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SUMMARY 

The existence of confidence procedures which dominate the usual one, a 

sphere centered at the observations, has long been known. However, no expli­

cit procedure has yet been shown to dominate. If p ~ 4, we prove that if 

th~s sphere is recentered at the positive-part James Stein estimator, the 

resulting confidence set has uniformly higher coverage probability, and hence 

is a minimax confidence set. Moreover, the increase in coverage probability 

can be quite substantial. Numerical evidence is presented to support this 

claim. 
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1. Introduction. The problem of improving upon the usual point estimator of 

a multivariate normal mean has received enormous attention in the literature 

during the past 15 years. The companion problem, that of set estimation, 

has received comparatively little attention, however. This is partially 

due to the increased difficulty of the set estimation problem, and also due 

to the fact that many of the techniques developed for point estimation 

(notably integration by parts) do not readily carry over to the set estima­

tion problem. 

If X is one observation from a p-variate normal distribution with mean e 

and identity covariance matrix, the confidence set 

(1.1) 
' 

a sphere centered at X, has probability 1 - ex of covering the true value of 9 

if c2 satisfies P(X~::;;c2 ) =l-ex. CX(e) enjoys many optimality properties; 

for example, it is unbiased and best translation invariant. It is also mini­

max, which means that among all procedures with coverage probability at least 

1- ex, CX(e) minimizes the maximum e:xpected volume. 

A natural question that arises is whether CX(e) is a unique minimax set 

estimator, or do others exist. If so, then since the coverage probability 

of CX(e) is constant for all e, there would be room to increase coverage 

probability without increasing volume. This question was first posed by 

Stein (1962), who developed heuristic arguments that show that improved set 

estimators can be developed. Later, Brawn (1966) and Joshi (1967) indepen­

dently demonstrated the existence of a dominating (minimax) procedure for 

p ;;:: 3 . Joshi proved that the set 

(1.2) 
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where oJ(X) = [1-a/(b+X'X)]X, has higher coverage probability than CX(e) 

if a is sufficiently small and b is sufficiently large. Olshen (1977) simu-

lated the coverage probability of~ (e) for selected a, band jej . The 

results indicated that large gains can be achieved. Morris (1977) also 

simulated coverage probabilities for certain generalized Bayes estimators 

and again the results were good. 

Two other important works are those of Faith (1976) and Berger (198o). 

Faith derives confidence sets from Bayes credible sets and shows, for p = 3 

or 5, that these sets have smaller volume and higher coverage probability 

than CX(e) for all jej except an interval of middle values. Berger also pro-

ceeds in a Bayesian fashion, but also considers the posterior covariance matrix, 

and constructs confidence ellipsoids. These sets are shown to have uniformly 

smaller volume, and to dominate in coverage probability for sufficiently 

large je j . 

Lastly, Casella (1980) extended the method of Faith and derived exact 

formulas for confidence sets centered at the James Stein or positive-part 

James Stein estimator. No analytical results were presented, but the computed 

coverage probabilities show that substantial improvement is possible. 

Thus far, however, no one has exhibited a procedure which can be proven 

to dominate CX(e) for all e • Our main result is that for p ~ 4, 

(1.3) c (e) = [e : lie - c/(x)ll 2 ::; c2 } 
0+ 

where o +(X) = (1- a/X'X) +X ( "+" denotes positive part) has, for a specified 

range of values of a, higher coverage probability than CX(e) for all e . 

Since the volume of C (e) is the same as that of CX(e), it follows that 
c/ 

C (e) is minimax set estimator of e • 
0+ 

It is unfortunate that the dominance result could not be obtained for p = 3 
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but, as will be seen in Section 3, the integrand we must deal with changes 

drastically as p moves from 3 to l+, and is exceedingly difficult to deal with 

when p = 3 . However, the results for p ~ 4 are surprisingly good. Even though 

our upper bound on a does not reach p- 2, the coverage probabilities of C (e) 
5+ 

are a substantial improvement over CX(e), and are virtually equal to those 

obtained with a= p- 2 

The proof of the dominance of C (e) over CX(e) proceeds in the following 
5+ 

way. First we establish that, for lei <c, Pe[C +(e)]~ Pe[CxCe)]. Then, 
5 

since lim P9 [C +(9 )] = Pe [CX(e )], a sufficient condition for the minimaxity 
lei-+= o 

of c (e) is that (0 /alej)Pe[C (e)J:s:o for jej >c • The major portion of 
5+ 5+ 

this paper is dedicated to establishing this result. To obtain a workable 

expression for (o/ojel )Pe[C +(e)] we ultimately employ an integration by parts 
5 

(in a manner analogous to the point estimation problem) but, since our inte-

grand is an indicator fUnction this gives us a Dirac delta function in the 

integrand. (A Dirac delta function, say b. ( t), is defined by b. (t) = 0 if m m 

ttm andll (m)=ex~ .) By a spherical transformation, the p dimensional inte-m 

gral is reduced to a two-dimensional one. Then, by evaluating the delta 

function, a one-dimensional representation is obtained. The condition on the 

constant a is then derived (i.e., O:s: a:s: a0 ) which guarantees that the inte­

grand is everywhere negative, and hence that Pe[C (e)] is decreasing in jej 
5+ 

for jej>c. 

In Section 2 we make this argument rigorous by expressing (o/oje/)Pe[C (e)] 
c/ 

as the limit of a sequence of integrals with differentiable integrands, and 

obtain the necessary representation. In Section 3 we apply these results to 

the set (1.3) and determine a0 such that Pe[C +(e)] :2 Pe[CX(e)] if a=s:a0 • 
5 

Section 4 contains some comments and generalizations. Technical lemmas, needed 

in Section 2, are in the Appendix. 
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2. Representations of Coverage Probabilities and Their Derivatives. In 

this section we show how to represent coverage probabilities and their deriva­

tives (with respect to jej) as the limit of a sequence of integrals with diff­

erentiable integrands. By first applying integration by parts and then taking 

limits we obtain workable expressions for these quantities. 

The results of this section are not restricted to the positive part 

James-Stein estimator, but are valid for a more general form of estimator. 

Hence, we now consider estimators of the form 

(2.1) o(x) = y( I xl )x 

and confidence sets, 

(2.2) 
' 

where y(r) satisfies the following five conditions: 

1. y( r) 2!: 0 • 

2. Y(r) is non-decreasing. 

3. Y(r) is strictly increasing for all r such that Y(r) > 0 • 

(Hence, assume Y( r) > 0 for r > r 0 • ) 

4. Y ( r) is continuous and differentiable for r > r0 • 

5. Both Y( r) and Y '(r) can be bounded above by some polynomial. 

We note that the positive-part James-Stein estimator satisfies these conditions, 

but the ordinary James-Stein estimator does not. 

In evaluating the coverage probability of c5(e) it is easier to work with 

the 9 section 

(2.3) 
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Before proceeding to the representation theorems, we present the follow-

ing theorem, which establishes the superiority of c8 (5) for lei <c. 

THEOIDM 2.1. For 5(X)=Y(IXI)x, where Y satisfies os;Y(Ixl)s;l, 

P8 [c8 (5)];;:: P8 [c9 (x)] for all lei s;c. 

PROOF. This result seems to be fairly well known, and is given here 

only for completeness. The theorem follows by establishing that, for leIs; c, 

c9 (x) = [x: lxl 2 -2lxllelcosf3+1el 2 s;c2 } 

~ 

= [x: lxl s; jejcosf3+(c2 -ISI 2 sin2 t3)2} 

, 

where i3 is the angle between X and 9 • Since os;ys;l, it is seen that c9 (X) c c8 (5), 

and the result follows. 

In light of this theorem, we only need be concerned with the case le I> c • 

We proceed with the following lemma, which shows how P8 [c8 (5)] and (o/o lej)P8 [c8 (5)] 

can be expressed as the limits of a sequence of integrals with differentiable 

integrands. 

LEMMA 2.1. Let ~ 
n 

denote a univariate normal cdf with mean 0 and vari-

-2 
ance n Define 

Bn(e) = J ~n[c2 -IY(Ixl)x-sj 2 )f9 (x)dX 
JRP 

, 

where f 9 (x) is :::_multivariate normal density with mean 9 and identity covari­

ance matrix, and Y satisfies conditions 1- 5. Then 

i) lim Bn(e) = P9 [c9 (5)] , 
n-I(X) 

for I 9 I > c 
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PROOF. It follows from condition 3 that tY(t) is strictly increasing, 

which implies that P9 [X : jy( I xl )X- 9 12 = c2 ] = 0 . Then, by the fact that 

if t ~ 0, 4> (t) ..... I(t) where I(t) = l if t> 0 and 0 otherwise, (i) clearly 
n 

follows by the Bounded Convergence Theorem. To proceed with the proof of 

(ii), first transfonn to spherical coordinates to obtain 

(2.4) 

f3o r 

[ ( )] r .r+ n-lsl'np(3-2e ~-(~-2rlelcosf3+1el2)d.rdf3 
P9 c9 5 = KJ r 

0 r 

and 

where r = I X I, f3 is the angle between X and 8, 

( )/ p- 3 TT • 

K = (2TT)- p-2 2 Tf { J sinltdt} 

i=l 0 
and 

(2.6) 

The limits of integration of (2.4) satisfy sin(30 = c/je I, 0< (30 <TT/2, and 

r and r are the roots of 
+ 

which is equivalent to 

1 

(2.8) rY(r) = le lcosf3± (c2 -le j2 sin2 (3)2 

Notice that, for I 8 I> c we have c2 > I e l2sin2(3 and, moreover, je l2cos2 (3 

> c2 - le l2 sin2(3 if 0< (3< (30 • Assumption 3 on Y guarantees the uniqueness 

of the solutions of (2.8), and we have 

(2.9) 

We also note that we are dealing with Y(r) only for r satisfying Y(r)>O . 
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For fixed e, as 6 varies, r+(B) and r_(B) define the boundary of c8 (o) 

Figure 1 illustrates the set c8 (5) in two dimensions for 5 = 5 + . There is 

a flattening of c8 (5) on the side near the origin, and an expansion away 

from the origin. Both Ce(5+) and c8 (x) are symmetric across the ray through 

e . 

Since e0, r+, and r_ are all differentiable functions of lei, expression 

(2.4) shows that P8 [ce(5)] is differentiable with respect to lei . For ease 

of notation define 

(2.10) 

Differentiating with respect to lei we obtain 

(2.11) 

and 

(2.12) 

Bo r+ 

+ KJ J rcoseh(r,e)drd6 

0 r 

~ ar ~ ar 
+ KJ h(r+,e) oje+l de-KJ h(r_,e) ole-! de 

0 0 

TT co 

= -le IBn(e) +KJ s~n(w)rcoseh(r,e)drdB 
0 0 

Note that in calculating (o/o!ei)Pe[C8 (5)], the term containing oe0/~jel is 

zero. From part (i), -le1Bn(e)-+-jejp6 [c6 (5)] and, from the Dominated Con-

vergence Theorem, the second term in (2.12) converges to the second term in 

(2.11). Thus it only remains to show that 
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(2.13) 

From Lemma 4, Appendix, we have 

f3o oo 

(2.14) lim B~(e) = KJ lim J-2cpn(w)[lel-r'Y(r)cosf3]h(r,f3)drdf3 , 
n-ooo 0 n-co 0 

where cpn(t) = (d/dt)~n(t) 

w(r,f3,ISI) = 

Note that w = w (r, (3, I e l) can be written 

[ r'Y ( r) - r 'Y ( r ) ][ r'Y ( r) - r 'Y ( r ) ] 
+ + - -

Applying Lemma 3, Appendix, to inner integral in (2.14) yields 

(2.15) 

lim B*(e) 
n n-<CI) 

f3o = -2cp (r-r )[ le l-r'Y(r)cosf3]h(r, f3)dr 
= KS lim { J _n _+ ____ _ 

0 n-<tx:> 0 .e ( r +) I r + 'Y ( r +) - r _ 'Y ( r _) I 

CD-2cp (r-r )[lel-r-v(r)cosf3]h(r,f3)dr} 
+ l n - df3 ' 

0 .e(r_)lr+'Y(r+) -r_'Y(r_)l 

where .e(r) = (d/dr)r'Y(r) = r'Y'(r) +'Y(r)>O Taking the limit in (2.15) 

yields 

(2.l~lm B,..(e) = Kf3o _2[[18 l-r+'Y(r+)cosf3]h(r+,f3) + [ je l-r_'Y(r_)cosf3]h(r_,f3)]df3 

n-<CI) n i .e(r+)lr+'Y(r+)-r_'Y(r_)l .e(r_)lr+'Y(r+)-r_'Y(r_)l 

Lastly, it remains to be shown that (2.16) is equal to A*(e); defined in (2.13). 

From (2.9) we have that 
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or± 2[ le 1-r± 'Y(r±)coss] 

aref = [2lejcoss-2r±'Y(r±)]£(r±) 
, 

2le I cost3- 2r±'Y(r±) = +[r 'Y(r ) - r 'Y(r ) ] 
+ + - -

Substituting (2.17) and (2.18) into (2.16) shows that A*(e) is equal to expres­

sion (2.16), and hence the lemma is proved. jj 

We now came to the main theorem of this section, which gives a representa-

tion for the deriv~tive of P9 [c9 (o)] • 

THEOREM 2.2. 

So 

ol"e!Pe[ce(o)J = KJ 
0 

(2.19) 

For 'Y satis:f'ying conditions 1-5 and I e I > c, 

(coss[l-'Y'(r+)r+-'Y(r+)]-sin2 t3[1-'Y(r+)][(c2 /lel 2 )-sin2 t3]1f]h(r+,t3)dt3 

[r+'Y'(r+) +'Y(r+)] 

(cost3[1-'Y'(r_)r_-'Y(r_)]+sin2 S[l-'Y(r_)][(c2 /lel 2 )-sin2 s]-i)h(r_,t3)dS 

[r_'Y'(r_) +'Y(r_)] 

REMARK. It is interesting to note that if 'Y(r) = 1- a/r, then 

1- r'Y' (r) - 'Y(r) = o, and it is then easily established that (2.19) is negative. 

This implies that .the coverage probability of the confidence set centered at 

5(X) = (1- a/lxl tx is decreasing in leI for I e I> c • However, it is also 

true that for this estimator, lim P9 [C (e)] < P9 [CX(e) ], so this confidence 
le l-c a+ 

set cannot dominate the usual one. (More generally, if we define 

oE(x) = (l-a/lx1 1+E)+x, then lim P9 [c (e)]= P9 [cx(e)] if and only if 
le 1-c oE 

E> 0 . ) 

' 
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PROOF. From Lemma 2.1 it is clear that P8 [c8 (o)] and Bn(e) depend on 

e only through lei. Hence, without loss of' generality, lete = Clej,o, ... ,o). 

Then 

= J 2cpn [w(x,e) J [Y( I xi):lS_- I e I )f'9 (X)dX 

~ 

+ J in[w(x,e)J(:lS_ -lel)f'9 (x)dX , 
RP 

where w(x,e) = c2 - jy( lxl )X- ej 2 • We now apply integration by parts to the 

second integral, which allows us to replace ~n [w (X, e ) ] (:lS_ - I 9 I ) by 

(o/ox1 )in[w(X,e)] • Af'ter perf'orming the dif'f'erentiation and collecting 

terms (and writing x1 = X'e/lel), we obtain 

ol~l Bn(e) = 1:1 J cpn[w(x,e)J{[l-Y(Ixi)J[Y(Ixl)x'e -lei 2 J 
RP 

- X'eY'(Ixl)[Y(lxl)x-e]'X}f' (X)dX 
lxl 9 

Once again we transf'orm to spherical coordinates and obtain 

TT/2 Q',) 

~ Bn(e) = I~ I KJ J cpn[w(r,~,e)]H(r,~)h(r,~)drdS 
0 0 

where 

' 

H(r,e) = y(r)rlelcosS[l-Y(r) -Y'(r)r] +Y'(r)rjej 2 cos2 e-lej 2 [1-Y(r)] 

By f'irst applying Lemma 4, Appendix, and then Lemma 3, Appendix, we obtain 
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(2.20) 2K Bo H ( r +' f3) h ( r +' 8) H ( r _, 8) h ( r _ , 8) _1 
= T9T r { + } I r Y c r ) - r Y c r ) I d8 

~ lr+Y'(r+)+Y(r+)l lr_Y'(r_)+Y(r_)l + + - -

l. 

From (2.9) we have that r Y(r) -r Y(r) 2(c2 -lel 2 sin2 8)2 , and a simple + + - -

calculation shows that 

Substitution of these two expressions in (2.20) yields expression (2.19), and 

the theorem is proved. II 

The expression given in Theorem 2.1 is still rather difficult to handle; 

however, we are mainly concerned with the performance of the positive part 

James-Stein estimator. The derivative of the coverage probability simplifies 

considerably for this estimator, and is given in the following corollary. 

COROLLARY 2.1. For Y(lxl) 

leI> c, 

(l - a/ I xl 2 t, where a is ~ constant, and 

(2.21) 

J8o [h(r+,f3) h(r_,f3)] 
- K acosf3 - df3 

0 r2+a r2+a 
+ -

PROOF. Notice that, as mentioned in Lemma 2.1, we only need be concerned 

with the region where Y( • )> 0 • Hence, we can let Y( lxl) = (1- a/lxl 2 ) • 

Substitution in Theorem 2.2 gives the result. II 
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As mentioned before, the ultimate goal is to show that (a/aiel )P8[c8 (o)] 

is negative for I 8 I > c, which implies dominance of the usual confidence set. 

This problem has been reduced to showing that the expression given in (2.21) 

is negative but, alas, that task is still formidable. It is possible, however, 

to find conditions under which the integrand in (2.21) is negative and hence, 

produce confidence sets that dominate the usual one. In the next section we 

find bounds on the constant a that guarantee that the integrand in (2.21) is 

negative, and we examine the size of possible improvement. 

3. Minimax Confidence Sets. In this section we concentrate on the positive­

part James-Stein estimator o+(X) = (1- a/X'X)+X, and determine values of the 

constant a for which the sphere centered at o+(X) has higher coverage proba-

bility for all e, than that centered at X • Our technique is to show that 

the integrand of (o/oJ8I)P8 [c8 (o+)] is negative for l8l>c, which shows that 

P8 [c8 (o+)] decreases to its value at infinity. Since 

the dominance will be established for leI> c, and the 

follows from Theorem 2.1. 

lim P8 [c8 (o+)J =P8 [c8 (x)J, 
I e 1---tCX) 

dominance for 1 e I :::;; c 

By bounding the integrand, rather than the integral, the bounds obtained 

on the constant a are smaller than necessary for dominance of P8 [c8 (x)] • In 

fact, the upper bounds on a are less than p - 2, which was demonstrated (mm1er-

ically) by Casella (1980) to yield a dominating procedure. It is also unfortu-

nate that the result is not established for p = 3, however in this case the 

integrand becomes extremely difficult to handle. 

However, for p ~ 4, the upper bounds obtained do provide substantial 

improvement in coverage probability over the usual confidence set. Table 1 

gives coverage probabilities for these sets for 1- a= • 9, and it can be seen 

that the coverage probability can be as high as • 99 at I 8 I = 0, if p ~ 9 . 
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Moreover, even though the upper bounds are smaller than p- 2, the coverage 

probabilities we obtain are almost as high. Table 2 gives coverage probabil-

i ties for a= p - 2 and 1 -a= • 9, and comparison with Table 1 shows that the 

probabilities are virtually identical. 

It should also be mentioned that the choice a= 2(p- 2) does not produce 

a confidence set which dominates the usual one. (Recall that this is the 

largest value of a for which 5+(X) is minimax.) This statement is based on 

numerical evidence using the formula of Casella (1980). Calculations show 

that for moderate values of je j, the coverage probability of this set falls 

below that of the usual one. 

The main result of this section, the srifficient condition for dominance 

of CX(e) by C (e), is given in the following theorem. 
5+ 

THEOREM 3.1. For fixed c2 and p ;<: 4, define a0 as the unique solution 

to 

(3.1) 

Then for all 0< a~ a0 the sphere centered at 5+(X) = (1- a/X'xtx has higher 

coverage probability than the sphere centered at X, !·~·, C +(e) is~ mini-
5 

max confidence set. 

REMARK. Values of a0 for p=4,25(1) and c2 corresponding to nominal 

900/o and 95% intervals have been calculated. These values are presented in 

Table 3. It is evident that these values are smaller than p- 2; however, 

as previously noted, the coverage probabilities are very close to those of 

a=p-2. 
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PROOF. It is sufficient to show that expression (2.21) is negative for 

all lei > c , which is implied by 

(3.2) 

l. 
Notice that the :function sin2 13(c2 -ISI 2 sin2 13)2- cos13 is increasing in 13 • 

Define 131 < 130 as the unique root of this function. Then for 13> 131 all the 

terms in (3.2) are positive and, hence, we need only concentrate on 13< 131 • 

If 13< 131' expressj on (3.2) is true if and only if 

The term in braces is C!: l if 13< 131' and can be replaced by l • Now recalling 

the definition of h(r,l3), we can write 

Now, from (2.9), r Y(r ) + r Y(r ) = 2181 cos13 and, since Y(r) = 1- (a/r2), 
+ + - -

r2-2(r -r )jejcosl3-r2 = r 2 -(r -r )[r -(a/r )+r -(a/r )]-r2 
+ + - - + + - + + - - -
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Hence, we can write 

( 3.4) 

where t = r /r • Furthermore, 
+ -

(3. 5) r! [r:+a] = l +a/~ 
r2 r2+a l + a/r?-- + + 

;<: l vl3, leI > c ' 

since Thus, combining (3.4) and (3.5), a sufficient condition for 

the derivative of P9 [c9 (o+)] to be negative is 

(3.6) 
-l I 

( ) p-3 -a(t-t ) 2 p t = t e ;o: 1 o< 13< 130 , 1 e 1 > c 

It is straightforward to establish that p (1) = 1 and for t> 1 p (l) increases 

to a unique maximum, then decreases to 0 as t ~ ~ • Since t = r+/r_ ~ 1, (3.6) 

* will be established if we can show that p(t ) ~ 1, where 

t* = sup (r /r ) 
f3<13o + -
le l>c 

For fixed I e I' t is decreasing in 13, hence 

sup t = r+l = 

f3< 13o r- 13=0 

~ 

I e I +c+[ C I e I +c)2+4aF 
1 

lel-c+[(lel-c)2 +4a]2 

where the last equality follows from (2.9). Also, differentiation will estab­

lish that sup t is decreasing in I e I for leI > c, and hence, by substituting 
13 

je 1 = c, 

t* = sup 
f3<13o 
le l>c 
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A little algebra will verif'y that t-t-l= 2c//a, and hence (3.6) will hold 

if 

(3.7) * P (a) -of a e :<!: 1 

Since this function is decreasing in a, if we define a0 as the unique solu­

tion to p*(a) = l, (3.7) is true for all as: a0, and the theorem is proved. II 

The coarsest inequality used in this proof is bounding (l +a/~) /(1 + a/r!) 

by l since, for fixed (3, this function is decreasing in leI . This means that 

this function would increase the integrand at I a I = c, f3 = 0 • However, it 

seems rather difficult to bound the integrand independent of lei if this 

function is left in. What is most unfortunate is that this bound decreased 

the exponent of t to p - 3, so the theorem does not cover the case p = 3 . 

The inequality used on the term in braces in (3.3) probably did not lose 

very much. This is because at f3 = 0 this tenn is equal to l • 

The technique used here, that of bounding the integrand, does not seem 

to be powerful enough to cover the case p = 3 . Although it has not been proved, 

we believe that when p = 3 the minimum value of expression (3.3) obtains at 

leI = c, f3 = 0 • This gives the inequality 

' 

which we can think of as a necessary condition for the integrand of 

(o/~ le I )Pa [Ca (o +)] to be negative. If c2 is taken to be the 900/o cutoff point 

of a x3, then a0 = . 076 • At I a I = o, the coverage probability of this set is 
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. 906, a minimal improvement. Thus, while the minimax confidence sets developed 

here yield substantial improvements for p :2:4, a much more difficult technique 

(bounding the integral) is required to get substantial improvement when p = 3 . 

4. Comments and Generalizations. It has been shown that by merely recenter-

ing the usual confidence set at a positive-part James-Stein estimator, the 

coverage probability of the usual confidence set can be uniformly improved, 

with substantial gains for some values of the parameter. Although our upper 

bound, a0, is smaller than necessary, we have seen that a larger upper bound 

(a= p - 2) will not substantially increase coverage probabilities. Also, since 

there is numerical evidence that a= 2(p- 2) is too large, it seems that there 

is not room for much improvement over the bound a0 

We have restricted consideration to recentered confidence sets, and have 

not dealt with more complicated forms such as those of Faith (1976) or Berger 

(1980). It has been shown that these sets can have reduced volume while main-

taining a dominating coverage probability over most of the parameter space. 

However, these sets are conceptually more difficult to deal with. The recen-

tered sets are easy to visualize, and can also yield confidence intervals for 

the individual components of the parameter. 

Finally, we note two straightforward generalizations of our results. 

Let X- N(e,~), ~known, and let 

o; (X)= e0 +[l-a/(X-e 0 )'~-1(X-9 0 )]+(X-e 0 ) 
0 

, 

where e0 is a prior guess at e • Centering the estimator at a prior guess 

can be a great benefit, since the region of maximum improvement in coverage 

probability will be near e0 • For this situation, the usual confidence set 

is the ellipsoid 
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and the recentered set is 

c +(e)= (e: [5; (x) -e]'L:-1[5; (x) -9]~c2 } 
5e o () 

0 

By applying the transformation Y=L:-i(X-9 0 ), this set-up is transformed into that 

of Section 3, and hence it follows that C (e) dominates CX(e) for all e • 
5+ 
eo 

Another straightforward generalization is to a wider class of loss func-

tions. If we measure the loss of the confidence procedure C by 

where IC(e) = 1 if e E C and 0 otherwise, and w1 and w2 are any two known posi­

tive weights, it then follows that C +(e) dominates CX(a) with respect to 
5 . e L ( C, e ) for a ~ a0 • 

5. Acknowledgement. The authors wish to thank Dr. Jing-Huei Chen, 

a physicist skilled in the application of Dirac delta fUnctions, for helping 

with some of the technical arguments. 
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APPENDIX 

-2 
Let ~ be a normal density with mean 0 and variance n . Let f be a 

n 

continuous, integrable function. 

LEMMA 1. For any constant a and E > 0, 

ao 

lim J ~n(t-a)f(t)dt =lim I ~n(t-a)f(t)dt = f(a) 

n- -ao n-oCIO(t:lt-aj<E} 

PROOF. Since f is integrable, the first equality follows from the fact 

that lim ~n(t-a) = 0 for lt-al >E and an application of the Dominated Converg­
n--

ence Theorem. 

To establish the rest of the lemma, write 

ao 

lim J ~n(t-a)f(t)dt -f(a) 
n-oCIO 

-co 

= lim I cp (t-a)f(t)dt -lim f ~ (t-a)f(a)dt 
n--[ t: I t-ai<E} n n-oCIO( t: I t'-ai<E} n 

=lim I ~n(t-a)[f(t)-f(a)]dt , 

n--ICX)( t: I t-al<d 

and it only remains to show that this last integral goes to 0 as n _, oo • Since 

f is continuous, there exists 7] such that It-a I< E ~ I f(t) - f(a) I< 7], and hence 

the last integral is bounded above by 7], which can be taken arbitrarily small. 1/ 

LEMMA 2. Let h: ( c, d) -R be ~ strictly monotone function that satisfies 

h(a) =0 for~ aE (c,d) . Then 

d d~ (t-a)f(t)dt 
lim rep [h(t)]f(t)dt =lim I n = 
n-- .., n n--ICX) I h ' ( a) I 

c c 

f(a) 

lh'(a)l 
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PROOF. The result follows quickly from Lemma 1 and application of the 

-1 
transformation t = h ( s) . II 

LEMMA '). Let h(t) be any strictly monotone differentiable flmction. Then 

for any constants a and b, 

co 

lim J ~n[[h(t)-h(a)][h(t)-h(b)]}f(t)dt 
n-<co 

-CO 

co ~ (t-a)f(t)dt co ~n(t-b)f(t)dt 
1 . J n 1" J = ~ + ~ 
ll-4:1? -co lh 1 (a)lih(b)-h(a)l n_.o:> -(X) lh 1 (b)lih(b)-h(a)l 

= [ f(a) + f(b) ]lh(b)-h(a)/-1 
I h 1 (a) I I h 1 (b) I 

PROOF. Similar to those of Lemmas 1 and 2. II 

LC'I\ii'IIX II 4 For B~~ ( e ) d f. d . L 2 1 . th t t. f s t. l.:L'll'.l.l"1 • _ n as e 1ne ~ emma :::..:...:::J us1ng ~ no a 10n £._ ec 10n 

s, if I e 1 > c then 

(A.l) 

PROOF. 

lim B*(e) 
n 

ll-ICXl 

So (X) 

= Kf lim J-~n(w)[lel-rY(r)cosS]h(r,S)drdS 
0 n-too 0 

From (2.13), B*(e) is defined as n 

TT CXl 

B ~~ ( e ) = KJ 11-0- ~ ( w )] h ( r, s) drdt3 
n .J L.Olel 

0 0 

TT co 

= KJ J -2~n (w )[I 8 I -rY ( r) cosS ]h( r, s) drdS 

0 0 

We first show that, as n --= the value of the integral over the region L S: s> S0 } 

goes to zero. It follows quickly that the integral over the region [S:TT/2<S<TT} 
1. 

goes to zero since cpn (w) ::5: n(2TT) -2 exp[ [n( I e j 2 - c2 ) ] 2 /2} ..... 0 as n ..... co • Thus we only 



hence 

cp (w) = 
n 

n 

(2TT )i 
-n%>2 /2 e 
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n _n; L[rY(r)-lelcosf3]4r +(l9j 2 sin2 f3-c2 ) 2J def'n * 
::;; _;;:....2.,.. e = cp (r,t3) 

(2TT)"2" n 

where w is defined in (2.6). Now define 

(A.2) h*(r) = sup[ [je I - ry(r)cosf3]h(r,f3)} 
t3 

which is clearly integrable over (0,=) • We then have 

n/2 = 
KJ J I-2Ct>n (w )[I 9 I - rY(r)cosf3] I h(r, t3)drdt3 

(A. 3) 

t3o 0 
TT /2 = 

::;; 2KJ J cp:(r,f3)h*(r)drdt3 

t3a 0 

= TT/2 
= 2KJ { J cp~(r,f3)dt3}h*(r)dr ' 

0 t3o 

' 

where the last equality follows from Fubini's Theorem. Now apply the Dominated 

Convergence Theorem to expression (A.3) to obtain 

(A.4) 

The justification of this step will be explained later. We first show that 

(A. 5) Vr 
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Recall the definition of cp~~, and apply the transformation u = je I sin£3 to 
n 

obtain 

(A.6) 

Vm> 0 

The region of integration is expanded in order to get the point u = c inside 

the limits so that Lermna 2, Appendix, can be applied. Since (I e j2 - u2 )f is 

integrable over (c/2,/9/ ), applying Lemma 2 to expression (A.6) shows that 

it is equal to 

which clearly goes to zero as m __.co • Hence, equation (A. 5) is established 

and it only remains to justify equation (A.4). We will show that 

(A.7) 
TT /2 J cp:(r,e)d£3 $ M( je I) 
Bo 

for all nand some M(jej), and (A.4) will then follow from the Dominated 

Convergence Theorem. Using the fact that 

we obtain 

TT /2 TT /2 n -n2 (lel 2sin2£3-c2 )2 /2 J cp~(r,£3)d£3 $ J 
( 2TT}~' 

e d£3 

Bo Bo 

"}al n 
-n2(u2-c2 )2 /2 

e 
du 

( 2TT ri- (jej2-u2)i 
c 
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where the last equality is obtained by transforming to u = leI sint3 . Now using 

-2c2 n2 (T-c)2 -A 
where T =(lei +c)/2. Now, since ne s: e -;-jc(lel -c), expression 

(A.8) is bounded above by 

def''n 
= M( I e I) 

Since (le j2 -u2 )-i is integrable, (A.7) is established. Hence, it has been 

demonstrated that 

(A.9) lim B*(e) n n-'ICO 

t3o 

=KlimJ 
n-tCX:~ 0 

= J -~n(w)[lel-rY{r)cost3]h{r,t3)drdt3 
' 

0 

and it remains to show that the limit can be passed through the first inte­

gral. Using the fact that h~~(r) is uniformly bounded by some constant, by 

the Dominated Convergence Theorem it will be sufficient to demonstrate that 

t3o 

CX) I J cp n [ w ( r' t3) ] dr I < Ml + M2 ( I e I ' t3) 

0 

where s M2 ( I e I, t3) dt3< = . 
0 

' 
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From now on we only consider ~< ~O . From condition 3 of Section 2, 

let r 0 be such that 'Y(r)>O ~ r>r0, and let r 2 be the unique value that 

satisfies r 2 'Y(r2 ) = leI - c> 0 • (Note that r 2 > r 0 and, from (2.9), 

r 2 s; minr±(~) • ) Fix r 1 , r 0 < r 1 < r 2, then for any r such that 0< r< r1 we 
~ 

have 

jw(r,~)/ =I [r'Y(r)- r+'Y(r+)][r'Y(r)- r_'Y(r_)]j 

;;:: [r + 'Y(r) - r 1 'Y(r1 )] [r _ 'Y(r _) - r 1 'Y(r1 )] 

~ [r2 'Y(r2) - rl 'Y(rl) ]2 

= T] (independent of ~) 

Hence, :for r< r 1, cp (w) s: cp (T]) • Thus, there exists M1 such that 
r n n 

Ml;;:: r cpn(T])dr=r1cpn(TJ) :for all n . 

°For r> r 1, define r 3 to be the unique value satisfying r 3 'Y(r3) = leI cos~ 
(clearly r+(~) > r3 (~) > r_(~) > r 1 ). For r between r 1 and r 3, 

lw(r,~)j:.: [r+'Y(r+) -r3y(r3)Jiry(r) -r_y(r_)l 

= (c2 - le j 2 sin2~)il r'Y(r)- r 'Y(r ) I 

;;:: (c2 -jej 2sin2~)i[m~n oar r'Y(r)J lr-r_l 

:.: (c2 - je l 2 sin2~)iy(r ) I r- r I , 
1 -

since y(r) is non-decreasing. Similarly, for r> r 3, 

we then have that 

(mean value) 
theorem 
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' 

where the last inequality follows by expanding the ranges of integration on 

each integral to (-~,~) and integrating out the normal density. It remains 

to show that 
f3o 
J (c2 - Je j 2 sin2 f3)-idf3 < ~ 
0 

but this follows quickly by changing variables to u = jeJ sinf3 and recalling 

that sinf30 = c/1 e I . Thus, (A. 7) is established and the lemma is proved. JJ 
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TABLE 1 

Coverage probabilities for the set C +(e) where 
0 

a = a0 and c2 satisfies P(X2 ::::; c2 ) = . 9 
- p 

p 
-

5 7 9 11 13 15 

.9600 .9842 ·9933 ·9970 ·9986 ·9994 
·9506 ·9776 .9896 ·9951 ·9976 ·9988 
-9232 .9519 ·9731 .9859 -9924 -9959 
-9109 .9278 .9451 .9606 -9732 .9827 
.9063 .9166 .9283 .9402 -9516 .9618 

-9040 .9109 .9191 .9278 ·9366 .9452 
.9018 .9050 .9089 .9133 .9180 .9230 
.9010 .9028 .9051 .9077 .9105 .9135 
.9006 .9018 .9033 ·9050 .9068 .9088 
.9002 .9005 .goo8 .9013 .9017 .9028 
.9000 .9001 .9002 .9003 .9004 .9006 
.9000 .9000 .9000 .9000 .9000 .9000 
.9000 .9000 .gooo .9000 .gooo ·9000 

25 

·9999 
-9999 
-9999 
-9988 

·9925 
·9794 
.9481 

·9303 
.9204 

.9055 

.9014 

.9001 

.9001 
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TABLE 2 

Coverage probabilities for the set C (e) where 
--- + --0 

a= p- 2 and c2 satisfies P(X2 s: c2 ) = • 9 
- p 

p 

leI 5 7 9 11 1~ 15 25 

0 .9879 -9959 -9985 -9994 ·9998 ·9999 -9999 
2 .9809 ·9926 -9972 ·9989 -9995 ·9998 -9999 
4 -9343 .9622 .9808 -9949 ·9977 -9989 -9999 
6 .9162 -9337 -9510 .9661 .9780 .9866 -9993 
8 .9093 .9202 -9323 .9443 -9556 -9567 -9943 

10 .9o60 -9133 .9218 -9307 ·9397 -9484 .9819 

15 .9027 .9061 .9102 .9147 .9196 .9247 -9502 
20 .9015 .9035 .9059 -9085 -9114 -9145 -9317 
25 .9010 .9022 .9038 -9055 .9075 -9095 -9214 
50 .9002 .9006 .9010 .9014 -9019 .9024 .9058 

100 .9001 .9001 .9002 -9004 .9005 .9006 -9015 
500 .9000 .9000 -9000 .9000 -9000 -9000 -9001 

1000 -9000 .9000 .9000 .9000 .9000 -9000 -9000 
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TABLE 3 

Selected values of a0 

p a=.lO a=.05 a=.lO a=.05 

4 . 54 .50 15 9.50 9.29 

5 1.28 1.21 16 10.34 10.12 
6 2.o6 1.97 17 11.18 10.96 

7 2.86 2.75 18 12.02 11.79 
8 3.67 3.55 19 12.86 12.63 

9 4.49 4.35 20 13.71 13.47 
10 5.32 5.17 21 14.55 14.30 
11 6.15 5·99 22 15.40 15.14 
12 6.98 6.81 23 16.24 15.98 

13 7.82 7.63 24 17.09 16.82 

14 8.66 8.46 25 17.94 17.67 
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FIG. 1. Two-dimensional representation of c9 (o+) and c9(x) for lei> c. 

c9 (X) is the sphere of radius C centered at 9 . As S (the angle between X 

and 9) varies, r+(S) traces the locus of points above the line AB, while 

r_(S) traces out those below. c9 (o+) and c9(x) intersect at points A and B, 

where s0 satisfies sins0 = cjje I and r +(s0 ) =I e I coss0 . 


