
DataStaR: Science Metadata Schemas
Meet the Semantic Web

Brian Caruso
Brian Lowe
Gail Steinhart
Metadata Working Group Forum 12/09

Image courtesy of the Cornell Biological Field Station

Outline

• Introduction – Gail
• System design – Brian C.
• Metadata management – Brian L.

http://www.nap.edu/catalog.php?record_id=12615

http://www.nitrd.gov/about/harnessing_power_web.pdf

http://www.nap.edu/catalog.php?record_id=12615�
http://www.nitrd.gov/about/harnessing_power_web.pdf�

http://www.nature.com/news/specials/datasharing/index.html

http://www.nature.com/news/specials/datasharing/index.html�

“The university research
libraries themselves are
obvious candidates to
assume this role.”

http://www.nature.com/news/specials/datasharing/index.html

http://www.nature.com/news/specials/datasharing/index.html�

http://www.washingtonpost.com/wp-
dyn/content/article/2007/01/30/AR20070130
02065.html

http://www.npr.org/templates/story/st
ory.php?storyId=106637066

http://www.wired.com/wire
d/archive/15.01/nasa.html

http://www.washingtonpost.com/wp-dyn/content/article/2007/01/30/AR2007013002065.html�
http://www.washingtonpost.com/wp-dyn/content/article/2007/01/30/AR2007013002065.html�
http://www.washingtonpost.com/wp-dyn/content/article/2007/01/30/AR2007013002065.html�
http://www.washingtonpost.com/wp-dyn/content/article/2007/01/30/AR2007013002065.html�
http://www.npr.org/templates/story/story.php?storyId=106637066�
http://www.npr.org/templates/story/story.php?storyId=106637066�
http://www.wired.com/wired/archive/15.01/nasa.html�
http://www.wired.com/wired/archive/15.01/nasa.html�

“The long tail of dark data”

• In 2007, NSF
awarded ~12000
grants >$500, worth
a total of
$2,865,388,605

•80% between $579-
$300,000

•That 80% was worth
$1,117,431,154, or
about 40% of the
funds NSF awarded Heidorn, P.B. 2009. Shedding light on the dark data in

the long tail of science. Library Trends 57(2): 280-299.

DataStaR: A Data Staging Repository

The purpose of DataStaR is to support
collaboration and data sharing among
researchers during the research process,
and to promote publishing or archiving
data and high-quality metadata to
discipline-specific data centers, and/or to
Cornell’s own digital repository.

datastar.mannlib.cornell.edu

Common needs:

• I need a place to share (large) data files with
colleagues.

• I want to make a data set related to a publication
available online.

Common questions:

• Which data should I archive?
• How should data be formatted?
• Can I get people to ask permission to use my data?

What exactly is a data staging repository?

Permanent
Repository
(domain,

institutional)

DataStaR

user
colleague

metadata

upload publish

publish

disseminate

create

data set

share

Private > shared > public domains

Treloar and Harboe-Ree, 2008

Moving data between repositories

Green and Gutmann, 2006

Partners

• Upper Susquehanna River Basin Agricultural
Ecology Program

• Cornell Biological Field Station
• Cornell Plantations Natural Areas Program
• Cayuga Lake Watershed Network
• Submission mechanism for CUGIR
• Virtual Center for Language Acquisition
• Individual researchers

Repositories and metadata

Repository Metadata requirements
Knowledge Network for
Biocomplexity (KNB)

Ecological Metadata
Language (EML)

Cornell University Geospatial
Information Repository
(CUGIR)

Content Standard for Digital
Geospatial Metadata (FGDC-
CSDGM)

eCommons (Cornell’s IR) DSpace metadata

Virtual Center for Language
Acquisition (VCLA)

Open Language Archives
Community (OLAC)

Current status

DataStaR System Design

Brian Caruso
bdc34@cornell.edu

Presentation for
The Cornell University Library

Metadata Working Group
December 2009

mailto:bdc34@cornell.edu�

Based on Vitro http://vitro.mannlib.cornell.edu

customizations for file management
customizations for handling metadata
customizations for access controls

DataStaR System Design Overview

http://vitro.mannlib.cornell.edu/�

Architecture

external
archival

repository

file
upload

(SWORD)
DROID

ac
ce

ss
 m

an
ag

em
en

t

data set storage (Fedora)

semantic
metadata store

(Vitro/Jena)

participant/project
metadata

data set
metadata

file
metadata

files

user
entry

(packager)

Based on Vitro

Pros
•Flexible data model
•Flexible access controls
•Already existed

Cons
•In house software
•Not designed with hooks for extension

Vitro

Vitro is a web application with a flexible data model
based on java, JENA RDF library, MySQL, JSPs and
Tomcat.

How Vitro was extended to create DataStaR

Minor changes
Static custom forms
Access policy

Major changes
Generate XML from RDF
Generate ontology from XML schema
Dynamic custom forms from ontology
File upload and download
Fedora integration
Modifications to support privacy

DROID and PRONOM

When uploading a file the client browser sets a
CONTENT-TYPE header as part of the POST.

There is no reason to trust the that CONTENT-TYPE is
set correctly. It is usually based on the file extension.

DROID examines a file’s content to provide a good
guess at the format of the file. It provides MIME type
and PRONOM PUID.

PRONOM is the database of file formats used by the
DROID software.

Use of Fedora by DataStaR

DataStaR uses Fedora as a file repository.

•Not using Fedora for searching
•Not using Fedora's RELS-EXT
•Not mirroring RDF from DataStaR in Fedora
•Not using Fedora to index RDF

This is not an exemplary use of Fedora which is
unfortunate since we have experience with RDF.

DataStaR and Fedora objects

One file in DataStaR is a digital object in Fedora with

a DC XML data stream for basic file metadata and
a data stream for the file data.

DataStaR, Fedora and Identifiers

The Fedora PID is stored in the DataStaR RDF.

The DataStaR URI is stored in the Fedora object's DC.

Reason: DataStaR is intended to use dereferenceable
URIs. Fedora uses the “info:fedora/” namespace.

DataStaR, Fedora and changes to files

When a file is updated in DataStaR a new digital
object is created in Fedora.

Which file is a previous version of another is stored
in the DataStaR RDF model, not using Fedora data
stream revisions.

Reason: File name and PRONOM type may change
and are stored in the DC XML of a Fedora object and
that is one per an object.

Better Integration of Fedora and DataStaR

Why not mirror the RDF in DataStaR in Fedora?

Fedora places restrictions on what RDF statements can
go in an object's RELS-EXT. We did not have the
resources to explore this.

Learning to Use Fedora

FedoraClient and FedoraAPIM classes from FEDORA
client JARs.

Unit test are an excellent resource
example: in Fedora 3.0 see the file file
/src/test/junit/test/api/testAPIM.java

We have more to learn.

Downloading datasets

Datasets are comprised of multiple files
They must be download as a group
DataStaR provides a zip of a dataset for download

Used ZipOutputStream

Access Control

Access levels are associated with a data set

• no public access
• public access to metadata only
• public access to metadata and files

Additional group based access control with
similar levels.

Lesions from Building DataStaR on top of Vitro

Vitro was not designed to be as extensible as a project
like DataStaR requires.

Familiarity with Vitro allowed us to overcome this.

Difficult to asses what work was avoided by reusing
Vitro compared to other approaches.

How to Compare Approaches?

Time for ground up build of new flexible data model
platform with DataStaR features.

Time to integrate DataStaR features into Vitro.

Time to integrate DataStaR features into other
existing platform.

We have no information about how the other
approaches would have gone.

Questions?

Brian Lowe
Semantic Applications Programmer
Albert R. Mann Library
Cornell University

Metadata Management

Metadata Working Group Forum Dec. 2009

DataStaR: A Data Staging Repository

• Data sets themselves do not remain in
DataStaR for long-term storage

• Metadata remains in DataStaR so that it
can serve as a discovery tool and pointer to
data repositories

Goals

•Support multiple metadata schemas for various
disciplines

•Enter basic metadata in a consistent way

•Avoid unnecessary repetition when editing. Describe a
observation method once; refer to it from related
dataset descriptions

•Promote thinking of metadata less as a “record” or a
big form full of field, and more as part of a larger
network of relationships.

Metadata Management in DataStaR

With Semantic Web technologies, we can:

•Use RDF (Resource Description Framework) as a
convenient way of representing different types of
metadata

•Use referenced resources named with URIs as a
standard way of reusing metadata

•Use standard Semantic Web languages and tools for
reasoning to make logic portable to other systems.

•Build a metadata repository accessible through
standard query protocol (SPARQL) or Linked Data

Metadata Management in DataStaR

Some assumptions

•Metadata will increasingly be expressed using Semantic
Web technologies, with a greater emphasis on ontology
semantics.

•Metadata records conforming to syntactic schemas
(especially in XML Schema) will continue to be
important and widely used.

Metadata Management in DataStaR

The vision

•Where a scientific domain has established ontologies
defining semantic metadata standards, they should be
readily incorporated in DataStaR.

•Where a desired metadata standard is available only as
a syntactic XML schema, a librarian or metadata
specialist should be able to convert it to ontology form
and use it with minimal effort (low upfront investment).

•Add additional rules for reasoning or mappings to
additional ontologies where desirable

Metadata Management in DataStaR

Core metadata ontology

Extends SWRC (Semantic Web for Research
Communities) and a DL-ified version of Dublin Core

Includes data set properties such as:
• title
• abstract
• owner
• contact
• metadata provider
• relationship to research group
• temporal and geographic coverage
• file properties (type, checksum, size, etc.)

Metadata Management in DataStaR

First Application: Ecological Metadata

•Mann Library has partnered with researchers to describe
and share ecological observation data

•EML (Ecological Metadata Language) metadata

•Knowledge Network for Biocomplexity (KNB) primary
destination repository

•Cornell’s DSpace installation (eCommons@Cornell) is a
destination institutional repository (Dublin Core)

New requirements: “Lifting” and “Lowering”

- We want to “lift” existing XML metadata
documents into DataStaR

- More important, need to generate schema-
compliant XML documents for submission to
destination repositories

- We don’t want a lot of manual mapping just to lift
and lower.

Ontology Axioms vs. Constraints

• OWL isn’t a schema constraint language

• Open World Assumption (OWA), lack of Unique
Names Assumption (UNA)

• It’s attractive, however, to be able to use certain
axioms as constraints in certain circumstances

OWL Restrictions vs. Schema Constraints

In an XML schema we might “require” a name element or attribute for a
Person.

<person>
<name>Brâncuși, Constantin</name>
<type>sculptor</type>

</person>

If the name value is missing, the document does not validate against the
schema.

<person>
<type>sculptor</type>

</person>
ERROR

OWL Restrictions vs. Schema Constraints

In an ontology, we might say something like:

All persons have names.

• No guarantee that we know what the name actually is.
• Maybe someone else has a document with the name.
• Maybe no one does.
• Maybe we don’t care what the name is.

:person2234567
a ex:Sculptor .

OK – no error here

Background: Lifting XML Schemas into OWL Ontologies

Several tools are available to do this, often employing XSLT

General approach:

•Complex types produce OWL classes.

•elements and attributes turn into object or
datatype properties.

•Required types generate someValuesFrom or
allValuesFrom axioms.

•constraints such as minOccurs or maxOccurs turn into
cardinality axioms such as owl:minCardinality or
owl:maxCardinality.

XML Schemas and OWL

•We discovered that Gloze, a tool for Jena created by Steve
Battle, was a close match to DataStaR’s needs.

•Available at http://sourceforge.net/projects/jena/files/

•Gloze is explicitly designed for “round tripping” between
XML and RDF

•For the most part, works quite well in practice
• Need to massage some OWL Full constructs

http://sourceforge.net/projects/jena/files/�

Lifting issues

• Individuals as purely syntactic devices:

:dataSet eml:Coverage :coverage .
:coverage eml:geographicCoverage :geoCoverage
…
:coverage eml:temporalCoverage :temporalCoverage
…
:coverage eml:taxonomicCoverage :taxonomicCoverage

We add direct properties and fill in the extra node later
for lowering.

• Classes that do not necessarily align well with other
ontologies

Making this all work in practice

To incorporate a metadata standard into DataStaR, we
need to:

•Tweak Gloze output to keep things in OWL-DL
•Make mappings to DataStaR’s core ontology
•Make editing forms
•Add extra validation queries
•Hide extra things to keep the user from being
overwhelmed

Editing workflow

• Users edit properties only from core DataStaR
ontology until they signal desire to submit to a
repository requiring a particular metadata schema

• This triggers a type assertion using a class in another
ontology, e.g. eml:DataSetType

• Additional properties/inferences are then available

Transforming simple to complex:
SPARQL CONSTRUCT “rules”

DL-safe rules do not allow us to create “new” individuals

But we can CONSTRUCT blank nodes using SPARQL
(and then given them URIs)

CONSTRUCT {
?dataset eml:geographicCoverage _:geoCoverage .
_:geoCoverage eml:geographicDescription ?coverageTextStr .

} WHERE {
datastar:geographicCoverage ?coverageTextStr .

}

Transforming complex to simple:
DL-safe SWRL rules

:dataset1212347 eml:geographicCoverage :individual216 .
:individual216 eml:geographicDescription “Gobi desert” .
:individual216 eml:boundingCoordinates :individual99341 .

versus

:dataset1212347 datastar:geographicCoverage “Gobi Desert” .

Generating editing forms

Editing forms automatically generated from ontology
axioms as much as possible

E.g., owl:someValuesFrom prompts for a “required
value”

Individuals with human-readable label properties are
offered as options on picklists

Additional annotation properties control ordering,
hiding, and labeling

Editing system can create and edit complex subgraphs
via a single HTML form

A automatic start to a form

What the form produces

:PhytoplanktonsurveyofOneidaLake
eml:geographicCoverage :individual281180169.
:individual281180169

rdf:type eml-coverage:GeographicCoverage ;
eml:geographicDescription “Standard

phytoplankton
sampling sites, Oneida Lake, New York,
1975 - 2006"^^xsd:string ;

eml:boundingCoordinates :individual762138544.
:individual762138544

rdf:type eml-coverage:BoundingCoordinates ;
eml:southBoundingCoordinate "43.18083” ;
eml:northBoundingCoordinate ” 43.22111” ;
eml:westBoundingCoordinate ” -76.04444” ;
eml:eastBoundingCoordinate "-75.77083” .

Challenges

Important consideration:

Avoiding playing games of “Where’s the assertion?”

•the problem of wanting to edit a property value that’s
been inferred, when the original assertion was using a
different ontology

Hiding things

Annotation properties control hiding.

• Simplify interface

• Configure how certain properties should cause others
to be hidden so user can’t edit the same thing in two
ontologies at once,

e.g.:

eml:geographicCoverage
vitro:masksProperty

datastar:geographicCoverage .

Challenges: Ordering of axioms

• Gloze uses RDF reification. Can’t have that in
DataStaR.

• List structures for OWL have been proposed (e.g.
Drummond et al., OWLED 2006) but we’re not
interested in reasoning on the sequence

• We create simple OWL-DL compatible sequences
using intermediate reification individual (semantics
understandable only by Vitro code)

• Vitro converts this to RDF reification for handoff to
Gloze

Challenges: Text Markup

• Text markup (paragraphs, emphasis,
super/subscripts, etc.) is difficult to deal with and
not very useful represented as an RDF graph

• EML uses a portion of the DocBook standard for text

• Currently populate only simple paragraph structures
in RDF graph

• Would be preferable to store use XSLT
transformations

Summary & Conclusion
• DataStaR incorporates OWL/RDF versions of

metadata schemas into a web application for end-
user metadata production and discovery.

• Automated lift; automated forms; hide/refine
where necessary

• May not be appropriate for highly complex metadata
requiring heavily customized interfaces.

• For other types of metadata, it is an effective way
of bridging the syntactic and semantic worlds.

• Interoperate with established infrastructure while
generating data for the Semantic Web.

Thank you. DataStaR team:

Brian Caruso
Kathy Chiang
Jon Corson-Rikert
Dianne Dietrich
Ann Green
Janet McCue
Gail Steinhart

Image courtesy of the Cornell Biological Field Station

This material is based upon work supported by
the National Science Foundation under Grant
No. III-0712989. Any opinions, findings, and
conclusions or recommendations expressed in
this material are those of the author(s) and do
not necessarily reflect the views of the
National Science Foundation.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62

