 is the residual vector

that maximizes the measure in the leftmost i− 1 bins. Let m0 = z′d + ri−1′d

denote the mean associated with this vector. Clearly any empty bins to

the right of bin i − 1 must have measure zero in ri−1. We may then ask,

under what circumstances is it optimal to re-allocate an ε-worth of density

from each non-empty bin to the right of i, into bin i? From the previous

section and (4.20) we know that in vector ri−1, bj − bl = 1
k and am = bl for

21One could also characterize the solution provided in this section as the solution of the
dual linear programming problem to the primal given by equation (4.24).
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all non-empty bins j ≤ i − 1, empty bins m ≤ i − 1 and non-empty bins

l > i− 1. Therefore, if we move ε from each non-empty bin to the right of i

into bin i, we also must move ε from each bin 1 . . . i−1 into bin i, in order to

maintain consistency with the observed allocation x and satisfy the adding

up constraint. Abusing notation slightly, let Gi
0 and Gi

1 indicate both the

number of and the set of empty and non-empty bins, respectively, to the left

(G = L) and right (G = R) of bin i (not including i itself). Then the mean

m1 after the proposed ε adjustment is given by:

m1 = m0 +

[
di(L

i
1 + Li

0 + Ri
1)− (

∑

j∈Li
1

dj +
∑

l∈Li
0

dl +
∑

n∈Ri
1

dn)

]
ε (4.25)

which implies:

m1 ≤ m0 ⇐⇒ di(L
i
1 + Li

0 + Ri
1) ≤ (

∑

j∈Li
1

dj +
∑

l∈Li
0

dl +
∑

n∈Ri
1

dn)

⇒ di ≤
di +

∑
j∈Li

1
dj +

∑
l∈Li

0
dl +

∑
n∈Ri

1
dn

Li
1 + Li

0 + Ri
1 + 1

= g(i)

(4.26)

Expression (4.26) suggests that for any level of ε, the proposed ε adjust-

ment does not increase the mean of f(z) if lower bound di is less than or

equal to the average of the lower bounds of all non-empty bins, all empty

bins to the left of i, and di itself. Therefore, one should re-allocate the maxi-

mum ε possible whenever this condition is satisfied. The maximum allowable
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ε differs depending on whether i is empty or non-empty, as it is determined

by the restrictions in (4.20) which maintain consistency with x. If i is empty,

re-allocation should result in ai = bl, for a non-empty bin l to the right of

i. Similarly, if i is non-empty, re-allocation should result in ai = bj for non-

empty bin j to the left of i. These constraints suggest the following choice

of ε:

If i empty : (Li
1 + Li

0 + Ri
1)ε = (bl − ε) ⇒ ε =

bl

Li
1 + Li

0 + Ri
1 + 1

If i non-empty : (bj −
1

k
) + (Li

1 + Li
0 + Ri

1)ε = (bj − ε) ⇒ ε =
1

k(Li
1 + Li

0 + Ri
1 + 1)

It is easy to confirm that in either case, this re-allocation results in ri,

the residual vector that maximizes the measure in the first i bins. Because

our choice of i was general, these results suggest that the mean-minizing

vector will be associated with ri, the vector that maximizes the density in

bins 1 . . . i, for the rightmost i that satisfies condition (4.26).

By an exactly analogous line of argument, the mean-maximizing vector

will be associated with r̂l, the vector that maximizes the density in bins

l . . . N , for the leftmost bin l that satisfies the following condition:

dl ≥
dl +

∑
j∈Ll

1
dj +

∑
i∈Rl

0
di +

∑
n∈Rl

1
dn

Ll
1 + Rl

0 + Rl
1 + 1

= g(l) (4.27)

As an example, consider the allocation x = (0, 1, 5, 4, 0) on the intervals

bounded by d = (0, 2, 4, 6, 8) and d = (2, 4, 6, 8, 10). Table 4.4 gives the
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Table 4.4: Bounding the expectation
Bin (i) xi di di Li

0 Li
1 Ri

0 Ri
1 g(i) g(i) di ≤ g(i) ? di ≥ g(i) ?

1 0 0 2 0 0 1 3 3 6 Yes No
2 1 2 4 1 0 1 2 3 7 Yes No
3 5 4 6 1 1 1 1 3 7 No No
4 4 6 8 1 2 1 0 3 7 No Yes
5 0 8 10 1 3 0 0 4 7 No Yes

values relevant to the mean-minimization and mean-maximization problem

for each bin:

The final two columns of Table 4.4 indicate that the minimum value of

the mean that is consistent with x is associated with the residual vector that

maximizes the density in the two leftmost bins, while the maximum value of

the mean that is consistent with x is associated with the maximum density

in the two rightmost bins. In the example given, the minimizing measure is

p = (0.05, 0.15, 0.45, 0.35, 0), which gives a lower bound of p′ · d = 4.2. The

maximizing measure is p = (0, 0.05, 0.45, 0.45, 0.05), giving an upper bound

on the mean of p′ · d = 7.

4.4.2 Joint bounds on the expectation and variance

Rather than consider bounds on the variance in isolation, we now turn to the

problem of jointly bounding the mean and the variance. It is straightforward

to show that for any x and any feasible value of the mean, the maximum and

minimum values of the variance that are consistent with that mean will be

associated with discrete distributions. Formally, then, the problem to derive
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an upper bound on the variance of f(z), conditional on the mean taking

value m, can be written as:

max
p,w

N∑

i=1

pi

(
wi −

N∑

i=1

piwi

)2
s.t. p ∈ Φ (4.28)

wi ∈ [di, di], i = 1 . . . N
N∑

i=1

piwi = m (4.29)

The variance minimization problem is alike in all ways, except for the sign

of the objective function. Because both p and w are choice variables, and the

value of the mean inside parentheses varies with both, the objective function

in (4.28) is non-convex, and closed form analytical solutions are not gener-

ally available. Unfortunately, even for relatively small values of N , numerical

procedures to solve (4.28) can be very unstable and take prohibitively long

to converge. Lemma 1, stated below, reduces the computational burden by

placing additional restrictions on w at the solution to (4.28). This decreases

the dimensionality of the search problem and substantially speeds up con-

vergence.

Lemma 1. Let x ∈ Z+
N be an allocation, and let p ∈ Φ be any fixed measure

vector that is consistent with x. Define an m-central location w ∈ RN to be
a location for which m elements of w, 1 ≤ m ≤ N , satisfy di < wi < di.
Then the mean of any m-central location w, for m > 1, is also achieved
by an (m-1)-central location that has a greater variance, and by a different
(m-1)-central location that has a smaller variance.
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A proof of Lemma 1 is provided in the Appendix.22 The implication of

Lemma 1 is that for a fixed measure p and a given value of the expectation

of f(z), the discrete distributions that achieve the minimum and maximum

values of the variance are 1-central locations. Therefore, the only candidate

solutions to (4.28) are pairs (p, w) that satisfy p ∈ Φ and wi ∈ {di, di} for at

least N − 1 elements of the N -vector w.

We can further simplify the numerical procedure for solving (4.28) by

using the mean constraint (4.29) and the adding up constraint
∑N

i=1 pi = 1

to simplify the objective function. Note that if we satisfy (4.29) exactly, the

term (wi−
∑N

i=1 piwi)2 becomes a constant vi = (wi−m)2 for each i. Substi-

tution of vi into (4.28) turns the problem into linear programming problem.

In order to satisfy (4.29) exactly, we make the following substitutions for pN

and p1:

p1 = 1−
N∑

i=2

pi (4.30)

pN =
m−

∑N−1
i=1 wipi

wN
(4.31)

For any given location vector w, (4.30) and (4.31) imply that p1 =
∑N−1

i=2 γipi and pN =
∑N−1

i=2 ηipi for fixed N − 2 dimensional vectors γ and

η that are functions of w and m. Substituting these expressions into the

22Lemma 1 is also an implication of the main result proved separately in Stoye (2010)
for a broad class of partial identification problems.
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objective function (4.28), and also into the system of linear constraints that

defines Φ, converts the conditional variance maximization (minimization)

problem into a sequence of linear programming problems, one for each fixed

w. Iterating over the set of location vectors w admitted by Lemma 1 leads to

a solution. While this search procedure takes a substantial amount of time

to converge for higher N (i.e. N ≥ 9), the advantage is that the algorithms

for solving linear programming problems are well understood, and we can be

very confident that our solutions are global.

Figures 4.8 and 4.9 show the results for the two examples that we have

considered most frequently in this paper. Figure 4.8 shows the joint iden-

tification region for z ∼ N(5, 2), which induces the allocation x = (2, 6, 2)

when k = 10, for k ∈ {10, 15, 20, 25, 30}. The intervals are d1 = [0, 10
3 ],

d2 = [103 , 20
3 ], and d3 = [203 , 10]. There are a few things to note. First, as

intuition would suggest, the identified region shrinks with the addition of

more counters (we’ll see momentarily that this is not always the case). The

improvement is not dramatic, however. Second, substantial reductions in the

range of the variance are only achieved as E(z) approaches one of its bound-

aries. This suggests, unfortunately, that additional survey information, such

as an elicited point expectation that can be used to select E(z), may not

substantially narrow the bounds on the variance.

Lastly, the identified regions are non-convex, with the non-convexity con-

tributed by the upper bounds on the variance. Non-convex jointly identified

mean-variance regions were frequently observed in the simulation exercise
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described in the next section. The non-convexity appears to be driven by

the fact that the variance is convex in the distance from the expectation.

Toward the center of the support of the expectation, e.g., around E(z) = 5

in Figure 4.8, the maximum distance between the expectation and any point

with positive density is at a minimum. As the expectation moves further

from the midpoint of its identified interval, e.g., near E(z) = 4 or E(z) = 6

in Figure 4.8, the maximum distance between locations with positive density

and the mean is greater than it is at the midpoint, and the bins containing

these locations are still weighted with positive density. As the expectation

approaches its extremes, e.g., near E(z) = 3 or E(z) = 7 in Figure 4.8,

the maximum distance to points of positive support increases, but the total

contribution of these farther points to the variance falls because the density

in their associated intervals approaches its lower bound. In summary: the

contribution of any particular bin to the variance is a function of the density

in that bin and the distance between the location in that bin and the mean,

and inter-play between these two forces determines the rise and then the fall

in the variance.

Figure 4.9 shows similarly formulated identification regions, for k =

{10, 15, 20, 25, 30}, bin boundaries that are the 5 evenly spaced bins between

0 and 10, and underlying true beliefs z ∼ N(5.7, 1.1). These beliefs generate

the allocation vector x1 = (0, 1, 5, 4, 0) when k = 10.

There is one key feature of Figure 4.9 that is deserving of attention. As

k increases, the identified regions are not nested. This is counterintuitive, as
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Figure 4.8: Mean-variance joint identification region, f(z) = N(5, 2), N=3
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it would seem that the identification region should shrink in all directions as

the respondent is able to represent her beliefs more finely. However, with the

increase in counters from 15, the number of bins receiving a counter increases

from 3 to 4. Even if the rightmost bin barely merits a counter, from an

identification perspective this is unknown to the researcher. While this may

seem like a stylized example, the general trend holds across other examples.

Increasing the number of counters shrinks the mean-variance identification

region as long as N1 remains unchanged. The upper bound on the variance

increases substantially when the marginal increase in k induces an increase

in the number of non-empty bins.
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Figure 4.9: Mean-variance joint identification region, f(z) = N(5.7, 1.1),
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4.5 Simulation results

Delavande et al (2011) provide evidence from a field experiment that the

moments of elicited distributions are not particularly sensitive to changes

in the number of intervals or counters. However, the results in that paper

rely on only a small number of combinations of N and k. Furthermore,

the experiment participants were fishermen providing distributions over their

daily catch, a random variable that is realized daily and with which they were

all intimately familiar. Thus it is not surprising that these fishermen were

able to communicate their subjective distributions consistently across survey

modules.

In this section we provide results from two simulation exercises that in-

form the choice of N and k. First, we evaluate the effect of various choices

of N and k on the size of the mean-variance identified region. Second, we

consider the implications of various functional form choices on the estimation

of moments from continuous approximations of x.

4.5.1 Ex ante choice of N and k

Results in this sub-section are based on a random sample of 500 (µ, σ)

pairs drawn from the uniform intervals µ ∈ [2, 8], σ ∈ [0.5, 2.5]. For each

(µ, σ) pair, we assume f ∼ N(µ, σ) and calculate the measure vector pN

for N ∈ {3, . . . , 9}, where the N bins fully span the interval [0, 10] with-
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out overlapping.23 We then generate the corresponding allocations for k ∈

{10, 15, 20, 25, 30}, and calculate the joint mean-variance identification region

using the results of the previous section. Thus, for each of the 500 (µ, σ) pairs,

we calculate 7× 5 = 35 separate mean-variance regions corresponding to the

unique combinations of N and k.

For comparison, we also calculate the mean-variance regions associated

with the known measure vectors pN . The vectors pN are not observable to

the researcher using the bin-and-counter method. However, one might argue

that in surveys in the US such as the Survey of Economic Expectations,

in which the respondent provides a numeric answer for the probability of z

falling below fixed points {z1, . . . , zN} on its support, the generated data is

in fact pN . For our purposes, the mean-variance regions based on the actual

measure vector pN provide the smallest achievable mean-variance region for

a given N . Therefore, they give us a metric by which we can measure the

relative change in the mean-variance region as k increases. If k were able to

increase without bound, the mean-variance region from the bin-and-counter

method would quickly approach that associated with pN .

Tables 4.5, 4.6 and 4.7 show the simulation results. Table 4.5 shows the

average area of the M-V region for combinations of N and k, as well as the

limiting area for each N . There are two features of note. First, there is no

simple answer to the question of whether it is better to increase N or k,

23We adjust the normal density function so that all of the density lies within the domain
[0, 10], by distributing the total density from outside this range uniformly over [0, 10].
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something that a researcher might struggle with during survey planning. If

one were to begin in the box for N = 3, k = 10 and move iteratively toward

the smaller area in either an easterly or southerly direction, one would begin

heading south and then more or less alternate between increasing k and

increasing N until reaching the lower right-most bin (ignoring the “limit”

column). However, it is clear that small-N survey modules cannot effectively

compensate by increasing the number of counters. The M-V areas associated

with N = 3 are the largest of all the areas measured, regardless of k.24 There

are clear benefits to using at least 4 or 5 bins, before increasing k. Second,

the limiting areas shrink more rapidly than do the identified regions, as N

increases. Thus, in proportional terms, incremental increases in k provide

less information for higher N than smaller N . Of course, to interpret this

as a reason not to increase N would be backwards reasoning. Tables 4.6

and 4.7 show the changes in areas associated with rightward and downward

movements across Table 4.5, respectively.

4.5.2 Ex post smoothing

In some situations, a researcher may wish to recover not just one or two

moments from the elicited subjective distribution, but the entire distribution

itself. A continuous approximation of f(z) may be used in a structural model,

or mixed with another distribution to approximate the distribution of the

24We do not report results for N = 2, because the identified regions are so large that
one can hardly consider such data to have any information content for the variance.
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Table 4.5: Average area of M-V region for various (N, k) combinations

N 10 15 20 25 30 limit

3 29.54 26.06 24.32 23.25 22.55 18.91

4 19.87 16.79 15.24 14.33 13.64 10.33

5 16.23 13.06 11.41 10.52 9.90 6.68

6 14.45 11.13 9.45 8.46 7.86 4.68

7 13.60 10.03 8.27 7.25 6.58 3.43

8 13.22 9.47 7.61 6.52 5.83 2.63

9 13.06 9.07 7.18 6.07 5.35 2.08

k

Table 4.6: Percent change to size of M − V region as k increases, N fixed

N 10 15 20 25 30

3 - !!!"# !$"% !&"' !("#

4 - !!#"& !)"! !'"! !&")

5 - !!)"& !!*"' !$"+ !'"%

6 - !**"$ !!#"% !!%"( !$"!

7 - !*#") !!$"* !!*"* !)"!

8 - !*+"! !!)"# !!&"% !!%"#

9 - !(%"# !*%"' !!#"* !!!"$

k

Entries are percent change in area of mean-variance identified region from 

box to the left
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Table 4.7: Percent change to size of M − V region as N increases, k fixed

N 10 15 20 25 30

3 - - - - -

4 -27.8 -29.8 -30.1 -29.8 -29.2

5 -16.6 -20.5 -23.4 -24.8 -25.6

6 -10.1 -14.2 -16.5 -18.7 -19.6

7 -5.7 -9.9 -12.4 -14.4 -16.3

8 -2.0 -5.3 -8.0 -9.9 -11.4

9 -0.3 -3.7 -5.3 -6.8 -8.0

k

Entries are percent change in area of mean-variance identified region from 

box above

product of two random variables. In this section I provide some initial Monte

Carlo evidence for optimal smoothing methods. First, I discuss the procedure

used to fit any general distribution function to an allocation x.

Suppose g(z|λ) is a known cumulative distribution function, governed by

parameter λ, that one wishes to fit to an allocation x. One natural method

for doing so is to choose λ to minimize the square loss between g(di|λ) and

the points (di, qi), where qi =
∑i

j=1 pj). This choice problem can be written

as:

min
λ

N∑

i=1

[
g(di|λ)− qi

]2
(4.32)

This is the procedure advocated in Dominitz (1998) and used by a small

number of recent papers. While the idea has intuitive appeal, it suffers from

one primary shortcoming. If λ contains Nλ parameters, a solution to (4.32)

is only identified for allocations with N1 > Nλ. If N = 5 and one wishes
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to fit a three-parameter distribution to the data, only responses for which 4

or 5 bins received a counter can be analyzed. A researcher can get around

this problem by choosing extra points from within the identified region. But

there is no optimal way to choose such points.

An alternative method for fitting g to x follows in the same vein as a

bootstrap. The method is as follows: For very large Q, make Q draws from

a uniform distribution on the interval [di, di] for each counter in bin i. This

generates kQ data points, which can then be fit to g using a simple GMM

procedure or maximum likelihood. This bypasses any identification problems

for the parameters of g, while remaining agnostic about the location of the

density inside the bins. This procedure was used in the following analysis.

Table 4.8 shows the results from first ‘binning up’ known distributions

into allocations, and then fitting various density functions to the binned

data. Sample data was generated by drawing at random, form appropriately

specified supports, 20 values of µ and 20 values of σ. The mean µ was

drawn from the interval [2.5, 7.5], and σ was drawn from [0.5, 2.5]. For each

of the 400 resulting (µ, σ) pairs, the Normal(µ, σ) density function was then

binned up to form an allocation x, following the minimization of absolute loss

heuristic from Section 2. The bins were the 5 evenly spaced intervals between

0 and 10. This step was repeated for each of k ∈ {10, 15, 20, 30}, for the same

fixed draw of 400 (µ, σ) pairs. Using the bootstrap method just described,

with Q = 2000, these 400 allocations were then fit to the following known

distributions: stepwise uniform, normal, generalized extreme value (“GEV”,
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a 3-parameter distribution), generalized beta on [0, 10], and generalized beta

on [dl, dm] where l is the first non-empty bin and m is the last non-empty bin.

The normal and GEV distributions were fit using maximum likelihood, while

the generalized beta distributions were fit using the method of moments.

The columns of Table 4.8 display the first significant digits of the following

statistics: the square loss between the mean of the fit distribution and the

mean of the true underlying distribution, the same for the standard deviation,

the percentage of cases in which a particular distribution had the minimum

total square loss for the first two moments, the area between the fitted and

true CDFs, the percentage of cases in which a particular distribution had

the minimum area between CDFs, and the Kolmogorov-Smirnov statistic.

The bolded/highlighted entries in each “Best” column indicate the procedure

that had the greatest likelihood of minimizing that particular measure of

loss. Note the very poor performance of the stepwise uniform distribution.

Though the sign of the bias isn’t shown, in nearly all cases the stepwise

uniform distribution over-estimates the variance. This makes intuitive sense,

and the variance is convex in the distance from the mean, and true beliefs

are unlikely to be represented by a uniform step which falls suddenly to

zero after passing some threshold. Thus, Table 4.8 provides some initial

evidence suggesting that distributions other than stepwise uniform should

be fit to observed allocations, when higher moments or full distributions are

of interest to the researcher.
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Table 4.8: Simulation results from ex post smoothing of known distributions

N
Fit 

Distribution

SQL 

mean

SQL 

sd

% 

SQL 

Best

Area 

btw 

CDFs

% 

Area 

Best

K-S 

stat

SQL 

mean

SQL 

sd

% 

SQL 

Best

Area 

btw 

CDFs

% 

Area 

Best

K-S 

stat

5 Stepwise Uni 0.034 0.071 0.282 0.285 0.068 0.080 0.023 0.065 0.260 0.255 0.087 0.078

Normal 0.034 0.071 0.278 0.229 0.485 0.061 0.023 0.065 0.268 0.212 0.495 0.056

Gen EV 0.034 0.074 0.44 0.243 0.305 0.070 0.022 0.066 0.472 0.225 0.282 0.068

Gen Beta 1 0.034 0.071 - 0.254 0.078 0.080 0.023 0.065 - 0.241 0.052 0.077

Gen Beta 2 0.034 0.071 - 0.273 0.072 0.089 0.023 0.065 - 0.254 0.108 0.086

8 Stepwise Uni 0.040 0.066 0.298 0.254 0.020 0.069 0.017 0.049 0.275 0.198 0.005 0.060

Normal 0.040 0.066 0.260 0.211 0.438 0.055 0.017 0.049 0.213 0.162 0.440 0.042

Gen EV 0.040 0.070 0.442 0.226 0.220 0.062 0.017 0.048 0.512 0.171 0.273 0.049

Gen Beta 1 0.040 0.066 - 0.226 0.188 0.068 0.017 0.049 - 0.180 0.147 0.059

Gen Beta 2 0.040 0.066 - 0.236 0.135 0.074 0.017 0.049 - 0.191 0.138 0.067

10 Stepwise Uni 0.045 0.079 0.380 0.263 0.020 0.071 0.028 0.038 0.248 0.209 0.013 0.059

Normal 0.045 0.079 0.327 0.227 0.330 0.057 0.028 0.038 0.252 0.168 0.387 0.044

Gen EV 0.044 0.085 0.292 0.232 0.257 0.059 0.027 0.037 0.500 0.177 0.317 0.050

Gen Beta 1 0.045 0.079 - 0.241 0.162 0.068 0.028 0.038 - 0.187 0.207 0.059

Gen Beta 2 0.045 0.079 - 0.240 0.230 0.071 0.028 0.038 - 0.199 0.080 0.065

N
Fit 

Distribution

SQL 

mean

SQL 

sd

% 

SQL 

Best

Area 

btw 

CDFs

% 

Area 

Best

K-S 

stat

SQL 

mean

SQL 

sd

% 

SQL 

Best

Area 

btw 

CDFs

% 

Area 

Best

K-S 

stat

5 Stepwise Uni 0.017 0.056 0.237 0.231 0.102 0.075 0.014 0.054 0.257 0.217 0.127 0.073

k=10 k=15

k=20 k=30

Table 4. Monte Carlo results for known 'binned' distributions

Normal 0.017 0.056 0.235 0.188 0.550 0.051 0.014 0.054 0.273 0.179 0.558 0.049

Gen EV 0.016 0.055 0.527 0.203 0.222 0.064 0.013 0.053 0.470 0.196 0.185 0.062

Gen Beta 1 0.017 0.056 - 0.222 0.075 0.074 0.014 0.054 - 0.215 0.095 0.072

Gen Beta 2 0.017 0.056 - 0.235 0.105 0.081 0.014 0.054 - 0.227 0.13 0.078

8 Stepwise Uni 0.015 0.033 0.282 0.173 0.030 0.055 0.009 0.028 0.310 0.144 0.060 0.053

Normal 0.015 0.033 0.243 0.138 0.502 0.037 0.009 0.028 0.235 0.119 0.595 0.032

Gen EV 0.014 0.031 0.475 0.152 0.237 0.046 0.008 0.025 0.455 0.136 0.175 0.043

Gen Beta 1 0.015 0.033 - 0.161 0.162 0.056 0.009 0.028 - 0.148 0.093 0.054

Gen Beta 2 0.015 0.033 - 0.173 0.085 0.062 0.009 0.028 - 0.157 0.117 0.059

10 Stepwise Uni 0.015 0.035 0.315 0.168 0.007 0.053 0.009 0.031 0.317 0.137 0.060 0.048

Normal 0.015 0.035 0.257 0.137 0.450 0.034 0.009 0.031 0.255 0.117 0.512 0.029

Gen EV 0.015 0.031 0.428 0.152 0.310 0.042 0.008 0.028 0.428 0.128 0.213 0.039

Gen Beta 1 0.015 0.035 - 0.159 0.108 0.054 0.009 0.031 - 0.137 0.108 0.050

Gen Beta 2 0.015 0.035 - 0.168 0.142 0.059 0.009 0.031 - 0.144 0.138 0.054
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4.6 Conclusion

A rapid literature is emerging, primarily in development economics but also

in labor and health economics, that attempts to better understand choice

under uncertainty by measuring the subjective probability distributions of

survey respondents. In this paper we have carefully considered the identifi-

cation of the true underlying beliefs distribution when a particular method

(the bin-and-counter method that has quickly become standard) is used to

elicit distributions. We first analyzed the respondent’s choice problem, and

provided evidence or treating the data as the outcome of his attempt to min-

imize absolute loss between his belief and his response. This absolute loss

heuristic has implications for the relationship between the true densities in

any subset of the intervals in question. We exploit this fact to derive bounds

on the measure in any single bin, bounds on subsets of bins, bounds on the

CDF and the median, and the joint identification region for the measure in

all of the bins. We also developed and tested a numerical procedure for esti-

mating the jointly identified mean-variance region, and provided simulation

evidence suggesting that small-N survey modules are particularly uninforma-

tive, and that stepwise uniform distributions are likely to fit the data worse

than numerous other functional forms.
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4.7 Appendix

Proof of Proposition 1

I provide three proofs, showing that placements of counters according to

heuristics [A1.], [A2.] or [A3.] are consistent with minimization of absolute

loss (subject to the restriction that all counters must be placed). This is

sufficient to prove the equivalency of these heuristics. No proof is needed

for heuristic [A4.], because it is defined with regard to the minimization of

absolute loss, so the equivalency is trivial.

Proof. [A1.] We show that at each stage of iteration, placing the marginal

counter in the bin suggested by heuristic [A1.] reduces absolute loss by at

least as much as placement in any other bin. Define lsi = |x
s
i

k − pi| to be the

contribution to the absolute loss from bin i at stage s, and note that lsi = ps
i if

ps
i "= 0. Before placement of any counters, x0

i = 0 ∀i ⇒ l0i = p0
i ∀i ⇒ L0 = 1.

Define Ls+1,i to be the hypothetical loss in stage s+1 if the marginal counter

in stage s is placed in bin i. Suppose that the respondent is at iterative stage

s ∈ {0, . . . , k − 1}. Let bin j be such that ps
j = maxi=1,...,N{ps

i}. Heuristic

[A1.] calls for the respondent to place the next counter in bin j. Let ps
c

be the measure in any other bin, with ps
c < ps

j . We consider three possible

relationships between ps
j , p

s
c, and 1

k :

(i) ps
j , p

s
c > 1

k .

Placement of the marginal counter in bin j ⇒ Ls+1,j =
∑

i&=j lsi + |pj −
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xs
j+1

k | =
∑

i&=j lsi + (lsj − 1
k ) = Ls − 1

k , where we use the fact that ps
j > 1

k

implies |pj−
xs

j+1

k | = (pj−
xs

j

k −
1
k ). By the same sequence of arguments,

placement of the counter in bin c gives Ls+1,c = Ls − 1
k . So following

[A1.] reduces absolute loss by no less than following any other heuristic.

(ii) ps
j > 1

k , ps
c < 1

k .

Placement of the marginal counter in bin j ⇒ Ls+1,j = Ls− 1
k as above.

Placement of the marginal counter in bin c gives Ls+1,c =
∑

i&=c lsi +

|pc − xs
c+1
k | =

∑
i&=c lsi + |ps

c − 1
k | =

∑
i&=c lsi + ( 1

k − ps
c + (ps

c − ps
c)) =

Ls + 1
k −2ps

c. Then ps
j > ps

c ⇒ Ls+1,j < Ls+1,c. Thus, following heuristic

[A1.] reduces loss to a greater extent than does not following heuristic

[A1.]

(ii) ps
j , p

s
c < 1

k .

By the sequence of arguments in (ii), Ls+1,d = Ls + 1
k − 2ps

d. for d ∈

{c, j}. Therefore, ps
j > ps

c ⇒ Ls+1,j < Ls+1,c once again.

We have shown that iteratively placing counters in the bins indicated by

heuristic [A1.] always reduces absolute loss by at least as much as placing

the counters in any other bins. This, together with the trivial observation

that the absolute loss after all counters are allocated is invariant to the order

of allocation, suffices to show that heuristic [A1.] minimizes absolute loss

conditional on the requirement that all counters be allocated.

Proof. [A2.] We proceed in two steps: first, we show that placement of

kqi = floor(pi,
1
k ), i = 1, . . . , N , in the initial stage is always feasible, and
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that placement of fewer than kqi counters in any bin is never consistent with

minimization of absolute loss. We then show that during the “residual stage”

the respondent allocates any remaining counters in a manner that minimizes

absolute loss.

First, note that
∑N

i=1 pi =
∑N

i=1(qi + ri) ⇒ k
∑N

i=1 qi + k
∑N

i=1 ri = k ⇒
∑N

i=1 kqi ≤ k. Therefore, during the initial stage, the respondent always

has enough counters to place kqi in bin i, i = 1, . . . , N . Denote by x0 the

initial stage allocation of counters. Suppose that in the initial stage the

respondent places the requisite k
∑N

i=1 qi counters, but he places x0
j < kqj

counters in bin j. Clearly a counter intended for bin j was placed in another

bin, call it bin c. The contribution of bins j and c to the initial stage loss

is l0j + l0c = (pj −
x0

j

k ) + (x0
c
k − pc), where we use the under-allocation in bin

j and over-allocation in bin c to identify the sign of these absolute value

contributions. If only one such mistake was made then x0
c = kqc + 1. In this

case, re-allocation of one counter from bin c to bin j, using the superscript

“1” to denote values after this re-allocation, gives the updated contribution

to the loss: l1j +l1c = (pj−
x0

j

k −
1
k )+(pc− x0

c
k + 1

k ) = (pj−
x0

j

k )+(pc− x0
c
k ) < l0j +l0c

because the second term is negative after cancellation of the 1
k . If it happens

that x0
c > kqc+1, which is the case if more than one extra counter was placed

in c during the initial allocation, then by the same series of arguments it is

easy to see that re-allocation of one counter from c to j reduces absolute loss

by 2
k . Therefore, failure to place less than kqi counters in any bin i during

the initial stage always increases absolute loss.
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Second, note that as long as ri "= 0 for some i, some counters will be left

over after the initial stage. Because qi ≤ pi ∀i, the loss in all bins prior to

the residual allocation is pi− x0
i
k = pi− ri. Heuristic [A2.] calls for allocation

of any remaining counters to those bins i with the greatest values of ri.

Suppose that in the residual stage the respondent must choose whether to

place a counter in bin k or in d, where rk > rd. If the residual counter is

placed in bin k, total loss is Lk =
∑

i&=k,c li + ( 1
k − rk) + (rc), where Lk is

the hypothetical loss if the counter is placed in bin k, borrowing notation

from the previous proof. Likewise, Lc =
∑

i&=k,c li + (rk) + ( 1
k − rc). Clearly,

rk > rc ⇒ Lk < Lc. So absolute loss is less if residual counters are placed in

bins i with greater values of ri.

We have shown that adherence to heuristic [A2.] never increases absolute

loss, relative to non-adherence to [A2.], when all counters must be placed.

Thus, the claim is proved.

Proof. [A3.] Note that by definition, qi ≤ pi = qi + ri < qi + 1
k . Recall that

qi = floor(pi,
1
k ) · 1

k , therefore qi is divisible by 1
k . For each bin i, rounding

gives:

pi =






qi if ri < 1
2k

qi + 1
k if ri ≥ 1

2k

(4.33)

Let D = {i|pi = qi} and U = {i|pi = qi+
1
k}. These are the sets of rounded

down and rounded up bins, respectively. As indicated in the statement of

heuristic [A3.], the rounded measure need not sum to 1. We consider three
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cases.

Suppose first that the rounded measure does sum to 1, i.e.
∑N

i=1 pi = 1.

Heuristic [A3.] calls for allocation of kpi counters to each bin i. Total absolute

loss is L =
∑

i∈D ri +
∑

j∈U( 1
k − ri). Consider bin c ∈ U and bin d ∈ D. By

(4.33), it must be the case that rc > rd. Re-allocation of one counter from

bin c to bin d gives L′ =
∑

i∈D\d ri +
∑

j∈U\c(
1
k − ri) + rc + ( 1

k − rd) > L.

Therefore, such a re-allocation always raises absolute loss. Likewise, suppose

a counter is re-allocated from bin c ∈ U to another bin b ∈ U . The resulting

total loss is L′′ =
∑

i∈D ri +
∑

j∈U\{b,c}(
1
k−ri)+rb +( 2

k−rb) > L. Similarly, if

a counter is re-allocated from bin d ∈ D to another bin e ∈ D, the resulting

total loss is L′′′ =
∑

i∈D\{d,e} ri +
∑

j∈U( 1
k − ri) + ( 1

k + rd) + ( 1
k − re) > L.

So if
∑N

i=1 pi = 1, there is no re-allocation that does not raise absolute loss,

relative to the allocation indicated by heuristic [A3.].

Next consider the situation in which
∑N

i=1 pi < 1. Heuristic [A3.] calls

for initial allocation of kpi counters to each bin. Denote total loss at this

point by L0, and note L0 =
∑

i∈D ri +
∑

j∈U( 1
k − ri). However, the allocation

is not complete, because not all counters have been placed. Heuristic [A3.]

calls for allocation of the kr remaining counters to the kr bins i ∈ D with

the greatest values of ri (it is trivial to show that there must be at least

kr bins in set D). Suppose there are ND bins in set D and NU bins in

set U . Let rD ∈ [0, 1
k )ND be the vector of residuals of the members of D,

ordered from greatest to smallest. A typical element of rD is ra
D, where

a is the rank of ra
D among the residuals in D (1 being the greatest, ND
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the smallest). After placement of the kr remaining counters, total loss is

L1 =
∑

j∈U( 1
k − ri) +

∑kr

b=1(
1
k − rb

D) +
∑ND

c=kr+1 rc
D. Note that by definition of

pi, L1 > L0. This is a case in which unconditional minimization of absolute

loss would leave some counters unallocated. Suppose that instead of following

the heuristic exactly, one of the kr residual counters is placed in bin e ∈ D

s.t. re = rf
D < rkr

D instead of in bin g ∈ D s.t. rg = rh
D ≥ rkr

D . By definition,

re < rg. The resulting loss is L1′ = L1 − (re + ( 1
k − rg)) + (( 1

k − re) + rg) =

L1+2(rg−re) < L1. By a similar argument, it is easy to show that placement

of one of the kr remaining counters in bin b ∈ U , instead of bin g ∈ D, also

increases absolute loss. So, conditional on the requirement that all counters

be allocated, deviation from heuristic [A3.] cannot decrease absolute loss

when
∑N

i=1 pi < 1.

Lastly, suppose
∑N

i=1 pi < 1. There are not enough counters to satisfy

xi = kpi ∀i. Treating the allocation of kqi counters to each bin as the “initial

stage”, and the allocation of the remaining counters as the “residual stage”,

the series of arguments in the proof of heuristic [A2.] is directly applicable

here.

Thus, for all possible values of
∑N

i=1 pi, we see that the Rounding heuris-

tic is always consistent with minimization of absolute loss, subject to the

requirement that all counters be allocated.

This completes the proof of Proposition 1.

Q.E.D.
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Solution to Problem (4.8)-(4.11)

Although (4.8)-(4.11) is a straightforward linear programming problem with

an analytical solution, it is subject to N + N0N1 + N1(N1 − 1) inequality

constraints, which means that there are 2(N+N0N1+N1(N1−1)) cases to consider.

However, all of the non-empty residuals bj can be treated symmetrically, as

can all empty bin residuals other than residual ai which appears in the ob-

jective function, al ∈ A s.t. l "= i. This still leaves 64 cases for consideration.

We can use intuition to reduce the problem further. Clearly the maximiza-

tion of ai requires that all other empty bins have measure 0, so ai > 0 and

al = 0 ∀ l "= i. Likewise, for any j ∈ X1, bj = 0 only when kp ∈ ZN
+ and

therefore am = 0 ∀ m ∈ X0, which will clearly not be the case when ai is

at a maximum. Therefore at a solution to (4.8), bj > 0 and bj > al for all

j ∈ X1, l ∈ X0\i. These insights dispense with the constraints in (4.11) and

with all constraints in (4.10) except those that involve ai. Only four unique

cases remain, and of these four only one does not lead to a contradiction.

Proof of Proposition 5

Proof. Suppose that scalar y sits in non-empty bin i. Note that the density

in bins 1 . . . i− 1 that is accounted for by all but the final counter placed in

each bin is 1
k

∑i−1
j=1 max{0, xi − 1}. This is the minimum contribution to the

value of Pr(z < y) for any y in bin i.

Recall from (4.20) that for the measure that maximizes the total density
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in the members of subsets α ∈ X0 and β ∈ X1, the following relationships

must hold:

al = 0 ∀ l ∈ X0\α

ai = bm ∀ i ∈ α, m ∈ X1\β

bj − bm = 1
k ∀ j ∈ β, m ∈ X1\β

PR =
∑N0

m=1 am +
∑N1

j=1 bj

The lower bound on Pr(z < y) corresponds to the measure which maxi-

mizes the total density in subsets α = Ri
0 and β = Ri

1∪{i}. Letting bj be the

density in any member of β, bm be the density in any member of X1\β, and

al be the measure in any member of α, and using the fact that the residual

measures must sum to PR, we can write:

PR = (Li
0)0 + (Ri

0)al + (Li
1)bm + (Ri

1 + 1)bj

⇒ N1

k
= (Ri

0 + Li
1)(bj −

1

k
) + (Ri

1)bj using (4.20)

⇒ b∗j =
1

k
+

Li
1

k(N1 + Ri
0)

and therefore a∗i = b∗m =
Li

1

k(N1 + Ri
0)

These collectively imply that rmin
i , the minimum contribution of bins

1 . . . i to the residual probability, is:

rmin
i = (Li

1)b
∗
m =

(Li
1)

2

k(N1 + Ri
0)

Adding this to the initial density from bins 1 . . . i − 1, we get the total
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lower bound on the value of Pr(z < y) in non-empty bin i:

PR =
1

k

i−1∑

j=1

max{0, xj − 1} +
(Li

1)
2

k(N1 + Ri
0)

By a similar series of arguments, we can derive the upper bound on Pr(z <

y) for any y in bin i. In this case let α = Li
0 and β = Li

1 ∪ {i}. Then:

PR = (Li
0)al + (Ri

0)0 + (Li
1 + 1)bj + (Ri

1)bm

⇒ b∗j =
1

k
+

Ri
1

k(N1 + Li
0)

and therefore a∗i = b∗m =
Ri

1

k(N1 + Li
0)

which implies the following for rmax:

rmax
i = (Li

0)

(
Ri

1

k(N1 + Li
0)

)
+(Li

1+1)

(
1

k
+

Ri
1

k(N1 + Li
0)

)
=

1

k

(
Li

1+1+
iRi

N1 + Li
0

)

Adding this expression, and the value xi−1
k which accounts for the initial

density in bin i (which lies entirely to the left of y at the p that maximizes

Pr(z < y)), to the initial density in bins 1 . . . i− 1 gives the upper bound on

Pr(z < y):

PR =
1

k

i−1∑

j=1

max{0, xj − 1} +
xi

k
+

1

k

(
Li

1 +
iRi

1

N1 + Li
0

)
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Proof of Proposition 6

Proof. The structure of this proof is identical to that of the proof of Propo-

sition 5. The lower bound on Pr(z < y) is derived as follows:

PR = (Li
0)0 + (Ri

0 + 1)al + (Li
1)bm + (Ri

1)bj

⇒ b∗j =
1

k
+

Li
1

k(N1 + Ri
0 + 1)

and therefore a∗i = b∗m =
Li

1

k(N1 + Ri
0 + 1)

⇒ rmin = (Li
1)b

∗
m =

(Li
1)

2

k(N1 + Ri
0 + 1)

⇒ PR =
1

k

i−1∑

j=1

max{0, xj − 1} +
(Li

1)
2

k(N1 + Ri
0 + 1)

which is identical to the lower bound for a non-empty bin. This is because

in both cases we assume that any density in bin i lies to the right of y, and

therefore does not contribute to the minimum value of Pr(z < y).

Similarly, the upper bound on Pr(z < y) for y in empty bin i is derived

as follows:

PR = (Li
0 + 1)al + (Ri

0)0 + (Li
1)bj + (Ri

1)bm

⇒ b∗j =
1

k
+

Ri
1

k(N1 + Li
0 + 1)

and therefore a∗i = b∗m =
Ri

1

k(N1 + Li
0 + 1)

⇒ rmax = (Li
1)b

∗
j + (Li

0 + 1)a∗l =
Li

1

k
+

iRi

k(N1 + Li
0 + 1)

⇒ PR =
1

k

i−1∑

j=1

max{0, xj − 1} +

(
Li

1

k
+

iRi

k(N1 + Li
0 + 1)

)
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Proof of Lemma 1

Suppose w ∈ RN is an m-central location, m > 1, associated with a fixed p

that is consistent with an observed x. Without loss of generality, name two of

the central elements 1 and 2, i.e. assume d1 < w1 < d1 and d2 < w2 < d2. We

will show that the mean of the underlying distribution F , given by m̂ = pw,

is achievable by at least two vectors for which w3 . . . wN are unchanged, and

either w1 = w′
1 ∈ {d1, d1} or w2 = w′

2 ∈ {d2, d2} (or both). The contribution

of w1 and w2 to the mean is p1w1 + p2w2. Consider four mean-preserving

changes to w (only two of which will generally be feasible, except at the

boundary):

(i) w′
1 = d1, w′

2 = w2 + δ ∈ (w2, d2], s.t. p1(w1 − d1) = p2(w
′
2 − w2)

(ii) w′
1 = d1, w′

2 = w2 − ε ∈ [d2, w2), s.t. p1(d1 − w1) = p2(w2 − w′
2)

(iii) w′
1 = w1 + δ ∈ (w1, d1], w′

2 = d2, s.t. p1(w
′
1 − w1) = p2(w2 − d2)

(iv) w′
1 = w1 − ε ∈ [d1, w1)], w′

2 = d2, s.t. p1(w1 − w′
1) = p2(d2 − w2)

Note that (i) is feasible iff. p1

p2
≤ d2−w2

w1−d1
and (iv) is feasible iff. p1

p2
≥ d2−w2

w1−d1
,

so that ! (i) ⇐⇒ (iv) unless the equality holds, in which case both are

true. Symmetrically, either (ii) or (iii) is true but not both, except at the

boundary where both hold. This proves the feasibility in all cases of at least

two different mean-preserving changes that replace m-central w with (m-1)-

central w′. That is, at least one of the following four pairs of mean-preserving

changes is feasible in all cases: (i) and (ii), (i) and (iii), (ii) and (iv), or (iii)
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and (iv).

It remains to show that for any pair of changes, whenever one change

decreases the variance, the other necessarily increases it. Because p, w3 . . . wN

and m̂ are not changed by any of (i)− (iv), the contribution to the variance

of all elements other than 1 and 2 is constant. The contribution of elements 1

and 2 to the variance, prior to any change, is v0 = p1(w1−m̂)2 +p2(w2−m̂)2.

Suppose first that (i) and (ii) are true. After the mean-preserving change in

(i), the contribution of elements 1 and 2 to the variance of w′ is

vi
1 = p1(d1 − m̂)2 + p2(w2 + δ − m̂)2

= p1(w1 − m̂− (w1 − d1))
2 + p2(w2 − m̂ + δ)2

= v0 + p1(w1 − d1) [(w1 − d1 + δ) + 2(x2 − x1)]

⇒ vi
1 > v0 ⇐⇒

p1 + p2

p2
(w1 − d1) > 2(w1 − w2) (4.34)

where we make use of the fact that p1(w1 − d1) = p2δ. By the same method

it can be shown for vii
1 , the contribution to the variance after (ii), that

vii
1 > v0 ⇐⇒ p1+p2

p2
(d1 − w1) > 2(w2 − w1). It cannot be the case that

w1 = w2. If w1 > w2, then vii
1 > v0 follows immediately. In addition, under

the assumptions that (i) is true and w1 > w2, the condition for vi
1 > v0

cannot hold, because:

(i) ⇒ p1

p2
≤ d2 − w2

w1 − d1

⇒ p1 + p2

p2
(w1 − d1) ≤ (d2 − w2) + (w1 − d1)

⇒ p1 + p2

p2
(w1 − d1) < 2(w1 − w2) (4.35)
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which contradicts (4.34). We have shown that if (i), (ii) and w1 > w2 are

true, then vii
1 > v0 and vi

1 < v0. Symmetrical arguments show that (i), (ii)

and w2 > w1 collectively imply vii
1 < v0 and vi

1 > v0. And the same set

of arguments hold if we begin with any of the other pairs of possible mean-

preserving changes: (i) and (iii), (ii) and (iv), or (iii) and (iv). So in all

cases, a pair of mean-preserving changes to w are feasible, both of which

result in an (m-1)-central location, and one of which increases the variance

while the other decreases it. QED.



Chapter 5

Estimation of a Dynamic

Agricultural Production Model

with Observed, Subjective

Distributions

5.1 Introduction

Although the technology of agricultural production in Sub-Saharan Africa is

rudimentary by Western standards, depending as it does on rainfall, simple

hand tools, and animal and human labor, the task of producing crops in an

atmosphere of substantial risk and uncertainty is in fact a highly complex

stochastic control problem. Farmers’ solutions to this problem, which are

162
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conditioned on subjective beliefs about prices, rainfall, and other uncertain

agro-climatic conditions, are expressed as a sequence of crop acreage, labor

allocation and non-labor input decisions. These decisions are usually made

without reliable price and weather information. Methods to mitigate risk

(such as crop insurance) and uncertainty (such as forward contracting) are

rare. In such a setting, the design of appropriate policies to support wellbeing

depends on the capacity of researchers to understand the dynamic choice

problem of farmers.

This paper explores the roles of risk and uncertainty in the production

decisions of cotton farmers in Tanzania. Our primary aim is to develop a

method for incorporating subjective yield distributions into the estimation

of a dynamic resource allocation model, so as to avoid making the untestable

and largely unsubstantiated assumptions of rational expectations over a com-

mon distribution of production shocks. We use a unique, high-frequency

panel data set of 195 farmers, who were surveyed once every three weeks over

the entire course of the 2009-2010 cotton cultivation season. The data set

includes regular measures of subjective price and yield distributions. That is,

at regular intervals from planting to harvest, sample farmers used a visual aid

to express their subjective belief about the full distributions of harvest-period

yields and prices. Input allocation, time use, and other relevant data were

also gathered regularly. Using this unique data set, we estimate a stochas-

tic production model that incorporates the gradual revelation of information

and the sequential nature of farmers’ input choices.
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This paper draws on, and contributes to, two lines of literature. First

is the literature on farmer choice and dynamic decision-making under un-

certainty. It is well understood that agricultural production is a sequential

process in which farmers choose not only the level but also the timing of in-

puts, in accordance with their expectations and with the gradual resolution

of uncertainty due to agro-climatic factors (Nerlove and Bessler, 2001). How-

ever, the general lack of data on the timing of inputs, and the near complete

absence of data on farmer-level expectations over stochastic contributions to

crop growth and revenue, has generally precluded estimation of decision mod-

els that take seriously the dynamic nature of the input allocation problem

and the gradual resolution of uncertainty (Just and Pope, 2001).

Despite the prominent role of agriculture in sustaining the livelihoods of

the rural poor in most developing countries, and despite the critical role that

uncertainty plays in agricultural production, this literature has been stalled

for almost two decades. The forebears of the model in this paper are the

models in Hartley (1983), Wolpin (1987), and Fafchamps (1993). The esti-

mation procedure in Fafchamps (1993), which identifies the inter-temporal

elasticity of labor substitution from the sequential labor decisions of African

farmers, is most similar to the method used in this paper. However, there are

two key differences between the papers: first, we have measures of subjective

yield and price distributions, so we do not need to make any assumptions

about the parameters of the error distribution, nor do we need to restrict the

stochastic component of output to be invariant across plots or across time.
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Second, we explicitly allow for farmers to learn about the state of the world

gradually, so that input choices depend on an assessment of crop progress

to date, expectations about future stochastic contributions to output, and

expectations about farmers’ own future input choices. While the model in

Fafchamps (1993) is sequential in a mechanical fashion, the estimation pro-

cedure treats the data as if all labor choices were made simultaneously.

The second line of literature related to this paper is the recent, rapidly

growing body of work that utilizes measured, subjective expectations to study

choice problems under uncertainty. Manski (2004) lays out the case for gath-

ering data of this type, and Delavande et al (2010) provide a comprehensive

review of recent work in this area. In a variety of developing country set-

tings, researchers are using subjective expectations and distributions to study

a range of choice problems, especially related to health and education. No-

tably lacking, however, are papers that use observed subjective distributions

directly in the estimation of economic decision models. The one exception

that we know of is Nyarko and Schotter (2002), in which subjective expecta-

tions measured in a lab experiment are used to estimate the parameters of a

reinforcement model (and shown to out-perform models of expectations for-

mation that are imposed on the choice data). To our knowledge, this paper

represents the first attempt to use a sequence of observed subjective beliefs

and contemporaneous choice data to estimate the parameters of a dynamic

resource allocation model.

The paper proceeds as follows. In the next section we describe the data
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set and the setting. In Section 5.3 we develop the stochastic production

model, paying particular attention to the timing of information revelation,

input allocation and data collection. In Section 5.4 we describe how the

sequence of subjective output distributions reveals plot-level distributions of

the stochastic contributions to output, and outline the estimation algorithm.

Section 5.5 contains the results, and Section 5.6 concludes.

5.2 Data and Setting

In Tanzania, cotton is planted in late November and December, and harvested

in May or June. The marketing season begins in late June and runs through

September, with the large majority of sales taking place in July and August.

In any given season, 30-50 private ginning companies compete to buy cotton

through village-level buying agents. These companies gin the cotton, and

export the lint. The government is not directly involved in the production,

purchase or export of cotton, although the Tanzania Cotton Board (TCB)

sets the opening date of the marketing season and broadcasts a minimum

price that is calculated from the current world market price, building in a

margin to cover the ginning companies’ costs. The TCB minimum price is

the modal transaction price during the first weeks of the marketing season.

As the season progresses, ginning companies typically bid the price up as they

push to meet their target purchasing volumes. Tanzania contributes only a

fraction of total world cotton production, and Tanzanian cotton farmers are
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exclusively small-scale. In addition, the price paid to farmers does not vary

with the quality of the crop. Farmers, therefore, act as pure price-takers in

the output market.

The data for this project were gathered over a one-year period from a

sample of 195 cotton farmers in 15 villages in northwest Tanzania. Exten-

sive face-to-face surveys were conducted with each farmer during a July-

September 2009 baseline visit and a July-August 2010 follow-up. Baseline

and follow-up surveys covered a wide range of standard LSMS survey top-

ics. From September 2009 to June 2010, each sample farmer was interviewed

once every 3 weeks on a prearranged schedule, for a total of 14 high fre-

quency survey rounds.1 These interviews covered cultivation activities for

cotton and non-cotton plots, time use and borrowing, shocks, investment,

other relevant economic and demographic data, and subjective probability

distributions over end-season prices, end-season yields, pest pressure in the

coming months, and rainfall levels in the coming months.

We gathered subjective probability distributions in a manner that has

quickly become standard in development economics, by asking respondents

to allocate a fixed number of counters to boxes that represent the bins of

a histogram. The support of the price distribution, in units of Tanzania

shillings per kilogram of seed cotton, was divided into seven intervals: Under

1High frequency interviews were conducted using mobile phones that the team dis-
tributed during the baseline. For details on the phone-based survey method, see Chapter
3.
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340, 340-400, 400-460, 460-520, 520-580, 580-640, Over 640.2 Respondents

were given 14 counters to allocate among the 7 price intervals. The yield

support, in units of mafurushi per acre,3 was divided into 10 intervals labeled

0-9. Respondents were given 20 counters to allocate among the 10 yield

intervals.4 Throughout the paper we assume that the price and yield density

function are stepwise uniform, with the density in a given interval determined

by the proportion of counters allocated to that interval.5

Table 5.1 gives household level summary statistics for sample households.

Households are large: the mean size is 8.33 members, with the largest house-

hold containing 23 members. There is an average of 1.31 dependents (seniors

and children) for every working age adult. The average age of heads of house-

hold is 46.85, and 85% of household heads are male. The mean education

level of household heads is 4.19 years of schooling. Livestock holdings consist

primarily of cows and goats, with the average household owning approxi-

mately 5 of each. There are 1.2 bicycles and 0.83 radios per household in the

sample. During the 2008-2009 growing season, which began with the short

rainy season in November of 2008 and ended in the summer of 2009, the

2The modal price from the previous (2009) marketing season was 440 TSH/kg.
31 mafurushi ≈ 90 kg.
4Subjective output distributions are calculated from subjective yield distributions by

simply multiplying the interval boundaries by the number of acres. I refer to these two
distributions interchangeably throughout the paper.

5In Chapter 4 we showed that the stepwise uniform assumption is almost never the
optimal distributional assumption; nevertheless we make use of it in this chapter because
it allows us to rapidly evaluate density functions as we develop the estimation technique
with observed subjective shock distributions. In future work we relax the stepwise uniform
assumption.
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average farmer grew 3.45 crops on 9.7 acres spread across 2.7 plots. Other

than cotton, the most popular crops are maize, rice, groundnuts and cas-

sava. Average total annual household expenditure on hired labor, fertilizer,

pesticides, animal rental for plowing, crop transport and other miscellaneous

inputs was 150,156 Tanzanian shillings, which is about $107 US at 2008-2009

exchange rates.

In this paper we make use of only a subset of the available subjective

distributions and production data. We opt for a sparse specification of the

production function because we are concerned primarily with development

of a procedure that incorporates the subjective plot-level distributions and

farmer-level price distributions into the estimation algorithm. We use the

following plot-level variables: acreage, labor inputs in the first and second

half of the cultivation period, final output quantity, and a sequence of sub-

jective distributions over final output from different points in the cultivation

year. We also use a sequence of price expectations observed at the farmer

level (and therefore, for our purposes, the plot level), and median village

labor prices. Labor inputs are aggregated across various survey rounds. The

average length of time between the first and last application of non-planting,

non-harvest labor on the sample plots is 21 weeks. Therefore, the variable

l1 in the model below captures the average number of total person-days per

week over the first 12 weeks of post-planting cultivation; l2 is the weekly av-

erage person-days over the next 9 weeks.6 We make no attempt to control for

6The number of weeks used to determine l2 varies slightly for a small number of plots
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Table 5.1: Sample summary statistics

Mean sd Min Max

Household size (people) 8.33 3.90 2 23

Dependency ratio* 1.31 0.85 0 5.5

Head age 46.85 14.69 20 100

Head is male (%) 85.0 - - -

Years of education (HH head) 4.19 3.46 0 11

Radios 0.83 0.71 0 4

Bicycles 1.19 1.00 0 10

Dairy cattle 1.33 2.84 0 20

Non-dairy cattle 3.87 7.89 0 60

Goats 5.27 8.05 0 50

Sheep 1.67 3.74 0 30

Total acres 9.67 11.03 1 82

Number of plots 2.71 1.17 1 7

Number of crops grown 3.45 1.26 1 8

Labor expenditure (TSH) 78,248 139,485 0 1,020,000

Fertilizer expenditure (TSH) 21,149 81,359 0 715,000

Animal labor expenditure (TSH) 33,497 92,724 0 750,000

Transport expenditure (TSH) 10,333 20,049 0 144,000

Other cultivation expenditure (TSH) 6,929 15,817 0 100,000

Total cultivation expenditure (TSH) 150,156 254,863 0 1,514,700
Notes: author's calculation from survey data; cultivation data refers to 2008-2009 cultivation of all 

crops; 1 USD ! 1 400 TSH; *Dependency ratio is number of persons aged < 15 or aged > 65 dividedcrops; 1 USD !"1,400 TSH; *Dependency ratio is number of persons aged < 15 or aged > 65 divided 

by number aged between 15 and 65.
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Table 5.2: Plot-level variables used in the estimation (N=212)

Variable Mean s.d.

Acres 2.04 1.62

Labor 1 (avg weekly person-days) 3.29 0.29

Labor 2 (avg weekly person-days) 2.96 0.47

Expected price in period 1 (TSH / mafurushi ) 48,247 5,528.3

Expected price in period 2 (TSH / mafurushi ) 51,021 5,311.1

Output (1 mafurushi  = 90 kg) 5.78 7.34

farmer-level variation, other than through the expected price variable that is

common to plots belonging to a single farmer.

We dropped any plots for which any of the labor, output or subjective

distributions information data are missing or coded as “Don’t know”. We

also dropped 4 plots at the estimation stage whose input, output and dis-

tributional data were in such conflict with the model that they made no

contribution to the log likelihood for any reasonable combination of param-

eters.7 We ended up with a total of 212 cotton plots with which to estimate

the model. Table 5.2 reports summary statistics for the variables included

in the estimation stage.

that were harvested very early.
7Data for at least one of these plots was given by different respondents at different

times, and the plot-level output distributions vary in a way that is completely inconsistent
with a model in which information is revealed gradually to a profit-maximizing farmer.



CHAPTER 5. DYNAMIC PRODUCTION MODEL 172

5.3 Stochastic Production Model

Farmers face substantial production uncertainty caused by agro-climatic fac-

tors that are beyond their control, such as rainfall levels, temperature, pest

pressure, destruction by birds and wild animals, and unobserved components

of soil quality. Other shocks, such as illness, may further disrupt otherwise

optimal production plans. In this section we incorporate the role of exogenous

shocks and the gradual resolution of temporal uncertainty into the farmer’s

decision problem. We develop a stochastic production model that deals ex-

plicitly with the sequential nature of farmers’ input allocation decisions, and

with the gradual revelation of information about the state of nature.

In order to focus on the role of subjective probability distributions, we

maintain numerous simplifying assumptions. We treat household consump-

tion and production decisions as fully separable, so that farmers act as risk-

neutral expected profit maximizers over their final output from cotton culti-

vation. We assume that input prices are known and fixed, and that interest-

free credit markets and labor reciprocity norms are sufficiently well-developed

to satisfy labor demand in every period. Furthermore, although there are in-

puts other than labor (notably, pesticides) that play an important role in

cotton production, in this paper we model crop growth as a function only

of labor and stochastic shocks. This allows us to use the same crop growth

specification as that in Fafchamps (1993).

We divide the culivation period into 4 stages: Planting, Cultivation 1,
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Cultivation 2, and Harvest. We number these as periods 0− 3, respectively.

Harvest-period labor is assumed to be directly proportional to output, there-

fore we ignore the final period. Likewise, while planting labor is potentially

informative for crop growth, we take acreage as exogenous and ignore the

role of labor input decisions during the planting period. We do, however,

allow for a stochastic shock to affect crop growth after planting but prior

to the application of cultivation labor. This shock corresponds to negative

weather and pest shocks related to the plants’ “take” and the possible need

for re-seeding.

Final output on plot i, denoted yi, is a function of acreage Ai, labor in

periods 1 and 2, and stochastic shocks in periods 0, 1 and 2. Following

Fafchamps (1993), it will be convenient to write the production function as a

sequence of functions, in which the crop state in period t is determined by the

lagged state of crop growth, period t labor inputs, and the contemporaneous

stochastic term:

yi0 = Aie
θi0

yi1 = h1(yi0, li1)e
θi1 (5.1)

yi = h2(yi1, li2)e
θi2

where θit ∼ git(θit) for t = 0, 1, 2

Throughout the paper, we use ψit(yi) to denote the subjective distribu-

tion over final output yi gathered in cultivation stage t. This is in contrast
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to git(θit), which are the densities of the stochastic contributions to output.

The parameters of the crop growth functions ht, t = {1, 2}, are allowed to

vary across periods, to capture the changing role of labor across the cultiva-

tion season. We use constant returns CES production functions in order to

maintain flexibility in the sign and size of elasticities of substitution without

substantially increasing the number of parameters to be estimated:

h1(y0, l1|α, γ) =
[
αyγ

0 + (1− α)lγ1
] 1

γ (5.2)

h2(y1, l2|B, β, δ) = B
[
βyδ

1 + (1− β)lδ2
] 1

δ (5.3)

There are a total of 5 production parameters: the share parameters α

and β which lie in the interval (0, 1), the transformed elasticity parameters

γ and δ, and the global scale parameter B. While the problem is also depen-

dent on the period- and plot-specific distributions of the stochastic terms,

i.e., the parameters of git, we do not parameterize these densities because

close approximations of them are observed and therefore do not need to be

estimated. We discuss this issue in detail in the following section.

The farmer’s objective in period 1 is to maximize expected plot-level

profits conditional on the observed level of θi0, on the subjective distributions

over θi1 and θi2, and on his expectations about his own future labor input
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li2:

max
li1

E[qc]Eθi1θi2

[
B

{
β
([

α(Aie
θi0)γ+(1−α)lγ1

] 1
γ eθi1

)δ
+(1−β)l∗δi2

} 1
γ

eθi2

]
−qlli1

(5.4)

where the expectation Eθi1θi2 is taken over gi1(θi1) and gi2(θi2), the future

choice of li2 is replaced with its optimal policy function l∗i2, and the input

price ql is known and fixed. A similar expression can be written for labor in

period 2.

Clearly, the timing of information revelation and labor decisions plays an

important role in the model. Therefore, before going further we discuss the

sequence of events that characterize the farmer’s problem. We will derive the

model’s first-order conditions in the section covering the identification of the

error densities git(θit). In the rest of the paper we will usually drop the plot

subscript i, for notational simplicity, but we nevertheless maintain the plot-

and period-level specificity of the distributions of the stochastic contributions

to output.

5.3.1 Timing

The timing of input allocation decisions and information revelation is critical

to the model. Therefore, before moving on to consider the farmer’s problem

and the identification of the subjective distributions over the sequence of

shocks, we make the sequence of events explicit.

The first event is the determination of plot acreage A. In this paper we
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treat acreage as exogenous, so period 0 of the farmer’s decision problem be-

gins after A is chosen.8 Prior to the application of weeding and trimming

labor, i.e. prior to the choice of l1, stage 0 yield distribution ψ0(y) is reported

by the farmer to the researcher. At this point the farmer incorporates his ra-

tional beliefs about his own future actions, given by optimal policy functions

l∗1 and l∗2, as well as his beliefs about the densities of future shocks, g1(θ1) and

g2(θ2), into the distribution over final output ψ0(y) that he communicates to

the researcher.

The first shock θ0 is then realized, and period 1 begins. The farmer

observes the realization of θ0, and chooses l1. He makes this choice in accor-

dance with density functions g1(θ1) and g2(θ2), and with the optimal policy

function l∗2 that determines his future labor input decision. Output distribu-

tion ψ1(y) is observed by the researcher simultaneously with l1, therefore it

includes the actual choice l1, rather than the optimal policy function l∗1.

The period 1 shock θ1 is then realized, and period 2 begins. The farmer

observes the realized θ1, and chooses l2 in accordance with his beliefs g2(θ2).

At this point he also reveals ψ2(y) to the researcher. Therefore, subjective

distribution ψ2(y) includes the realized values of θ0, θ1, l1 and l2. The only

stochastic variation remaining is that which is revealed at the end of period

2, when θ2 is realized. This last shock captures both the possibilities of

8We do observe yield distributions that pre-date the acreage decision, but they have
yet to be incorporated into the model. The early season yield distributions were gathered
using a different set of bin-intervals than the later distributions. Comparability between
the yield distributions from before and after the acreage decision will be improved once
we relax the stepwise uniform assumption.
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continued growth or degradation in the final weeks before harvesting, and the

residual uncertainty over actual output volume once harvesting is complete.

It should be emphasized that this schedule of information revelation, data

collection and labor allocation is fully observed in the data. Labor inputs

that are aggregated across multiple rounds of data collection are organized

to match the elicitation of subjective yield distributions in a manner that

corresponds to the above sequence.

5.4 Estimation Procedure

In this section we describe the procedure used to estimate the five produc-

tion parameters of the stochastic production model. Because this paper’s

key innovation involves the use of a sequence of subjective plot-level output

distributions to identify the distributions of stochastic contributions to out-

put, thereby avoiding the restrictive assumption of a common error variance

across plots and periods, we first discuss in detail the identification of the

distributions of (θ0, θ1, θ2).

5.4.1 Identification of error density functions

If we assume that farmers have rational expectations about their own future

input choices, the density functions g0(θ0), g1(θ1) and g2(θ2) are identified by

the sequence of observed, subjective output distributions. The key is that

period t and period t+1 distributions over final output differ in only two ways:
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the former incorporates θt as a random variable and lt+1 as an optimal policy

function, while the latter treats these as an observed realization of a shock

and a known labor allocation decision, respectively. Working backwards from

ψ2(y), we will show that with a CES production function specification, the

sequence of observed yield distributions fully reveals the error distributions.

First, some additional assumptions about the sequence of shocks are

needed in order to identify g0(θ0), g1(θ1) and g2(θ2) from ψ0(y), ψ1(y) and

ψ2(y). These are as follows:

1. The plot-specific error densities g0(θ0), g1(θ1) and g2(θ2) are known

throughout the cultivation season and are independent of inputs l1 and

l2

2. The sequence of shocks (θ0, θ1, θ2) are mutually independent (though

not necessarily identically distributed)

3. E[eθt ] = 1 t = 0, 1, 2

For all t, assumptions 1 and 2 rule out the possibility of within-season

learning about the conditional or the unconditional distribution of θt (which

are identical). This does not preclude the possibility of between-season learn-

ing. Presumably, farmers’ beliefs about the distributions of the shocks are

developed over a period of years from their own experiences and the ex-

periences of their neighbors. However, within season the farmer learns the

realization of θt, but that tells him nothing about the distribution of θt+1.
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Likewise, because the unconditional error distribution is the same as the error

distribution conditioned on inputs, the farmer cannot take action to change

the variance of future shocks.9 Assumption 3 is a location normalization; it

will turn out to be more convenient to use this normalization than to make

the usual assumption E[θt] = 0, for t = 0, 1, 2.

Lastly, we also assume that the subjective output distributions that are

reported by farmers to the researcher, ψt(y), are the true output distribu-

tions. This is analogous to a standard rational expectations assumption,

with the critical difference that here we need only assume that the farmer

knows the error distributions and does his best to communicate them to the

researcher. We do not need to assume that the shock distributions are identi-

cal across periods and plots, nor that they vary systematically in accordance

with a small number of parameters, both of which are standard in dynamic

resource allocation models. In fact, we show below that there is substantial

heterogeneity in error distributions, across plots and across time.

To derive the error densities from the output densities, consider first the

observed plot-specific period 2 output distribution ψ2(y). When ψ2 is elicited,

all inputs have been allocated and all shocks other than θ2 have been realized

and observed. Let Ω2 denote the information set associated with this period.

9The interaction between input allocations and subjective, conditional error distribu-
tions is an interesting avenue for future research. It has long been known that many of
the functional forms imposed on agricultural production data impose overly restrictive as-
sumptions on the relationship between inputs and the variance of output (Just and Pope,
1978).
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Ω2 includes ψ2(y). Using the production function given in (5.1), we can write:

E
[
y|Ω2

]
= E

[
Bh2(A, l1, l2, θ0, θ1; ν)eθ2|Ω2

]
= E

[
Bh2(A, l1, l2, θ0, θ1; ν)

]
· E

[
eθ2

]

= Bh2(A, l1, l2, θ0, θ1; ν) (5.5)

where ν = (α, β, γ, δ). In the above we make use of the independence of

θ2 and the normalization E[eθ2 ] = 1.

Because the deterministic portion of production is fully known at the

time ψ2(y) is elicited, the expected value of final output y is equivalent to

the expectation of y conditional on the observed output density ψ2(y). The

distributional information in ψ2(y), then, reveals information about the den-

sity of the only remaining stochastic contribution to output, θ2. Recall that

ψ2(y) takes the form of a measure vector p2 of length N associated with

N connected and non-overlapping intervals on the support of y, and that

we assume the density inside any interval follows a uniform distribution.

For the interval j, defined by boundaries [aj, bj], j = 1 . . . N , we observe

p2j = Pr[aj ≤ y ∩ y ≤ bj]. Incorporating (5.5), we can make the following

substitution:

p2j = Pr

[
aj ≤ y ∩ y ≤ bj

]
in period 2

= Pr

[
aj ≤ E[y|Ω2]e

θ2 ∩ E[y|Ω2]e
θ2 ≤ bj

]

= Pr

[
ln

( aj

E[y|Ω2]

)
≤ θ2 ∩ θ2 ≤ ln

( bj

E[y|Ω2]

)]
(5.6)
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Thus, through the straightforward transformation of the interval bound-

aries given by (5.6), ψ2(y) becomes g2(θ2), and the associated measure vector

is p2.

We now consider the identification of g1(θ1). At the time output distribu-

tion ψ1(y) was collected, the realization of θ0 and the known choice l1 were

already determined. Stochastic contributions to ψ1(y) are from the farmer’s

subjective distribution over the two remaining shocks, θ1 and θ2, as well as

the optimal policy function for future labor, l∗2, which depends on θ1. We

already have a measure of the θ2 density g2(θ2). This subjective distribution

is time invariant, therefore it is part of Ω1, the period 1 information set.

To derive an expression for l∗2 we return momentarily to the farmer’s choice

problem in period 2. The farmer is an expected profit maximizer, therefore

his period 2 problem is given by:10

max
l2

E[qc]Eθ2

[
B

{
β
([

α(Aeθ0)γ+(1−α)lγ1
] 1

γ eθ1
)δ

+(1−β)lδ2

} 1
γ

eθ2

]
−qll2 (5.7)

where qc is the price of cotton at the time of sale, ql is the known price of

labor in period 2, and the second expectation is taken only over θ2, because

this problem is solved after θ1 has been realized. In (5.7) we rely on the

observation, discussed in Section 5.2 that Tanzanian cotton farmers are pure

price-takers in the output market, so that plot-level output and prices are

10Recall that we have assumed a fully separable model with interest-free credit markets
sufficient to cover the cost of any desired labor inputs. Therefore only the contemporaneous
cost of labor enters the expected profit equation.
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independent. The term E[qc] is observed, because the survey data includes

regular measures of subjective output price distributions. Likewise, ql is

observed directly in the data set. After taking the first order condition of

(5.7) and rearranging, the l2 optimal policy function is given by:

l∗2(A, l1, E[qc], ql, θ0, θ1, η, B) =
β
(
α(Aeθ0)γ + (1− α)lγ1

) 1
γ eθ1

(
ql

BE[qc](1−β)

) δ
1−δ − (1− β)

(5.8)

where η = (α, β, γ, δ). Using (5.8), we return to period 1 and write output

as a function of l1 and the shocks:

y = B

(
β
{
(α(Aeθ0)γ + (1− α)lγ1)

1
γ
}δ

eδθ1 +
(1− β)β

{
α(Aeθ0)γ + (1− α)lγ1

} δ
γ eδθ1

(
ql

BE[qc](1−β)

) δ
1−δ − (1− β)

) 1
δ

eθ2

= B

(
β
{
(α(Aeθ0)γ + (1− α)lγ1)

1
γ
}δ

+
(1− β)β

{
α(Aeθ0)γ + (1− α)lγ1

} δ
γ

(
ql

BE[qc](1−β)

) δ
1−δ − (1− β)

) 1
δ

eθ1eθ2

= H1

(
B, α, β, γ, δ; A, l1, ql, E[qc], θ0

)
eθ1eθ2 (5.9)

Substituting the l∗2 policy function into the period 1 output equation

allows us to factor out eθ1 , and express output as the product of H1, which

is a function of parameters, pre-determined variables and the choice of l1,

and shock terms that enter proportionally. This is a general feature of any

production function the log of which is additive in the shocks: substitution of

the optimal policy functions from future decision periods into the expected

profit equation allows us to express output as the product of its deterministic
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and stochastic components. Because the shocks θ1 and θ2 are independent of

each other and H1 is non-stochastic, we can write an expression for expected

output that is analogous to (5.5):

E[y|Ω1] = E
[
H1

(
B, α, β, γ, δ; A, l1, ql, E[qc], θ0

)
eθ1eθ2 |Ω1

]

= E
[
H1

(
B, α, β, γ, δ; A, l1, ql, E[qc], θ0

)
|Ω1

]
· E[eθ1 ] · E[eθ2 ]

= H1

(
B, α, β, γ, δ; A, l1, ql, E[qc], θ0

)
(5.10)

Once again, the deterministic component of output is observed as the

expectation of y given by ψ1(y). The distributional information in ψ1(y) that

describes the subjective distribution of y around its mean is based entirely on

the multiplicative effects of eθ1 and eθ2 . Using the observed period 1 measure

vector p1, we can write the following expression for the probability of final

output y taking on a value in interval j:

p1j = Pr

[
aj ≤ y ∩ y ≤ bj

]
in period 1

= Pr

[
aj ≤ E[y|Ω1]e

θ2eθ2 ∩ E[y|Ω1]e
θ1eθ2 ≤ bj

]

= Pr

[
E[y|Ω1]e

θ1eθ2 ≤ bj

]
− Pr

[
aj ≤ E[y|Ω1]e

θ2eθ2

]

= Pr

[
θ1 ≤ ln

(
bj

E[y|Ω1]

)
− θ2

]
− Pr

[
ln

(
aj

E[y|Ω1]

)
− θ2 ≤ θ1

]
(5.11)

The expression in (5.11) suggests a method for numerically estimating

the distribution of θ1. Imagine momentarily that we knew g2(θ2) and g1(θ1),
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but did not know the distribution of y. Because y is a function of two

independent random variables, a consistent estimator of the distribution of y

conditional on g2(θ2) and g1(θ1) can be derived by repeatedly sampling from

g1 and g2, calculating the y associated with each sampled (θ1, θ2) pair, and

estimating the distribution of the calculated y’s. In our case, we already have

expressions for the distribution of y and θ2, ψ1(y) and g2(θ2), respectively,

but it is the distribution of θ1 that is unknown. We do, however, observe

E[y|Ω1] as the expectation of y conditional on ψ1(y). Because we know that

y is given by (5.10) and we assume that the shocks are independent, we can

approximate the distribution of θ1 by drawing M pairs (ym, θ2m) from ψ1(y)

and g2(θ2), and calculating the following:

Pr[θ1 < Θ1] =
1

M

M∑

m=1

I
[
ln

(
ym

E[y|Ω1]

)
− θ2m ≤ Θ1

]
(5.12)

where I is the indicator function, for any value of Θ1 on the real line.

From the empirical CDF given by (5.12) we can easily reconstruct an ap-

proximation of g1(θ1) that follows the form of (5.11). For each plot, we set

M = 20, 000 and empirically approximate g1(θ1) in just this fashion. To

maintain consistency with the stepwise uniform functional form of ψ1(y) and

g2(θ2), we approximate g1(θ1) as stepwise uniform over 20 intervals, each

corresponding to a 5% quantile.11 Because we select the interval boundaries

to ensure equal probability in each interval, the width of the intervals that

11In order to bound the upper and lower intervals in a reasonable way, we throw out
the upper and lower 0.005% tails of the M estimates of θ1 before constructing interval
boundaries.
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define g1(θ1) is not standardized.

A notable feature of this estimation method is that the estimate of g1(θ1)

does not depend on production parameters. This is a direct result of the

CES functional form, which allowed us to factor output into its deterministic

and stochastic components. Independence from model parameters is not a

necessary condition for consistency of (5.12), but it does save substantial

computer time, since g1 can be estimated once for each plot and then stored

for use in each iteration of the search algorithm. It appears to be the case

that monotonicity of y in θ1 is a sufficient condition for consistency of (5.12),

regardless of whether the expression inside I in (5.12) depends on model

parameters.

We use the same procedure to derive the density function for θ0, g0(θ0).

After substituting l∗2 into the period 1 problem and solving for optimal policy

function l∗1, we can express expected output as follows:

E[y|Ω0] = H0

(
B, α, β, γ, δ; A, ql, E[qc]

)
eθ0eθ1eθ2 (5.13)

We then sample repeatedly from ψ0(y) and our estimates g1(θ1) and

g2(θ2), and construct an empirical approximation of g0(θ0) following the same

method as in (5.12).
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5.4.2 Estimation Algorithm

Using the estimated density functions for stochastic shocks (θ0, θ1, θ2), the

joint probability of observing the sample conditional on parameter vector

η = (B, α, β, γ, δ) is given by:

L(A, l1, l2, Y |η)
P∏

i=1

gi0(θi0)gi1(θi1)gi2(θi2) (5.14)

where P is the total number of plots in the sample and the density func-

tions are indexed to emphasize their plot-specificity. Equation (5.14) is anal-

ogous to a concentrated likelihood function in a standard model without sub-

jective distributional data, because error parameters do not enter directly.

In order to evaluate this expression, we first need to explain how estimates

of realized (θ0, θ1, θ2) depend on the model parameters. In the case of θ0 and

θ1, the estimated realized shocks are calculated as those that satisfy l∗1 and l∗2.

That is, for a given parameter vector we find the value of the realized shock

that must have been observed by the farmer in order to make his observed

labor allocation decision correspond to that given by his optimal policy rule.

Because l∗2 depends on θ0, we first find θ0 using the optimal policy function
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for l1:

l∗1(B, α, β, γ, δ, A, θ0, E[qc], ql) =
α

1
γ Aeθ0

[(
ql

1−α

) γ
1−γ {BE[qc]β

1
δ Σ

Σ−1+β

} γ
γ−1 − 1 + α

] 1
γ

(5.15)

where Σ =

(
ql

BE[qc](1− β)

) δ
1−δ

For any value of the parameter vector, the unique value of θ0 that satisfies

(5.15) can be quickly calculated. In practice, θ0 takes on complex values over

substantial portions of the parameter space, and an extensive grid search

is needed to identify reasonable starting values for the parameters prior to

implementing an iterative search procedure. Once we have an estimate of θ0,

we can quickly recover an estimate of θ1 from (5.8). Lastly, θ2 is estimated

as θ2 = ln
(

Y
H2(·)

)
, where H2(·) is the right hand side of (5.5).

Using these estimates of the shocks, we search for the value of the param-

eter vector that maximizes the log of (5.14).12 The density functions over

the stochastic components of output are observed and invariant to parameter

values, therefore calculation of the log likelihood for successive guesses of pro-

12Is is noteworthy that while contributions to the log likelihood are independent across
plots, which is standard, the contribution in each period is also independent of future
shocks on the same plot. This suggests that early stage data from plots for which input
data is incomplete in later rounds, due to missing values or missed interviews, could in
principle be added to the log likelihood. Of course, this requires that subjective output
distributions are never missing even when input data are, because the error densities are
only identified via backwards induction from the final period.
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duction parameters (B, α, β, γ, δ) is very rapid. However, because we have

imposed a stepwise uniform distributional assumption on the density func-

tions, the gradient vector consists only of 0 and ∞ values, making Hessian-

based search methods infeasible. We therefore make use of an uphill simplex

method (also called the amoeba) similar to the Nelder-Mead algorithm, which

does not require calculation of the gradient or Hessian of the log likelihood

(Press et al, 2007).

5.4.3 Standard errors

In principle, the covariance matrix of the estimated parameter vector can be

estimated in the standard fashion, i.e., with the inverse of the information

matrix evaluated at the estimated parameter value. However, it is an open

question whether the subjective nature of the error distributions changes the

asymptotic distribution of the ML estimate. Regardless, in the current con-

text the standard estimate of the asymptotic variance of the estimator is not

calculable, because our distributional assumptions about the gt functions do

not permit analytical computation of the information matrix. We therefore

focus on estimation of the parameter vector itself, and leave its asymptotic

distribution for future work.
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5.5 Results

We focus on two sets of results: the error distributions and the estimated

parameter vector. While the former are not in fact results, because they

are observed in the data and are “estimated” by transforming the subjective

output distributions, they demonstrate the degree of heterogeneity in beliefs

that would be lost if a common-error assumption were imposed on these

data. Table 5.3 shows the average and the standard deviation of the upper

and lower bounds and expected value of the estimated densities of θ0, θ1 and

θ2. Note that non-zero average expected values are expected, because we

normalized these densities so that the expectation of the exponential is unity.

We are particularly interested in the standard deviation column of Table

5.3. There is clearly a substantial degree of within-period variation in both

the intervals of positive support and the expected values of the plot-specific

distributions. This suggests that farmers do in fact perceive variation in

the stochastic contribution to production on plots of different characteristics

and in accordance with the farmers’ plot-specific cultivation plans. Rational

expectations models that suppress this variation will, in general, arrive at

biased estimates of the parameter vector.

In Table 5.4 we see the estimated coefficient vector and the value of

the log-likelihood function at its highest point. Only two decimal digits

were estimated, because a relatively slack convergence tolerance was used to

generate these results, starting from numerous initial points identified by grid
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Table 5.3: gt(θt) summary statistics

!"#$"%&' ('") *+,+

!-.&/0'#.%/1), 23+45 6+78

!-.199'#.%/1), 3+:; 6+<-

=>!-? 2-+6: -+86

!6.&/0'#.%/1), 23+:4 6+7:

!6.199'#.%/1), 3+-6 6+:7

=>!-6? 2-+-6 -+57

!3.&/0'#.%/1), 2:+64 6+:7-<@

!3.199'#.%/1), ;+64 6+:7-<@

=>!3? 23+;5 6+6<

A 363 363
@BC./D.!3.199'#."),.&/0'#.%/1),*.$*.E/)*F")F.%G.

E/)*F#1EF$/)H.%'E"1*'.%/FI.#'D&'EF.J"#$"F$/).$)."E#'"K'

Table 5.4: Estimated parameter vector

Parameter Value

B 5.51

! 0.21

" 0.01

# -1.84

$ -4.87

Log likelihood -3,044.20

search. The most notable results are those for B and β: the scale parameter

plays a very significant role in matching realized output to the approximate

center of the output distributions ψ2(y). The very low value of β suggests

that labor inputs in the second half of the season have an outsized effect on

final output. It is is notable that Fafchamps (1993) found a similarly near-

degenerate share parameter value, though in that paper early stage crop

growth figured prominently and early stage labor had a near-zero share.
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While we can be confident that the estimated vector is a close approxi-

mation of the global maximum associated with the model estimated in this

paper, the log-likelihood value indicates that the model is a relatively poor

fit of the data. This is not surprising, as we have ignored relevant input

data (pesticides) and imposed a risk-neutrality assumption that is surely in-

consistent with the choice behavior of many farmers. These shortcomings,

however, can be remedied in future versions of this paper. It will also be

interesting to estimate this model again, ignoring the observed distributions

and imposing a standard rational expectations model. It is likely that if

we treated the θt variances as free parameters that could adjust to fit the

structural parameters, we could improve the fit of a model that is clearly

inconsistent with the observed subjective distributions.

5.6 Conclusion

In this paper we developed a technique for identifying subjective plot-level

distributions of stochastic shocks to agricultural output from a sequence of

plot-level yield distributions, and applied the technique to estimate a dy-

namic agricultural production model from a high frequency data set of Tan-

zanian cotton farmers. The distributional data indicate a substantial degree

of heterogeneity in perceived error distributions, across both plots and pe-

riods. This suggests that well-specified models that utilize measured sub-

jective distributions will, in general, arrive at parameter estimates that are
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uncontaminated by the largely untestable assumptions that have been the

workhorse for this type of model for decades.

One of the important take-away lessons of the paper is that the aggregated

contributions of shocks that are subject to considerable inter-plot variation

and that are difficult to quantify, e.g. pest pressure, can still be identified

by proper transformation of a sequence of subjective output distributions.

While we cannot disaggregate the plot-period-level shocks into the compo-

nents that are due to rainfall uncertainty, pest uncertainty, soil quality, etc.,

we can derive an estimate of a composite error directly from the elicited sub-

jective output distributions. This has important implications for the design

of future efforts to gather subjective distributions data. Arbitrary quantifi-

cation of shocks that are perceived qualitatively or categorically may not be

necessary if distributions over a related, well-conceived continuous variable

can be gathered.
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5.7 Appendix

Included with this chapter are the phone survey instrument used to gather

high frequency input, output distribution and price distribution data. We

also include the visual aids used to elicit output and price distributions,

laminated copies of which were left with each respondent.
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