a scientific problem in something close to the natural notation. We note that this notation
is sufficent for the statement of many problems that use multivariate calculus and that this
development, while expensive(from the perspective of an applications developer), is customiz-
able and only needs to be carried out once. The next stage is to prove theorems concerning
multivariate calculus satisfied by objects that use the display display forms defined here.
Again while this may require extensive development it only needs to be performed once and
then these results can be used in the construction of new justifications.

With these theorems proven it will be possible to use the NuPrl prover with a computer
algebra system to prove the various theorems stated in [3] and hence obtain a running
numerical algorithm using our environment. If such algebra systems are not considered
sufficiently reliable then the relevant algorithms may be developed within the proof system.
Users of an environment of the kind we are constructing have great flexibility with regard to
the proof obligations they impose on themselves. At one extreme they can merely develop
appropriate notations to ensure that they write their mathematics consistently. At the other
extreme they can attempt to prove everything from first principles.

This work is part of an ongoing program of work the end result of which will be the
demonstration of the construction of a running algorithm from the natural statement of
a realistic theorem in applicable mathematics in a problem solving environment. Current
work is concerned with testing the applicability of our notational mechanisms by writing
all the theorems in [3] in this style and testing the notation on results in other applied
mathematical domains. The development of theorems using the NuPrl system concerning
differentiation, differentiability and Taylor series expansions is currently underway and will
be used to justify the use of computer algerbra in proving results. Future work will be
concerned with the justification of transformations for running algorithms constructed using
these ideas.
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Expanded-Theorem 1

V n:N. Set theIDXset = 1..2X1..n,
theIDXidFn
= A<i,j>.A<1i?,j’>.i=,i’Eint A, j=,]  €Eint
€ Bid theIDXset.
V Gamma:{t:R—}[0,1]—theIDXset—R, H:((theIDXset—R)—R).
H D’ble 3 times over theIDXset—R=>
(V s:[0,1], p,q:{t:R—}Rn.
(V{t:R}. Gamma{t}[s] = p{t},q{t})=
V r:1..n. infinitely D’ble {t:R}. p{t}.r &
infinitely D’ble {t:R}. gq{t}.r &

v{t:R}.
dgq{t}.r/dt = Der{theIDXidFn,<1,r>} H[p{t},q{t}] &
dp{t}.r/dt = -Der{theIDXidFn,<2,r>} H[p{t},q{t}1)

=
Const t:R. Path-Integral[Gamma[t]] € R

Notice that when the result is expanded we see the index identity function theIDXidFn ,
the abrreviation Rx is expanded and all the suppressed time dependencies are made explicit.
The unexpanded version is the appropriate version for further reasoning and yet, if at any
point, details need clarification the full version is immediately available for reference. In fact
selective expansion of any particular piece of the original theorem is possible.

At the moment the above are just notational devices. In order to give these signs any
mathematical meaning inside NuPrl the notation would have to be linked with theorems
concerning derivatives and differentiability, continuity, etc based on accouts of functions of a
real variable, based on an account of the real numbers, based on the foundational mechanisms
inside NuPrl. Doing just this is the subject of current work using the Hamiltonian example
discussed in [3].

4 Conclusion

What has been achieved? Using the NuPrl display mechanisms it has been possible to write
mathematics in a fairly natural way. This work is part of an ongoing project developing
systems for doing real mathematics. Refinement of the Hamiltonian example will allow the
demonstration of the derivation of a running algorithm from the symbolic statement of a
realistic applied problem . In [3] an outline of a scientific algorithm from the recent literature
was given and a rough sketch of how to obtain a running algorithm by means of a formal
proof was indicated. This document has taken things further by constructing a notation
mechanism for this kind of mathematics in the NuPrl system and indicating how proofs
might be constructed.

In addition the beginnings of a method for using these techniques can be inferred. The
construction of abstraction and display forms relevant to a particular problem provide a
means for checking that the formal statement of the problem is appropriately parameterized
and notationally consistent just by writing it down within the system [4]. Questions as to
the truth or falsity of the statement require the development of a formal proof.

There are some other observations to be made about this work.

The notational developments carried out here demonstrate the ways in which a logical
apparatus can function as “glue” to link together the various stages in computational en-
vironments. In this case the NuPrl editor and display mechanism have been used to state

10



EDIT ABS differentiable partial iter

f D’ble n times over LB,UB:IDX—R
== Nind[n] (A.True
;nD’ble. Af.f D’ble over LB,UB:IDX—R &
V i:IDX, eq:(Bid IDX).
nD’ble[Der{eq,i} £1)
[£].

Labels have been left in these definitions to comment the results.

3.3 Formal Statement of a Theorem in Mechanics

The theorem in section 2 refers to the constancy of an integral around a closed path in phase
space. In particular as this closed path develops in time, under the action of the equations
of motion, a certain integral taken along the path remains constant. This can be described
notationally by relating the dynamical variables p, q to closed path in phase space. Intuitivly
the phase space can be considered to be parameterized by two variables s,¢. Varying s , for
fixed ¢, moves the dynamical variables around a closed path.Varying ¢, for fixed s, gives the
time development of p,q . With all this in hand the theorem in section two can be stated
in the following way in NuPrl

Theorem 1

V n:N. Set Index set: 1..2X1..n.
V Gamma:{t:R—}[0,1]—R*, H: (R*x—R).
H D’ble 3 times =
(V s:[0,1], p,q:{t:R—}Rn.
(V{t:R}. Gamma[s] = p,q)=
V r:1..n. infinitely D’ble {t:R}. p.r &
infinitely D’ble {t:R}. q.r &

v{t:R}.
dq.r/dt = Der{<1,r>} Hlp,ql &
dp.r/dt = -Der{<2,r>} Hlp,ql)

=
Const t:R. Path-Integral[Gamma[t]] € R.

Here q.r just denotes the r th component of q . The initial lines indicate the structure
of the dynamical variables of the problem by means of the the strucure of the index set, the
type structure of the closed path Gamma in phase space, the type structure of the Hamiltonian
and its differentiability. Subsequent lines indicate the way in which the dynamical variables
p,q are related to gamma, the differentiability requirements on the dynamical variables and
the equations of motion. The final line gives the consequent of the theorem.

When this result is stated in traditional mathematical notation all questions of indexing
into variables is understood. Here our indexing mechanism is explicitly stated (as it must be
for computational use). The above theorem could be made even closer to the conventional
display by further suppression of variables and hiding the indexing mechanism inside some
standard header for Hamiltonian systems if required.

This result is fairly close to the original but contains a considerable amout of implicit
information. A user needing more information can see the suppressed detail by expanding
the theorem (with a a mouse click) to obtain



a space with the strucure indicated by the index set. The predicate eq is a (curried) test
for boolean identity, over the index set of the arguments to f, the purpose of which is to
provide a computational means for identifying the argument position through which the
partial derivative is being taken. Examination of the auxiliary definitions should hopefully
make this clear. While this may seem a rather complex way to deal with the simple (from
an application viewpoint) issue of indexing it is of some signifigance.

Indexing in this way allows the suppression of reference to the identity function in our
main theorems. This adds another dimension to the display of mathematics in this style. If
“natural” displays of mathematical objects are required it is necessary to be sensitive to the
notations constructed at the early stages of a mathematical argument and their interactions
with subsequent definitions.

Normally indexing is understood by users of a system (for example the mapping betweem
array references and physical variables in some application). Since we wish to be able to
manipulate mathematical objects with programs it is essential to be able to encode this
information for computation. Note also that quite a lot is happening, mathematically, for

such a simple idea.

The well formedness result refers to the differentiability of the functions with respect to
each index position. Notation to capture this is defined in terms of the primitive notion of
differentiability in the following way

f D’ble over LB,UB:IDX—R
== V 1i:IDX, eq:(Bid IDX)
, X:(j:IDX—[LB[j]1,UB[j1]).
D’ble x:[LB[i],UB[i]]. f[X{eql[il:= A.x}].

In the discussion of Hamiltonian systems it is necessary to consider functions that have finite
and infinite degrees of differentiability. This occurs for each variable over some range and
in the case of multivariate functions for each argument position. The following definitions
capture these ideas notationally

infinitely D’ble x:R. v(x)
== Vn:N.n times D’ble x:R. v(x)

EDIT ABS differentiable R _iter

n times D’ble x:R. v(x)
==V 1b,ub:R.
1b<ub=>n times D’ble x:[1lb,ub]. v(x)

EDIT ABS differentiable_iter

n times D’ble x:[1b,ubl. v(x)
== Nind[n] (A.True
;nD’ble. Af.(D’ble x:[1b,ub]. f[x]) &
nD’ble[Ax.df[x]/dx])
[Ax.v(x)]

EDIT ABS differentiable partial iter R

f D’ble n times over IDX—R

== V LB,UB: (IDX—R).
(Vi:IDX.LB.iSUB.i)Z}
f D’ble n times over LB,UB:IDX—R



In the Hamiltonian example it is necessary to consider two kinds of differentiation; partial
and total. Selecting the parameter $hint in the primitive definition as total or partial
displays the apppropiate derivative. The associated theorem is a well formedness result that
needs to be satisfied. Note that with notation for both kinds of differentiation the equations
of motion in the theorem in section 2 can be stated in a natural way within the system. In
the rest of this section we show how to use the NuPrl editor to build notations that allow
the statement of the theorem concerning Hamiltonian dynamics given in section 2.

Referring back to that theorem we note that the idea of differentiability of a function with
respect to a variable occurs. The notation in the theorem indicates that the Hamiltonian is
three times differentiable with respect to each of the generalized momentum and coordinate
variables and that each of these variables in infinitely differentiable with respect to the time.
The basic idea of differentiability of a function over an interval is taken as primitive and
denoted in the following way

PRIMITIVE: D’ble x:[1b,ub]l. v(x)
{+ This is supposed to mean that v(x) is
differentiable on the interval [1b,ub]

}.

Again this will be supported by appropriate theorems as this work develops.

In the Hamiltonian case it is necessary to consider differentiation and dlfferentla,blhty
with respect to every component of a vector variables. We denote partial differentiation
with respect to a variable at an index position in the following way

EDIT ABS deriv_partial

Der{eq,i} f == AX.9f[X{eql[il:= X.x}1/0x|x=X[i]
{~
THM: V IDX:Type, LB,UB: (IDX—R)
, £:((j:IDX—[LB.j,UB.jl1)—R).
f D’ble over LB,UB:IDX—R=
V eq:(Bid IDX), i:IDX.
Der{eq,i} £€(j:IDX—[LB.j,UB.j]1)—R

}.
The definition of Der uses the following auxiliary definitions.

EDIT ABS boolid
Bid A == {f: (A—A—DB) IV x,y:4. flx;y] = true,<=x = y}
EDIT ABS CALC alter fn

f{P:= NewVals}
== Ax.if (P[x])— NewVals[x] else f[x] fi.

The theorem following the definition of Der is a well formedness goal that needs to be
satisfied by our definitions. The notational mechanism for Der requires further explanation.
In the case of Hamiltonian dynamics the Hamiltonian depends on 2n independent variables
divided into two collections of momentum and coordinate variables. We wish to respect this
distinction in the functional dependence and provide a mechanism that can be extended to
more than two collections of independent variables if needed. Notice that that Der{eq,i}f
needs to be applied to something . Intuitively when Der{eq,i}f is used f is a map from
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In NuPrl, using the current display mechanism, this equation can be written in the following
way

Implicit x,y,z.
9p/9z = mu (9(9w/Ox)/8x + 8(9u/dy)/8y).

Notice the form of the equation as it is presented here. At this stage p depends on z and
w depends on x,y. In the above these variables are declared as implicit which permits them
to elided from the display form. At some point in the development of a proof or program it
might be necessary to indicate this dependence explicitly. Simply by removing the context
declaring z,y, z to be implicit leads to the following form for the equation

Op{z}/0z = mu (O(Ou{x}{y}/0x)/0x + O(Ou{x}{y}/B8y)/By).

The term w{x}{y} just indicates that suppression of arguments is permitted in appropriate
contexts.

Contrast the three ways in which this equation has appeared in this note. It’s first
appearance was produced by means of some Latex commands. These commands have no
mathematical significance and only allow the form of the equations to be produced. At best
the Mathematica form of the equations is essentially an expression in a functional progam-
ming language that cannot be further simplified by the evaluation rules of the language. To
solve this in Mathematica a solution algorithm for this particular partial differential equation
would have to be written. The NuPrl version has a rather different sense. It is the display
form of a term in the NuPrl system. That term is an entity about which further results
can be stated and theorems proved within the same system that allows the display, and
moreover a term that preserves its display and meaning in the course of formal manipulation
within the sytem. In principle an engineer or scientist can work with something very close
to conventional notation and prove results and develop programs.

3.2 Notation and Particle Mechanics

The display form for differentiation that we have provided is the following
dulxHy}/Ox

is the special form of

Ou{x}{y}/Ox|x=E

in which the variable x itself is used for E.

The notational definition as it appears in NuPrl is of the form shown below.

PRIMITIVE: Simple Derivative: $hint da(x)/dx@x
{« The parameter is just used to suggest how it’s
used; mainly, total or partial.

THM: V a,b:R, f:([a,b]—R).
(D’ble x:[a,b]. f[x])=>
Vx:[a,b]. (df [x]/dx) ER



puter algebra framework. Such systems were designed for the manipulation of the symbolic
representation of mathematical objects (but not for proof with such objects). Mathematica,
for instance, seems to provide some of what is required. Consider for instance the expression
f(z,y,2,t) where x,y, z depend on the parameter t. Using Mathematica to perform differ-
entiation with respect to ¢ and z[t] yields the standard results in a form fairly close to that
found in an engineering or physics textbook and is acceptable for realistic use. The explicit
dependence on t is rather clumsy and it should be possible to suppress it when neccessary.
Using these kind of ideas it is easy to write Mathematica programs to solve and plot the
results for simple Hamiltonian systems.

In a problem solving environment that is the long term goal of this work, it would be
desirable to use something like the Mathematica notations for differentiation and functional
dependence as the display forms for terms that can be manipulated in proofs.

In the next section we discuss how the various mathematical objects mentioned in the
theorem discussed earlier can be rendered into NuPrl display forms and the theorem stated
in that system. A subsequent paper will link these display forms to the formal representation
of ordinary and partial derivatives in a proof system allowing a formal proof of these results.

3 A notation for analysis

In this section the issue of providing a notation that can deal with the notational issues
arising in Hamiltonian dynamics is discussed. The specific problems that we wish to deal
with are

e The provision of a notational mechanism for the description of total and partial deriva-
tives as terms in a formal system of mathematics.

e The application of this notation in the multivariate case associated with the Hamilto-
nian mechanics. Notice that in this case the independent variables have a particular
structure that has to be dealt with.

o The statement of differentiability requirements on the functions occuring in the prob-
lem.

The notational devices that have been developed are fairly general and allow us to con-
sider cases other than particle mechanics.

3.1 Notation and Partial differential Equations

To illustrate the notation for partial differentiation, in a simple example consider the follow-
ing differential equation as it would be written in ordinary mathematical notation

op 8w N 8w
oz M\ T a2 )
It describes the laminar, viscous flow in a rectangular duct. The axial velocity w(z,y) is

determined by the pressure gradient and the viscosity p. Note that it is not usual to indicate

the explicit functional dependence in the differential equation.
Although it not particulary useful we can write the above differential equation in Math-
ematica in the following way

Dlplz], z] == mu(D[wlz, y), {x, 2}] + Dlw(z, y], {y, 2}]).



The fact that the explicit time dependence of the coordinates and momenta is not explic-
ity indicated is just a small part of the problem that occurs throughout applications. The
conventional practice is to infer from context many functional dependencies (e.g. in plasma
physics that the distribution function depends on particle positions and velocities that are
themselves functions of time, in the above case that p, q are to be regarded as functions of
the time). It appears that the quantities p, q are to be regarded in different ways in different
contexts.

The differential equations that occur in the theorem use two distinct notions of differenti-
ation. It should be noted that differentiation symbols are complex signs that need to handled
4(=) it would not be sensible to substitute 3 for =

dx
in numerator and denominator. For many real applications notation is extended to handle

carefully. For instance in the expression

more complex examples with layers of functional dependencies, iterated differentiations and
application of parameterized operators. Computational support intended to preserve math-
ematical meaning and allow high level proof requires coherent explanations of the notational
mechanisms rather than a succession of ad-hoc devices.

2.2 Computational Approach

What are the possibilities for rewriting the previous theorem in a more computational style?

One way to proceed is to to write everything in a programming language notation. There
are several difficulties with this approach. Consider the example of the Hamiltonian above.
An experienced (even a tyro) dynamicist immediately understands that the Hamiltonian is a
map from the space of coordinates and tangent vectors to R. Sometimes it is convenient to use
this interpretation whilst on other occasions it is desirable to understand the Hamiltonian as
a map from paths in phase space to R. The “slurring” of meaning is essential to practice. This
issue of parameterised paths in state spaces of systems is basic to scientific and engineering
practice yet seems to be difficult to handle in a natural way in the context of programming
languages. One way to deal with this is just to define several different Hamiltonians. This
would just be unacceptable for practical use. Zippel has suggested that the problem can be
dealt with by regarding entities such as the Hamiltonian as generic functions in an object
oriented programming sense. This seems to be a more agreeable solution but raises the issue
of typing for object languages.

Rather than discuss this approach here we will consider what can be done within the
type theory paradigm. Note also that in order to develop an enviroment for scientific pro-
gramming it will be neccessary to be able to develop symbolic mathematical representations
of mathematical objects at general positions in various spaces. Providing the capability
to carry out mathematical operations on such objects within programming languages is a
challenge for the future suggested by this kind of work (i.e. making general mathematical
objects first class objects in a programming language).

Additional issues arise in relation to the simplification of expressions. It seems much
harder for human readers to rearrange complicated programs than to see the simplifications
in mathematical formulae. (Imagine reasoning about the terms of a complicated perturba-
tion expansion written in a programming language.) The work outlined here is concerned
with human directed manipulation of symbolic expressions. Ease of simplification and ma-
nipulation would seem to require the use display forms that can be used in a particular
context overlaying programming notations.

An alternative approach is to consider what kinds of support are available within the com-



in an informal way the types of quantities e.g p for generalised momentum) to the more
difficult (not stating explicitly the functional dependencies of various quantities). In order
to use theorem proving tools on mathematical and engineering systems having descriptions
of this kind it is necessary to be able to indicate free and bound variables in the statement of
the theorem and all dependencies of functions. On the other hand a scientific user would find
such a system intolerable to use. Practical reasoning makes essential use of computationlly
ambiguous notation.

In order to deal with this problem the NuPrl system provides display forms that can hide
a lot of the detail required by the theorem prover and yet preserve their form in intermediate
steps. Clearly it will be neccessary to give the full details of all notations used at least once
in a discussion.

2.1 Ambiguities

In this section the ambiguities associated with the theorems stated in [3] will be indicated
and some suggestions for dealing with them outlined. This is a general problem for anyone
interested in providing computer support for mathematics. How can a notation be provided

that is acceptable to users and yet gives enough information for machine support?
Consider the following theorem from [3]

Theorem 1 *
Given a Hamiltonian function

H(p,q) € C}(R" x R" — R),
p,q€ C*(R —R")

such that
dg,  0H
dt — Op,’
dpr  _ OH
dt J0qy
then

j{pdq
I

15 an invariant of the motion where I' ts a closed path in phase space.

What are the conceptual and notational difficulties that would be faced using an algebra
system and a theorem proving tool to demonstrate this result?

A wuser familiar with the area coming across such a theorem in a text book would im-
mediately recognise it as a theorem in Hamiltonian dynamics and that the quantities of
interest are the time evolution of the vectors of dynamical variables, the coordinates and
momenta denoted by p,q . The specific variable names indicate the Hamiltonian , H, and
the coordinates and momenta. The differentiability conditions on the Hamiltonian H with
repect to the phase space variables p,q and their differentiability conditions with respect
to the time parameter are indicated. The dependency of these functions on the time is not
explicitly indicated except in the type definition which would not normally be explicitly
stated. The differential equations use two distinct notions of differentiation. Finally the use
of the decorated line integrals needs to be explained.



years of practice and experience, suggests and guides the development of arguments in new
applications. A simple example from Hamiltonian dynamics concerns the use of the variables
p, q. These variables are used in Hamiltonian dynamics to stand for position and momentum.
Their implicit dependence on time is immediately understood by workers in the field.

The desire to provide computer support for the construction of mathematical arguments
and the development of programs requires fresh consideration of mathematical notations.
If such systems are to be useful to working mathematicians and engineers, a notation that
closely matches current working practice has to be provided. On the other hand the use
of machines to support this activity using the tools of type theory, computer algebra and
theorem proving means that the notation used must be completely unambiguous.

One way to deal with this difficulty is to have a precise working notation for the develop-
ment environment and to have reasonably conventional display forms that can be expanded
or contracted as required by the user. This ability to hide or display information, in context,
during the course of an argument is something that human reasoners do easily. The NuPrl
system [5] provides some tools to support the construction and editing of display forms that
can be used in this flexible manner. By developing display forms for specific problem domains
it is possible to provide an environment for writing mathematics that supports elementary
checking that mathematics has, at least, been written correctly[4].

The next section discusses some of the computational difficulties associated with the
normal working notation of physical and engineering mathematics using the theorems in
[3] for illustration. The deficiencies of some of the obvious computational approaches are
also indicated. Necessarily kinematics (the description of motion) precedes dynamics. The
mathematical description of the time evolution of discrete and continuum systems is so basic
an aspect of mathematical modeling that it is often overlooked. An environment intended to
support the development of scientific and engineering applications programs from symbolic
descriptions should provide natural, computationally unambiguous descriptions of the motion
of particles and continua. Subsequent mathematical arguments are crucially based on these
descriptions.

In the subsequent section the development of a notation for the discussion of ordinary and
partial derivatives using the NuPrl system is discussed. These are illustrated by considering
a partial differential equation occurring in fluid dynamics. Using these display forms it is
shown how one of the theorems occuring in [3] can be displayed in the current NuPrl proof
system. In a subsequent paper the display forms will be linked to formal terms in a proof
systems allowing the derivation of formal proofs in dynamics. The whole point of the display
forms is that they will be preserved in the course of the proof and constitute the working
notation of a user of the system. The discussion of ordinary and partial derivatives that is
given here will be useful, more generally, for the discussion of the kinematics of continua.
The final section contains some conclusions and indications of current work.

2 Notational Ambiguities

In a previous paper [3] an indication of one way in which a realistic scientific algorithm could
be developed was outlined. It indicated how a computer algebra system (such as Weyl) and a
type system (such as NuPrl) could be used to produce an algorithm from a formal argument.
The theorems stated used the normal notation of mathematical physics. The practical use of
mathematics in physics and engineering makes use of various conventions that are specific to
the problem domain. These vary from the trivial (using specific variable names to indicate



A Notation for Computer Aided Mathematics

C.L.T. Mannion* S.F. Allen'
January 20, 1995

Abstract

The NuPrl4 term structure and editor display mechanism are used to provide un-
ambiguous notations for use in the development of computer supported mathematical
arguments. These notations are used to provide a natural statement of a theorem in
Hamiltonian dynamics, anchored in a computationally unambiguous representation,
that can be made explicit if required.

1 Introduction

This note uses the NuPrl [1, 2] term structure and editor display mechanism to provide an
unambiguous notation that can be used in the computer assisted development of arguments in
mathematics. The example used to demonstrate this application is a theorem in Hamiltonian
dynamics. These results are part of a larger project that is developing environments for
scientific computation that provide support for the construction of working programs by
transformation from their natural mathematical statement. The common justification for
the development of such problem solving environments is that they will raise the semantic
level at which program construction occurs and hence improve the programming process.
Here we argue that a prerequisite for raising the semantic level for scientific and engineering
applications is raising the notational level.

From a computational perspective the typical working notations of mathematics are
ambiguous in that the arguments to functions are often implicit, free and bound variables
are not explicitly indicated, scoping of definitions and abstractions is elastic, etc. For instance
in the mathematical discussion of the motion of particles, the position of a particle is usually
described by coordinates that are parameterized by time such as z(¢). The time development
the particle is then described by some equations involving the variable = with the time
dependence suppressed.

When working in a high level computational environment, how should such variables
be regarded? Typically this kind of suppression of information occurs in the discussion of
complicated physical situations in many dimensions with many different parameterizations
(as can be easily verified by perusal of standard texts, lecture notes and research papers
in various subject domains). Such notations are, however, tremendously useful and are the
working notations of science and engineering. The working notation, after typically many
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