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The classic Lp-based estimates for solutions of elliptic partial differential equa-

tions satisfying general boundary conditions were obtained by Agmon, Douglis,

and Nirenberg in 1959. In Chapter 2, we rework these estimates to make their

dependence on p explicit. It has long been believed that p enters these estimates

as a single multiplicative factor of (p− 1)−1 for p close to 1 and p for p large. This

is verified for second-order equations with boundary conditions of order at most

one. Poorer results are obtained for more general problems. Local estimates for

solutions of homogeneous equations satisfying homogeneous boundary conditions

are also established. These are shown to be independent of p.

Now consider the finite element approximation of a solution of a second-order

elliptic partial differential equation. A typical finite element space that we consider

is the Lagrange space of continuous functions which are piecewise polynomials on

the elements of an unstructured but quasiuniform triangulation of the domain.

As proved by Schatz in 1998, the finite element error is localised in the sense

that its L∞ and W 1
∞ norms in a region depend most strongly on the behaviour of

the true solution at points closest to that region. In Chapter 3, we show that the

pattern in the positive norm error estimates continues into the L∞-based negative

norms. In particular, the error is localised in the negative norms in the same sense

that it is in the positive norms.



A class of a posteriori W 1
∞ estimators for the finite element error was inves-

tigated by Hoffman, Schatz, Wahlbin, and Wittum in 2001 for the homogeneous

Neumann problem. In Chapter 4, we obtain analogous results for an analogous

class of L∞ estimators. Conditions are given under which these are asymptotically

equivalent and asymptotically exact. One specific concrete example is provided.

In the finite element approximation for the homogeneous Dirichlet problem, the

computational domain does not typically match the domain on which the original

problem is posed. In Chapter 5, we investigate this issue in conjunction with

numerical integration. We find that superparametric elements preserve the 1998

weighted L∞ and W 1
∞ error estimates of Schatz.
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CHAPTER 1

PRELIMINARIES

1.1 Notation

1.1.1 Integer Sets

For integers i, j, we use the MATLAB-inspired notation i : j to denote the set

of integers k with i ≤ k ≤ j.

1.1.2 Points and Sets in RN

Let e1, . . . , eN denote the standard basis for RN .

For x ∈ RN and 1 ≤ p ≤ ∞, let |x|p be the Lebesgue norm of x with exponent

p and let |x| = |x|2 be the Euclidean norm.

For x ∈ RN and d > 0, define the open ball of radius d centred at x

Bd(x) = {y ∈ RN : |y − x| < d} (1.1)

and the open cube of side length 2d centred at x

Cd(x) = {y ∈ RN : |xi − yi| < d for all i ∈ 1 : N}. (1.2)

Define the open unit ball

BN = {x ∈ RN : |x| < 1}, (1.3)

the unit sphere

ΣN−1 = {x ∈ RN : |x| = 1}, (1.4)

and the closed unit simplex

TN = {x ∈ RN : xi ≥ 0 for all i ∈ 1 : N and
N∑
i=1

xi ≤ 1}. (1.5)
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Define the upper half-space

RN
+ = {x ∈ RN : xN > 0}, (1.6)

the upper half unit ball BN
+ = BN ∩ RN

+ , and the upper half unit sphere ΣN−1
+ =

ΣN−1 ∩ RN
+ .

For x ∈ RN , let x∗ = (x1, . . . , xN−1,−xN) be the reflection of x in the Nth

coordinate. For V ⊂ RN , let V ∗ = {x∗ : x ∈ V } be the reflection of V in the Nth

coordinate.

Suppose that U ⊂ RN . Let Ū denote the closure of U . Let ∂U denote the

boundary of U , and, for x ∈ ∂Ω, let νU(x) denote the outward-pointing unit

normal vector to ∂U at x. Define diam(U), the diameter of U , as twice the radius

of the smallest ball that contains all the points of U . We say that U is star-shaped

with respect to a point x ∈ RN if tx+ (1− t)y ∈ U for all y ∈ U and t ∈ [0, 1]. We

say that U is star-shaped with respect to V ⊂ RN if U is star-shaped with respect

to each point in V .

For U ⊂ RN and x ∈ RN , define the point-to-set distance

dist(x, U) = inf
y∈U
|x− y|. (1.7)

For U, V ⊂ RN , define the set-to-set distance

dist(U, V ) = inf
x∈U
y∈V

|x− y|. (1.8)

For U ⊂ RN and u : U → R, define the support of u by

supp(u) = {x ∈ U : u(x) 6= 0}. (1.9)
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1.1.3 Multiindices

For N ≥ 1 an integer, a multiindex of length N is an element of {0, 1, 2, . . .}N .

For α a multiindex of length N , define

|α| =
N∑
i=1

αi (1.10)

and

α! =
N∏
i=1

αi!, (1.11)

and, if x ∈ RN , define

xα =
N∏
i=1

xαii . (1.12)

1.1.4 Matrices

For integers M,N ≥ 1, let RM×N be the set of M × N matrices with real

entries. For A ∈ RM×N , let AT denote the transpose of A, and, for A ∈ RN×N ,

let detA denote the determinant of A. The identity matrix I ∈ RN×N has entries

given by the Kronecker delta, Ii,j = δi,j. Elements of RN will be identified with

elements of RN×1. We use the FORTRAN-inspired notation R(i:j)×(k:`) to denote

a matrix whose rows are indexed from i to j and whose columns are indexed from

k to `. Similarly, Ri:j will denote a vector whose entries are indexed from i to j.

1.1.5 Differentiation

For U an open subset of RN , u : U → R, i ∈ 1 : N , and x ∈ U , let Diu(x)

denote the derivative of u with respect to its ith argument at x. For U an open

subset of RN , u : U → R, α a multiindex of length N , and x ∈ U , define

Dαu(x) = Dα1
1 · · ·D

αN
N u(x). (1.13)
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For U an open subset of RN , Φ : U → RM , and x ∈ U , define the total derivative

DΦ(x) ∈ RM×N of Φ at x by

(DΦ(x))i,j = DjΦi(x). (1.14)

For i ≥ 0 an integer and U an open subset of RN , let Ci(U) denote the set of

u : U → R for which all derivatives of order at most i exist and are continuous

and let Ci
0(U) denote the set of functions in Ci(U) whose supports are bounded

subsets of U . Let C∞(U) denote the set of u : U → R for which all derivatives of

all orders exist and are continuous and let C∞0 (U) denote the set of functions in

C∞(U) whose supports are bounded subsets of U .

1.1.6 Integration

For U ⊂ RN , let measN(U) denote the N -dimensional Lebesgue measure of U .

For U an (N − 1)-dimensional manifold in RN , let measN−1(U) denote the surface

measure of U inherited from the (N − 1)-dimensional Lebesgue measure on RN−1.

For U an open subset of RN and u : U → R, let
∫
U
u denote the integral

of u over U with respect to the N -dimensional Lebesgue measure on RN . For

U an (N − 1)-dimensional manifold in RN and u : U → R, let
∫
U
u dS denote

the integral of u over U with respect to the surface measure inherited from the

(N − 1)-dimensional Lebesgue measure on RN−1.

1.1.7 Polynomials

For U ⊂ RN and r ≥ 0 an integer, let Πr(U) denote the set of polynomials in

N variables of total degree at most r defined on U . For U an open subset of RN ,

r ≥ 0 an integer, x ∈ U , and u : U → R, let T rxu ∈ Πr(RN) denote the rth-order

4



Taylor polynomial of u centred at x, defined by

T rxu(y) =
∑
|α|≤r

1

α!
Dαu(x)(y − x)α. (1.15)

1.1.8 Lebesgue and Sobolev Spaces

Let U be an open subset of RN . For 1 ≤ p ≤ ∞ and u : U → R, let ‖u‖Lp(U)

denote the Lebesgue norm of u with exponent p on U . That is,

‖u‖Lp(U) =


(∫

U

|u|p
)1/p

, if 1 ≤ p <∞

ess sup
U
|u|, if p =∞.

(1.16)

For 1 ≤ p ≤ ∞ and u : U → R, let ‖u‖Wk
p (U) and |u|Wk

p (U) denote, respectively, the

Sobolev norm and seminorm of u with exponent p and differentiability order k on

U . That is,

‖u‖Wk
p (U) =


( ∑
|α|≤k

∫
U

|Dαu|p
)1/p

, if 1 ≤ p <∞

max
|α|≤k

ess sup
U
|Dαu|, if p =∞

(1.17)

and

|u|Wk
p (U) =


( ∑
|α|=k

∫
U

|Dαu|p
)1/p

, if 1 ≤ p <∞

max
|α|=k

ess sup
U
|Dαu|, if p =∞.

(1.18)

For 1 ≤ p ≤ ∞, let p′ denote the Hölder conjugate exponent of p. For 1 < p <

∞, let Cp = max{(p− 1)−1, p}. Notice that Cp →∞ as p→ 1 and p→∞.

For 1 ≤ p ≤ ∞, k ≥ 1 an integer, and u : U → R, define the negative Sobolev

norm of u with dual exponent p′ and dual differentiability order k on U by

‖u‖W−kp (U) = sup
v∈C∞0 (U)
‖v‖

Wk
p′

(U)
=1

|
∫
U

uv|. (1.19)
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Although the p = ∞ case will be of principal interest in this work, it is not

standard to include the p = 1 or p =∞ cases in the definition of a negative norm.

For instance, these cases are explicitly omitted in the treatment of negative norms

in the standard references [1, Section 3.13] on Sobolev spaces, [13, Section 1.3.1] on

partial differential equations, and [28, Section 2.3.1] on interpolation spaces. These

cases appear in several papers on finite element analysis, including [23, Section 1],

[25, Section 1], [19, Section 1], and [9, Section 5].

A more general negative norm is sometimes more natural than the negative

norm above. For V an open subset of RN , 1 ≤ p ≤ ∞, k ≥ 1 an integer, and

u : U ∩ V → R, define the negative Sobolev norm of u with dual exponent p′ and

dual differentiability order k on U ∩V , disregarding where U ∩V abuts on ∂V , by

‖u‖W−kp (U,V ) = sup
v∈C∞0 (U)
‖v‖

Wk
p′

(U)
=1

|
∫
U∩V

uv|. (1.20)

1.1.9 Product and Dual Spaces

Suppose that U is an open subset of RN , S is a vector space of functions

u : U → R with seminorm |u|S, and Φ : U → RM . Define the product seminorm

of Φ with respect to | · |S by

|Φ|SM =
M∑
i=1

|Φi|S. (1.21)

If | · |S is actually a norm, then so is | · |SM .

Suppose that U is an open subset of RN , S is a vector space of functions

u : U → R with norm ‖u‖S, and F : S → R. Define the dual norm of F with

respect to ‖ · ‖S by

‖F‖S′ = sup
u∈S
‖u‖S=1

|F (u)|. (1.22)
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1.1.10 Convolution

Let V,W be open subsets of RN , U = {x− y, x ∈ W, y ∈ V }, u : U → R, and

v : V → R. Then we can define u ∗ v : W → R, the convolution of u and v, by

(u ∗ v)(x) =

∫
V

u(x− y)v(y) dy. (1.23)

If 0 ∈ V and u is not integrable at 0, then this integral will usually fail to converge.

To overcome this issue, we define the principal-value convolution u ∗̂ v of u and v

by

(u ∗̂ v)(x) = lim
ε→0+

∫
{y∈V :|x−y|>ε}

u(x− y)v(y) dy. (1.24)

1.1.11 Logarithmic Factors

For 0 < a, b ≤ 1 and P a proposition, define the logarithmic factors

`a = 1 + log
1

a
, (1.25)

`P,a =


`a, if P is true

1, if P is false,

(1.26)

and

`P,a,b =


`a, if P is true

`b, if P is false.

(1.27)

These definitions were inspired by [9, Section 2.3].

1.1.12 Weight Functions

For U ⊂ RN and w > 0 a weight parameter, define the weight function σU,w :

RN → R by

σU,w(x) =
w

w + dist(x, U)
. (1.28)

7



This definition loosely follows [9, Section 2.3]. The weight function defined in [19,

Equation 0.7], [20, Equation 1.6], and [22, Equation 1.6] allows only those sets U

consisting of a single point in RN . Observe that 0 < σU,w(x) ≤ 1 for all x ∈ RN

and that σU,w(x) gets smaller as x gets farther from U . Furthermore, w 7→ σU,w(x)

is increasing, t 7→ σtU,w(x) is decreasing, and σU,w(x) increases as U expands. In

[19, Equation 2.10], the multiplicative property

σ{x},w(y)σ{y},w(z) ≤ 2σ{x},w(z) (1.29)

is shown. The generalisation of this is essentially given in [9, Section 2.3],

σU,w(y)σ{y},w(z) ≤ 2σU,w(z). (1.30)

1.1.13 Weighted Norms

The definitions in this section follow [9, Section 2.3]. For 1 ≤ p ≤ ∞, U an

open subset of RN , V ⊂ RN , w > 0, t ∈ R a weight power, and u ∈ Lp(U), define

the weighted norm

‖u‖Lp(U),V,w,t = ‖σtV,wu‖Lp(U). (1.31)

For 1 ≤ p ≤ ∞, k ≥ 0 an integer, U an open subset of RN , V ⊂ RN , w > 0, t ∈ R,

and u ∈ W k
p (U), define the weighted norms and seminorms

‖u‖Wk
p (U),V,w,t =


( ∑
|α|≤k

‖Dαu‖Lp(U),V,w,t

)1/p

, if 1 ≤ p <∞

max
|α|≤k
‖Dαu‖L∞(U),V,w,t, if p =∞

(1.32)

and

|u|Wk
p (U),V,w,t =


( ∑
|α|=k

‖Dαu‖Lp(U),V,w,t

)1/p

, if 1 ≤ p <∞

max
|α|=k
‖Dαu‖L∞(U),V,w,t, if p =∞.

(1.33)
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1.2 Elementary Inequalities

1.2.1 Scaling Inequalities

The following result concerns how the Sobolev seminorms of a function change

under mappings which are nearly scalings. A straightforward proof is furnished by

the chain rule and the change of variables formula.

Proposition 1.1. Suppose that 1 ≤ p ≤ ∞, k ≥ 0 is an integer, U is an open

subset of RN , u ∈ W k
p (U), and c, d > 0. Let Φ : U → RN be invertible, Û = Φ(U),

and û = u ◦ Φ−1.

1. If |Φ|(W 1
∞(U))N ≤ cd−1 and |Φ−1|(W i

∞(Û))N ≤ cdi for all i ∈ 1 : k then

|û|Wk
p (Û) ≤ Cd−N/p+k‖u‖Wk

p (U), (1.34)

where C depends on N , k, and c.

2. If |Φ|(W 1
∞(U))N ≤ cd−1, |Φ−1|(W 1

∞(Û))N ≤ cd, and |Φ−1|(W i
∞(Û))N = 0 for all

i ∈ 2 : k then

|û|Wk
p (Û) ≤ Cd−N/p+k|u|Wk

p (U), (1.35)

where C depends on N , k, and c.

3. If DΦ = dI then

|û|Wk
p (Û) = d−N/p+k|u|Wk

p (U). (1.36)

1.2.2 Negative Norm Inequalities

We state several properties of the general negative norm. These facts are trivial

to verify.

Proposition 1.2. Suppose that 1 ≤ p ≤ ∞ and k ≥ 1 is an integer.
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1. If U, V are open subsets of RN and u ∈ Lp(U ∩ V ) then

‖u‖W−kp (U∩V ) ≤ ‖u‖W−kp (U,V ). (1.37)

2. If U, V are open subsets of RN with U ⊂ V and u ∈ Lp(U) then

‖u‖W−kp (U,V ) = ‖u‖W−kp (U). (1.38)

3. If U1, U2, V1, V2 are open subsets of RN , U1 ⊂ U2, U1 ∩ V1 = U1 ∩ V2, and

u ∈ Lp(U2 ∩ V2) then

‖u‖W−kp (U1,V1) ≤ ‖u‖W−kp (U2,V2). (1.39)

4. If U1, U2 are open subsets of RN with U1 ⊂ U2 and u ∈ Lp(U2) then

‖u‖W−kp (U1) ≤ ‖u‖W−kp (U2). (1.40)

1.2.3 Sobolev’s Inequalities

We single out two particular Sobolev inequalities.

Proposition 1.3. Suppose that U is a bounded open subset of RN with sufficiently

smooth boundary.

1. If u ∈ W 1
1 (U) then

‖u‖L N
N−1

(U) ≤ C‖u‖W 1
1 (U), (1.41)

where C depends on U and N .

2. If u ∈ W 1
2N(U) then

‖u‖L∞(U) ≤ C‖u‖W 1
2N (U), (1.42)

where C depends on U and N .
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One unsatisfactory aspect of this is the untracked dependence on U . To remove

this dependence, we map U , assumed to be of size roughly d, to a reference domain

Û , of roughly unit size, and apply the Sobolev inequalities there. The result has

an untracked dependence on the reference domain Û and an explicit dependence

on d. The scaling inequalities are used to translate the results obtained on the

reference domain back to the original domain.

Corollary 1.4. Suppose that U is a bounded open subset of RN with sufficiently

smooth boundary, c > 0, and let d = diam(U). Let Φ : U → RN be invertible,

Û = Φ(U), |Φ|(W 1
∞(U))N ≤ cd−1, and |Φ−1|(W 1

∞(Û))N ≤ cd.

1. If u ∈ W 1
1 (U) then

‖u‖L N
N−1

(U) ≤ C
(
d−1‖u‖L1(U) + |u|W 1

1 (U)

)
, (1.43)

where C depends on Û , N , and c.

2. If u ∈ W 1
2N(U) then

‖u‖L∞(U) ≤ Cd1/2
(
d−1‖u‖L2N (U) + |u|W 1

2N (U)

)
, (1.44)

where C depends on Û , N , and c.

1.2.4 Measure Inequality

The following is such a widely-used consequence of Hölder’s inequality that it

deserves to be singled out.

Proposition 1.5. If U is a bounded open subset of RN , 1 ≤ p ≤ q ≤ ∞, and

u ∈ Lq(U) then

‖u‖Lp(U) ≤ (measN(U))1/p−1/q‖u‖Lq(U). (1.45)
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1.2.5 Young’s Inequality

The first result below is Young’s inequality for convolution and the second is

a consequence. The third is a generalisation, the proof of which can be modelled

after that of [1, Theorem 2.24].

Proposition 1.6. Suppose that 1 ≤ p, q, r ≤ ∞, 1
p

+ 1
q

= 1 + 1
r

and V,W are open

subsets of RN . Let U = {x− y : x ∈ W, y ∈ V }.

1. If u ∈ Lp(U) and v ∈ Lq(V ) then

‖u ∗ v‖Lr(W ) ≤ ‖u‖Lp(U)‖v‖Lq(V ). (1.46)

2. If ū ∈ Lp(U), v ∈ Lq(V ), u : W × V → R, w(x) =
∫
V
u(x, y)v(y) dy for

x ∈ W , and |u(x, y)| ≤ ū(x− y) for x ∈ W and y ∈ V then

‖w‖Lr(W ) ≤ ‖ū‖Lp(U)‖v‖Lq(V ). (1.47)

3. If u(x, ·) ∈ Lp(V ) for all x ∈ W , u(·, y) ∈ Lp(W ) for all y ∈ V , v ∈ Lq(V ),

and w(x) =
∫
V
u(x, y)v(y) dy for x ∈ W then

‖w‖Lr(W ) ≤
(

sup
x∈W
‖u(x, ·)‖p/q

′

Lp(V )

)(
sup
y∈V
‖u(·, y)‖p/rLp(W )

)
‖v‖Lq(V ). (1.48)

1.2.6 Weighted Seminorm Inequality

The following proposition provides an estimate for the weighted seminorms. It

is a generalisation of an intermediate result in the proof of the asymptotic error

expansion inequalities of [19, Theorem 4.1].

Proposition 1.7. Suppose that U is an open subset of RN , V,W ⊂ RN , w, c > 0,

k ≥ 0 is an integer, t ≥ 0, and u ∈ W k+dte
∞ (U). Assume that U is star-shaped with

respect to W and that, if x ∈ U then

dist(x,W ) ≤ c(w + dist(x, V )). (1.49)
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Then

|u|Wk
∞(U),V,w,t ≤ C

( dte−1∑
i=0

wi|u|Wk+i
∞ (W ) + wt|u|

W
k+dte
∞ (U)

)
, (1.50)

where C depends on N , diam(U), k, dte, and c.

Proof. In this proof, let C denote different positive constants that depend on N ,

diam(U), k, dte, and c. Let x ∈ U and |α| = k. Choose y ∈ W such that

|x − y| ≤ 2 dist(x,W ). From the definition of the Taylor polynomial, it is clear

that

|T dte−1
y Dαu(x)| ≤ C

dte−1∑
i=0

|Dαu|W i
∞(W )|x− y|i. (1.51)

By Taylor’s theorem,

|(Dαu− T dte−1
y Dαu)(x)| ≤ C|x− y|dte|Dαu|

W
dte
∞ (U)

. (1.52)

Observe that, if i ∈ 0 : dte then

σtV,w(x)|x− y|i ≤ CσtV,w(x)|x− y|min{i,t}

= C

(
|x− y|

w + dist(x, V )

)min{i,t}

wmin{i,t}σ
max{0,t−i}
V,w (x).

(1.53)

Also,

|x− y| ≤ 2 dist(x,W ) ≤ C(w + dist(x, V )). (1.54)

Using the fact that 0 ≤ σV,w ≤ 1, along with Equations 1.53 and 1.54, we obtain

that, for i ∈ 0 : dte,

σtV,w(x)|x− y|i ≤ Cwmin{i,t}. (1.55)

Putting together Equations 1.51, 1.52, and 1.55, we see that

σtV,w(x)|Dαu(x)| ≤ σtV,w(x)|(T dte−1
y Dαu)(x)|

+ σtV,w(x)|(Dαu− T dte−1
y Dαu)(x)|

≤ C
( dte−1∑

i=0

wi|Dαu|W i
∞(W ) + wt|Dαu|

W
dte
∞ (U)

)
.

(1.56)

The proposition follows by summing over all |α| = k.
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CHAPTER 2

EXPLICIT CONSTANTS IN LP -BASED ESTIMATES FOR

SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL

EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS

2.1 Introduction and Statement of Results

Let N ≥ 2 be an integer and let Ω be a bounded open subset of RN with

sufficiently smooth boundary. Let m ≥ 1 be an integer and, for j ∈ 1 : m, let

mj ≥ 0 be an integer. Define k0 = maxj∈1:m{2m,mj + 1} and let k ≥ 0 be an

integer. For α a multiindex of length N with |α| ≤ 2m, let aα : Ω̄ → R be

sufficiently smooth. For j ∈ 1 : m and β a multiindex of length N with |β| ≤ mj,

let bj,β : ∂Ω→ R be sufficiently smooth.

Define the differential operator L on functions u : Ω→ R by

Lu =
∑
|α|≤2m

aαD
αu. (2.1)

We assume that L is uniformly elliptic. That is, there exists a constant Cell > 0

such that, if x ∈ Ω and ξ ∈ RN then

∑
|α|=2m

aα(x)ξα ≥ Cell|ξ|2m. (2.2)

We also assume that L satisfies a certain algebraic root condition, as described in

[2, pp. 704, 663] and [11, p. 74]. If x ∈ Ω̄ and ξ, η ∈ RN are linearly independent,

define Px,ξ,η : R→ R by

Px,ξ,η(t) =
∑
|α|=2m

aα(x)(ξ + tη)α. (2.3)

It is assumed that Px,ξ,η has has exactly m roots with positive imaginary parts,

which we will denote by r+
x,ξ,η,i for i ∈ 1 : m.
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For j ∈ 1 : m, define the boundary differential operator Bj on functions u :

Ω̄→ R by

Bju =
∑
|β|≤mj

bj,βD
βu. (2.4)

We assume that L and the Bj satisfy a certain algebraic complementing condition,

as described in [2, pp. 704, 663] and [11, p. 74]. If x ∈ ∂Ω, ξ ∈ RN is such that

ξ 6= 0 but ξTνΩ(x) = 0, and j ∈ 1 : m, define Pj,x,ξ : R→ R by

Pj,x,ξ(t) =
∑
|β|=mj

bj,β(x)(ξ + tνΩ(x))β. (2.5)

Also define P+
x,ξ : R→ R by

P+
x,ξ(t) =

m∏
i=1

(t− r+
x,ξ,νΩ(x),i). (2.6)

It is assumed that the Pj,x,ξ mod P+
x,ξ for j ∈ 1 : m are linearly independent.

We will let C denote different positive constants that depend on N , Ω, m,

k, Cell, various norms of the coefficients of the differential operators, and various

quantities arising from the algebraic conditions on the differential operators.

The following five theorems are our main results.

Theorem 2.1. If 1 < p <∞, k ≥ k0, u ∈ W k
p (Ω), Lu ∈ W k−2m

p (Ω), and, for each

j ∈ 1 : m, vj ∈ W
k−mj
p (Ω) is such that Bju = vj on ∂Ω, then

|u|Wk
p (Ω) ≤ CC2

p

(
|Lu|Wk−2m

p (Ω) +
m∑
j=1

‖vj‖
W
k−mj
p (Ω)

+ C3
p‖u‖Wk−1

p (Ω)

)
. (2.7)

Theorem 2.2. Assume that m = 1 and m1 ∈ 0 : 1. If 1 < p < ∞, k ≥ 2,

u ∈ W k
p (Ω), Lu ∈ W k−2

p (Ω), and v1 ∈ W k−m1
p (Ω) is such that B1u = v1 on ∂Ω

then

|u|Wk
p (Ω) ≤ CCp

(
|Lu|Wk−2

p (Ω) + ‖v1‖Wk−m1
p (Ω)

+ ‖u‖Wk−1
p (Ω)

)
. (2.8)
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Theorem 2.3. Assume that m = 1 and m1 ∈ 0 : 1. Furthermore, assume that, if

f ∈ C0(Ω) and g1 ∈ Cm1(∂Ω), then the boundary-value problem

Lu = f on Ω

B1u = g1 on ∂Ω

(2.9)

has a unique solution u ∈ C2(Ω)∩Cm1(Ω̄). If 1 < p <∞, k ≥ 2, u ∈ W k
p (Ω), and

B1u = 0 on ∂Ω then

‖u‖Wk
p (Ω) ≤ CCp‖Lu‖Wk−2

p (Ω). (2.10)

Theorem 2.4. Assume that m = 1, m1 ∈ 0 : 1, and k ≥ 2. Let d > 0 and let

U, V be open subsets of RN with U ⊂ V and dist(U, ∂V ) ≥ d.

1. If N
N−1
≤ p ≤ 2N , u ∈ W k

p (V ∩ Ω), Lu = 0 on V ∩ Ω, B1u = 0 on V ∩ ∂Ω,

and ` ∈ 1 : k then

‖u‖Wk
p (U∩Ω) ≤ Cd−(k−`)‖u‖W `

p(V ∩Ω). (2.11)

2. If 1 ≤ p ≤ N
N−1

, u ∈ W k
p (V ∩Ω), Lu = 0 on V ∩Ω, B1u = 0 on V ∩ ∂Ω, and

` ∈ 2 : k then

‖u‖Wk
p (U∩Ω) ≤ Cd−(k−`)‖u‖W `

p(V ∩Ω). (2.12)

3. If 2N ≤ p ≤ ∞, u ∈ W k
2N(V ∩ Ω), Lu = 0 on V ∩ Ω, B1u = 0 on V ∩ ∂Ω,

and ` ∈ 2 : k then

‖u‖Wk−1
p (U∩Ω) ≤ Cd−(k−`)‖u‖W `−1

p (V ∩Ω). (2.13)

Theorem 2.5. Assume that mj + 1 ≤ m for all j ∈ 1 : m. Furthermore, assume

that, if f ∈ C0(Ω) and gj ∈ Cmj(∂Ω) for all j ∈ 1 : m, then the boundary-value

problem

Lu = f on Ω

Bju = gj on ∂Ω for all j ∈ 1 : m

(2.14)
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has a unique solution u ∈ C2m(Ω) ∩ Cmaxj∈1:mmj(Ω̄). Let U, V be open subsets of

Ω such that, if x ∈ U and y ∈ V then d1 ≤ |x− y| ≤ d2. Suppose that 1 ≤ p ≤ ∞,

u ∈ W k
p (Ω), Lu = 0 outside of V , and Bju = 0 on ∂Ω for all j ∈ 1 : m.

1. If 2m− k = N then

|u|Wk
p (U) ≤ CdN2

(
1 + log | 1

d2

|
)
‖Lu‖Lp(V ). (2.15)

2. If 2m− k > 0 and 2m− k 6= N then

|u|Wk
p (U) ≤ Cd2m−k

2 ‖Lu‖Lp(V ). (2.16)

3. If 2m− k = 0 and d1 > 0 then

|u|Wk
p (U) ≤ C log

d2

d1

‖Lu‖Lp(V ). (2.17)

4. If 2m− k < 0 and d1 > 0 then

|u|Wk
p (U) ≤ Cd

−(k−2m)
1 ‖Lu‖Lp(V ). (2.18)

2.2 Relationship to Prior Work

The classic Lp-based estimates for solutions of elliptic partial differential equa-

tions satisfying general boundary conditions are given in [2, Theorem 15.2]. In

these estimates, the dependence on p is not made explicit.

Theorems 2.1 and 2.2 improve upon [2, Theorem 15.2] by making the depen-

dence on p explicit. If we blindly trace the dependence on p through the proof of

[2, Theorem 15.2], we obtain far poorer estimates than those of the present work.

Theorem 2.1 is just as general as [2, Theorem 15.2]. Theorem 2.2 pertains only

to second-order equations and boundary conditions of order at most one, but the

result is sharper than that of Theorem 2.1.
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Theorem 2.3 improves upon the estimate of [2, p. 706] by making the depen-

dence on p explicit for problems with unique solutions. However, Theorem 2.3

pertains only to second-order equations and homogeneous boundary conditions of

order at most one.

In [12, Theorem 9.13], W 2
p estimates for solutions of second-order equations

satisfying homogeneous Dirichlet boundary conditions are given. Again, the de-

pendence on p is not made explicit. When the dependence on p is traced through

the proof of [12, Theorem 9.13], a somewhat poorer estimate is obtained than that

of Theorem 2.2.

In [29, Equation 2], W 2
p estimates for unique solutions of second-order equations

satisfying homogeneous Dirichlet boundary conditions are given for p ≥ 2, and

the dependence on p is made explicit. This is done by freezing the coefficients

and applying a linear transformation so that the principal part of the differential

operator is the Laplacian. Estimates near the boundary are obtained by locally

flattening the boundary and odd reflection. The precise dependence on p here

is obtained from the estimates for the Newtonian potential in [12, Theorems 9.8

and 9.9]. Some of the techniques in this proof are used in the present work and

are crucial for obtaining sharper results than those found by simply tracing the

dependence on p through the proofs of the estimates in [2, Theorem 15.2] and [12,

Theorem 9.13].

In [9, Remark 5.3], it is stated that no explicit dependence on p is known for

W 2
p and W 3

p estimates for unique solutions of second-order equations satisfying

general first-order homogeneous boundary conditions.

Theorem 2.3 is stated without substantial proof or reference in several papers.

We list some of these here.

The large p case is claimed in [24, p. 3] for homogeneous Dirichlet boundary
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conditions.

The k = 2, 1 < p ≤ 2 case is claimed in [25, Lemma 2.2] for co-normal derivative

boundary conditions. However, as can be seen from [25, Equations 3.58 and 1.3],

the result appears to be mistakenly applied to a problem with more general first-

order boundary conditions. The case of general first-order boundary conditions

seems substantially more difficult to handle than the case of co-normal deriviative

boundary conditions.

The k ≥ 2, 2 ≤ p < ∞ case is claimed in [19, Equation 1.7] and [20, Lemma

2.2] for two problems. One has co-normal derivative boundary conditions and the

other has more general first-order boundary conditions.

Theorem 2.4 gives local estimates for solutions of second-order homogeneous

equations satisfying homogeneous boundary conditions of order at most one.

Theorem 2.5 gives local estimates for unique solutions of homogeneous equa-

tions satisfying homogeneous boundary conditions. This is simply a convenient

repackaging of the Green’s function estimates of [17, p. 965].

2.3 Differential Operator Properties

In this section, we single out several facts about the differential operators.

Although the coefficients of the boundary differential operators need only be

defined on the boundary of the domain, they may easily be extended into the

interior of the domain. Local extensions are naturally obtained by locally flattening

the boundary. Global extensions are obtained from the local extensions with a

partition of unity. Thus we may think of bj,β : Ω̄→ R.

Freezing the coefficients of the differential operators at a point, we obtain con-

stant coefficient operators, which are more amenable to analysis. For x ∈ Ω, define
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the constant coefficient operator Lx on functions u : Ω→ R by

Lxu =
∑
|α|=2m

aα(x)Dαu. (2.19)

For x ∈ ∂Ω and j ∈ 1 : m, define the constant coefficient operator Bj,x on functions

u : Ω̄→ R by

Bj,xu =
∑
|β|=mj

bj,β(x)Dβu. (2.20)

We now single out two propositions which we will use several times in proving

our results.

Proposition 2.6. If U is an open subset of Ω, 1 ≤ p ≤ ∞, |γ| = k, and u ∈

W 2m+k
p (U) then

‖LDγu‖Lp(U) ≤ C
(
|Lu|Wk

p (U) + ‖u‖W 2m−1+k
p (U)

)
. (2.21)

Proof. By the general Leibniz rule,

DγLu− LDγu =
∑

|α|<2m+k

cαD
αu, (2.22)

where the cα : Ω̄ → R can be expressed in terms of γ and the coefficients of L.

The proposition is immediate from this.

Proposition 2.7. If U is an open subset of Ω, 1 ≤ p ≤ ∞, k ≥ 2m, and u ∈

W k
p (U) then

|u|Wk
p (U) ≤ C

(
|Lu|Wk−2m

p (U) + max
|ζ|=k−2m
ζN=0

|Dζu|W 2m
p (U) + ‖u‖Wk−1

p (U)

)
. (2.23)

Proof. Notice that ‖Dηu‖Lp(U) is bounded by the right side of Equation 2.23, for

all |η| = k with ηN ∈ 0 : 2m. In this case, there exist |γ| = 2m and |ζ| = k − 2m

such that η = γ + ζ, γN = ηN , and ζN = 0.

We proceed by induction, following the proof of [10, Theorem 6.3.5]. Assume

that ‖Dηu‖Lp(U) is bounded by the right side of Equation 2.23 for all |η| = k with
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ηN ∈ 0 : i, for some i ∈ 2m : k − 1. Then let |η| = k and ηN = i + 1. Since

ηN ≥ 2m, we can write η = 2meN + ζ, where |ζ| = k − 2m and ζN = i + 1− 2m.

Obseve that

LDζu =
∑
|α|≤2m
αN<2m

aαD
α+ζu+ a2meND

2meN+ζu. (2.24)

If x ∈ U then, by uniform ellipticity,

a2meN (x) =
∑
|α|=2m

aα(x)eαN

≥ C|eN |2

= C.

(2.25)

Therefore we can divide both sides of Equation 2.24 by a2meN , yielding

Dηu =
1

a2meN

(
LDζu−

∑
|α|≤2m
αN<2m

aαD
α+ζu

)
. (2.26)

If |α| = 2m and αN < 2m then |α + ζ| = k and (α + ζ)N ≤ i. Therefore, by the

induction hypothesis, ‖Dα+ζu‖Lp(U) is bounded by the right side of Equation 2.23.

By Proposition 2.6, ‖LDζu‖Lp(U) is bounded by the right side of Equation 2.23.

These facts, together with Equations 2.26 and 2.25, show that Dηu is bounded by

the right side of Equation 2.23.

2.4 Operator Transformations

Let Φ : RN → RN be invertible and sufficiently smooth and have sufficiently

smooth inverse, and let Ω̂ = Φ(Ω). In this section, we investigate how the differen-

tial operators transform under Φ and show that all our assumptions are preserved.

Define the transformed operator L̂ on functions û : Ω̂→ R by

L̂û =
∑
|α|≤2m

âαD
αû, (2.27)
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where the coefficients âα :
¯̂
Ω→ R are such that

L̂û = L(û ◦ Φ) ◦ Φ−1. (2.28)

For j ∈ 1 : m, define the transformed operator B̂j on functions û :
¯̂
Ω→ R by

B̂jû =
∑
|β|≤mj

b̂j,βD
βû, (2.29)

where the coefficients b̂j,β :
¯̂
Ω→ R are such that

B̂jû = B̂j(û ◦ Φ) ◦ Φ−1. (2.30)

Fix x̂ ∈ Ω̂ and let x = Φ−1(x̂). We know by [4, Section 3.9] that the normal

vector transforms according to

νΩ(x) = (DΦ(x))TνΩ̂(x̂). (2.31)

Fix ξ̂ ∈ RN and let ξ = (DΦ(x))Tξ̂. Define û : Ω̂→ R by

û(ŷ) =
∑
|α|=2m

1

α!
ξα(ŷ − x̂)α. (2.32)

It is easily computed that

Dαû(x̂) =


ξ̂α, if |α| = 2m

0, otherwise.

(2.33)

Now let u = û ◦ Φ. If |α| = 2m then, writing α = ei1 + · · ·+ ei2m , we see that

Dαu(x) =
N∑
j1=1

· · ·
N∑

j2m=1

(DΦ(x))j1,ii · · · (DΦ(x))j2m,i2m ξ̂j1 · · · ξ̂j2m

= ((DΦ(x))Tξ̂)i1 · · · ((DΦ(x))Tξ̂)i2m

= ((DΦ(x))Tξ̂)α

= ξα.

(2.34)
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If |α| < 2m then Dαu(x) = 0. By Equations 2.33, 2.27, 2.28, and 2.34,∑
|α|=2m

âα(x̂)ξ̂α = L̂û(x̂)

= Lu(x)

=
∑
|α|=2m

aα(x)ξα.

(2.35)

A similar argument establishes that, for j ∈ 1 : m,

∑
|β|=mj

b̂j,β(x̂)ξ̂β =
∑
|β|=mj

bj,β(x)ξβ. (2.36)

Using Equation 2.35, it easily verified that uniform ellipticity and the root

condition are preserved under transformation. Using Equations 2.36 and 2.31, it is

easily verified that the complementing condition is preserved under transformation.

2.5 Estimates in the Interior

Lemma 2.8. Suppose that x0 ∈ Ω and d > 0. Let U = Bd(x0) and V = B3d(x0)

and assume that V ⊂ Ω. If 1 < p <∞, k ≥ k0, and u ∈ W k
p (V ) then

|u|Wk
p (U) ≤ C

(
Cp|Lu|Wk−2m

p (V )

+ Cpd|u|Wk
p (V )

+ (Cp + d−1)‖u‖Wk−1
p (V )

)
.

(2.37)

Proof. For i ∈ 1 : 3, let Ui = Bid(x0).

By the Bramble-Hilbert lemma, there exists some χ ∈ Πk−2(U3) such that, if

i ∈ 0 : k − 1 then

|u− χ|W i
p(U3) ≤ Cdk−1−i|u|Wk−1

p (U3). (2.38)

Let ω ∈ C∞0 (U3) be such that ω = 1 on U2 and, for i ∈ 0 : k,

|ω|W i
∞(U3) ≤ Cd−i. (2.39)
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Let |γ| = k. Then there exist |ζ| = 2m and |η| = k − 2m such that γ = ζ + η. By

the general Leibniz rule,

DηLx0(ω(u− χ)) = g + h, (2.40)

where

g = ωDη

(
Lu−

∑
|α|=2m

(aα − aα(x0))Dαu−
∑
|α|<2m

aαD
αu

)
(2.41)

and

h =
∑

|α|+|β|=k
|α|>0

c1,α,βD
αωDβ(u− χ), (2.42)

and the c1,α,β are constants that depend on η and the coefficients of Lx0 .

Let Γ : RN r {0} → R denote the fundamental solution corresponding to the

constant coefficient operator Lx0 , as given in [16, pp. 69–70] and described in [3,

p. 213] and [2, p. 652]. By [3, Chapter 5, Equation 5],

ω(u− χ) = Γ ∗ Lx0(ω(u− χ)). (2.43)

By [3, Chapter 5, Equation 26], along with Equations 2.43 and 2.40,

Dγ(ω(u− χ)) = DζΓ ∗̂ (g + h) + c2(g + h), (2.44)

where c2 is a constant that depends on ζ and the coefficients of Lx0 .

By [2, Equation 4.2], we see that the (2m − 1)st-order derivatives of Γ are

homogeneous of degree −(N − 1). Notice that h = 0 outside of U3 r U2 and that,

if x ∈ U1 and y ∈ U3 r U2 then d ≤ |x − y| ≤ 4d. Therefore, by Corollary 2.25,

Part 1,

‖DζΓ ∗̂ (g + h)‖Lp(U1) ≤ C
(
Cp‖g‖Lp(U3) + ‖h‖Lp(U3)

)
. (2.45)

By Equations 2.44 and 2.45,

‖Dγ(ω(u− χ))‖Lp(U1) ≤ C
(
Cp‖g‖Lp(U3) + ‖h‖Lp(U3)

)
. (2.46)
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It remains to estimate ‖g‖Lp(U3) and ‖h‖Lp(U3).

By Equation 2.41,

‖g‖Lp(U3) ≤ C
(
|Lu|Wk−2m

p (U3) + d|u|Wk
p (U3) + ‖u‖Wk−1

p (U3)

)
. (2.47)

If |α|+ |β| = k and |β| < k then, by Equations 2.38 and 2.39,

‖DαωDβ(u− χ)‖Lp(U3) ≤ |ω|W |α|∞ (U3)
|u− χ|

W
|β|
p (U3)

≤ Cd−|α|d(k−1)−|β||u|Wk−1
p (U3)

= Cd−1|u|Wk−1
p (U3).

(2.48)

By Equations 2.42 and 2.48,

‖h‖Lp(U3) ≤ Cd−1|u|Wk−1
p (U3). (2.49)

Putting together Equations 2.46, 2.47, and 2.49,

‖Dγu‖Lp(U1) = ‖Dγ(ω(u− χ))‖Lp(U1)

≤ C
(
Cp|Lu|Wk−2m

p (U3)

+ Cpd|u|Wk
p (U3)

+ (Cp + d−1)‖u‖Wk−1
p (U3)

)
.

(2.50)

The lemma follows by summing this inequality over all |γ| = k.

2.6 Estimates at the Boundary

2.6.1 The General Case

First we handle the case of a flat boundary portion.

Lemma 2.9. Suppose that x0 ∈ ∂Ω and d > 0. Let U+ = Bd(x0) ∩ Ω, V + =

B3d(x0) ∩ Ω, and T = B3d(x0) ∩ ∂Ω. Assume that V + ⊂ RN
+ and T ⊂ ∂RN

+ . If
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1 < p < ∞, k ≥ k0, u ∈ W k
p (V +) and, for each j ∈ 1 : m, vj ∈ W

k−mj
p (V +) is

such that Bju = vj on T , then

|u|Wk
p (U+) ≤ C

(
C2
p |Lu|Wk−2m

p (V +)

+ (Cp + d−1)
m∑
j=1

‖vj‖
W
k−mj
p (V +)

+ C2
pd|u|Wk

p (V +)

+ Cpd
−1(Cp + d−1)‖u‖Wk−1

p (V +)

)
.

(2.51)

Proof. For i ∈ 1 : 3, let Ui = Bid(x0) and U+
i = Bid(x0) ∩ RN

+ .

By the extension theorem, there exists an extension ū : U3 → R of u such that,

for i ∈ 0 : k,

|ū|W i
p(U3) ≤ C|u|W i

p(U+
3 ). (2.52)

Although it is not explicitly stated, it is easily seen in the proof of [1, Theorem

5.19] that this constant does not depend on p or d.

By the Bramble-Hilbert lemma, there exists some χ ∈ Πk−2(U3) such that, if

i ∈ 0 : k − 1 then

|ū− χ|W i
p(U3) ≤ Cdk−1−i|ū|Wk−1

p (U3). (2.53)

Let ω ∈ C∞0 (U3) be such that ω = 1 on U2 and, for i ∈ 0 : k,

|ω|W i
∞(U3) ≤ Cd−i. (2.54)

Ideally, we would be able to proceed, as in Section 2.5, by analysing a repre-

sentation of ω(ū−χ) in terms of Lx0(ω(ū−χ)). This will not work here, however,

because it appears impossible to bound the extension of Lu in terms of Lu. A

proposed method like this would also be suspect because it completely ignores the

boundary conditions.

Here we start by finding a function v : R̄N
+ → R such that ω(ū − χ) − v is
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Lx0-harmonic on RN
+ . By the general Leibniz rule,

Lx0(ω(u− χ)) = ω

(
L(u− χ)

−
∑
|α|=2m

(aα − aα(x0))Dα(u− χ)

−
∑
|α|<2m

aαD
α(u− χ)

)
+

∑
|α|+|β|=2m
|α|>0

c1,α,βD
αωDβ(u− χ),

(2.55)

where the c1,α,β are constants that depend on the coefficients of Lx0 . By the

extension theorem, there exists an extension f̄ : U3 → R of L(u−χ) such that, for

i ∈ 0 : k − 2m,

|f̄ |W i
p(U3) ≤ C|L(u− χ)|W i

p(U+
3 ). (2.56)

Also by the extension theorem, there exist sufficiently smooth extensions āα : U3 →

R of aα for |α| ≤ 2m. Now define F : U3 → R by

F = ω

(
f̄

−
∑
|α|=2m

(āα − āα(x0))Dα(ū− χ)

−
∑
|α|<2m

āαD
α(ū− χ)

)
+

∑
|α|+|β|=2m
|α|>0

c1,α,βD
αωDβ(ū− χ),

(2.57)

and notice that, by Equation 2.55, on U+
3 ,

F = Lx0(ω(u− χ)). (2.58)

Let Γ : RN r {0} → R denote the fundamental solution corresponding to the

constant coefficient operator Lx0 and define v : R̄N
+ → R by

v = Γ ∗ F. (2.59)
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By Equation 2.58 and [3, Chapter 5, Equation 5], we see that, on U+
3 ,

Lx0v = Lx0(ω(u− χ)). (2.60)

Let |γ| = k. Then there exist |ζ| = 2m and |η| = k − 2m such that γ = ζ + η.

By the general Leibniz rule,

DηF = g + h, (2.61)

where

g = ω

(
Dηf −

∑
|α|=2m

(āα − āα(x0))Dη+αū+
∑
|α|<k

c3,αD
α(ū− χ)

)
(2.62)

and

h =
∑

|α|+|β|=k−2m
|α|>0

c4,α,βD
αωDβ f̄ +

∑
|α|+|β|≤k
|α|>0

c5,α,βD
αωDβ(ū− χ), (2.63)

and the c3,α, c4,α,β, and c5,α,β are constants that depend on η and the coefficients

of Lx0 . By [3, Chapter 5, Equation 26], along with Equations 2.59 and 2.61,

Dγv = DζΓ ∗̂ (g + h) + c6(g + h), (2.64)

where c6 is a constant that depends on ζ and the coefficients of Lx0 .

By [2, Equation 4.2], we see that the (2m − 1)st-order derivatives of Γ are

homogeneous of degree −(N − 1). Notice that h = 0 outside of U3 r U2 and that,

if x ∈ U+
1 and y ∈ U3 r U2 then d ≤ |x − y| ≤ 4d. Therefore, by Corollary 2.25,

Part 1,

‖DζΓ ∗̂ (g + h)‖Lp(U+
1 ) ≤ C

(
Cp‖g‖Lp(U3) + ‖h‖Lp(U3)

)
. (2.65)

By Equations 2.64 and 2.65,

‖Dγv‖Lp(U+
1 ) ≤ C

(
Cp‖g‖Lp(U3) + ‖h‖Lp(U3)

)
. (2.66)
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We will need an estimate for Dγv on RN
+ in addition to this one on U+

1 . By Theorem

2.23,

‖DζΓ ∗̂ (g + h)‖Lp(RN+ ) ≤ CCp

(
‖g‖Lp(U3) + ‖h‖Lp(U3)

)
. (2.67)

By Equations 2.64 and 2.67,

‖Dγv‖Lp(RN+ ) ≤ CCp

(
‖g‖Lp(U3) + ‖h‖Lp(U3)

)
. (2.68)

It remains to estimate ‖g‖Lp(U3) and ‖h‖Lp(U3).

By Equation 2.62,

‖g‖Lp(U3) ≤ C
(
|f̄ |Wk−2m

p (U3) + d|ū|Wk
p (U3) + ‖ū‖Wk−1

p (U3)

)
. (2.69)

By Equation 2.56,

|f̄ |Wk−2m
p (U3) ≤ C|L(u− χ)|Wk−2m

p (U+
3 )

≤ C
(
|Lu|Wk−2m

p (U+
3 ) + |Lχ|Wk−2m

p (U+
3 )

)
.

(2.70)

Using the fact that χ is a polynomial of degree at most k−1, along with Equations

2.53 and 2.52,

|Lχ|Wk−2m
p (U+

3 ) ≤ C‖χ‖Wk−1
p (U+

3 )

≤ C
(
‖u− χ‖Wk−1

p (U+
3 ) + ‖u‖Wk−1

p (U+
3 )

)
≤ C‖u‖Wk−1

p (U+
3 ).

(2.71)

Putting together Equations 2.69, 2.70, 2.71, and 2.52 yields

‖g‖Lp(U+
3 ) ≤ C

(
|Lu|Wk−2m

p (U+
3 ) + d|u|Wk

p (U+
3 ) + ‖u‖Wk−1

p (U+
3 )

)
. (2.72)

Suppose first that |α| + |β| = k − 2m and |α| > 0. By Equations 2.56, 2.53,

and 2.52,

|f̄ |
W
|β|
p (U3)

≤ C|L(u− χ)|
W
|β|
p (U+

3 )

≤ C‖u− χ‖
W
|β|+2m
p (U+

3 )

≤ Cd(k−1)−(|β|+2m)|u|Wk−1
p (U+

3 ),

(2.73)
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so, by Equation 2.54,

‖DαωDβ f̄‖Lp(U3) ≤ |ω|W |α|∞ (U3)
|f̄ |

W
|β|
p (U3)

≤ Cd−|α|d(k−1)−(|β|+2m)|u|Wk−1
p (U+

3 )

= Cd−1|u|Wk−1
p (U+

3 ).

(2.74)

Next, if |α|+ |β| ≤ k and |α| > 0 then, by Equations 2.54, 2.53, and 2.52,

‖DαωDβ(ū− χ)‖Lp(U3) ≤ |ω|W |α|∞ (U3)
‖ū− χ‖

W
|β|
p (U3)

≤ Cd−|α|d(k−1)−|β|‖u‖Wk−1
p (U+

3 )

= Cd−1|u|Wk−1
p (U+

3 ).

(2.75)

Putting together Equations 2.63, 2.74, and 2.75,

‖h‖Lp(U3) ≤ Cd−1‖u‖Wk−1
p (U+

3 ). (2.76)

Equations 2.66, 2.72 and 2.76 show that

‖Dγv‖Lp(U+
1 ) ≤ C

(
Cp|Lu|Wk−2m

p (U+
3 )

+ Cpd|u|Wk
p (U+

3 )

+ (Cp + d−1)‖u‖Wk−1
p (U+

3 )

)
,

(2.77)

and Equations 2.68, 2.72 and 2.76 show that

‖Dγv‖Lp(RN+ ) ≤ CCp

(
|Lu|Wk−2m

p (U+
3 ) + d|u|Wk

p (U+
3 ) + d−1‖u‖Wk−1

p (U+
3 )

)
. (2.78)

Summing Equations 2.77 and 2.78 over all |γ| = k, we find that

|v|Wk
p (U+

1 ) ≤ C
(
Cp|Lu|Wk−2m

p (U+
3 )

+ Cpd|u|Wk
p (U+

3 )

+ (Cp + d−1)‖u‖Wk−1
p (U+

3 )

) (2.79)

and

|v|Wk
p (RN+ ) ≤ CCp

(
|Lu|Wk−2m

p (U+
3 ) + d|u|Wk

p (U+
3 ) + d−1‖u‖Wk−1

p (U+
3 )

)
. (2.80)
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So far, we have constructed a function v : R̄N
+ → R such that ω(u − χ) − v is

Lx0-harmonic on RN
+ , and we have obtained estimates for it. As we will see, we

will be able to obtain sharper estimates if, in addition, Bj,x0v = 0 on ∂RN
+ for all

j ∈ 1 : m. Such a construction seems most plausible for m = 1. This possibility is

investigated in Section 2.6.2.

A representation of Lx0-harmonic functions which satisfy general boundary

conditions is given in [2, Section 2]. We use this to obtain estimates for ω(u−χ)−v,

which, combined with the estimates for v that we have already demonstrated, yield

estimates for ω(u− χ).

Once again let |γ| = k. By [2, Theorem 4.1 and Corollary to Theorem 14.1],

on RN
+ ,

Dγ(ω(u− χ)) = Dγv +
m∑
j=1

N∑
i=1

∑
|η|=k−mj−1

ηN=0

DiIi,j,η, (2.81)

where, by [2, Equations 4.13 and 4.13′], for x ∈ RN−1 and t > 0,

Ii,j,η(x, t) =

∫
RN−1

Ki,j(x− y, t)DηBj,x0(ω(u− χ))(y, 0) dy. (2.82)

Here, by [2, Lemma 2.1], the Ki,j are sums of terms K ∈ C∞(RN
+ ) which are ho-

mogeneous of degree −(N−1) and satisfy ‖K‖W 2
∞(ΣN−1

+ ) ≤ C, and, by [2, Equation

3.15], have the property that∫
ΣN−2

K(x, 0) dS(x) = 0. (2.83)

Let j ∈ 1 : m and let |η| = k −mj − 1 have ηN = 0. By the general Leibniz
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rule, on ∂RN
+ ,

DηBj,x0(ω(u− χ)− v) = ωDη

(
Bju

−
∑
|β|=mj

(bj,β − bj,β(x0))Dβu−
∑
|β|<mj

bj,βD
βu

)
+

∑
|α|+|β|=k−1
|α|>0

c7,α,βD
αωDβ(u− χ)

−DηBj,x0v,

(2.84)

where the c7,α,β are constants that depend on η and the coefficients of Bj,x0 . Now

define G : R̄N
+ → R by

G = ωDη

(
vj

−
∑
|β|=mj

(bj,β − bj,β(x0))Dβu−
∑
|β|<mj

bj,βD
βu

)
+

∑
|α|+|β|=k−1
|α|>0

c7,α,βD
αωDβ(u− χ)

−DηBj,x0v,

(2.85)

and notice that, by Equation 2.84, on ∂RN
+ ,

G = DηBj,x0(ω(u− χ)− v). (2.86)

By the general Leibniz rule, if ` ∈ 1 : N then

D`G = g` + h`, (2.87)

where

g` = ωDη+e`

(
vj −

∑
|β|=mj

(bj,β − bj,β(x0))Dβu−
∑
|β|<mj

bj,βD
βu

)
−Dη+e`Bj,x0v

(2.88)
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and

h` = D`ω

(
Dηvj +

∑
|β|<k

c8,βD
βu

)
+

∑
|α|+|β|=k
|α|>0

c9,α,βD
αωDβ(u− χ), (2.89)

and the c8,β and c9,α,β are constants that depend on η, `, and the coefficients of

Bj,x0 . The last term on the right side of Equation 2.88 is the most damaging in

the estimates that follow.

Notice that h` = 0 outside of U+
3 r U+

2 and that, if x ∈ U+
1 and y ∈ U+

3 r U+
2

then d ≤ |x − y∗| ≤ 4d. Therefore, by Equations 2.82, 2.86, and 2.87, along with

Theorem 2.29,

|Ii,j,η|W 1
p (U+

1 ) ≤ C
N∑
`=1

(
Cp‖g`‖Lp(RN+ ) + ‖h`‖Lp(U+

3 )

)
. (2.90)

It remains to estimate ‖g`‖Lp(RN+ ) and ‖h`‖Lp(U+
3 ).

By Equation 2.88,

‖g`‖Lp(RN+ ) ≤ C
(
|vj|

W
k−mj
p (U+

3 )
+ d|u|Wk

p (U+
3 ) + ‖u‖Wk−1

p (U+
3 )

+ |v|Wk
p (RN+ )

)
.

(2.91)

If |α|+ |β| = k and |α| > 0 then, by Equation 2.75,

‖DαωDβ(u− χ)‖Lp(U+
3 ) ≤ ‖D

αωDβ(ū− χ)‖Lp(U3)

≤ Cd−1|u|Wk−1
p (U+

3 ).

(2.92)

By Equations 2.89 and 2.92,

‖h`‖Lp(U+
3 ) ≤ d−1

(
|vj|

W
k−mj−1
p (U+

3 )
+ ‖u‖Wk−1

p (U+
3 )

)
. (2.93)

Equations 2.90, 2.91, and 2.93 show that

|Ii,j,η|W 1
p (U+

1 ) ≤ C
(

(Cp + d−1)‖vj‖
W
k−mj
p (U+

3 )

+ Cpd|u|Wk
p (U+

3 )

+ (Cp + d−1)‖u‖Wk−1
p (U+

3 )

+ Cp|v|Wk
p (RN+ )

)
.

(2.94)
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The triple sum on the right side of Equation 2.81 is estimated by summing Equation

2.94 first over all |η| = k −mj − 1 with ηN = 0 and then over all j ∈ 1 : m. The

result is that

‖Dγ(ω(u− χ))‖Lp(U+
1 ) ≤ C

(
|v|Wk

p (U+
1 )

+ (Cp + d−1)
m∑
j=1

‖vj‖
W
k−mj
p (U+

3 )

+ Cpd|u|Wk
p (U+

3 )

+ (Cp + d−1)‖u‖Wk−1
p (U+

3 )

+ Cp|v|Wk
p (RN+ )

)
.

(2.95)

Using Equation 2.79 to estimate the first term and Equation 2.80 to estimate the

last term, we obtain

‖Dγu‖Lp(U+
1 ) = ‖Dγ(ω(u− χ))‖Lp(U+

1 )

≤ C
(
C2
p |Lu|Wk−2m

p (U+
3 )

+ (Cp + d−1)
m∑
j=1

‖vj‖
W
k−mj
p (U+

3 )

+ C2
pd|u|Wk

p (U+
3 )

+ Cpd
−1(Cp + d−1)‖u‖Wk−1

p (U+
3 )

)
.

(2.96)

The lemma follows by summing Equation 2.96 over all |γ| = k.

Next we consider the general case of a curved boundary. The idea is to flatten

the boundary and use Lemma 2.9.

Lemma 2.10. Suppose that x0 ∈ ∂Ω and 0 < d ≤ d′. Assume that d′ and d/d′ are

sufficiently small. Let U+ = Bd(x0)∩Ω, V + = Bd′(x0)∩Ω, and T = Bd′(x0)∩∂Ω.

If 1 < p <∞, k ≥ k0, u ∈ W k
p (V +), and, for each j ∈ 1 : m, vj ∈ W

k−mj
p (V +) is
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such that Bju = vj on T , then

|u|Wk
p (U+) ≤ C

(
C2
p |Lu|Wk−2m

p (V +)

+ (Cp + d−1)
m∑
j=1

‖vj‖
W
k−mj
p (V +)

+ C2
pd|u|Wk

p (V +)

+ Cpd
−1(Cp + d−1)‖u‖Wk−1

p (V +)

)
.

(2.97)

Proof. Let U = Bd(x0) and V = Bd′(x0).

For sufficiently small d′, there exists an invertible and sufficiently smooth Φ :

RN → RN which flattens the boundary of Ω in V and has sufficiently smooth

inverse. With x̂0 = Φ(x0), Û+ = Φ(U+), V̂ + = Φ(V +), T̂ = Φ(T ), Û = Φ(U),

and V̂ = Φ(V ), this means that V̂ + ⊂ RN
+ and T̂ ⊂ ∂RN

+ . If d/d′ is sufficiently

small, there exists some d̂ > 0 such that Û ⊂ Bd̂(x̂0) and B3d̂(x̂0) ⊂ V̂ . Define the

transformed operators L̂ and B̂j as in Section 2.4. Let û = u◦Φ−1 and v̂j = vj◦Φ−1.

Applying Lemma 2.9 to the transformed setup,

|û|Wk
p (Û+) ≤ C

(
C2
p |L̂û|Wk−2m

p (V̂ +)

+ (Cp + d̂−1)
m∑
j=1

‖v̂j‖
W
k−mj
p (V̂ +)

+ C2
p d̂|û|Wk

p (V̂ +)

+ Cpd̂
−1(Cp + d̂−1)‖û‖Wk−1

p (V̂ +)

)
.

(2.98)

We bound the left side of Equation 2.97 by

|u|Wk
p (U+) ≤ C‖û‖Wk

p (Û+)

≤ C
(
|û|Wk

p (Û+) + ‖û‖Wk−1
p (Û+)

)
.

(2.99)

The first term is bounded by the right side of Equation 2.98 and the second term

is bounded by the fourth term on the right side of Equation 2.97. It remains to

show that each of the four terms on the right side of Equation 2.98 are bounded

by the right side of Equation 2.97.
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The first term on the right side of Equation 2.98 has the factor

|L̂û|Wk−2m
p (V̂ +) ≤ C‖Lu‖Wk−2m

p (V +)

≤ C
(
|Lu|Wk−2m

p (V +) + ‖u‖Wk−1
p (V +)

)
,

(2.100)

and is thus bounded by the first and fourth terms on the right side of Equation

2.97. Since d̂−1 ≤ Cd−1, the second and fourth terms on the right side of Equation

2.98 are bounded by the second and fourth terms on the right side of Equation

2.97, respectively. Since d̂ ≤ Cd, the third term on the right side of Equation 2.98

is bounded by the third and fourth terms on the right side of Equation 2.97.

2.6.2 A Special Case

Throughout this subsection, we assume that m = 1 and m1 ∈ 0 : 1. That is,

we consider the case of second-order equations with boundary conditions of order

at most one. We improve the boundary estimates of Section 2.6.1 in this special

case.

We proceed in three stages. First, we assume that we start with a flat boundary

portion and a differential operator whose leading part, at a point, is the Laplacian.

Lemma 2.11. Suppose that x0 ∈ ∂Ω and d > 0. Assume that Lx0 = ∆. Let

U+ = Bd(x0)∩Ω, V + = B3d(x0)∩Ω, and T = B3d(x0)∩∂Ω. Assume that V + ⊂ RN
+

and T ⊂ ∂RN
+ . If 1 < p < ∞, k ≥ 2, u ∈ W k

p (V +), and v1 ∈ W k−m1
p (V +) is such

that B1u = v1 on T then

|u|Wk
p (U+) ≤ C

(
Cp|Lu|Wk−2

p (V +)

+ (Cp + d−1)‖v1‖Wk−m1
p (V +)

+ Cpd|u|Wk
p (V +)

+ (Cp + d−1)‖u‖Wk−1
p (V +)

)
.

(2.101)
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Proof. For i ∈ 1 : 3, let Ui = Bid(x0) and U+
i = Bid(x0) ∩ RN

+ .

Let |ζ| = k − 2 have ζN = 0 and let |γ| = 2. By the Bramble-Hilbert lemma,

there exists some constant χ ∈ Π0(U3) such that, if i ∈ 0 : 1 then

|Dζu− χ|W i
p(U+

3 ) ≤ Cd1−i|Dζu|W 1
p (U+

3 ). (2.102)

Let ω ∈ C∞0 (U3) be such that ω = 1 on U2 and, for i ∈ 0 : 2,

|ω|W i
∞(U3) ≤ Cd−i. (2.103)

We start by finding a function v : R̄N
+ → R such that ω(Dζu−χ)−v is harmonic

on RN
+ and B1,x0v = 0 on ∂RN

+ . Define f : RN → R by

f(x) =


∆(ω(Dζu− χ))(x), if xN > 0

0, otherwise.

(2.104)

By the general Leibniz rule,

f = g + h, (2.105)

where

g =


ω
(
LDζu−

∑
|α|=2

(aα − aα(x0))Dα+ζu+
∑
|α|<2

aαD
α+ζu

)
, if xN > 0

0, otherwise

(2.106)

and

h =


∑

|α|+|β|=2
|α|>0

c1,α,βD
αωDβ(Dζu− χ), if xN > 0

0, otherwise,

(2.107)

and the c1,α,β are constants that depend on N . By Equation 2.106,

‖g‖Lp(U3) ≤ C
(
‖LDζu‖Lp(U+

3 ) + ‖u‖Wk−1
p (U+

3 ) + d|u|Wk
p (U+

3 )

)
. (2.108)
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If |α|+ |β| = 2 and |α| > 0 then, by Equations 2.103 and 2.102,

‖DαωDβ(Dζu− χ)‖Lp(U+
3 ) ≤ |ω|W |α|∞ (U+

3 )
|Dζu− χ|

W
|β|
p (U+

3 )

≤ Cd−|α|d1−|β||u|Wk−1
p (U+

3 )

= Cd−1|u|Wk−1
p (U+

3 ).

(2.109)

By Equations 2.107 and 2.109,

‖h‖Lp(U3) ≤ Cd−1|u|Wk−1
p (U+

3 ). (2.110)

Define Γ : RN r {0} → R by

Γ(x) =


1

2π
log |x|, if N = 2

− 1

N(N − 2) measN(BN)
|x|−(N−2), otherwise.

(2.111)

By [12, Equations 2.12 and 2.17], Γ is the fundamental solution corresponding to

∆. Obviously the first-order derivatives of Γ are homogeneous of degree −(N −1).

Notice that h = h∗ = 0 outside of U3 r U2 and that, if x ∈ U+
1 and y ∈ U3 r U2

then d ≤ |x− y| ≤ 4d. Therefore, by Corollary 2.25, Part 1,

‖DγΓ ∗̂ f‖Lp(U+
1 ) ≤ C

(
Cp‖g‖Lp(U3) + ‖h‖Lp(U3)

)
(2.112)

and

‖DγΓ ∗̂ f ∗‖Lp(U+
1 ) ≤ C

(
Cp‖g∗‖Lp(U3) + ‖h∗‖Lp(U3)

)
. (2.113)

First we consider the case m1 = 0. By definition of m1, if v : R̄N
+ → R then

B1,x0v = b0v for some constant b0. For x, y ∈ R̄N
+ and x 6= y, let

G(x, y) = Γ(x− y)− Γ(x− y∗). (2.114)

Define v : R̄N
+ → R by

v(x) =

∫
RN+
G(x, y)f(y) dy

=

∫
RN

Γ(x− y)
(
f(y)− f ∗(y)

)
dy.

(2.115)
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That is,

v = Γ ∗ (f − f ∗). (2.116)

If x, y ∈ RN
+ then x 6= y∗, so ∆Γ(x− y∗) = 0. Therefore ∆v = ∆(Γ ∗ f) = f on

RN
+ .

Observe that Γ(z∗) = Γ(z) for z ∈ RN r {0}. Therefore, if x ∈ ∂RN
+ and

y ∈ RN
+ then

B1,x0G(x, y) = b0(Γ(x− y)− Γ(x− y∗))

= b0(Γ(x− y)− Γ(x∗ − y∗))

= 0.

(2.117)

By Equations 2.115 and 2.117, we see that B1,x0v = 0 on ∂RN
+ .

By [3, Chapter 5, Equation 26] and Equation 2.116,

Dγv = DγΓ ∗̂ (f − f ∗) + c2(f − f ∗), (2.118)

where c2 is a constant that depends on γ. By Equations 2.118, 2.112, 2.113, and

2.105,

‖Dγv‖Lp(U+
1 ) ≤ C

(
Cp‖g‖Lp(U3) + ‖h‖Lp(U3)

+ Cp‖g∗‖Lp(U3) + ‖h∗‖Lp(U3)

)
.

(2.119)

Next we consider the case m1 = 1. By definition of m1, if v : R̄N
+ → R then

B1,x0v =
∑N

i=1 biDiv for some constants bi. By the complementing condition, we

must have b 6= 0. Following [12, Equation 6.62], define Θ : RN r {0} → R by

Θ(x) = 2|bN |
∫ ∞

0

DNΓ
(
x+ sign(bN)tb

)
dt. (2.120)

Using the fact that the second-order derivatives of Γ are homogeneous of degree

−N , it is easily seen that the first-order derivatives of Θ are homogeneous of degree

−(N − 1). Again using Corollary 2.25, Part 1,

‖DγΘ ∗̂ f ∗‖Lp(U+
1 ) ≤ C

(
Cp‖g∗‖Lp(U3) + ‖h∗‖Lp(U3)

)
. (2.121)
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For x, y ∈ R̄N
+ and x 6= y, let

G(x, y) = Γ(x− y)− Γ(x− y∗) + Θ(x− y∗). (2.122)

Define v : R̄N
+ → R by

v(x) =

∫
RN+
G(x, y)f(y) dy

=

∫
RN

(
Γ(x− y)f(y)− Γ(x− y)f ∗(y) + Θ(x− y)f ∗(y)

)
dy.

(2.123)

That is,

v = Γ ∗ (f − f ∗) + Θ ∗ f ∗. (2.124)

If x, y ∈ RN
+ then x 6= y∗, so ∆Γ(x− y∗) = 0. Since ∆Γ = 0 on RN

+ , DN∆Γ = 0

on RN
+ . If z ∈ RN

+ and t > 0 then z+sign(bN)tb ∈ RN
+ , so ∆DNΓ

(
z+sign(bN)tb

)
=

0. By Equation 2.120, we see that, if x, y ∈ RN
+ then x−y∗ ∈ RN

+ , so ∆Θ(x−y∗) =

0. Therefore ∆v = ∆(Γ ∗ f) = f on RN
+ .

Fix z ∈ RN
+ and define θ : (−zN/|b|, zN/|b|)→ R by

θ(s) = Θ
(
z + sign(bN)sb

)
= 2|bN |

∫ ∞
0

DNΓ
(
z + sign(bN)(t+ s)b

)
dt

= 2|bN |
∫ ∞
s

DNΓ
(
z + sign(bN)tb

)
dt.

(2.125)

Then

Dθ(s) = −2|bN |DNΓ
(
z + sign(bN)sb

)
. (2.126)

In particular,

N∑
i=1

biDiΘ(z) = sign(bN)Dθ(0) = −2bNDNΓ(z). (2.127)

Observe that, for z ∈ RN r {0},

DiΓ(z∗) =


DiΓ(z), if i ∈ 1 : N − 1

−DNΓ(z), if i = N.

(2.128)
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Now, if x ∈ ∂RN
+ and y ∈ RN

+ then, by Equations 2.128 and 2.127,

B1,x0G(x, y) =
N∑
i=1

bi

(
DiΓ(x− y)−DiΓ(x− y∗) +DiΘ(x− y∗)

)
=

N∑
i=1

bi

(
DiΓ(x− y)−DiΓ(x∗ − y∗) +DiΘ(x∗ − y∗)

)
= −2bNDNΓ(x− y)− 2bNDNΓ(x∗ − y∗)

= 0.

(2.129)

By Equations 2.123 and 2.129, we see that B1,x0v = 0 on ∂RN
+ .

By [3, Chapter 5, Equation 26] and Equation 2.124,

Dγv = DγΓ ∗̂ (f − f ∗) +DγΘ ∗̂ f ∗ + c3f + c4f
∗, (2.130)

where c3 and c4 are constants that depend on γ. By Equations 2.130, 2.112, 2.113,

2.121, and 2.105,

‖Dγv‖Lp(U+
1 ) ≤ C

(
Cp‖g‖Lp(U3) + ‖h‖Lp(U3)

+ Cp‖g∗‖Lp(U3) + ‖h∗‖Lp(U3)

)
.

(2.131)

Now we rejoin the cases m1 = 0 and m1 = 1. In both cases, we have constructed

a function v : R̄N
+ → R such that ω(Dζu−χ)−v is harmonic on RN

+ and B1,x0v = 0

on ∂RN
+ . Using Equations 2.119, 2.131, 2.108, and 2.110, and summing over all

|γ| = 2, we have that

|v|W 2
p (U+

1 ) ≤ C
(
Cp‖g‖Lp(U3) + ‖h‖Lp(U3)

)
≤ C

(
Cp‖LDζu‖Lp(U+

3 )

+ Cpd|u|Wk
p (U+

3 )

+ (Cp + d−1)‖u‖Wk−1
p (U+

3 )

)
.

(2.132)

Define v1,ζ : U+
3 → R by

v1,ζ = Dζ(v1 −B1u) +B1D
ζu. (2.133)

41



On T , Dζ(v1 − B1u) is a tangential derivative of a function which is zero on T ,

and is thus itself zero on T . Therefore, B1D
ζu = v1,ζ on T .

Once again let |γ| = 2. We can now follow the proof of Lemma 2.9, starting

from Equation 2.81, with all occurrences of u, v1, and k replaced by Dζu, v1,ζ , and

2, respectively.

If |η| = 2−mj−1 and ηN = 0 then, on ∂RN
+ , DηBj,x0v is a tangential derivative

of a function which is zero on ∂RN
+ , and is thus itself zero on ∂RN

+ . That is, the last

term on the right side of Equation 2.84 vanishes. If we omit the last term on the

right side of Equation 2.85 then Equation 2.86 still holds. The last terms on the

right sides of Equations 2.88, 2.91, 2.94, and 2.95 disappear, With the appropriate

substitutions, Equation 2.95 reads

‖Dγ(ω(Dζu− χ))‖Lp(U+
1 ) ≤ C

(
|v|W 2

p (U+
1 )

+ (Cp + d−1)‖v1,ζ‖W 2−m1
p (U+

3 )

+ Cpd|Dζu|W 2
p (U+

3 )

+ (Cp + d−1)‖Dζu‖W 1
p (U+

3 )

)
.

(2.134)

By the general Leibniz rule,

v1,ζ = Dζv1 −
∑

|β|<k−2+m1

c5,βD
βu, (2.135)

where the c5,β : Ū+
3 → R can be expressed in terms of ζ and the coefficients of B1.

Therefore,

‖v1,ζ‖W 2−m1
p (U+

3 )
≤ C

(
‖Dζv1‖W 2−m1

p (U+
3 )

+ ‖u‖Wk−1
p (U+

3 )

)
. (2.136)
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By Equations 2.134, 2.132, and 2.136, along with Proposition 2.6, we have that

‖DγDζu‖Lp(U+
1 ) = ‖Dγ(ω(Dζu− χ))‖Lp(U+

1 )

≤ C
(
Cp|Lu|Wk−2

p (U+
3 )

+ (Cp + d−1)‖v1‖Wk−m1
p (U+

3 )

+ Cpd|u|Wk
p (U+

3 )

+ (Cp + d−1)‖u‖Wk−1
p (U+

3 )

)
.

(2.137)

Summing this inequality over all |γ| = 2, we see that |Dζu|W 2
p (U+

1 ) is bounded by

the right side of Equation 2.137. The lemma follows by Proposition 2.7.

Second, we assume that we start with a flat boundary but allow the differential

operator to be arbitrary. The idea is to transform the domain, while preserving

the flat boundary, so that the leading part of the transformed differential operator,

at a certain point, is the Laplacian. We then use Lemma 2.11.

Lemma 2.12. Suppose that x0 ∈ ∂Ω and 0 < d ≤ d′. Assume that d/d′ is

sufficiently small. Let U+ = Bd(x0)∩Ω, V + = Bd′(x0)∩Ω, and T = Bd′(x0)∩∂Ω.

Assume that V + ⊂ RN
+ and T ⊂ ∂RN

+ . If 1 < p < ∞, k ≥ 2, u ∈ W k
p (V +), and

v1 ∈ W k−m1
p (V +) is such that B1u = v1 on T then

|u|Wk
p (U+) ≤ C

(
Cp|Lu|Wk−2

p (V +)

+ (Cp + d−1)‖v1‖Wk−m1
p (V +)

+ Cpd|u|Wk
p (V +)

+ (Cp + d−1)‖u‖Wk−1
p (V +)

)
.

(2.138)

Proof. Let U = Bd(x0) and V = Bd′(x0).

Define A ∈ RN×N by

Ai,j =
(ei + ej)!

2!
aei+ej(x0). (2.139)
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Obviously A is symmetric. It is positive-definite because, if ξ ∈ RN then, by

uniform ellipticity,

ξTAξ =
N∑

i,j=1

(ei + ej)!

2!
aei+ej(x0)ξiξj

=
∑
|α|=2

aα(x0)ξα

≥ C|ξ|2.

(2.140)

Therefore, by the spectral theorem, there exists an orthogonal Q ∈ RN×N such

that QAQT = D, where D ∈ RN×N is the diagonal matrix of eigenvalues of A, all

of which are positive.

Let ξ = D1/2QeN and let P ∈ RN×N be an orthogonal matrix whose Nth

row is ξT/|ξ|. Finally, define Φ : RN → RN by Φ(x) = PD−1/2Qx. Obviously

Φ ∈ (C∞(RN))N and has inverse Φ−1 ∈ (C∞(RN))N . Let R = PD−1/2Q. Notice

that DΦ(x) = R at every point x ∈ RN and

RART = (PD−1/2Q)A(PD−1/2Q)T

= PD−1/2(QAQT)D−1/2PT

= I.

(2.141)

Let x̂0 = Φ(x0), Û+ = Φ(U+), V̂ + = Φ(V +), T̂ = Φ(T ), Û = Φ(U), and V̂ =

Φ(V ). If d/d′ is sufficiently small, there exists some d̂ > 0 such that Û ⊂ Bd̂(x̂0)

and B3d̂(x̂0) ⊂ V̂ . Define the transformed operators L̂ and B̂j as in Section 2.4.

Let û = u ◦ Φ−1 and v̂j = vj ◦ Φ−1.
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First we show that the flat boundary is preserved. If i ∈ 1 : N then

eTNΦ(ei) = eTNPD
−1/2Qei

=
1

|ξ|
ξTD−1/2Qei

=
1

|ξ|
eTNQ

TD1/2D−1/2Qei

=
1

|ξ|
eTNei

=
1

|ξ|
δi,N .

(2.142)

Since Φ is linear, this means that, if x ∈ RN then

(Φ(x))N = eTNΦ(x) =
1

|ξ|
xN . (2.143)

From this we can conclude that V̂ + ⊂ RN
+ and T̂ ⊂ ∂RN

+ .

Second we show that, at x̂0, the leading part of the transformed differential

operator is the Laplacian. If ξ̂ ∈ RN then, by Equations 2.35 and 2.141,∑
|α|=2

âα(x̂0)ξ̂α =
∑
|α|=2

aα(x0)
(

(DΦ(x0))Tξ̂
)α

=
N∑

i,j=1

Ai,j(R
Tξ̂)i(R

Tξ̂)j

= ξ̂TRARTξ̂

= |ξ̂|2.

(2.144)

Taking ξ̂ = ei for some i ∈ 1 : N , we find that âei+ei(x̂0) = 1. Taking ξ̂ = ei + ej

for some i, j ∈ 1 : N with i 6= j, we find that âei+ej(x̂0) = 0. This means that

L̂x̂0 = ∆.

Applying Lemma 2.11 to the transformed setup,

|û|Wk
p (Û+) ≤ C

(
Cp|L̂û|Wk−2

p (V̂ +)

+ (Cp + d̂−1)‖v̂1‖Wk−m1
p (V̂ +)

+ Cpd̂|û|Wk
p (V̂ +)

+ (Cp + d̂−1)‖û‖Wk−1
p (V̂ +)

)
.

(2.145)
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The lemma follows from this in the same way that Lemma 2.10 follows from Equa-

tion 2.98.

Third, we consider the general case of a curved boundary and an arbitrary

differential operator. The idea is to flatten the boundary and use Lemma 2.12.

Lemma 2.13. Suppose that x0 ∈ ∂Ω and 0 < d ≤ d′. Assume that d′ and d/d′ are

sufficiently small. Let U+ = Bd(x0)∩Ω, V + = Bd′(x0)∩Ω, and T = Bd′(x0)∩∂Ω.

If 1 < p < ∞, k ≥ k0, u ∈ W k
p (V +), and v1 ∈ W k−m1

p (V +) is such that B1u = v1

on T then

|u|Wk
p (U+) ≤ C

(
Cp|Lu|Wk−2

p (V +)

+ (Cp + d−1)‖v1‖Wk−m1
p (V +)

+ Cpd|u|Wk
p (V +)

+ (Cp + d−1)‖u‖Wk−1
p (V +)

)
.

(2.146)

Proof. Let U = Bd(x0) and V = Bd′(x0).

We proceed with a slight modification of the proof of Lemma 2.10. For suffi-

ciently small d′, there exists an invertible and sufficiently smooth Φ : RN → RN

which flattens the boundary of Ω in V and has sufficiently smooth inverse. With

x̂0 = Φ(x0), Û+ = Φ(U+), V̂ + = Φ(V +), T̂ = Φ(T ), Û = Φ(U), and V̂ = Φ(V ),

this means that V̂ + ⊂ RN
+ and T̂ ⊂ ∂RN

+ . Given ε > 0, if d/d′ is sufficiently small,

there exist d̂, d̂′ > 0 with d̂/d̂′ ≤ ε such that Û ⊂ Bd̂(x̂0) and Bd̂′(x̂0) ⊂ V̂ . The

lemma follows from Lemma 2.12 in the same way that Lemma 2.10 follows from

Lemma 2.9.

2.7 Green’s Function Estimates

In this section, we prove Theorem 2.5.
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By the uniqueness assumption, we have by [17, Corollary to Theorem 3.3] that,

for x ∈ Ω,

u(x) =

∫
Ω

G(x, y)Lu(y) dy, (2.147)

where the derivatives of the Green’s function G satisfy the estimates |DαG(x, y)| ≤

CḠk(x− y) for |α| = k, where

|Ḡk(z)| ≤


1 + | log 1

|z| |, if 2m−N − k = 0

|z|2−N−k, otherwise.

(2.148)

Let W = {x− y : x ∈ U, y ∈ V }. If 2m−N − k = 0 then

‖Ḡk‖L1(W ) ≤ C

∫ d2

d1

(
1 + | log

1

r
|
)
rN−1 dr ≤ CdN2

(
1 + | log

1

d2

|
)
. (2.149)

If 2m− k > 0 but 2m− k 6= N then

‖Ḡk‖L1(W ) ≤ C

∫ d2

d1

r2m−N−krN−1 dr ≤ Cd2m−k
2 . (2.150)

If 2m− k = 0 and d1 > 0 then

‖Ḡk‖L1(W ) ≤ C

∫ d2

d1

r2m−N−krN−1 dr ≤ C log
d2

d1

. (2.151)

If 2m− k < 0 and d1 > 0 then

‖Ḡk‖L1(W ) ≤ C

∫ d2

d1

r2m−N−krN−1 dr ≤ Cd
−(k−2m)
1 . (2.152)

Young’s inequality, along with Equations 2.149, 2.150, 2.151, and 2.152, prove

Parts 1, 2, 3, and 4, respectively.

2.8 Global Estimates

2.8.1 The General Case

In this subsection, we prove Theorem 2.1.

47



Let d > 0, dint = d, d′int = 3dint, dbdry = d′int, d
′
bdry ≥ dbdry, and define Ωint =

{x ∈ Ω : dist(x, ∂Ω) ≥ d′int}. For x ∈ Ωint, let Ux = Bdint
(x) and Vx = Bd′int

(x), and

notice that Vx ⊂ Ω. For x ∈ ∂Ω, let Ux = Bdbdry
(x) ∩ Ω and Vx = Bd′bdry

(x) ∩ Ω.

There exist finite subsets X1 and X2 of Ωint and ∂Ω, respectively, such that Ω

is covered by the open sets Ux for x ∈ X1 ∪X2 and no point of Ω is in more than

C of the sets Vx for x ∈ X1 ∪X2. The sizes of the sets X1 and X2 are irrelevant.

If x ∈ X1 then, using Lemma 2.8 and the fact that | · |1 and | · |p are equivalent

on the finite-dimensional vector space R3,

|u|p
Wk
p (Ux)

≤ Cp
(
Cp
p |Lu|

p

Wk−2m
p (Vx)

+ (Cpd)p|u|p
Wk
p (Vx)

+ (Cp + d−1)p‖u‖p
Wk−1
p (Vx)

)
.

(2.153)

If dbdry/d
′
bdry is sufficiently small and x ∈ X2 then, using Lemma 2.10 and the fact

that | · |1 and | · |p are equivalent on the finite-dimensional vector space Rm+3,

|u|p
Wk
p (Ux)

≤ Cp
(

(C2
p)p|Lu|p

Wk−2m
p (Vx)

+ (Cp + d−1)p
m∑
j=1

‖vj‖p
W
k−mj
p (Vx)

+ (C2
pd)p|u|p

Wk
p (Vx)

+ (Cpd
−1)p(Cp + d−1)p‖u‖p

Wk−1
p (Vx)

)
.

(2.154)

By Equations 2.153 and 2.154,

|u|p
Wk
p (Ω)
≤

∑
x∈X1∪X2

|u|p
Wk
p (Ux)

≤ Cp
(

(C2
p)p|Lu|p

Wk−2m
p (Ω)

+ (Cp + d−1)p
m∑
j=1

‖vj‖p
W
k−mj
p (Ω)

+ (C2
pd)p|u|p

Wk
p (Ω)

+ (Cpd
−1)p(Cp + d−1)p‖u‖p

Wk−1
p (Ω)

)
.

(2.155)
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Taking pth roots of both sides of this equation and using the fact that | · |p and

| · |1 are equivalent on the finite-dimensional vector space Rm+3, we find that

|u|Wk
p (Ω) ≤ C

(
C2
p |Lu|Wk−2m

p (Ω)

+ (Cp + d−1)
m∑
j=1

‖vj‖
W
k−mj
p (Ω)

+ C2
pd|u|Wk

p (Ω)

+ Cpd
−1(Cp + d−1)‖u‖Wk−1

p (Ω)

)
.

(2.156)

Choosing d so that d ≤ 1
2
CC2

p and kicking back the second-last term on the right

side, we obtain the theorem.

It is possible to iterate this result and use Sobolev inequalities to replace the

‖u‖Wk−1
p (Ω) on the right side of the estimate of Theorem 2.1 with even lower order

norms of u. However, this will require additional factors of Cp to be multiplied by

the other factors on the right side. We will not explore this option here.

2.8.2 A Special Case

Throughout this subsection, we assume that m = 1 and m1 ∈ 0 : 1. That is,

we consider the case of second-order equations with boundary conditions of order

at most one. We use the results of Section 2.6.2 to improve the global estimates

of Theorem 2.1 in this special case.

First we prove Theorem 2.2. We proceed as in Section 2.8.1 to obtain Equation

2.153. This time, if dbdry/d
′
bdry is sufficiently small and x ∈ X2 then, using Lemma

2.13 and the fact that | · |1 and | · |p are equivalent on the finite-dimensional vector
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space R4,

|u|p
Wk
p (Ux)

≤ Cp
(
Cp
p |Lu|

p

Wk−2
p (Vx)

+ (Cp + d−1)p‖v1‖p
W
k−m1
p (Vx)

)
+ (Cpd)p|u|p

Wk
p (Vx)

+ (Cp + d−1)p‖u‖p
Wk−1
p (Vx)

)
.

(2.157)

The theorem follows from Equations 2.153 and 2.157 in the same way that Theorem

2.1 follows from Equations 2.153 and 2.154.

As remarked at the end of the proof of Theorem 2.1 in Section 2.8.1, it is

possible to use Sobolev inequalities to replace the ‖u‖Wk−1
p (Ω) on the right side of

the estimate of Theorem 2.2 with even lower order norms of u. Doing so in this

situation does not require additional factors of Cp to be multiplied by the other

factors on the right side. In fact, if we make an assumption about the unique

solvability of our boundary-value problem, we can dispose of the norm of u on

the right side entirely without introducing extra factors of Cp. This is done in

Theorem 2.3, which we now prove. We consider only the case of homogeneous

boundary conditions.

If x, y ∈ Ω then obviously |x− y| ≤ C, so, by Theorem 2.5, Parts 1 and 2,

‖u‖W 1
p (Ω) ≤ C‖Lu‖Lp(Ω). (2.158)

Therefore, in order to prove the theorem, it remains only to show that

‖u‖Wk
p (Ω) ≤ CCp

(
‖Lu‖Wk−2

p (Ω) + ‖u‖W 1
p (Ω)

)
. (2.159)

First, we consider the case k = 2. By Theorem 2.2,

‖u‖W 2
p (Ω) ≤ |u|W 2

p (Ω) + ‖u‖W 1
p (Ω)

≤ CCp

(
‖Lu‖Lp(Ω) + ‖u‖W 1

p (Ω)

)
.

(2.160)
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Second, we consider the case k ≥ 3 and p ≤ N
N−1

. By the measure inequality,

[2, Theorem 15.2], a Sobolev inequality, and the measure inequality once more,

‖u‖Wk−1
p (Ω) ≤ C‖u‖Wk−1

N
N−1

(Ω)

≤ C
(
‖Lu‖Wk−3

N
N−1

(Ω) + ‖u‖L N
N−1

(Ω)

)
≤ C

(
‖Lu‖Wk−2

1 (Ω) + ‖u‖W 1
1 (Ω)

)
≤ C

(
‖Lu‖Wk−2

p (Ω) + ‖u‖W 1
p (Ω)

)
.

(2.161)

Therefore, by Theorem 2.2,

‖u‖Wk
p (Ω) ≤ |u|Wk

p (Ω) + ‖u‖Wk−1
p (Ω)

≤ CCp

(
‖Lu‖Wk−2

p (Ω) + ‖u‖Wk−1
p (Ω)

)
≤ CCp

(
‖Lu‖Wk−2

p (Ω) + ‖u‖W 1
p (Ω)

)
.

(2.162)

Third, we consider the case p ≥ 2N . By the measure inequality, a Sobolev

inequality, [2, Theorem 15.2], and the measure inequality once more,

‖u‖Wk−1
p (Ω) ≤ ‖u‖Wk−1

∞ (Ω)

≤ C‖u‖Wk
2N (Ω)

≤ C
(
‖Lu‖Wk−2

2N (Ω) + ‖u‖L2N (Ω)

)
≤ C

(
‖Lu‖Wk−2

p (Ω) + ‖u‖Lp(Ω)

)
.

(2.163)

Therefore, by Theorem 2.2,

‖u‖Wk
p (Ω) ≤ |u|Wk

p (Ω) + ‖u‖Wk−1
p (Ω)

≤ CCp

(
‖Lu‖Wk−2

p (Ω) + ‖u‖Wk−1
p (Ω)

)
≤ CCp

(
‖Lu‖Wk−2

p (Ω) + ‖u‖Lp(Ω)

)
.

(2.164)

Fourth, we consider the case k ≥ 3 and N
N−1
≤ p ≤ 2N . By [2, Theorem 15.2],

‖u‖Wk
p (Ω) ≤ C

(
‖Lu‖Wk−2

p (Ω) + ‖u‖Lp(Ω)

)
. (2.165)
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2.9 Local Estimates

2.9.1 Domains in the Interior

Lemma 2.14. Suppose that x0 ∈ Ω and d > 0. Let U = Bd(x0) and V = B2d(x0)

and assume that V ⊂ Ω. If N
N−1
≤ p ≤ 2N , k ≥ k0, u ∈ W k

p (V ), and Lu = 0 on

V then

|u|Wk
p (U) ≤ Cd−1‖u‖Wk−1

p (V ). (2.166)

Proof. By the Bramble-Hilbert lemma, there exists some χ ∈ Πk−2(V ) such that,

if i ∈ 0 : k − 1 then

|u− χ|W i
p(V ) ≤ Cdk−1−i|u|Wk−1

p (V ). (2.167)

Let ω ∈ C∞0 (V ) be such that ω = 1 on U and, for i ∈ 0 : k,

|ω|W i
∞(V ) ≤ Cd−i. (2.168)

Since Bj(ω(u− χ)) = 0 on ∂Ω for all j ∈ 1 : m, we have by Theorem 2.1 that

|u|Wk
p (U) = |ω(u− χ)|Wk

p (U)

≤ C
(
|L(ω(u− χ))|Wk−2m

p (V ) + ‖ω(u− χ)‖Wk−1
p (V )

)
.

(2.169)

Here we have used the fact that Cp ≤ 2N .

Let |γ| = k − 2m. By the general Leibniz rule,

DγL(ω(u− χ)) = −ωDγχ+
∑

|α|+|β|≤k
|β|<k

cα,βD
αωDβ(u− χ), (2.170)

where the cα,β : V → R can be expressed in terms of γ and the coefficients of L.

Using the fact that χ is a polynomial of degree at most k−2, along with Equation
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2.167,

‖DγLχ‖Lp(V ) ≤ C‖χ‖Wk
p (V )

= C‖χ‖Wk−1
p (V )

≤ C
(
‖u− χ‖Wk−1

p (V ) + ‖u‖Wk−1
p (V )

)
≤ C‖u‖Wk−1

p (V ).

(2.171)

If |α|+ |β| ≤ k and |β| < k then, by Equations 2.168 and 2.167,

‖DαωDβ(u− χ)‖Lp(V ) ≤ |ω|W |α|∞ (V )
‖u− χ‖

W
|β|
p (V )

≤ Cd−|α|d(k−1)−|β||u|Wk−1
p (V )

= Cd−1|u|Wk−1
p (V ).

(2.172)

Using Equations 2.170, 2.171, and 2.172 and summing over all |γ| = k − 2m, we

can estimate the first term on the right side of Equation 2.169,

|L(ω(u− χ))|Wk−2m
p (V ) ≤ Cd−1‖u‖Wk−1

p (V ). (2.173)

The second term on the right side of Equation 2.169 is estimated by Equations

2.168 and 2.167,

‖ω(u− χ)‖Wk−1
p (V ) ≤ C

k−1∑
i=0

‖ω‖W i
∞(V )‖u− χ‖Wk−1−i

p (V )

≤ C
k−1∑
i=0

d−id(k−1)−(k−1−i)|u|Wk−1
p (V )

≤ C|u|Wk−1
p (V ).

(2.174)

Equations 2.169, 2.173, and 2.174 prove the lemma.

Lemma 2.15. Suppose that x0 ∈ Ω and d > 0. Let U = Bd(x0) and V = B2d(x0)

and assume that V ⊂ Ω. If k ≥ k0, u ∈ W k
1 (V ), and Lu = 0 on V then

|u|Wk
N
N−1

(U) ≤ Cd−1‖u‖Wk
1 (V ). (2.175)
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Proof. By the Bramble-Hilbert lemma, there exists some χ ∈ Πk−1(V ) such that,

if i ∈ 0 : k then

|u− χ|W i
1(V ) ≤ Cdk−i|u|Wk

1 (V ). (2.176)

Let ω ∈ C∞0 (V ) be such that ω = 1 on U and, for i ∈ 0 : k,

|ω|W i
∞(V ) ≤ Cd−i. (2.177)

Since Bj(ω(u− χ)) = 0 on ∂Ω for all j ∈ 1 : m, we have by Theorem 2.1 that

|u|Wk
N
N−1

(U) = |ω(u− χ)|Wk
N
N−1

(U)

≤ C
(
|L(ω(u− χ))|Wk−2m

N
N−1

(V ) + ‖ω(u− χ)‖Wk−1
N
N−1

(V )

)
.

(2.178)

Let |γ| = k − 2m. By the general Leibniz rule,

DγL(ω(u− χ)) = −ωDγχ+
∑

|α|+|β|≤k
|β|<k

cα,βD
αωDβ(u− χ), (2.179)

where the cα,β : V → R can be expressed in terms of γ and the coefficients of L.

Using the fact that χ is a polynomial of degree at most k − 1, along with a scaled

Sobolev inequality and Equation 2.176,

‖DγLχ‖L N
N−1

(V ) ≤ C‖χ‖Wk
N
N−1

(V )

= Cd−1‖χ‖Wk
1 (V )

≤ Cd−1
(
‖u− χ‖Wk

1 (V ) + ‖u‖Wk
1 (V )

)
≤ Cd−1‖u‖Wk

1 (V ).

(2.180)

If |α| + |β| ≤ k and |β| < k then, by a scaled Sobolev inequality and Equations
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2.177 and 2.176,

‖DαωDβ(u− χ)‖L N
N−1

(V ) ≤ |ω|W |α|∞ (V )
|u− χ|

W
|β|
N
N−1

(V )

≤ Cd−|α|
(
d−1|u− χ|

W
|β|
1 (V )

+ |u− χ|
W
|β|+1
1 (V )

)
≤ Cd−|α|

(
d−1dk−|β||u|Wk

1 (V )

+ dk−(|β|+1)|u|Wk
1 (V )

)
≤ Cd−1|u|Wk

1 (V ).

(2.181)

Using Equations 2.179, 2.180, and 2.181 and summing over all |γ| = k − 2m, we

can estimate the first term on the right side of Equation 2.178,

|L(ω(u− χ))|Wk−2m
N
N−1

(V ) ≤ Cd−1‖u‖Wk
1 (V ). (2.182)

The second term on the right side of Equation 2.178 is estimated by a scaled

Sobolev inequality and Equations 2.177 and 2.176,

‖ω(u− χ)‖Wk−1
N
N−1

(V ) ≤ C
k−1∑
i=0

|ω|W i
∞(V )‖u− χ‖Wk−1−i

N
N−1

(V )

≤ C
k−1∑
i=0

d−i
(
d−1‖u− χ‖Wk−1−i

1 (V )

+ ‖u− χ‖Wk−i
1 (V )

)
≤ C

k−1∑
i=0

d−i
(
d−1dk−(k−1−i)|u|Wk

1 (V )

+ dk−(k−i)|u|Wk
1 (V )

)
≤ C|u|Wk

1 (V ).

(2.183)

Equations 2.178, 2.182, and 2.183 prove the lemma.

Lemma 2.16. Suppose that x0 ∈ Ω and d > 0. Let U = Bd(x0) and V = B2d(x0)

and assume that V ⊂ Ω. If k ≥ k0, u ∈ W k
2N(V ), and Lu = 0 on V then

|u|Wk−1
∞ (U) ≤ Cd−1/2‖u‖Wk−1

2N (V ). (2.184)
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Proof. By a scaled Sobolev inequality,

|u|Wk−1
∞ (U) ≤ Cd1/2

(
d−1‖u‖Wk−1

2N (U) + |u|Wk
2N (U)

)
. (2.185)

By Lemma 2.14,

|u|Wk
2N (U) ≤ Cd−1‖u‖Wk−1

2N (V ). (2.186)

Equations 2.185 and 2.186 prove the lemma.

Lemma 2.17. Suppose that x0 ∈ Ω, d > 0, and k ≥ k0. Let U = Bd(x0) and

V = B2kd(x0) and assume that V ⊂ Ω.

1. If N
N−1
≤ p ≤ 2N , u ∈ W k

p (V ), Lu = 0 on V , and ` ∈ k0 − 1 : k then

‖u‖Wk
p (U) ≤ Cd−(k−`)‖u‖W `

p(V ). (2.187)

2. If 1 ≤ p ≤ N
N−1

, u ∈ W k
p (V ), Lu = 0 on V , and ` ∈ k0 : k then

‖u‖Wk
p (U) ≤ Cd−(k−`)‖u‖W `

p(V ). (2.188)

3. If 2N ≤ p ≤ ∞, u ∈ W k
2N(V ), Lu = 0 on V , and ` ∈ k0 : k then

‖u‖Wk−1
p (U) ≤ Cd−(k−`)‖u‖W `−1

p (V ). (2.189)

Proof. For i ∈ 0 : k, let Ui = B2id(x0), so that U = U0 and V = Uk. First consider

Part 1. Iterating Lemma 2.14 k − ` times,

‖u‖Wk
p (U0) ≤ Cd−(k−`)‖u‖W `

p(Uk−`), (2.190)

which proves part 1.

Next consider part 2. By the measure inequality,

‖u‖Wk
p (U0) ≤ Cd1−N/p′‖u‖Wk

N
N−1

(U0). (2.191)

56



Iterating Lemma 2.14 k − ` times,

‖u‖Wk
N
N−1

(U0) ≤ Cd−(k−`)‖u‖W `
N
N−1

(Uk−`)
. (2.192)

By Lemma 2.15,

‖u‖W `
N
N−1

(Uk−`)
≤ Cd−1‖u‖W `

1 (Uk−`+1). (2.193)

Again using the measure inequality,

‖u‖W `
1 (Uk−`+1) ≤ CdN/p

′‖u‖W `
p(Uk−`+1). (2.194)

Putting together Equations 2.191, 2.192, 2.193, and 2.194 proves part 2.

Next consider part 3. By the measure inequality,

‖u‖Wk−1
p (U0) ≤ CdN/p‖u‖Wk−1

∞ (U0). (2.195)

By Lemma 2.16,

‖u‖Wk−1
∞ (U0) ≤ Cd−1/2‖u‖Wk−1

2N (U1). (2.196)

Iterating Lemma 2.14 k − ` times,

‖u‖Wk−1
2N (U1) ≤ Cd−(k−`)‖u‖W `−1

2N (Uk−`+1). (2.197)

Again using the measure inequality,

‖u‖W `−1
2N (Uk−`+1) ≤ Cd1/2−N/p‖u‖W `−1

p (Uk−`+1). (2.198)

Putting together Equations 2.195, 2.196, 2.197, and 2.198 proves part 3.

2.9.2 Domains at the Boundary

Throughout this subsection, we assume that m = 1 and m1 ∈ 0 : 1. That is,

we consider the case of second-order equations with boundary conditions of order

at most one.
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Lemma 2.18. Suppose that x0 ∈ ∂Ω and d > 0. Let U+ = Bd(x0) ∩ Ω, V + =

B2d(x0) ∩ Ω, and T = B2d(x0) ∩ ∂Ω. Assume that V + ⊂ RN
+ and T ⊂ ∂RN

+ . If

N
N−1
≤ p ≤ 2N , k ≥ 2, u ∈ W k

p (V +), Lu = 0 on V +, and B1u = 0 on T then

|u|Wk
p (U+) ≤ Cd−1‖u‖Wk−1

p (V +). (2.199)

Proof. Define U = Bd(x0) and V = B2d(x0).

Let ω ∈ C∞0 (V ) be such that ω = 1 on U and, for i ∈ 0 : k,

|ω|W i
∞(V ) ≤ Cd−i. (2.200)

Let |ζ| = k − 2 have ζN = 0. Our first goal is to show that there exist

χ ∈ Π0(V +) and v1 ∈ W 2−m1
p (Ω) such that B1(ω(Dζu− χ)) = v1 on ∂Ω,

‖v1‖W 2−m1
p (V +)

≤ Cd−1‖u‖Wk−1
p (V +), (2.201)

and, for i ∈ 0 : 1,

|Dζu− χ|W i
p(V +) ≤ Cd1−i|u|Wk−1

p (V +). (2.202)

First we consider the case m1 = 0. Here we take χ = 0 and v1 = 0. By

definition of m1, if v : Ω̄ → R then B1v = b0v for some b0 : Ω̄ → R. By the

complementing condition, we must have b0(x) 6= 0 for all x ∈ ∂Ω. Therefore,

u = 0 on ∂Ω. On T , Dζu is a tangential derivative of a function which is zero on

T , and is thus itself zero on T . Equation 2.202 follows by the mean value theorem.

Also observe that, on T ,

B1(ω(Dζu− χ)) = b0ω(Dζu− χ) = 0 = v1. (2.203)

Equation 2.201 is obvious.

Next we consider the case m1 = 1. By the Bramble-Hilbert lemma, there exists

some η ∈ Πk−2(V +) such that, if i ∈ 0 : k − 1 then

|u− η|W i
p(V +) ≤ Cdk−1−i|u|Wk−1

p (V +). (2.204)
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By the general Leibniz rule,

B1(ωDζ(u− η)) = ωDζB1(u− η) +
∑

|α|+|β|≤k−1
|α|≤1

c1,α,βD
αωDβ(u− η), (2.205)

where the c1,α,β : Ω̄→ R can be expressed in terms of ζ and the coefficients of B1.

On T , DζB1u is a tangential derivative of a function which is zero on T , and is

thus itself zero on T . Therefore, if we define

v1 = −ωDζB1η +
∑

|α|+|β|≤k−1
|α|≤1

c1,α,βD
αωDβ(u− η), (2.206)

then, by Equation 2.205, B1(ωDζ(u− η)) = v1 on ∂Ω. Observe that

‖v1‖W 1
p (V +) ≤ C

(
‖ωDζB1η‖W 1

p (V +)

+
∑

|α|+|β|≤k
|α|≤2

‖DαωDβ(u− η)‖Lp(V +)

)
.

(2.207)

Since η is a polynomial of degree at most k − 2, we see by Equations 2.200 and

2.204 that

‖ωDζB1η‖W 1
p (V +) ≤ ‖ω‖W 1

∞(V +)‖η‖Wk−1
p (V +)

≤ Cd−1
(
‖u− η‖Wk−1

p (V +) + ‖u‖Wk−1
p (V +)

)
≤ Cd−1‖u‖Wk−1

p (V +).

(2.208)

If |α|+ |β| ≤ k and |α| ≤ 2 then, by Equations 2.200 and 2.204,

‖DαωDβ(u− η)‖Lp(V +) ≤ |ω|W |α|∞ (V +)
|u− η|

W
|β|
p (V +)

≤ Cd−|α|d(k−1)−|β||u|Wk−1
p (V +)

= Cd−1|u|Wk−1
p (V +).

(2.209)

Equations 2.207, 2.208, and 2.209 prove Equation 2.201. Now let χ = Dζη. By

Equation 2.204, if i ∈ 0 : 1 then

|Dζu− χ|W i
p(V +) ≤ |u− η|Wk−2+i

p (V +)

≤ Cd(k−1)−(k−2+i)|u|Wk−1
p (V +)

= Cd1−i|u|Wk−1
p (V +),

(2.210)
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verifying Equation 2.202. Also observe that, on T ,

B1(ω(Dζu− χ)) = B1(ωDζ(u− η)) = v1. (2.211)

Now we rejoin the cases m1 = 0 and m1 = 1. Since B1(ω(Dζu − χ)) = v1 on

∂Ω, we have by Theorem 2.1 that

|Dζu|W 2
p (U+) = |ω(Dζu− χ)|W 2

p (U+)

≤ C
(
‖L(ωDζ(u− χ))‖Lp(V +)

+ ‖v1‖W 2−m1
p (V +)

+ ‖ωDζ(u− χ)‖W 1
p (V +)

)
.

(2.212)

Here we have used the fact that Cp ≤ 2N . By the general Leibniz rule,

L(ω(Dζu− χ)) = ωL(Dζu− χ) +
∑

|α|+|β|≤2
|β|<2

c2,α,βD
αωDβ(Dζu− χ), (2.213)

where the c2,α,β : Ω̄→ R can be expressed in terms of ζ and the coefficients of L.

Since Lu = 0 on V +, we have by Proposition 2.6 that

‖LDζu‖Lp(V +) ≤ C‖u‖Wk−1
p (V +). (2.214)

Using the fact that χ is a polynomial of degree 0, along with Equation 2.202,

‖Lχ‖Lp(V +) ≤ C‖χ‖W 2
p (V +)

= C‖χ‖W 1
p (V +)

≤ C
(
‖Dζu− χ‖W 1

p (V +) + ‖Dζu‖W 1
p (V +)

)
≤ C‖u‖Wk−1

p (V +).

(2.215)

If |α|+ |β| ≤ 2 and |β| < 2 then, by Equations 2.200 and 2.202

‖DαωDβ(Dζu− χ)‖Lp(V +) ≤ |ω|W |α|∞ (V +)
|Dζu− χ|

W
|β|
p (V +)

≤ Cd−|α|d1−|β||u|Wk−1
p (V +)

= Cd−1|u|Wk−1
p (V +).

(2.216)
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By Equations 2.213, 2.214, 2.215, and 2.216,

‖L(ω(Dζu− χ))‖Lp(V +) ≤ Cd−1‖u‖Wk−1
p (V +). (2.217)

By Equation 2.216,

‖ω(Dζu− χ)‖W 1
p (V +) ≤ C

∑
|α|+|β|≤1

‖DαωDβ(Dζu− χ)‖Lp(V +)

≤ Cd−1‖u‖Wk−1
p (V +).

(2.218)

By Equations 2.212, 2.217, 2.201, and 2.218,

|Dζu|W 2
p (U+) ≤ Cd−1‖u‖Wk−1

p (V +). (2.219)

The lemma follows by Proposition 2.7.

Lemma 2.19. Suppose that x0 ∈ ∂Ω and d > 0. Let U+ = Bd(x0) ∩ Ω, V + =

B2d(x0) ∩ Ω, and T = B2d(x0) ∩ ∂Ω. Assume that V + ⊂ RN
+ and T ⊂ ∂RN

+ . If

k ≥ 2, u ∈ W k
1 (V +), Lu = 0 on V +, and B1u = 0 on T then

|u|Wk
N
N−1

(U+) ≤ Cd−1‖u‖Wk
1 (V +). (2.220)

Proof. Define U = Bd(x0) and V = B2d(x0).

Let ω ∈ C∞0 (V ) be such that ω = 1 on U and, for i ∈ 0 : k,

|ω|W i
∞(V ) ≤ Cd−i. (2.221)

Let |ζ| = k − 2 have ζN = 0. Our first goal is to show that there exist

χ ∈ Π1(V +) and v1 ∈ W 2−m1
p (Ω) such that B1(ω(Dζu− χ)) = v1 on ∂Ω,

‖v1‖W 2−m1
N
N−1

(V +)
≤ Cd−1‖u‖Wk

1 (V +), (2.222)

and, for i ∈ 0 : 2,

|Dζu− χ|W i
1(V +) ≤ Cd2−i|u|Wk

1 (V +). (2.223)
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First we consider the case m1 = 0. By definition of m1, if v : Ω̄ → R then

B1v = b0v for some b0 : Ω̄ → R. By the complementing condition, we must have

b0(x) 6= 0 for all x ∈ ∂Ω. Therefore, u = 0 on ∂Ω. Let v be the extension of

Dζu from V + to V that is odd in its Nth argument. On T , Dζu is a tangential

derivative of a function which is zero on T , and is thus itself zero on T . Therefore,

v ∈ W 2
1 (V ). If i ∈ 1 : N − 1 then Div is odd in its Nth argument. Let c be the

average value of DNv on V . Here we take χ(x) = cxN and v1 = 0. Notice that χ is

odd in its Nth argument, Diχ = 0 for i ∈ 1 : N − 1, and DNχ = c. It is now clear

that, for |α| ≤ 1, Dα(v − χ) has average value 0 on V . Equation 2.223 follows by

Poincaré’s inequality. Also observe that, on T , χ = 0, so

B1(ω(Dζu− χ)) = b0ω(Dζu− χ) = 0 = v1. (2.224)

Equation 2.222 is obvious.

Next we consider the case m1 = 1. By the Bramble-Hilbert lemma, there exists

some η ∈ Πk−1(V +) such that, if i ∈ 0 : k then

|u− η|W i
1(V +) ≤ Cdk−i|u|Wk

1 (V +). (2.225)

By the general Leibniz rule,

B1(ωDζ(u− η)) = ωDζB1(u− η) +
∑

|α|+|β|≤k−1
|α|≤1

c1,α,βD
αωDβ(u− η), (2.226)

where the c1,α,β : Ω̄→ R can be expressed in terms of ζ and the coefficients of B1.

On T , DζB1u is a tangential derivative of a function which is zero on T , and is

thus itself zero on T . Therefore, if we define

v1 = −ωDζB1η +
∑

|α|+|β|≤k−1
|α|≤1

c1,α,βD
αωDβ(u− η), (2.227)
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then, by Equation 2.226, B1(ωDζ(u− η)) = v1 on ∂Ω. Observe that

‖v1‖W 1
N
N−1

(V +) ≤ C
(
‖ωDζB1η‖W 1

N
N−1

(V +)

+
∑

|α|+|β|≤k
|α|≤2

‖DαωDβ(u− η)‖L N
N−1

(V +)

)
.

(2.228)

By Equations 2.221 and a scaled Sobolev inequality,

‖ωDζB1η‖W 1
N
N−1

(V +) ≤
1∑
i=0

‖ω‖W i
∞(V +)|DζB1η|W 1−i

N
N−1

(V +)

≤ C

1∑
i=0

d−i
(
d−1|DζB1η|W 1−i

1 (V +)

+ |DζB1η|W 2−i
1 (V +)

)
≤ C

2∑
i=0

d−i|DζB1η|W 2−i
1 (V +).

(2.229)

For i ∈ 0 : 1, we can use the fact that η is a polynomial of degree at most k − 1,

along with Equation 2.225, to find that

|DζB1η|W 2−i
1 (V +) ≤ C‖η‖Wk

1 (V +)

≤ C
(
‖u− η‖Wk

1 (V +) + ‖u‖Wk
1 (V +)

)
≤ C‖u‖Wk

1 (V +).

(2.230)

For i = 2, this type of estimate will not suffice. Instead, we first observe that, by

Equation 2.225,

‖DζB1(u− η)‖L1(V +) ≤ C‖u− η‖Wk−1
1 (V +)

≤ Cd|u|Wk
1 (V +).

(2.231)

Since DζB1u = 0 on T , we see, using the mean value theorem, that

‖DζB1u‖L1(V +) ≤ Cd|DζB1u|W 1
1 (V +)

≤ Cd‖u‖Wk
1 (V +).

(2.232)
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By Equations 2.231 and 2.232,

‖DζB1η‖L1(V +) ≤ ‖DζB1(u− η)‖L1(V +) + ‖DζB1u‖L1(V +)

≤ Cd‖u‖Wk
1 (V +).

(2.233)

Putting together Equations 2.229, 2.230, and 2.233, we have that

‖ωDζB1η‖W 1
N
N−1

(V +) ≤ Cd−1‖u‖Wk
1 (V +). (2.234)

If |α| + |β| ≤ k and |α| ≤ 2 then, by a scaled Sobolev inequality and Equations

2.221 and 2.225,

‖DαωDβ(u− η)‖L N
N−1

(V +) ≤ |ω|W |α|∞ (V +)
|u− η|

W
|β|
N
N−1

(V +)

≤ Cd−|α|
(
d−1|u− η|

W
|β|
1 (V +)

+ |u− η|
W
|β|+1
1 (V +)

)
≤ Cd−|α|

(
d−1dk−|β||u|Wk

1 (V +)

+ dk−(|β|+1)|u|Wk
1 (V +)

)
≤ Cd−1|u|Wk

1 (V +).

(2.235)

Equations 2.228, 2.234, and 2.235 prove Equation 2.222. Now let χ = Dζη. By

Equation 2.225, if i ∈ 0 : 2 then

|Dζu− χ|W i
1(V +) ≤ |u− η|Wk−2+i

1 (V +)

≤ Cdk−(k−2+i)|u|Wk
1 (V +)

= Cd2−i|u|Wk
1 (V +),

(2.236)

verifying Equation 2.223. Also observe that, on T ,

B1(ω(Dζu− χ)) = B1(ωDζ(u− η)) = v1. (2.237)

Now we rejoin the cases m1 = 0 and m1 = 1. Since B1(ω(Dζu − χ)) = v1 on
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∂Ω, we have by Theorem 2.1 that

|Dζu|W 2
N
N−1

(U+) = |ω(Dζu− χ)|W 2
N
N−1

(U+)

≤ C
(
‖L(ωDζ(u− χ))‖L N

N−1
(V +)

+ ‖v1‖W 2−m1
N
N−1

(V +)

+ ‖ωDζ(u− χ)‖W 1
N
N−1

(V +)

)
.

(2.238)

By the general Leibniz rule,

L(ω(Dζu− χ)) = ωL(Dζu− χ) +
∑

|α|+|β|≤2
|β|<2

c2,α,βD
αωDβ(Dζu− χ), (2.239)

where the c2,α,β : Ω̄→ R can be expressed in terms of ζ and the coefficients of L.

Since Lu = 0 on V + we have, by Proposition 2.6 and a scaled Sobolev inequality,

that

‖LDζu‖L N
N−1

(V +) ≤ C‖u‖Wk−1
N
N−1

(V +)

≤ Cd−1‖u‖Wk
1 (V +).

(2.240)

Using the fact that χ is a polynomial of degree at most 1, along with a scaled

Sobolev inequality and Equation 2.225,

‖Lχ‖L N
N−1

(V +) ≤ C‖χ‖W 1
N
N−1

(V +)

= Cd−1‖χ‖W 2
1 (V +)

≤ Cd−1
(
‖Dζu− χ‖W 2

1 (V +) + ‖Dζu‖W 2
1 (V +)

)
≤ Cd−1‖u‖Wk

1 (V +).

(2.241)

If |α| + |β| ≤ 2 and |β| < 2 then, by Equations 2.221 and 2.223 and a scaled
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Sobolev inequality,

‖DαωDβ(Dζu− χ)‖L N
N−1

(V +) ≤ |ω|W |α|∞ (V +)
|Dζu− χ|

W
|β|
N
N−1

(V +)

≤ Cd−|α|
(
d−1|Dζu− χ|

W
|β|
1 (V +)

+ |Dζu− χ|
W
|β|+1
1 (V +)

)
≤ Cd−|α|

(
d−1d2−|β||u|Wk

1 (V +)

+ d2−(|β|+1)|u|Wk
1 (V +)

)
≤ Cd−1|u|Wk

1 (V +).

(2.242)

By Equations 2.239, 2.240, 2.241, and 2.242,

‖L(ω(Dζu− χ))‖L N
N−1

(V +) ≤ Cd−1‖u‖Wk
1 (V +). (2.243)

By Equation 2.242,

‖ω(Dζu− χ)‖W 1
N
N−1

(V +) ≤ C
∑

|α|+|β|≤1

‖DαωDβ(Dζu− χ)‖L N
N−1

(V +)

≤ Cd−1‖u‖Wk
1 (V +).

(2.244)

By Equations 2.238, 2.243, 2.222, and 2.244,

|Dζu|W 2
N
N−1

(U+) ≤ Cd−1‖u‖Wk
1 (V +). (2.245)

The lemma follows by Proposition 2.7.

Lemma 2.20. Suppose that x0 ∈ ∂Ω and d > 0. Let U+ = Bd(x0) ∩ Ω, V + =

B2d(x0) ∩ Ω, and T = B2d(x0) ∩ ∂Ω. Assume that V + ⊂ RN
+ and T ⊂ ∂RN

+ . If

k ≥ 2, u ∈ W k
2N(V +), Lu = 0 on V +, and B1u = 0 on T then

|u|Wk−1
∞ (U+) ≤ Cd−1/2‖u‖Wk−1

2N (V +). (2.246)

Proof. By a scaled Sobolev inequality,

|u|Wk−1
∞ (U+) ≤ Cd1/2

(
d−1‖u‖Wk−1

2N (U+) + |u|Wk
2N (U+)

)
. (2.247)
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By Lemma 2.19,

|u|Wk
2N (U+) ≤ Cd−1‖u‖Wk−1

2N (V +). (2.248)

Equations 2.247 and 2.248 prove the lemma.

Lemma 2.21. Suppose that x0 ∈ ∂Ω, d > 0, and k ≥ 2. Let U+ = Bd(x0) ∩ Ω,

V + = B2kd(x0)∩Ω, and T = B2kd(x0)∩∂Ω. Assume that V + ⊂ RN
+ and T ⊂ ∂RN

+ .

1. If N
N−1
≤ p ≤ 2N , u ∈ W k

p (V +), Lu = 0 on V +, B1u = 0 on T , and ` ∈ 1 : k

then

‖u‖Wk
p (U+) ≤ Cd−(k−`)‖u‖W `

p(V +). (2.249)

2. If 1 ≤ p ≤ N
N−1

, u ∈ W k
p (V +), Lu = 0 on V +, B1u = 0 on T , and ` ∈ 2 : k

then

‖u‖Wk
p (U+) ≤ Cd−(k−`)‖u‖W `

p(V +). (2.250)

3. If 2N ≤ p ≤ ∞, u ∈ W k
2N(V +), Lu = 0 on V +, B1u = 0 on T , and ` ∈ 2 : k

then

‖u‖Wk−1
p (U+) ≤ Cd−(k−`)‖u‖W `−1

p (V +). (2.251)

Proof. These results follow from Lemmas 2.18, 2.19, and 2.20 in the same way that

Lemma 2.17 follows from Lemmas 2.14, 2.15, and 2.16.

Lemma 2.22. Suppose that x0 ∈ ∂Ω, 0 < d ≤ d′, and k ≥ 2. Assume that d′

and d/d′ are sufficiently small. Let U+ = Bd(x0) ∩ Ω, V + = Bd′(x0) ∩ Ω, and

T = Bd′(x0) ∩ ∂Ω.

1. If N
N−1
≤ p ≤ 2N , u ∈ W k

p (V +), Lu = 0 on V +, B1u = 0 on T , and ` ∈ 1 : k

then

‖u‖Wk
p (U+) ≤ Cd−(k−`)‖u‖W `

p(V +). (2.252)
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2. If 1 ≤ p ≤ N
N−1

, u ∈ W k
p (V +), Lu = 0 on V +, B1u = 0 on T , and ` ∈ 2 : k

then

‖u‖Wk
p (U+) ≤ Cd−(k−`)‖u‖W `

p(V +). (2.253)

3. If 2N ≤ p ≤ ∞, u ∈ W k
2N(V +), Lu = 0 on V +, B1u = 0 on T , and ` ∈ 2 : k

then

‖u‖Wk−1
p (U+) ≤ Cd−(k−`)‖u‖W `−1

p (V +). (2.254)

Proof. Let U = Bd(x0) and V = Bd′(x0).

For sufficiently small d′, there exists an invertible and sufficiently smooth Φ :

RN → RN which flattens the boundary of Ω in V and has sufficiently smooth

inverse. With x̂0 = Φ(x0), Û+ = Φ(U+), V̂ + = Φ(V +), T̂ = Φ(T ), Û = Φ(U), and

V̂ = Φ(V ), this means that V̂ + ⊂ RN
+ and T̂ ⊂ ∂RN

+ . If d/d′ is sufficiently small,

there exists some d̂ > 0 such that Û ⊂ Bd̂(x̂0) and B2kd̂(x̂0) ⊂ V̂ . The results

follow by applying Lemma 2.21 to the transformed setup.

2.9.3 General Domains

In this subsection, we prove Theorem 2.4.

Let dint > 0 be such that, if d′int = 2kdint, dbdry = d′int, and d′bdry = d, then

d′bdry ≥ dbdry. Define Ωint = {x ∈ Ω : dist(x, ∂Ω) ≥ d′int}. For x ∈ U ∩ Ωint, let

Ux = Bdint
(x) and Vx = Bd′int

(x), and notice that Vx ⊂ V ∩Ω. For x ∈ U ∩ ∂Ω, let

Ux = Bdbdry
(x) ∩ Ω and Vx = Bd′bdry

(x) ∩ Ω, and notice that Vx ⊂ V ∩ Ω.

There exist finite subsets X1 and X2 of U ∩Ωint and U ∩ ∂Ω, respectively, such

that U ∩ Ω is covered by the open sets Ux for x ∈ X1 ∪X2 and no point of V ∩ Ω

is in more than C of the sets Vx for x ∈ X1 ∪X2. The sizes of the sets X1 and X2

are irrelevant.

We apply Lemma 2.17 with domains Ux and Vx for all x ∈ X1. Taking
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dbdry/d
′
bdry sufficiently small, we apply Lemma 2.22 with domains Ux and Vx for

all x ∈ X2. Raising the results to the pth power, summing over all x ∈ X1 ∪X2,

and taking pth roots, we obtain the theorem.

2.10 Appendix: Singular Integral Operators

Central to any proof of the Lp-based estimates for solutions of partial differential

equations that relies on potential theory, including those of [2, Theorem 15.2],

[12, Theorem 9.13], [29, Equation 2], and the one given here, are estimates for

various singular integral operators. We make explicit the dependence on p in these

estimates.

Theorem 2.23. Suppose that K ∈ C1(RN r {0}), c > 0, |K(x)| ≤ c|x|−N and

|DiK(x)| ≤ c|x|−(N+1) for all x ∈ RNr{0} and i ∈ 1 : N , and
∫

ΣN−1 K(tx) dS(x) =

0 for all t > 0. If 1 < p <∞ and f ∈ Lp(RN) then

‖K ∗̂ f‖Lp(RN ) ≤ CCp‖f‖Lp(RN ), (2.255)

where C depends on N and c.

Proof. This result is given by [27, Chapter II, Theorem 2]. The precise dependence

on p is given by [27, Chapter II, Further Result 6.2(a)].

Theorem 2.24. Suppose that K : RN r {0} → R is odd and homogeneous of

degree −N , c > 0, and ‖K‖L1(ΣN−1) ≤ c. If 1 < p <∞ and f ∈ Lp(RN) then

‖K ∗̂ f‖Lp(RN ) ≤ CCp‖f‖Lp(RN ), (2.256)

where C depends on N and c.

Proof. This result is given by [6, Theorem 3]. The precise dependence on p can be

traced through the proof of this theorem. It is easily seen to be the same as that
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of the norm of the Hilbert transform on Lp(RN), which we know from Theorem

2.23.

In the results presented thus far, we have found estimates on all of RN . How-

ever, we are also interested in estimates on bounded domains. Furthermore, some

of the functions we are operating on are supported in a bounded domain away

from the domain of interest. The following corollary and the results which follow

from it take these possibilities into account and give sharper estimates than we

would have otherwise.

Corollary 2.25. Assume that 0 < d1 ≤ d2 and V,W are open subsets of RN such

that, if x ∈ W and y ∈ V , then d1 ≤ |x− y| ≤ d2. Let 1 < p <∞, g, h ∈ Lp(RN),

assume that h = 0 outside of V , and let f = g + h.

1. Suppose that G ∈ C2(RN r {0}) is homogeneous of degree −(N − 1), c > 0,

and ‖G‖W 2
∞(ΣN−1) ≤ c. If i ∈ 1 : N and K = DiG then

‖K ∗̂ f‖Lp(W ) ≤ C
(
Cp‖g‖Lp(RN ) + ‖h‖Lp(V )

)
, (2.257)

where C depends on N , c, and d2/d1.

2. If K : RN r {0} → R is odd and homogeneous of degree −N , c > 0, and

‖K‖L1(ΣN−1) ≤ c then

‖K ∗̂ f‖Lp(W ) ≤ C
(
Cp‖g‖Lp(RN ) + ‖h‖Lp(V )

)
, (2.258)

where C depends on N , c, and d2/d1.

Proof. Define U = {x− y : x ∈ W, y ∈ V }. By assumption, U ⊂ Bd2(0) r Bd1(0).

By Young’s inequality, ‖K ∗ h‖Lp(W ) ≤ ‖K‖L1(U)‖h‖Lp(V ). Therefore, to prove the

corollary, it remains only to estimate ‖K‖L1(U) and ‖K ∗̂ g‖Lp(W ).

First consider part 1. By [3, p. 223],
∫

ΣN−1 K(tx) dS(x) = 0 for all t > 0.

ObviouslyK ∈ C1(RNr{0}) is homogeneous of degree−N and the first derivatives

70



of K are homogeneous of degree −(N + 1). Furthermore, |K(x)| ≤ c|x|−N and

|DjK(x)| ≤ c|x|−(N+1) for all x ∈ RN r {0} and j ∈ 1 : N . Therefore,

‖K‖L1(U) ≤ c

∫
d1<|x|<d2

|x|−N dx

≤ C

∫ d2

d1

t−N tN−1 dt

= C log(d2/d1),

(2.259)

where C depends on N and c. This, along with Theorem 2.23, gives part 1.

In the case of part 2, we see that

‖K‖L1(U) ≤
∫
d1<|x|<d2

|K(x)| dx

=

∫ d2

d1

∫
ΣN−1

|K(tx)|tN−1 dS(x) dt

=
(∫ d2

d1

t−N tN−1 dt
)(∫

ΣN−1

|K(x)| dS(x)
)

≤ c log(d2/d1).

(2.260)

This, along with Theorem 2.24, gives part 2.

In the remainder of this appendix, we revise various estimates of [2, Section 3].

First we have the analogue of [2, Lemma 3.2].

Lemma 2.26. Suppose that K ∈ C0(RN
+ ) is homogeneous of degree −N , c > 0,

and ‖K‖L1(ΣN−1
+ ) ≤ c. Assume that 0 < d1 ≤ d2 and V,W are open subsets of

RN
+ such that, if x ∈ W and y ∈ V , then d1 ≤ |x − y∗| ≤ d2. Let 1 < p < ∞,

g, h ∈ Lp(RN
+ ), assume that h = 0 outside of V , and let f = g + h. For x ∈ RN−1

and t > 0, define

u(x, t) = lim
ε→0+

∫
|x−y|>ε

∫
R+

K(x− y, t+ s)f(y, s) ds dy. (2.261)

Then

‖u‖Lp(W ) ≤ C
(
Cp‖g‖Lp(RN+ ) + ‖h‖Lp(V )

)
, (2.262)

where C depends on N , c and d2/d1.
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Proof. Let K̄ be the odd extension of |K| from RN
+ to RN . This differs from the

treatment in the proof of [2, Lemma 3.2], where K̄ is taken to be the extension

that is odd in its Nth argument. Notice that K̄ is homogeneous of degree −N and

‖K̄‖L1(ΣN−1) ≤ 2c. For x ∈ RN−1 and t ∈ R, define

ḡ(x, t) =


0, if t ≥ 0

|g(x,−t)|, if t < 0

(2.263)

and

h̄(x, t) =


0, if t ≥ 0

|h(x,−t)|, if t < 0.

(2.264)

We point out that h̄ = 0 outside of V ∗. Let f̄ = ḡ + h̄ and ū = K̄ ∗̂ f̄ . Then, for

x ∈ RN−1 and t > 0,

|u(x, t)| ≤ lim
ε→0+

∫
|x−y|>ε

∫
R
K̄(x− y, t+ s)f̄(y,−s) ds dy

= lim
ε→0+

∫
|x−y|>ε

∫
R
K̄(x− y, t− s)f̄(y, s) ds dy

= lim
ε→0+

∫
|x−y|>ε

∫
|t−s|>ε

K̄(x− y, t− s)f̄(y, s) ds dy

= ū(x, t).

(2.265)

By Corollary 2.25, Part 2,

‖u‖Lp(W ) ≤ ‖ū‖Lp(W )

≤ C
(
Cp‖ḡ‖Lp(RN ) + ‖h̄‖Lp(V ∗)

)
,

(2.266)

where C depends on N , c and d2/d1. Since ‖ḡ‖Lp(RN ) = ‖g‖Lp(RN+ ) and ‖h̄‖Lp(V ∗) =

‖h‖Lp(V ), this proves the lemma.

Next we have the analogue of [2, Theorem A3.1].

Lemma 2.27. Suppose that K ∈ C1(RN
+ ) is homogeneous of degree −(N − 1),

c > 0, and ‖K‖W 1
1 (ΣN−1

+ ) ≤ c. Assume that 0 < d1 ≤ d2 and V,W are open subsets
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of RN
+ such that, if x ∈ W and y ∈ V , then d1 ≤ |x − y∗| ≤ d2. Let 1 < p < ∞

and f ∈ W 1
p (RN

+ ). For i ∈ 1 : N , let gi, hi ∈ W 1
p (RN

+ ) be such that hi = 0 outside

of V and Dif = gi + hi. For x ∈ RN−1 and t > 0, define

u(x, t) = lim
ε→0+

∫
|x−y|>ε

K(x− y, t)f(y, 0) dy. (2.267)

If i ∈ 1 : N − 1 then

‖Diu‖Lp(W ) ≤ C

N∑
j=1

(
Cp‖gj‖Lp(RN+ ) + ‖hj‖Lp(V )

)
, (2.268)

where C depends on N , c and d2/d1.

Proof. It is shown in the proof of [2, Theorem A3.1] that, for x ∈ RN−1 and t > 0,

−Diu(x, t) = lim
ε→0+

∫
|x−y|>ε

∫
R+

DiK(x− y, t+ s)DNf(y, s) ds dy

+ lim
ε→0+

∫
|x−y|>ε

∫
R+

DNK(x− y, t+ s)Dif(y, s) ds dy.

(2.269)

For j ∈ 1 : N , DjK is homogeneous of degree −N . Therefore, by Lemma 2.26,

‖Diu‖Lp(W ) ≤ C
(
Cp
(
‖gN‖Lp(RN+ ) + ‖gi‖Lp(RN+ )

)
+ ‖hN‖Lp(V ) + ‖hi‖Lp(V )

)
,

(2.270)

where C depends on N , c, and d2/d1.

Next we have the analogue of [2, Lemma A3.1].

Lemma 2.28. Suppose that K ∈ C0(RN
+ ) is homogeneous of degree −(N + 1),

c > 0, ‖K‖L∞(ΣN−1
+ ) ≤ c, and ∫

RN
K(x, t) dx = 0 (2.271)

for all t > 0. Assume that 0 < d1 ≤ d2 and V,W are open subsets of RN
+ such

that, if x ∈ W and y ∈ V , then d1 ≤ |x − y∗| ≤ d2. Let 1 < p < ∞ and
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f ∈ W 1
p (RN

+ ). For i ∈ 1 : N , let gi, hi ∈ W 1
p (RN

+ ) be such that hi = 0 outside of V

and Dif = gi + hi. For x ∈ RN−1 and t > 0, define

u(x, t) = lim
ε→0+

∫
|x−y|>ε

K(x− y, t+ s)f(y, s) dy. (2.272)

Then

‖u‖Lp(W ) ≤ C
N∑
j=1

(
Cp‖gj‖Lp(RN+ ) + ‖hj‖Lp(V )

)
, (2.273)

where C depends on N , c and d2/d1.

Proof. First consider the case N = 2. It is shown in the proof of [2, Lemma A3.1]

that, if x ∈ R and t > 0, then

u(x, t) = lim
ε→0+

∫
|x−y|>ε

∫
R+

K̄(x− y, t+ s)D1f(y, s) ds dy, (2.274)

where K̄ ∈ C0(R2
+) is homogeneous of degree −2 and ‖K̄‖L1(Σ1

+) is bounded by a

constant that depends on c. The lemma follows by applying Lemma 2.26.

From now on we assume that N ≥ 3. It is shown in the proof of [2, Lemma

A3.1] that

u =
N−1∑
i=1

(civi + wi), (2.275)

where the ci are constants that can be bounded in terms of N and c, and, for

i ∈ 1 : N − 1, x ∈ RN−1, and t > 0,

vi(x, t) = lim
ε→0+

∫
|x−y|>ε

∫
R+

K̄(x− y, t+ s)Dif(y, s) ds dy (2.276)

and

wi(x, t) = lim
ε→0+

∫
|x−y|>ε

∫
R+

K̄i(x− y, t+ s)Dif(y, s) ds dy. (2.277)

Here, K̄ ∈ C0(RN
+ ) is homogeneous of degree −N and ‖K̄‖L1(ΣN−1

+ ) is bounded by a

constant that depends on N . Also, for i ∈ 1 : N −1, K̄i ∈ C0(RN
+ ) is homogeneous

of degree −N and, for x ∈ RN−1 and t > 0 with (x, t) ∈ ΣN−1
+ ,

|K̄i(x, t)| ≤ C
(

1 + log
1

t

)
, (2.278)
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where C depends on N and c. If i ∈ 1 : N − 1 then, by Lemma 2.26,

‖vi‖Lp(W ) ≤ C

N∑
j=1

(
Cp‖gj‖Lp(RN+ ) + ‖hj‖Lp(V )

)
, (2.279)

where C depends on N , c, and d2/d1. If i ∈ 1 : N − 1 then, since t 7→ log 1
t

is

integrable at 0, ‖K̄i‖L1(ΣN−1
+ ) is bounded by a constant that depends on N and c.

Therefore, by Lemma 2.26,

‖wi‖Lp(W ) ≤ C
N∑
j=1

(
Cp‖gj‖Lp(RN+ ) + ‖hj‖Lp(V )

)
, (2.280)

where C depends on N , c, and d2/d1.

The lemma follows from Equations 2.275, 2.279, and 2.280

Finally we have the analogue of [2, Theorem 3.3].

Theorem 2.29. Suppose that K ∈ C2(RN
+ ) is homogeneous of degree −(N − 1),

c > 0, ‖K‖W 2
∞(ΣN−1

+ ) ≤ c, and∫
ΣN−2

K(x, 0) dS(x) = 0. (2.281)

Assume that 0 < d1 ≤ d2 and V,W are open subsets of RN
+ such that, if x ∈ W

and y ∈ V , then d1 ≤ |x − y∗| ≤ d2. Let 1 < p < ∞ and f ∈ W 1
p (RN

+ ). For

i ∈ 1 : N , let gi, hi ∈ W 1
p (RN

+ ) be such that hi = 0 outside of V and Dif = gi + hi.

For x ∈ RN−1 and t > 0, define

u(x, t) = lim
ε→0+

∫
|x−y|>ε

K(x− y, t)f(y, 0) dy. (2.282)

Then

|u|W 1
p (W ) ≤ C

N∑
j=1

(
Cp‖gj‖Lp(RN+ ) + ‖hj‖Lp(V )

)
, (2.283)

where C depends on N , c and d2/d1.
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Proof. Since ‖K‖W 1
1 (ΣN−1

+ ) is bounded by a constant that depends on N and c, if

i ∈ 1 : N − 1 then, by Lemma 2.27,

‖Diu‖Lp(W ) ≤ C
N∑
j=1

(
Cp‖gj‖Lp(RN+ ) + ‖hj‖Lp(V )

)
, (2.284)

where C depends on N , c, and d2/d1. It is shown in the proof of [2, Theorem 3.3]

that

−DNu = v + w, (2.285)

where, for x ∈ RN−1 and t > 0,

v(x, t) = lim
ε→0+

∫
|x−y|>ε

∫
R+

DNK(x− y, t+ s)DNf(y, s) ds dy (2.286)

and

w(x, t) = lim
ε→0+

∫
|x−y|>ε

∫
R+

D2
NK(x− y, t+ s)f(y, s) ds dy. (2.287)

Since DNK ∈ C0(RN
+ ) is homogeneous of degree −N and ‖DNK‖L1(ΣN−1

+ ) is

bounded by a constant that depends on N and c, we have by Lemma 2.26 that

‖v‖Lp(W ) ≤ C
(
Cp‖gN‖Lp(RN+ ) + ‖hN‖Lp(V )

)
, (2.288)

where C depends on N , c, and d2/d1. It is shown in the proof of [2, Theorem 3.3]

that
∫

RN D
2
NK(y, t) dy = 0 for all t > 0. Since, in addition, D2

NK ∈ C0(RN
+ ) is

homogeneous of degree −(N + 1) and ‖D2
NK‖L∞(ΣN+ ) ≤ c, we have by Lemma 2.28

that

‖w‖Lp(W ) ≤ C
N∑
j=1

(
Cp‖gj‖Lp(RN+ ) + ‖hj‖Lp(V )

)
, (2.289)

where C depends on N , c, and d2/d1. Putting together Equations 2.284, 2.285,

2.288, and 2.289 gives the result.

2.11 Future Work

The most egregious aspect of Theorem 2.1 is the factor of C5
p multiplying the

‖u‖Wk−1
p (Ω) on the right side of the estimate, and it is not clear how to avoid this.

76



Ideally, Theorems 2.2 and 2.3 could be made more general. However, these rely

on the estimates of Section 2.6.2. At the crux of these arguments are two facts.

First, any second-order differential operator can be linearly transformed into an

operator whose leading part, at a certain point, is the Laplacian. Second, we know

explicit representations of the solution of Poisson’s equation in the half-space with

homogeneous Dirichlet or constant coefficient oblique derivative boundary condi-

tions. There is no obvious generalisation of these ideas to higher-order equations

and multiple boundary conditions.

The local estimates on domains in the interior of Section 2.9.1 make no restric-

tions on the order of the differential operators, but the local estimates on domains

at the boundary of Section 2.9.2 do. If such restrictions could be lifted, Theorem

2.4 could be made more general.

The estimates of Theorem 2.5 involve Sobolev and Lebesgue space norms with

the same exponent on the left and right sides. Generalising this to allow for

different exponents on the left and right sides seems straightforward, but a listing

of all the possible cases would be messy.
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CHAPTER 3

L∞-BASED NEGATIVE NORM ERROR ESTIMATES FOR THE

FINITE ELEMENT METHOD

3.1 Introduction and Statement of Results

Let N ≥ 2 be an integer and let Ω be a bounded open subset of RN with

sufficiently smooth boundary. For i, j ∈ 1 : N , let ai,j, bi, c : Ω̄→ R be sufficiently

smooth. Define the bilinear form A on functions v, w : Ω→ R by

A(v, w) =

∫
Ω

( N∑
i,j=1

ai,jDivDjw +
N∑
i=1

biDivw + cvw

)
. (3.1)

We assume that A is coercive over W 1
2 (Ω). That is, there exists a constant Cco > 0

such that, if v ∈ W 1
2 (Ω) then

A(v, v) ≥ Cco‖v‖2
W 1

2 (Ω). (3.2)

We also assume that A is uniformly elliptic on Ω. That is, there exists a constant

Cell > 0 such that, if x ∈ Ω and ξ ∈ RN then

N∑
i,j=1

ai,j(x)ξiξj ≥ Cell|ξ|2. (3.3)

Let h > 0 be sufficiently small, let r ≥ 2 be an integer, and let Cap, Csep > 0.

Let Sh be a finite-dimensional subspace of W 1
∞(Ω) and let Ih : W 1

∞(Ω)→ Sh be a

projection. Assume that the following hold whenever U1 and U2 are open subsets

of RN with U1 ⊂ U2 and dist(U1, ∂U2) ≥ Cseph.

1. If 1 ≤ p ≤ ∞, k ∈ 0 : 1, ` ∈ k : r, and v ∈ W 1
∞(Ω) ∩W `

p(U2 ∩ Ω) then

|v − Ihv|Wk
p (U1∩Ω) ≤ Caph

`−k‖v‖W `
p(U2∩Ω). (3.4)
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2. If 1 ≤ q ≤ p ≤ ∞, ` ∈ −r : 0, and χ ∈ Sh then

‖χ‖Lp(U1∩Ω) ≤ Caph
−`−N( 1

q
− 1
p

)‖χ‖W `
q (U2∩Ω), (3.5)

and, for i ∈ 1 : N ,

‖Diχ‖Lp(U1∩Ω) ≤ Caph
−`−N( 1

q
− 1
p

)‖Diχ‖W `
q (U2∩Ω). (3.6)

3. If k ∈ 0 : 1, ω ∈ C∞(U2), and χ ∈ Sh then

|ωχ− Ih(ωχ)|Wk
2 (U1∩Ω) ≤ Caph

k∑
i=0

|ω|Wk−i+1
∞ (U2)|χ|W i

2(U2∩Ω). (3.7)

Let u ∈ W 1
∞(Ω), uh ∈ Sh, F ∈ (W 1

2 (Ω))′, and assume that

A(u− uh, χ) = F (χ) (3.8)

for all χ ∈ Sh. Let h ≤ H ≤ 1 and let U be an open subset of RN with diam(U) ≤

H.

We will let C denote different positive constants that depend on N , Ω, various

norms of the coefficients of A, Cco, Cell, r, Cap, and Csep, in addition to other

explicitly stated quantities.

The following theorem and its corollary are our main results.

Theorem 3.1. If k ∈ 1 : r − 2 and r − 2− k ≤ s ≤ r − 2 then

‖u− uh‖W−k∞ (U,Ω) ≤ C

(
hk+1`s=r−2,h,h/H

(
inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),U,w,s

+ `h‖F‖(W 1
1 (Ω))′

)
+ `hH

k‖F‖(W 2
1 (Ω))′

)
,

(3.9)

where

w = (hr−2−kHs−(r−2−k))1/s (3.10)

and C depends on s.
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Corollary 3.2. If k ≥ r − 2 is an integer and 0 ≤ s ≤ r − 2 then

‖u− uh‖W−k∞ (U,Ω) ≤ CHk−(r−2)

(
hr−1`s=r−2,h,h/H

(
inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),U,H,s

+ `h‖F‖(W 1
1 (Ω))′

)
+ `hH

k‖F‖(W 2
1 (Ω))′

)
,

(3.11)

where C depends on k and s.

3.2 Motivation

In this section, we motivate u, uh, F , and their relationship in Equation 3.8.

Define the differential operator L on functions v : Ω→ R by

Lv = −
N∑

i,j=1

Di(ai,jDjv) +
N∑
i=1

biDiv + cv. (3.12)

The corresponding co-normal derivative operator B is defined on functions v : Ω̄→

R by

Bv =
N∑

i,j=1

ai,j(νΩ)jDiv. (3.13)

We typically think of u ∈ C2(Ω) ∩ C1(Ω̄) as the solution of the classical homoge-

neous Neumann problem

Lu = f on Ω

Bu = 0 on ∂Ω,

(3.14)

where f ∈ C0(Ω) is given.

We may also think of u ∈ W 1
2 (Ω) as the solution of the weak problem

A(u, v) =

∫
Ω

fv (3.15)

for all v ∈ W 1
2 (Ω), where f ∈ L2(Ω) is given. By integration by parts, it is easily

seen that, if u is a solution of the classical problem, then it is a solution of the
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weak problem. Notice that the weak problem admits solutions with less regularity

than the classical problem.

In general, it is not feasible to find an explicit formula for u, so we resort

to numerical methods to approximate it. We think of Sh as an abstract finite

element space and Ih as its interpolant. Assumptions 1, 2, and 3 are standard

approximation, inverse, and superapproximation properties, respectively, and are

essentially the same as those in [19, Section 1(B)]. These are satisfied by many

commonly-used finite element schemes. The finite element approximation of the

solution of Equation 3.15 is the unique solution uh ∈ Sh of the finite-dimensional

linear system

A(uh, χ) =

∫
Ω

fχ (3.16)

for all χ ∈ Sh. From Equations 3.15 and 3.16, we have that

A(u− uh, χ) = 0 (3.17)

for all χ ∈ Sh. This is the F = 0 case of Equation 3.8.

It is advantageous to study the more general Equation 3.8 instead of Equation

3.17 because nonvanishing F arise in many applications. For instance, numerical

quadrature must often be used to approximate the integrals on both sides of Equa-

tion 3.16. This issue is discussed in [25, Section 5], [14, Theorem 1.4], and Chapter

5. In [9, Theorems 3.1 and 5.1], solutions of nonlinear problems are treated as

perturbations of solutions of linear ones.

Theorem 3.1 and Corollary 3.2 give estimates for general L∞-based negative

norms of the finite element error u − uh on arbitrary sets. Corollary 3.2 is an

immediate consequence of Poincaré’s inequality and Theorem 3.1.
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3.3 Relationship to Prior Work

3.3.1 Improvement Over Announced Results

Theorem 3.1 was initially announced in [22, Theorem 3]. Several improvements

have been made to this. First, U is now allowed to be any arbitrary subset of RN

instead of just a ball centred at a point in Ω. Second, the more general definition

of the negative norm is used. Third, the initial announcement covered the cases

0 ≤ s ≤ r− 2− k and had a logarithmic factor of `h`h,s=r−2−k multiplying the first

term on the right side of Equation 3.9. Now, the s = r − 2− k case has the much

smaller logarithmic factor of `h/H here instead, and the cases 0 ≤ s < r − 2 − k

are of no interest. New results are obtained in the cases r − 2 − k < s ≤ r − 2,

although we must take our weight parameter w ≥ h. Fourth, we now allow for the

possibility that F 6= 0.

3.3.2 An Extrapolation of Positive Norm Results

A pointwise estimate for the difference between the true solution and the finite

element solution is given in [19, Theorem 2.2]. If x ∈ Ω̄ and 0 ≤ s ≤ r − 2 then

|(u− uh)(x)| ≤ C

(
h`s=r−2,h

(
inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),{x},h,s

+ ‖F‖(W 1
1 (Ω),{x},h,−s)′

)
+ `h‖F‖(W 2

1 (Ω))′

)
,

(3.18)

where C depends on s. The
◦
W 1

1 (Ω) and
◦
W 2

1 (Ω) in [19, Equations 2.5 and 2.6]

should read W 1
1 (Ω) and W 2

1 (Ω), respectively.

An estimate for the maximum difference between the first derivatives of the

true solution and the finite element solution in small neighbourhoods is given in
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[19, Theorem 3.2]. If x ∈ Ω̄ and 0 ≤ s ≤ r − 1 then

‖u− uh‖W 1
∞(Bh(x)∩Ω) ≤ C

(
`s=r−1,h inf

χ∈Sh
‖u− χ‖W 1

∞(Ω),{x},h,s

+ `h‖F‖(W 1
1 (Ω))′

)
,

(3.19)

where C depends on s. The
◦
W 1

1 (Ω) in [19, Theorem 3.2] should read W 1
1 (Ω).

Notice that the estimates for the error in the positive norms of Equations

3.18 and 3.19 involve single points or small neighbourhoods on the left side and

distances to the point or to the centre of the neighbourhood on the right side. In

contrast, the estimates for the error in the negative norms of Theorem 3.1 involve

an arbitrary set on the left side and the distance to that set on the right side.

We now put the positive norm estimates in this form. This is easily done using

the observation that, if x ∈ U ∩ Ω then σ{x},h ≤ σU,h. If 0 ≤ s ≤ r − 2 then, by

Equation 3.18,

‖u− uh‖L∞(U∩Ω) ≤ C

(
h`s=r−2,h

(
inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),U,h,s

+ ‖F‖(W 1
1 (Ω),U,h,−s)′

)
+ `h‖F‖(W 2

1 (Ω))′

)
,

(3.20)

where C depends on s. If 0 ≤ s ≤ r − 1 then, by Equation 3.19,

‖u− uh‖W 1
∞(U∩Ω) ≤ C

(
`s=r−1,h inf

χ∈Sh
‖u− χ‖W 1

∞(Ω),U,h,s

+ `h‖F‖(W 1
1 (Ω))′

)
,

(3.21)

where C depends on s.

At this point, we can make a sensible comparison of the positive norm error

estimates of Equations 3.20 and 3.21 with the negative norm error estimates of

Theorem 3.1. If F = 0, U ⊂ Ω, and k ∈ −(r − 2) : 1 then

‖u− uh‖Wk
∞(U) ≤ Ch1−k`k≥0,h,h/H inf

χ∈Sh
‖u− χ‖W 1

∞(Ω),U,h,r−2+k. (3.22)
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Notice that the weight power is chosen to be r − 2 + k. This is precisely the

condition under which the logarithmic factor `h is present for the positive norms

in Equations 3.20 and 3.21. By Equation 3.10, it is also the condition under which

the weight parameter is h for the negative norms.

3.3.3 A Sharpening of Previous W−1
∞ Results

Estimates for the error in the W−1
∞ norm are given in [9, Lemma 5.4]. The

proof of these results uses the finite element space inverse assumption in a way

that prevents an extension to W−k
∞ estimates for any integer k > 1. Here we

avoid this limitation by using the inverse property of mollifiers instead of the finite

element space inverse assumption.

If U ⊂ Ω, δ > 0, r ≥ 3, and 0 ≤ s ≤ r − 2 then, by [9, Equation 5.4],

‖u− uh‖W−1
∞ (U) ≤ C

(
h2
((H

h

)δ
+ `s=r−2,h

)(
inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),U,H,s

+ `h‖F‖(W 1
1 (Ω))′

)
+H`H‖F‖(W 2

1 (Ω))′

)
,

(3.23)

where C depends on s and δ. One difference between this and Equation 3.9 is that

the first term on the right side of the former has the factor (H
h

)δ+`s=r−2,h, whereas

that of the latter has the factor `s=r−2,h,H/h. In [9, Remark 5.2], it is noted that the

(H
h

)δ could likely be improved to a logarithmic factor, presumably `H/h. This would

be the case if a certain dependence on p of Lp-based estimates of the solutions of

second-order partial differential equations with first-order homogeneous boundary

conditions could be established. The desired dependence is given by Theorem 2.3.

With this, the factor in question in Equation 3.23 matches that of Equation 3.9.

The other difference between Equation 3.23 and Equation 3.9 is that the first

term on the right side of the former has weight parameter H, whereas that of the
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latter has weight parameter w, which we can take to be

w =


h, if 0 ≤ s ≤ r − 3

(hr−3Hs−(r−3))1/s, if r − 3 ≤ s ≤ r − 2.

(3.24)

If h < H then we always have w < H, which makes Theorem 3.1 sharper. The

crucial tool in proving these sharper results is Theorem 2.4. This gives local

L1-based estimates for solutions of homogeneous second-order partial differential

equations satisfying homogeneous first-order boundary conditions.

If r = 2 and U ⊂ Ω then, by [9, Equation 5.3],

‖u− uh‖W−1
∞ (U) ≤ CH`h

(
h
(

inf
χ∈Sh
‖u− χ‖W 1

∞(Ω)

+ ‖F‖(W 1
1 (Ω))′

)
+ ‖F‖(W 2

1 (Ω))′

)
.

(3.25)

This agrees exactly with Corollary 3.2.

3.3.4 A Trivial Estimate

We consider a trivial estimate obtained using Poincaré’s inequality and the

pointwise error estimate of [19, Theorem 2.2].

If k ≥ 1 is an integer and 0 ≤ s ≤ r− 2 then, by Equation 3.20 and Poincaré’s

inequality,

‖u− uh‖W−k∞ (U,Ω) ≤ CHk

(
h`s=r−2,h

(
inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),U,h,s

+ ‖F‖(W 1
1 (Ω),U,h,−s)′

)
+ `h‖F‖(W 2

1 (Ω))′

)
,

(3.26)

where C depends on k and s.

First we compare the cases k ≤ r − 2 of Equation 3.26 with Equation 3.9.

Equation 3.26 has the advantage over Equation 3.9 that the weight parameter
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appearing in the first term on the right side on the former is h, which is smaller,

in general, than the w of the latter. Equation 3.9 has the advantage over Equation

3.26 that the first term on the right side of the former is multiplied by hk, which

is smaller, in general, than the Hk of the latter. Disregarding logarithmic factors,

the first term on the right side of Equation 3.9 is smaller than that of Equation

3.26. This is because, for x ∈ Ω,

hkσsU,w(x) = hk
ws

(w + dist(x, U))s

=
( h
H

)r−2−s
Hk hs

(w + dist(x, U))s

≤ Hk hs

(h+ dist(x, U))s

= HkσsU,h(x),

(3.27)

so hk+1σsU,w ≤ HkhσsU,h.

Next we compare the cases k ≥ r − 2 of Equation 3.26 with Equation 3.11.

Again, disregarding logarithmic factors, the first term on the right side of Equation

3.11 is smaller than that of Equation 3.26. This is because, for x ∈ Ω,

Hk−(r−2)hr−2σsU,H(x) = Hk−(r−2)hr−2 Hs

(H + dist(x, U))s

=
( h
H

)r−2−s
Hk hs

(H + dist(x, U))s

≤ Hk hs

(h+ dist(x, U))s

= HkσsU,h(x),

(3.28)

so Hk−(r−2)hr−1σsU,H ≤ HkhσsU,h.

The second term on the right side of Equation 3.26 has no straightforward

comparison to that of Equations 3.9 and 3.11. The third terms, however, are all

the same.
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3.4 Proof of Results

In this section, we prove Theorem 3.1.

By the general definition of the negative norm,

‖u− uh‖W−k∞ (U,Ω) = sup
φ∈C∞0 (U)
‖φ‖

Wk
1 (U)

=1

|
∫
U∩Ω

(u− uh)φ|. (3.29)

Let φ ∈ C∞0 (U) have ‖φ‖Wk
1 (U) = 1. By Theorem 3.3, there exists an open subset

V of RN and some ψ ∈ C∞0 (V ) such that U ⊂ V , dist(U, ∂V ) ≤ Ch, and, if

1 ≤ p ≤ ∞ then

‖φ− ψ‖Lp(V ) ≤ Chk|φ|Wk
p (U) (3.30)

and

‖ψ‖Wk
p (V ) ≤ Ch−N/p

′‖φ‖Wk
1 (U). (3.31)

By Equation 3.30, Poincaré’s inequality, and Equation 3.31, we see that, if 1 ≤

p ≤ ∞, then

‖ψ‖Lp(V ) ≤ ‖φ− ψ‖Lp(V ) + ‖φ‖Lp(V )

≤ C(hk +Hk)|φ|Wk
p (V )

≤ CHkh−N/p
′‖φ‖Wk

1 (U)

= CHkh−N/p
′
.

(3.32)

Define the bilinear form A† on functions v, w : Ω→ R by

A†(v, w) = A(w, v) =

∫
Ω

( N∑
i,j=1

ai,jDjvDiw +
N∑
i=1

bivDiw + cvw

)
. (3.33)

Notice that A† has the same coercivity and ellipticity constants as A. Define the

differential operator L† on functions v : Ω→ R by

L†v = −
N∑

i,j=1

Dj(ai,jDiv)−
N∑
i=1

Di(biv) + cv, (3.34)
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and define the boundary differential operator B† on functions v : Ω̄→ R by

B†v =
N∑

i,j=1

ai,j(νΩ)jDiv +
N∑
i=1

bi(νΩ)iv. (3.35)

Since A† is coercive over W 1
2 (Ω), we know by the Lax-Milgram theorem that there

exists a unique v ∈ W 1
2 (Ω) such that

A†(v, w) =

∫
Ω

ψw (3.36)

for all w ∈ W 2
1 (Ω). Although regularity of weak solutions of the Dirichlet problem

is established in [10, Section 6.3, Theorems 1 and 4], the same arguments, with

very slight and obvious modification, can be used to show that v ∈ W 2
2 (Ω) here.

By integration by parts, it can now be seen that

L†v = ψ on Ω

B†v = 0 on ∂Ω.

(3.37)

By [2, Theorem 15.2], v ∈ W r
2 (Ω).

By Equations 3.36 and 3.33,∫
Ω

(u− uh)ψ = A(u− uh, v). (3.38)

By Equation 3.8,

A(u− uh, v) = A(u− uh, v − Ihv) + F (Ihv). (3.39)

Since F is linear,

F (Ihv) = F (v)− F (v − Ihv). (3.40)

Putting together Equations 3.38, 3.39, and 3.40, we find that

|
∫
U∩Ω

(u− uh)φ| = |
∫
V ∩Ω

(u− uh)φ|

≤ |
∫
V ∩Ω

(u− uh)(φ− ψ)|+ |
∫
V ∩Ω

(u− uh)ψ|

≤ ‖u− uh‖L∞(V ∩Ω)‖φ− ψ‖L1(V ∩Ω)

+ |A(u− uh, v − Ihv)|+ |F (v − Ihv)|+ |F (v)|.

(3.41)
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To prove Theorem 3.1, it will suffice to show that each of the four terms on

the right side of this equation are bounded by the right side of Equation 3.9. The

inequalities

‖v − Ihv‖W 1
1 (Ω),U,w,−s ≤ Chk+1`s=r−2,h,h/H (3.42)

and

‖v‖W 2
1 (Ω) ≤ CHk`h (3.43)

are central to this endeavour. Before proving these two inequalities, we see how

Theorem 3.1 follows from them.

By Equation 3.30,

‖φ− ψ‖L1(V ∩Ω) ≤ Chk|φ|Wk
1 (U)

= Chk.

(3.44)

If x ∈ V ∩Ω then dist(x, U) ≤ Ch, from which it is readily observed that σ{x},h ≤

CσU,h. Therefore, by Equation 3.18,

‖u− uh‖L∞(V ∩Ω) ≤ Chk
(
h`s=r−2,h

(
inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),U,h,s

+ ‖F‖(W 1
1 (Ω),U,h,−s)′

)
+ `h‖F‖(W 2

1 (Ω))′

)
.

(3.45)

Multiplying both sides of Equation 3.19 by σsU,w(x), using the multiplicative

property of weights, and taking the maximum over all x ∈ Ω gives

‖u− uh‖W 1
∞(Ω),U,w,s ≤ C

(
`s=r−1,h inf

χ∈Sh
‖u− χ‖W 1

∞(Ω),U,w,s

+ `h‖F‖(W 1
1 (Ω))′

)
.

(3.46)

Using Equations 3.46 and 3.42,

|A(u− uh, v − Ihv)| ≤ ‖u− uh‖W 1
∞(Ω),U,w,s‖v − Ihv‖W 1

1 (Ω),U,w,−s

≤ Chk+1`s=r−2,h,h/H

(
inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),U,w,s

+ `h‖F‖(W 1
1 (Ω))′

)
.

(3.47)
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Using Equation 3.42,

|F (v − Ihv)| ≤ ‖v − Ihv‖W 1
1 (Ω),U,w,−s‖F‖(W 1

1 (Ω),U,w,−s)′

≤ Chk+1`s=r−2,h,h/H‖F‖(W 1
1 (Ω),U,w,−s)′ .

(3.48)

Using Equation 3.43,

|F (v)| ≤ ‖v‖W 2
1 (Ω)‖F‖(W 2

1 (Ω))′

≤ CHk`h‖F‖(W 2
1 (Ω))′ .

(3.49)

By Equations 3.44, 3.45, 3.47, 3.48, and 3.49, we see that all four terms on

the right side of Equation 3.41 are bounded by the right side of Equation 3.9.

Therefore, it only remains to prove Equations 3.42 and 3.43.

If U ∩ Ω = ∅ then the left side of Equation 3.9 is zero, and Equation 3.9 is

trivial. Therefore, we can assume that U ∩ Ω 6= ∅. Let R = diam(Ω) and notice

that, if x ∈ Ω then dist(x, U) < R.

We first define a sequence of annuli around U . For i ≥ 0 an integer, let di = ei,

Ui = {x ∈ RN : di < dist(x, U) < di+1}, (3.50)

U ′i = Ui−1 ∪ Ui ∪ Ui+1, (3.51)

and

U ′′i = U ′i−1 ∪ U ′i ∪ U ′i+1. (3.52)

Notice that Ui ⊂ U ′i ⊂ U ′′i , dist(Ui, ∂U
′
i) = e−1di, and dist(U ′i , ∂U

′′
i ) = e−2di.

Let Iext be the smallest integer such that dIext+1 ≥ R, let Iint be the smallest

integer such that dIint
≥ w and dIint−1 ≥ Cseph, and let Imid ≥ Iint + 1 be the

smallest integer such that dImid
≥ H and dImid−1 ≥ dist(U, ∂V ). Notice that dIint

is bounded above and below by Cw, dImid
is bounded above and below by CH,

and dIext ≤ C. If i ≥ Iint then dist(Ui, ∂U
′
i) ≥ Cseph. If i ≥ Imid + 1 then

dist(U ′i , V ) ≥ di−1 − dImid−1 ≥ (e−1 − e−2)di. If i > Iext then Ui ∩ Ω = ∅.
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Define

Uint = {x ∈ RN : dist(x, U) < dIint
}, (3.53)

U ′int = {x ∈ RN : dist(x, U) < dIint+1}, (3.54)

and

Umid = {x ∈ RN : dist(x, U) < dImid
}. (3.55)

Notice that Uint ⊂ U ′int ⊂ Umid and dist(Uint, ∂U
′
int) ≥ (e− 1)dIint

≥ Cseph.

Roughly speaking, the set Uint includes points which are at a distance up to w

from U , the set Umid includes points which are at a distance up to H from U , and

the annulus Ui contains points that are at a distance between di and di+1 from U .

The sets Ūi for i ∈ Iint : Iext, along with Ūint, cover Ω.

First we show Equation 3.42. Let p = `h/H . By the measure inequality,

‖v‖Wk+2
1 (Umid∩Ω) ≤ CHN/p‖v‖Wk+2

p′ (Umid∩Ω), (3.56)

and by Theorem 2.3,

‖v‖Wk+2
p′ (Ω) ≤ Cp‖ψ‖Wk

p′ (Ω). (3.57)

By Equations 3.56, 3.57, and 3.31,

‖v‖Wk+2
1 (Umid∩Ω) ≤ C

(H
h

)N/p
p‖φ‖Wk

1 (U)

≤ C`h/H .

(3.58)

On Uint, σ
−1
U,w ≤ C, so

‖v − Ihv‖W 1
1 (Uint∩Ω),U,w,−s ≤ C‖v − Ihv‖W 1

1 (Uint∩Ω). (3.59)

By the finite element space approximation assumption,

‖v − Ihv‖W 1
1 (Uint∩Ω) ≤ Chk+1‖v‖Wk+2

1 (U ′int∩Ω). (3.60)

Combining Equations 3.59, 3.60, and 3.58, we see that

‖v − Ihv‖W 1
1 (Uint∩Ω),U,w,−s ≤ Chk+1`h/H . (3.61)
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Next we make some general observations about the annuli. Suppose that i ∈

Iint : Iext. On Ui, σ
−1
U,w ≤ w+edi

w
≤ C di

w
, so

‖v − Ihv‖W 1
1 (Ui∩Ω),U,w,−s ≤ C

(di
w

)s
‖v − Ihv‖W 1

1 (Ui∩Ω). (3.62)

By the finite element space approximation assumption,

‖v − Ihv‖W 1
1 (Ui∩Ω) ≤ Chr−1‖v‖W r

1 (U ′i∩Ω). (3.63)

Putting together Equations 3.62 and 3.63,

‖v − Ihv‖W 1
1 (Ui∩Ω),U,w,−s ≤ C

(di
w

)s
hr−1‖v‖W r

1 (U ′i∩Ω). (3.64)

Now we look at the small annuli. These are roughly at distances between w

and H from U . If i ∈ Iint : Imid then, by Theorem 2.4,

‖v‖W r
1 (U ′i∩Ω) ≤ Cd

−(r−2−k)
i ‖v‖Wk+2

1 (U ′′i ∩Ω). (3.65)

Now we sum up the contributions from all the small annuli. By Equations 3.64,

3.65, 3.10, and 3.58,

Imid∑
i=Iint

‖v − Ihv‖W 1
1 (Ui∩Ω),U,w,−s ≤ Chr−1w−s

Imid∑
i=Iint

d
s−(r−2−k)
i ‖v‖Wk+2

1 (U ′′i ∩Ω)

≤ Chr−1w−sHs−(r−2−k)‖v‖Wk+2
1 (Umid∩Ω)

≤ Chk+1`h/H .

(3.66)

Now we look at the large annuli. These are roughly at distances greater than

H from U . If i ∈ Imid + 1 : Iext then, by Theorem 2.5,

‖v‖W r
1 (U ′i∩Ω) ≤ Cd

−(r−2)
i ‖ψ‖L1(V ∩Ω). (3.67)

If s < r − 2 then, by the geometric series formula,

Iext∑
i=Imid+1

d
−(r−2−s)
i ≤ Cd

−(r−2−s)
Imid

≤ CH−(r−2−s).

(3.68)
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If s = r − 2 then

Iext∑
i=Imid+1

d
−(r−2−s)
i = Iext − Imid

≤ C + log
1

H

≤ C`H .

(3.69)

Putting together Equations 3.68 and 3.69,

Iext∑
i=Imid+1

d
−(r−2−s)
i ≤ CH−(r−2−s)`s=r−2,H . (3.70)

Now we sum up the contributions from all the large annuli. By Equations 3.64,

3.67, 3.32, 3.70, and 3.10,

Iext∑
i=Imid+1

‖v − Ihv‖W 1
1 (Ui∩Ω),U,w,−s ≤ Chr−1w−sHk

Iext∑
i=Imid+1

d
−(r−2−s)
i

≤ Chr−1w−sHs−(r−2−k)`s=r−2,H

= Chk+1`s=r−2,H .

(3.71)

Finally we add up the contributions from the innermost domain, the small

annuli, and the large annuli. By Equations 3.61, 3.66 and 3.71,

‖v − Ihv‖W 1
1 (Ω),U,w,−s = ‖v − Ihv‖W 1

1 (Uint∩Ω),U,w,−s

+

Imid∑
i=Iint

‖v − Ihv‖W 1
1 (Ui∩Ω),U,w,−s

+
Iext∑

i=Imid+1

‖v − Ihv‖W 1
1 (Ui∩Ω),U,w,−s

≤ Chk+1(`h/H + `s=r−2,H)

≤ Chk+1`s=r−2,h,h/H ,

(3.72)

which establishes Equation 3.42.

It remains only to show Equation 3.43. Let p = `h. By the measure inequality,

‖v‖W 2
1 (Ω) ≤ C‖v‖W 2

p′ (Ω), (3.73)
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and by Theorem 2.3,

‖v‖W 2
p′ (Ω) ≤ Cp‖ψ‖Lp′ (Ω). (3.74)

By Equations 3.73, 3.74, and 3.32,

‖v‖W 2
1 (Ω) ≤ CHkhN/pp

≤ CHk`h,

(3.75)

which establishes Equation 3.43.

3.5 Appendix: Mollifiers

The typical application of mollification is to extend a result for smooth functions

to nonsmooth functions. This is done by applying the result to a sequence of

mollifications of a nonsmooth function. In this sort of an argument, the fact that

the sequence converges is crucial, but the rate of convergence is irrelevant.

In this appendix, we begin with infinitely differentiable functions and approxi-

mate them with their mollifications. Our result is framed in terms of simultaneous

approximation and inverse properties in various Sobolev space seminorms.

Theorem 3.3. Suppose that m ≥ 0 is an integer, d > 0, U is an open subset of

RN , u ∈ C∞0 (U), and V = {x ∈ RN : dist(x, U) < d
√
N(m + 1)}. Then there

exists some v ∈ C∞0 (V ) with the following properties.

1. If 1 ≤ p ≤ ∞, k ≥ 0 is an integer, and ` ∈ k : k + 2m+ 2 then

|u− v|Wk
p (V ) ≤ Cd`−k|u|W `

p(U), (3.76)

where C depends on N and m.

2. If 1 ≤ q ≤ p ≤ ∞, k ≥ 0 is an integer, and ` ∈ 0 : k then

|v|Wk
p (V ) ≤ Cd−N(1/p−1/q)−(k−`)|u|W `

q (U), (3.77)

where C depends on N , m, and k.
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Let J ∈ C∞0 (C1/2(0)) be an even function such that
∫

R J = 1.

Proposition 3.4. There exist c0, . . . , cm ∈ R such that, for all i ∈ 0 : m,

1

2

m∑
j=0

∫
R
cj(J(x− j) + J(x+ j))x2i dx = δi,0. (3.78)

Proof. We exhibit c ∈ R0:m as the solution of a nonsingular linear system of equa-

tions.

If i ≥ 0 is an integer then, using the change of variables formula and the fact

that J is even,

1

2

m∑
j=0

∫
R
cj(J(x− j) + J(x+ j))x2i dx

=
1

2

m∑
j=0

cj

(∫
R
J(x− j)x2i dx+

∫
R
J(−x− j)x2i dx

)

=
1

2

m∑
j=0

cj

(∫
R
J(x)(x+ j)2i dx+

∫
R
J(x)(−x− j)2i dx

)

=
m∑
j=0

cj

∫
R
J(x)(x+ j)2i dx.

(3.79)

If x ∈ R, j ∈ 0 : m, and i ≥ 0 is an integer, then, by the binomial theorem,

(x+ j)2i =
2i∑
k=0

(
2i

k

)
jkx2i−k. (3.80)

If i and k are integers and k is odd then 2i − k is odd so x 7→ x2i−k is odd, and

therefore, since J is even,
∫

R J(x)x2i−k dx = 0. Thus, by Equation 3.80, if j ∈ 0 : m

and i ≥ 0 is an integer then∫
R
J(x)(x+ j)2i dx =

i∑
k=0

(
2i

2k

)
j2k

∫
R
J(x)x2(i−k) dx. (3.81)

For integers ` ≥ 0, define

a` =

∫
R
J(x)x2` dx. (3.82)

Notice that a0 =
∫

R J = 1. Define A ∈ R(0:m)×(0:m) by

Ai,j =
i∑

k=0

(
2i

2k

)
ai−kj

2k. (3.83)
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Also define b ∈ R0:m by

bi = δi,0. (3.84)

By Equations 3.79, 3.81, 3.82, 3.83, and 3.84, we see that the claim of the proposi-

tion is that there exists a solution c of Ac = b. We now show that A is nonsingular.

Define L, V ∈ R(0:m)×(0:m) by

Li,k =


(

2i

2k

)
ai−k, if k ≤ i

0, otherwise

(3.85)

and

Vk,j = j2k = (j2)k. (3.86)

Since L has 1s along the diagonal and is lower triangular, detL = 1, so L is

nonsingular. Since the squares of distinct nonnegative integers are distinct, the

Vandermonde matrix V is nonsingular. Now notice that, if i, j ∈ 0 : m then, by

Equations 3.83, 3.85, and 3.86,

Ai,j =
m∑
k=0

Li,kVk,j. (3.87)

That is, A = LV . Since L and V are nonsingular, so is A.

Now define Jm : R→ R by

Jm(x) =
1

2

m∑
j=0

cj(J(x− j) + J(x+ j)). (3.88)

Since J ∈ C∞0 (C1/2(0)), certainly Jm ∈ C∞0 (Cm+1(0)). If x ∈ R then, since J is

even,

Jm(−x) =
1

2

m∑
j=0

cj(J(−x− j) + J(−x+ j))

=
1

2

m∑
j=0

cj(J(x+ j) + J(x− j))

= Jm(x).

(3.89)
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That is, Jm is even. If i is odd then x 7→ xi is odd, so, since Jm is even,∫
R
Jm(x)xi dx = 0. (3.90)

If i ∈ 0 : 2m and i is even then, by Equation 3.88 and Proposition 3.4,∫
R
Jm(x)xi dx = δi,0. (3.91)

Combining Equations 3.90 and 3.91, we have that∫
R
Jm(x)xi dx = δi,0 (3.92)

for all i ∈ 0 : 2m+ 1. Notice that, if k ≥ 0 is an integer then

DkJm(x) =
1

2

m∑
j=0

cj(D
kJ(x− j) +DkJ(x+ j)), (3.93)

so

|Jm|Wk
∞(R) ≤ |J |Wk

∞(R)

m∑
j=0

|cj| ≤ C, (3.94)

where C depends on m and k.

Now define Jm,N : RN → R by

Jm,N(x) =
N∏
i=1

Jm(xi). (3.95)

Let 1 ≤ p ≤ ∞ and let k ≥ 0 be an integer. If |α| = k then, for x ∈ RN ,

DαJm,N(x) =
N∏
i=1

DαiJm(xi), (3.96)

so

‖DαJm,N‖Lp(RN ) =
N∏
i=1

‖DαiJm‖Lp(R)

≤ ‖Jm‖NWk
p (R).

(3.97)

Since supp(Jm) ⊂ Cm+1(0), we see by Equation 3.94 and the measure inequality

that

|Jm,N |Wk
p (RN ) ≤ C, (3.98)
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where C depends on N , m, and k.

Now define Φ : RN → RN by Φ(x) = x/d and let Jm,N,d = d−NJm,N ◦ Φ. That

is,

Jm,N,d(x) = d−N
N∏
i=1

Jm(xi/d). (3.99)

By Equation 3.98 and a scaling inequality, if 1 ≤ p ≤ ∞ and k ≥ 0 is an integer

then

|Jm,N,d|Wk
p (RN ) ≤ Cd−N(1−1/p)−k, (3.100)

where C depends on N , m, and k. Since Jm ∈ C∞0 (Cm+1(0)), certainly Jm,N,d ∈

C∞0 (Cd(m+1)(0)). If |α| ≤ 2m + 1 then αi ∈ 0 : 2m + 1 for all i ∈ 1 : N , so, by

Equation 3.92 and the change of variables formula,∫
RN
Jm,N,d(x)xα dx =

∫
RN

(
d−N

N∏
i=1

Jm(xi/d)
)( N∏

i=1

xαii

)
dx

=
N∏
i=1

∫
R
Jm(xi/d)xαii d

−1 dxi

=
N∏
i=1

dαi
∫

R
Jm(xi)x

αi
i dxi

=
N∏
i=1

dαiδαi,0

= δα,0.

(3.101)

To prove the theorem, we take v = Jm,N,d ∗ u. If x ∈ supp(u) ⊂ U and

y ∈ supp(Jm,N,d) ⊂ Cd(m+1)(0) then dist(x − y, U) ≤ d
√
N(m + 1), so x − y ∈ V .

This shows that supp(v) ⊂ V .

Our first result concerns the approximation property of mollification.

Lemma 3.5. If 1 ≤ p ≤ ∞ and k ∈ 0 : 2m+ 2 then

‖Jm,N,d ∗ u− u‖Lp(RN ) ≤ Cdk|u|Wk
p (RN ), (3.102)

where C depends on N and m.
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Proof. First we consider the k = 0 case. Using Young’s inequality and Equation

3.100,

‖Jm,N,d ∗ u− u‖Lp(RN ) ≤ ‖Jm,N,d ∗ u‖Lp(RN ) + ‖u‖Lp(RN )

≤ ‖Jm,N,d‖L1(RN )‖u‖Lp(RN ) + ‖u‖Lp(RN )

≤ C‖u‖Lp(RN ),

(3.103)

where C depends on N and m.

From now on, we assume that k ∈ 1 : 2m + 2. Observe that, if x ∈ RN , then,

by Equation 3.101,

u(x) =
∑
|α|≤k−1

1

α!
(−1)|α|Dαu(x)δα,0

=
∑
|α|≤k−1

1

α!
(−1)|α|Dαu(x)

∫
RN
Jm,N,d(y)yα dy

=

∫
RN
Jm,N,d(y)

∑
|α|≤k−1

1

α!
Dαu(x)(−y)α dy

=

∫
RN
Jm,N,d(y)T k−1

x u(x− y) dy,

(3.104)

so

(Jm,N,d ∗ u− u)(x) =

∫
RN
Jm,N,d(y)(u− T k−1

x u)(x− y) dy. (3.105)

Now define w : RN × RN → R by w(x, y) = (u − T k−1
x u)(x − y). By Taylor’s

theorem,

w(x, y) =
1

(k − 1)!

∑
|α|=k

(−y)α
∫ 1

0

Dαu(x− sy) ds. (3.106)

Since supp(Jm,N,d) ⊂ Cd(m+1)(0), we have by Equations 3.105 and 3.106 that

(Jm,N,d ∗ u− u)(x) =

∫
Cd(m+1)(0)

w(x, y)Jm,N,d(y) dy. (3.107)

Therefore, by Young’s inequality,

‖Jm,N,d ∗ u− u‖Lp(RN ) ≤ sup
y∈Cd(m+1)(0)

‖w(·, y)‖Lp(RN )‖Jm,N,d‖L1(Cd(m+1)(0)). (3.108)
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We now wish to show that, if y ∈ Cd(m+1)(0) then

‖w(·, y)‖Lp(RN ) ≤ Cdk|u|Wk
p (RN ), (3.109)

where C depends on N and k. Let y ∈ Cd(m+1)(0) and |α| = k. Then |(−y)α| ≤

Cdk, where C depends on N , m, and k.

First we consider the 1 ≤ p < ∞ case. If x ∈ RN then, by the measure

inequality,

|
∫ 1

0

Dαu(x− sy) ds|p ≤
∫ 1

0

|Dαu(x− sy)|p ds. (3.110)

Therefore,∫
RN
|
∫ 1

0

Dαu(x− sy) ds|p dx ≤
∫ 1

0

∫
RN
|Dαu(x− sy)|p dx ds

=

∫ 1

0

∫
RN
|Dαu(z)|p dz ds

≤ |u|p
Wk
p (RN )

,

(3.111)

from which Equation 3.109 follows.

Now consider the case p =∞. If x ∈ RN then, by the measure inequality,∫ 1

0

|Dαu(x− sy)| ds ≤ |u|Wk
∞(RN ), (3.112)

from which Equation 3.109 follows.

Putting together Equations 3.108, 3.109, and 3.100, we see that

‖Jm,N,d ∗ u− u‖Lp(RN ) ≤ Cdk|u|Wk
p (RN ), (3.113)

where C depends on N , m, and k. The dependence on k can be eliminated because

the number of possible values of k depends on m. Equations 3.103 and 3.113 give

the lemma.

We now extend our approximation result to higher-order derivatives. The fol-

lowing lemma gives Theorem 3.3, Part 1.
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Lemma 3.6. If k ≥ 0 is an integer and ` ∈ k : k + 2m+ 2 then

|Jm,N,d ∗ u− u|Wk
p (RN ) ≤ Cd`|u|W `

p(RN ), (3.114)

where C depends on N and m.

Proof. If |α| = k then

Dα(Jm,N,d ∗ u− u) = Jm,N,d ∗Dαu−Dαu, (3.115)

so, since `− k ∈ 0 : 2m+ 2, we see by Lemma 3.5 that

‖Dα(Jm,N,d ∗ u− u)‖Lp(RN ) ≤ Cd`−k|Dαu|W `−k
p (RN )

≤ Cd`−k|u|W `
p(RN ),

(3.116)

where C depends on N , m, and `− k. The dependence on `− k can be eliminated

because the number of possible values of `− k depends on m. The lemma follows

by summing this inequality over all |α| = k.

The following lemma gives Theorem 3.3, Part 2.

Lemma 3.7. If 1 ≤ q ≤ p ≤ ∞, k ≥ 0 is an integer, and ` ∈ 0 : k then

|Jm,N,d ∗ u|Wk
p (RN ) ≤ Cd−N(1/p−1/q)−(k−`)|u|W `

q (RN ), (3.117)

where C depends on N , m, and k.

Proof. Let r be such that 1
r

+ 1
q

= 1 + 1
p
. For |α| = k, choose β, γ with β + γ = α,

|β| = k − `, and |γ| = `. Then

Dα(Jm,N,d ∗ u) = DβJm,N,d ∗Dγu. (3.118)

By Young’s inequality,

‖DβJm,N,d ∗Dγu‖Lp(RN ) ≤ ‖DβJm,N,d‖Lr(RN )‖Dγu‖Lq(RN ). (3.119)
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By Equation 3.100,

‖DβJm,N,d‖Lr(RN ) ≤ |Jm,N,d|Wk−`
r (RN )

≤ Cd−N(1−1/r)−(k−`),

(3.120)

where C depends on N , m, and k − `. The dependence on k − ` can be replaced

by a dependence on k because the number of possible values of k − ` depends on

k. Combining Equations 3.118, 3.119, and 3.120, we see that

‖Dα(Jm,N,d ∗ u)‖Lp(Ω) ≤ Cd−N(1/q−1/p)−(k−`)|u|W `
q (RN ), (3.121)

where C depends on N , m, and k. The lemma follows by summing this inequality

over all |α| = k.

As an additional application of our results on mollification, we provide a nega-

tive norm inverse property for Sh. The inverse property assumed for Sh bounds a

positive norm of a function in terms of a norm with lower order or lower exponent,

or possibly both. Notice that we must start with a positive norm on the left side,

but we can have negative norms on the right side.

The standard proofs of the inverse property for the Lagrange finite element

spaces, such as those in [5, Theorem 4.5.11] and [32, Proposition 3.1], proceed by

first proving the property on the unit simplex, where all norms are equivalent, then

mapping this result to an element using scaling inequalities, and finally summing

up the contributions over the elements in question. If we try to prove an inverse

property with a negative norm on the left side, the scaling inequalities forbid us

from proceeding in this manner. Evidently we need another approach.

We exhibit the following negative norm inverse property as a consequence of the

standard inverse assumption on Sh of Equation 3.5, so it applies to more general

finite element spaces than just the Lagrange spaces. It is explicitly stated in [31,

Remark 4.1] that no inverse property with a negative norm on the left side is known

for the Lagrange spaces, except in 1 dimension.
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Lemma 3.8. Suppose that U1 and U3 are open subsets of RN with U1 ⊂ U3 and

dist(U1, ∂U3) ≥ 2Cseph. If 1 ≤ q ≤ p ≤ ∞, k ∈ 1 : r, ` ∈ k : r, and χ ∈ Sh, then

‖χ‖W−kp (U1,Ω) ≤ Ch−N(1/q−1/p)−(`−k)‖χ‖W−`q (U3,Ω), (3.122)

where C depends on N , r, Cap, and Csep.

Proof. In this proof, let C denote different positive constants that depend on N ,

r, Cap, and Csep.

First observe that there exists an open subset U2 of RN such that U1 ⊂ U2 ⊂ U3,

dist(U1, ∂U2) ≥ Cseph, and dist(U2, ∂U3) ≥ Cseph. By the general definition of the

negative norm,

‖χ‖W−kp (U1,Ω) = sup
φ∈C∞0 (U1)
‖φ‖

Wk
p′

(U1)
=1

|
∫
U1∩Ω

χφ|. (3.123)

Let φ ∈ C∞0 (U1) have ‖φ‖Wk
p′ (U1) = 1. Let m be an integer such that 2m + 2 ≥ r,

and let d be such that d
√
N(m + 1) = Cseph. By Theorem 3.3, there exists some

ψ ∈ C∞0 (U2) such that

‖φ− ψ‖Lp′ (U2) ≤ Cdk‖φ‖Wk
p′ (U1) (3.124)

and

‖ψ‖W `
q′ (U2) ≤ Cd−N(1/p′−1/q′)−(`−k)‖φ‖Wk

p′ (U1). (3.125)

Observe that

|
∫
U1∩Ω

χφ| = |
∫
U2∩Ω

χφ|

≤ |
∫
U2∩Ω

χ(φ− ψ)|+ |
∫
U2∩Ω

χψ|.
(3.126)

We estimate the first term using Hölder’s inequality, the inverse assumption on Sh,
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and Equation 3.124,

|
∫
U2∩Ω

χ(φ− ψ)| ≤ ‖χ‖Lp(U2∩Ω)‖φ− ψ‖Lp′ (U2∩Ω)

≤ C
(
h−`−N(1/q−1/p)‖χ‖W−`q (U3∩Ω)

)(
dk‖φ‖Wk

p′ (U1)

)
≤ Ch−N(1/q−1/p)−(`−k)‖χ‖W−`q (U3∩Ω).

(3.127)

To estimate the second term on the right side of Equation 3.126, we first recall

that supp(ψ) ⊂ U2, and therefore, by the general definition of the negative norm,

|
∫
U2∩Ω

χψ| ≤ ‖χ‖W−`q (U2,Ω)‖ψ‖W `
q′ (U2). (3.128)

By Equation 3.125,

‖ψ‖W `
q′ (U2) ≤ Cd−N(1/p′−1/q′)−(`−k)‖φ‖Wk

p′ (U1)

≤ Ch−N(1/q−1/p)−(`−k).

(3.129)

Putting together Equations 3.128 and 3.129,

|
∫
U2∩Ω

χψ| ≤ Ch−N(1/q−1/p)−(`−k)‖χ‖W−`q (U2,Ω). (3.130)

The lemma follows from Equations 3.123, 3.126, 3.127, and 3.130.

The result is strengthened by the presence of the general negative norm on the

left and weakened by the presence of the general negative norm on the right, with

respect to how it would read if the usual negative norms were used.

Consider what would have happened if we did not have the theory of mollifiers.

In order to obtain Equation 3.129, we could have turned to the inverse assumption

on Sh and taken ψ = Ihφ. There are two difficulties with this.

First, since Ihφ is only defined on Ω, we can not use the general negative norm

in Equation 3.128. In fact, the only sensible thing we can do is to use the usual

negative norms in both Equations 3.123 and 3.128.

104



That is, we assume that supp(φ) ⊂ U1 ∩ Ω in Equation 3.123. Equation 3.128

then requires that supp(Ihφ) ⊂ U2∩Ω. This will be true if Ih respects homogeneous

boundary conditions, but we have made no such assumption here.

Second, functions in Sh are guaranteed only one order of differentiability, unlike

mollifications of infinitely differentiable functions, which are themselves infinitely

differentiable. In Equation 3.129, we would be restricted to having ` = k = 1. It

is for this exact same reason that the negative norm error estimate in [9, Lemma

5.4] only handles the W−1
∞ case and has no straightforward extension to the W−k

∞

cases for any integer k > 1.

3.6 Future Work

In Equation 3.22, where the positive and negative norm estimates are compared,

it would be satisfying if the logarithmic factor `h in the positive norm cases could be

reduced to `h/H . This would result in an unbroken pattern with the negative norm

cases. It is interesting to note that, as announced in [22, Section 2], it was initially

thought that the negative norms would have the more damaging logarithmic factor

than the positive norms.

We avoided stating the comparison in Equation 3.22 for F 6= 0 because the

results do not form a very nice pattern in this case. Furthermore, although the

second perturbation terms in the estimates of Equations 3.9 and 3.11 are readily

compared with that of Equation 3.26, the same is far from true for the first per-

turbation terms. Along these same lines, it should be mentioned that the positive

norm estimates for a local problem in [20, Theorems 1.1 and 1.2] take F in norms

analogous to those in [19, Theorems 2.2 and 3.2]. However, in [21, Theorems 1 and

2], where a local problem is also considered, F is taken in sharper but substantially

more complicated norms. These estimates have an obvious analogue for the global
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Neumann problem. The norms of F appearing in Equations 3.9 and 3.11 were

chosen because they are the simplest to state and make results easiest to prove.

They are not necessarily the sharpest or the most natural, and many other options

are available.

Unfortunately, a more careful analysis of the perturbation functional in the

negative norm estimates is not merely a matter of obtaining sharper estimates

for v − Ihv and v than those of Equations 3.42 and 3.43. The handling of the

perturbation functional in both of the positive norm estimates comes into play

and complicates matters, as can be seen from Equations 3.45 and 3.47. Since there

is not yet any application of a better handling of the perturbation functional, we

question whether this is really worth investigating.

It would be nice to have an application for which Theorem 3.1 works but the

weaker result of [9, Lemma 5.4] does not. At this point, the only application of

either is to the pointwise a posteriori error estimators of Chapter 4, and, for this,

both results suffice.
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CHAPTER 4

ASYMPTOTICALLY EXACT L∞ A POSTERIORI ERROR

ESTIMATORS FOR THE FINITE ELEMENT METHOD

4.1 Introduction and Statement of Results

Let N ≥ 2 be an integer and let Ω be a bounded open subset of RN with

sufficiently smooth boundary. For i, j ∈ 1 : N , let ai,j, bi, c : Ω̄→ R be sufficiently

smooth. Define the bilinear form A on functions v, w : Ω→ R by

A(v, w) =

∫
Ω

( N∑
i,j=1

ai,jDivDjw +
N∑
i=1

biDivw + cvw

)
. (4.1)

We assume that A is coercive over W 1
2 (Ω). That is, there exists a constant Cco > 0

such that, if v ∈ W 1
2 (Ω) then

A(v, v) ≥ Cco‖v‖2
W 1

2 (Ω). (4.2)

We also assume that A is uniformly elliptic on Ω. That is, there exists a constant

Cell > 0 such that, if x ∈ Ω and ξ ∈ RN then

N∑
i,j=1

ai,j(x)ξiξj ≥ Cell|ξ|2. (4.3)

Let h > 0 be sufficiently small and let c, c > 0. Let Th be a finite collection of

subsets of Ω for which the following hold.

1. The union of the elements of Th is Ω̄.

2. Elements of Th are simplices whose faces are straight unless they meet ∂Ω.

3. Elements of Th meet face-to-face or not at all.

4. Each element of Th contains a ball of radius ch and is contained in a ball of

radius ch.
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Let r ≥ 3 be an integer and let Sh denote the set of χ ∈ C0(Ω) such that, if

τ ∈ Th then χ ∈ Πr−1(τ).

Let u ∈ W r+1
∞ (Ω), uh ∈ Sh, define e = u− uh, and assume that

A(e, χ) = 0 (4.4)

for all χ ∈ Sh. Let h ≤ H ≤ 1 and let U be an open subset of Ω with diam(U) ≤ H.

Let 0 < ε < 1 and define

m′ =
h

H
`r=3,h,h/H +

(
H

h

)r+1

hε + hε`r=3,h,h/H . (4.5)

Assume that there exists an open subset V of RN and a constant κ such that

U ⊂ V and dist(U, ∂V ) ≤ κH. Assume furthermore that there exists an operator

PH on W 1
∞(U) and a constant CP such that, if v ∈ W r+1

∞ (Ω) then

‖v − PHv‖L∞(U) ≤ CPH
r+1‖v‖W r+1

∞ (Ω), (4.6)

and if v ∈ W 1
∞(V ∩ Ω) then

‖PHv‖L∞(U) ≤ CPH
−1‖v‖W−1

∞ (V,Ω). (4.7)

Let τ ∈ Th be such that τ ⊂ U . Define

E(τ) = ‖uh − PHuh‖L∞(τ). (4.8)

We say that τ is nondegenerate if

|u|W r
∞(τ) ≥ h1−ε‖u‖W r+1

∞ (Ω) (4.9)

and degenerate if

|u|W r
∞(τ) ≤ h1−ε‖u‖W r+1

∞ (Ω). (4.10)

The following theorem is our main result.
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Theorem 4.1. There exist constants C,C ′ > 0 such that the following hold with

m = C ′m′.

1. If τ is nondegenerate then

C−1hr|u|W r
∞(τ) ≤ ‖e‖L∞(τ) ≤ Chr|u|W r

∞(τ), (4.11)

‖e‖L∞(τ) ≥ C−1hr+1−ε‖u‖W r+1
∞ (Ω), (4.12)

and

1

1 +m
E(τ) ≤ ‖e‖L∞(τ), (4.13)

and, if, in addition, m < 1, then

‖e‖L∞(τ) ≤
1

1−m
E(τ). (4.14)

2. If τ is degenerate then

‖e‖L∞(τ) ≤ Chr+1−ε‖u‖W r+1
∞ (Ω) (4.15)

and

E(τ) ≤ (C +m)hr+1−ε|u|W r+1
∞ (Ω). (4.16)

3. If

‖e‖L∞(τ) ≥ Chr+1−ε‖u‖W r+1
∞ (Ω) (4.17)

then τ is nondegenerate.

The constants C and C ′ depend on N , Ω, various norms of the coefficients of A,

Cco, Cell, c, c, r, and κ. In addition, C ′ depends on CP .

4.2 Motivation

First we motivate u, uh, and their relationship in Equation 4.4.
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Define the second-order differential operator L on functions v : Ω→ R by

Lv = −
N∑

i,j=1

Di(ai,jDjv) +
N∑
i=1

biDiv + cv. (4.18)

The corresponding co-normal derivative operator B is defined on functions v : Ω̄→

R by

Bv =
N∑

i,j=1

ai,j(νΩ)jDiv. (4.19)

We typically think of u ∈ C2(Ω) ∩ C1(Ω̄) as the solution of the classical homoge-

neous Neumann problem

Lu = f on Ω

Bu = 0 on ∂Ω,

(4.20)

where f ∈ C0(Ω) is given.

We may also think of u ∈ W 1
2 (Ω) as the solution of the weak problem

A(u, v) =

∫
Ω

fv (4.21)

for all v ∈ W 1
2 (Ω), where f ∈ L2(Ω) is given. By integration by parts, it is easily

seen that, if u is a solution of the classical problem, then it is a solution of the

weak problem. Notice that the weak problem admits solutions with less regularity

than the classical problem.

In general, it is not feasible to find an explicit formula for u, so we resort to

numerical methods to approximate it. The space Sh is the Lagrange finite element

space, consisting of continuous functions on Ω which are polynomials of degree at

most r − 1 on each element of the quasiuniform partition Th. This space has the

standard approximation, inverse, and superapproximation properties. The finite

element approximation of the solution of Equation 4.21 is the unique solution

uh ∈ Sh of the finite-dimensional linear system

A(uh, χ) =

∫
Ω

fχ (4.22)
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for all χ ∈ Sh. From Equations 4.21 and 4.22, we obtain Equation 4.4.

In regions where the finite element error e is large, one would want to refine

the partition in order to obtain a more accurate result, and in regions where e is

small, refining the partition would be needlessly expensive. However, since u is

unknown, it is not obvious where e is large and where it is small.

This motivates E , which is a local L∞ error estimator on elements in U . We

say that E is asymptotically equivalent if there exists a constant c > 0 such that,

if h is sufficiently small then

c−1E(τ) ≤ ‖e‖L∞(τ) ≤ cE(τ) (4.23)

for all τ ∈ Th with τ ⊂ U . If this holds with c → 1 as h → 0+, we say that E is

asymptotically exact.

As defined in Equation 4.8, E is a posteriori in nature because it involves

the approximate solution uh, and thus can not be computed until after the finite

element solution has been obtained. It is local in nature because it only takes into

account the values of uh on V ∩ Ω, and not on all of Ω.

Once uh is known, E is only as difficult to compute as PHuh is. We see from

Equation 4.6 that PH is an approximate identity operator and can approximate

functions to higher order than the finite element space can. Equation 4.7 is an

inverse or smoothing property. An example of an approximate identity operator

with these properties is given in Section 4.6. If m < 1 then PHuh approximates u

better than uh does on nondegenerate elements, as we will see in Equation 4.36.

This is the underlying reason why our error estimator works.

From Equation 4.10, we see that, as h → 0+, degeneracy can only persist in

regions in which all the rth order derivatives of u vanish. Therefore, for typical

problems, we would expect degeneracy to be rare.

Theorem 4.1 has three parts. First, it gives some consequences of nondegen-

111



eracy. These can be used to prove asymptotic equivalence and exactness of E .

Second, it gives some consequences of degeneracy. Third, it gives a condition

which implies nondegeneracy.

Equation 4.11 indicates that, in the nondegenerate case, the error behaves

exactly as the interpolation error. That is, it is free of pollution.

We now give conditions under which E is asymptotically equivalent and asymp-

totically exact. Assume that, for sufficiently small h, every τ ∈ Th with τ ⊂ U

is nondegenerate. If m′ stays bounded, Equation 4.13 gives the first inequality in

Equation 4.23. If m < 1, Equation 4.14 gives the second inequality in Equation

4.23. If 0 ≤ m0 < 1 and m ≤ m0 for all sufficiently small h then E is asymptoti-

cally equivalent. If m→ 0 as h→ 0+ then E is asymptotically exact. We now give

a simple example of a relationship between H and h which leads to asymptotic

equivalence, and a more complicated example which leads to asymptotic exactness.

To obtain asymptotic equivalence for r ≥ 4, consider taking H = kh for k fixed.

Then

m = C ′
(1

k
(1 + log k) + kr+1hε + hε(1 + log k)

)
. (4.24)

Let k be sufficiently large that 1
k
(1 + log k) ≤ 1

3C′
. For all sufficiently small h, we

have hε(kr+1 + 1 + log k) ≤ 1
3C′

, and thus m ≤ 2/3.

To obtain asymptotic exactness, consider taking H = h1−k, where k < ε
r+1

is

fixed. Then

m =


C ′
(
hk
(

1 + k log
1

h

)
+ h−k(r+1)+ε + hε

(
1 + k log

1

h

))
, if r ≥ 4

C ′(hk`h + h−k(r+1)+ε + hε`h), if r = 3.

(4.25)

The first and third terms obviously go to 0 as h → 0+. Since ε > k(r + 1), the

second term does the same. Therefore m→ 0 as k → 0+.

It may seem disappointing that we do not establish asymptotic equivalence

in the presence of degenerate elements. However, the extreme degenerate case
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is when e = 0 on an entire element, and detection of this event appears to be

difficult. Furthermore, the degenerate case, unlike the nondegenerate one, can

occur when the error in one element is mostly due to pollution from elements far

away. It appears to be difficult to construct an equivalent estimator in the case of

pollution, especially one which is local in nature.

An element being degenerate does not typically mean that the error is large

on the element. To the contrary, if m stays bounded then, by Equations 4.15 and

4.16, both the error and the estimator behave better than the interpolation error.

We also point out here that Equations 4.12 and 4.17 together show that non-

degeneracy is equivalent to

‖e‖L∞(τ)
>∼ hr+1−ε‖u‖W r+1

∞ (Ω). (4.26)

4.3 Relationship to Prior Work

The approximation and inverse assumptions on an approximate identity oper-

ator in Equations 4.6 and 4.7 are analogous to those of [15, Equations 2.3 and 2.2]

on an approximate gradient operator. The construction of an estimator for e from

the approximate identity operator in Equation 4.8 is analogous to the construction

of an estimator for De from the approximate gradient operator in [15, Equation

2.4]. The results of Theorem 4.1, which concern degeneracy and the estimator for

e, are analogous to those of [15, Theorem 2.1 and Corollary 2.2], which concern

degeneracy and the estimator for De.

The main technical tools for proving Theorem 4.1 are L∞ and W−1
∞ error ex-

pansion inequalities. Weighted error estimates in L∞ and W−1
∞ are given in [19,

Theorem 2.1] and Theorem 3.1, respectively. These are then combined with Propo-

sition 1.7, which gives expansion inequalities for weighted norms. Similarly, the

proofs of [15, Theorem 2.1 and Corollary 2.2] require W 1
∞ and L∞ error expansion
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inequalities. These are given in [19, Theorems 4.2 and 4.1], respectively. Although

the L∞ error expansion inequality of [15, Equation 3.3] mistakenly applies [19, The-

orem 4.1] with a noninteger weight power, it may be obtained from [19, Theorem

3.1] and Proposition 1.7.

In Section 4.6 we give an example of an approximate identity operator and

prove that it satisfies the required properties. This is not straightforward. In [15,

Examples 1.1–1.3], three examples of approximate gradient operators are given.

All three are quite easily shown to satisfy the properties of [15, Section 4].

4.4 Proof of Theorem

We first state a lemma which will imply Theorem 4.1. This is analogous to [15,

Proposition 3.1], which implies [15, Theorem 2.1].

Lemma 4.2. There exist constants C1, C2, C3, C4 > 0 such that

‖u− PHuh‖L∞(τ) ≤ C1CPm
′
(
hr|u|W r

∞(τ) + hr+1−ε‖u‖W r+1
∞ (Ω)

)
, (4.27)

‖e‖L∞(τ) ≥ C2h
r|u|W r

∞(τ) − C3h
r+1‖u‖W r+1

∞ (Ω), (4.28)

and

‖e‖L∞(τ) ≤ C4

(
hr|u|W r

∞(τ) + hr+1−ε‖u‖W r+1
∞ (Ω)

)
. (4.29)

The constants C1, C2, C3, and C4 depend on N , Ω, various norms of the coefficients

of A, Cco, Cell, c, c, r, and κ.

Notice that Equation 4.28 contains two constants, whereas the analogous esti-

mate in the first inequality of [15, Equation 3.2] contains only one constant. As

we will explain, in the proof of Equation 4.28, the first inequality of [15, Lemma

3.3] is in error, and is responsible for this discrepancy.
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We now see how Theorem 4.1 follows from Lemma 4.2. We defer the proof of

this lemma to the next section.

First consider part 1. That is, we assume that Equation 4.9 holds. By Equa-

tions 4.28 and 4.9,

‖e‖L∞(τ) ≥ C2h
r|u|W r

∞(τ) − C3h
r+1‖u‖W r+1

∞ (Ω)

≥ (C2 − C3h
ε)hr|u|W r

∞(τ).

(4.30)

For h sufficiently small, C3h
ε ≤ C2/2, so

‖e‖L∞(τ) ≥
1

2
C2h

r|u|W r
∞(τ). (4.31)

If we take C ≥ 2/C2, we obtain the first inequality in Equation 4.11.

By Equations 4.29 and 4.9,

‖e‖L∞(τ) ≤ C4

(
hr|u|W r

∞(τ) + hr+1−ε‖u‖W r+1
∞ (Ω)

)
≤ 2C4h

r|u|W r
∞(τ).

(4.32)

If we take C ≥ 2C4, we obtain the second inequality in Equation 4.11.

By the first inequality in Equation 4.11, along with Equation 4.9,

‖e‖L∞(τ) ≥ C−1hr|u|W r
∞(τ)

≥ C−1hr+1−ε‖u‖W r+1
∞ (Ω),

(4.33)

which proves Equation 4.12.

By Equations 4.27 and 4.9,

‖u− PHuh‖L∞(τ) ≤ C1CPm
′
(
hr|u|W r

∞(τ) + hr+1−ε‖u‖W r+1
∞ (Ω)

)
≤ 2C1CPm

′hr|u|W r
∞(τ).

(4.34)

Combining this with Equation 4.31,

‖u− PHuh‖L∞(τ) ≤
4C1CPm

′

C2

‖e‖L∞(τ). (4.35)
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If we take C ′ ≥ 4C1CP/C2, we obtain

‖u− PHuh‖L∞(τ) ≤ m‖u− uh‖L∞(τ). (4.36)

Therefore,

‖uh − PHuh‖L∞(τ) ≤ ‖u− uh‖L∞(τ) + ‖u− PHuh‖L∞(τ)

≤ (1 +m)‖u− uh‖L∞(τ),

(4.37)

which proves Equation 4.13, and

‖uh − PHuh‖L∞(τ) ≥ ‖u− uh‖L∞(τ) − ‖u− PHuh‖L∞(τ)

≥ (1−m)‖u− uh‖L∞(τ),

(4.38)

which proves Equation 4.14.

Next consider part 2. That is, we assume that Equation 4.10 holds. By Equa-

tions 4.29 and 4.10,

‖e‖L∞(τ) ≤ C4

(
hr|u|W r

∞(τ) + hr+1−ε‖u‖W r+1
∞ (Ω)

)
≤ 2C4h

r+1−ε‖u‖W r+1
∞ (Ω).

(4.39)

If we take C ≥ 2C4, we obtain Equation 4.15.

By Equations 4.27 and 4.10,

‖u− PHuh‖L∞(τ) ≤ C1CPm
′
(
hr|u|W r

∞(τ) + hr+1−ε‖u‖W r+1
∞ (Ω)

)
≤ 2C1CPm

′hr+1−ε‖u‖W r+1
∞ (Ω).

(4.40)

If we take C ′ ≥ 2C1CP , we obtain

‖u− PHuh‖L∞(τ) ≤ mhr+1−ε‖u‖W r+1
∞ (Ω). (4.41)

Combining this with Equation 4.15,

‖uh − PHuh‖L∞(τ) ≤ ‖u− uh‖L∞(τ) + ‖u− PHuh‖L∞(τ)

≤ (C +m)hr+1−ε‖u‖W r+1
∞ (Ω),

(4.42)
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which proves Equation 4.16.

To obtain all the results of parts 1 and 2 together, we take C = max(2/C2, 2C4)

and C ′ = max(4C1CP/C2, 2C1CP ).

Finally we consider part 3. That is, we assume that Equation 4.17 holds. By

Equation 4.29,

Chr+1−ε‖u‖W r+1
∞ (Ω) ≤ ‖e‖L∞(τ)

≤ C4

(
hr|u|W r

∞(τ) + hr+1−ε‖u‖W r+1
∞ (Ω)

)
.

(4.43)

Dividing by Chr and using the fact that C ≥ 2C4, we see that

h1−ε‖u‖W r+1
∞ (Ω) ≤

1

2

(
|u|W r

∞(τ) + h1−ε‖u‖W r+1
∞ (Ω)

)
. (4.44)

Kicking back the last term on the right side, we obtain

1

2
h1−ε‖u‖W r+1

∞ (Ω) ≤
1

2
|u|W r

∞(τ), (4.45)

which proves Equation 4.9.

4.5 Proof of Lemma

In this section, we prove the three inequalities of Lemma 4.2. We let C denote

different positive constants that depend on N , Ω, various norms of the coefficients

of A, Cco, Cell, c, c, r, and κ.

First we show Equation 4.27. By Equations 4.6 and 4.7,

‖u− PHuh‖L∞(τ) ≤ ‖u− PHu‖L∞(τ) + ‖PH(u− uh)‖L∞(τ)

≤ CP

(
Hr+1‖u‖W r+1

∞ (Ω) +H−1‖u− uh‖W−1
∞ (V,Ω)

)
.

(4.46)

By Theorem 3.1,

‖u− uh‖W−1
∞ (V,Ω) ≤ Ch2`r=3,h,h/H inf

χ∈Sh
‖u− χ‖W 1

∞(Ω),V,hr−3H4−r,1. (4.47)
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Using the approximation property of the Lagrange finite element space, as in [19,

Equation 4.4],

inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),V,hr−3H4−r,1 ≤ Chr−1|u|W r
∞(Ω),V,hr−3H4−r,1. (4.48)

Since hr−3H4−r ≤ H and w 7→ σV,w(x) is increasing for all x ∈ Ω,

|u|W r
∞(Ω),V,hr−3H4−r,1 ≤ |u|W r

∞(Ω),V,H,1. (4.49)

If x ∈ Ω then dist(x, τ) ≤ dist(x, V ) + (κ+ 1)H. Therefore, by Proposition 1.7,

|u|W r
∞(Ω),V,H,1 ≤ C

(
|u|W r

∞(τ) +H|u|W r+1
∞ (Ω)

)
. (4.50)

Putting together Equations 4.46, 4.47, 4.48, 4.49, and 4.50,

‖u− PHuh‖L∞(τ) ≤ CCP

(
H−1hr+1`r=3,h,h/H |u|W r

∞(τ)

+ (Hr+1 + hr+1`r=3,h,h/H)‖u‖W r+1
∞ (Ω)

)
.

(4.51)

By Equation 4.5,

H−1hr+1`r=3,h,h/H = hr
h

H
`r=3,h,h/H

≤ hrm′
(4.52)

and

Hr+1 + hr+1`r=3,h,h/H = hr+1−ε
((H

h

)r+1

hε + hε`r=3,h,h/H

)
≤ hr+1−εm′.

(4.53)

Combining Equations 4.51, 4.52, and 4.53,

‖u− PHuh‖L∞(τ) ≤ CCPm
′
(
hr|u|W r

∞(τ) + hr+1−ε‖u‖W r+1
∞ (Ω)

)
, (4.54)

which proves Equation 4.27.

Next we show Equation 4.28. There exists an invertible affine linear map

Fτ : TN → τ such that τ = Fτ (T
N). Let û = u ◦ Fτ .
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If |û|W r
∞(TN ) = 0 then, by a scaling inequality, |u|W r

∞(τ) = 0, so Equation 4.28

is trivial.

From now on, we assume that |û|W r
∞(TN ) > 0. Then there exist |β| = r and

x̂0 ∈ TN such that

|Dβû(x̂0)| = |û|W r
∞(TN ). (4.55)

By a scaling inequality and the definition of the Lagrange finite element space,

‖e‖L∞(τ) ≥ inf
χ∈Sh
‖u− χ‖L∞(τ)

= inf
χ̂∈Πr−1(TN )

‖û− χ̂‖L∞(TN ).

(4.56)

Suppose that χ̂ ∈ Πr−1(TN). Then

‖û− χ̂‖L∞(TN ) ≥ ‖T rx̂0
û− χ̂‖L∞(TN ) − ‖û− T rx̂0

û‖L∞(TN ). (4.57)

The second term is easily estimated by Taylor’s theorem,

‖û− T rx̂0
û‖L∞(TN ) ≤ C|û|W r+1

∞ (TN ). (4.58)

Now we turn to estimating the first term. For |α| ≤ r, define pα ∈ Πr(TN) by

pα(x̂) = x̂α and let Vα denote the vector subspace of Πr(TN) such that Πr(TN) =

span(pα) ⊕ Vα. The L∞(TN) distance between pα and Vα can be bounded below

by a positive constant that depends only on N and r.

If |α| ≤ r then x̂ 7→ (x̂ − x̂0)α is a linear combination of pγ with γ ≤ α.

Therefore, by definition of the Taylor polynomial, T rx̂0
û − 1

β!
Dβû(x̂0)pβ is a linear

combination of pγ with γ 6= β, and is thus in Vβ. Since χ̂ ∈ Πr−1(TN), certainly

χ̂ ∈ Vβ. Now we see that T rx̂0
û− χ̂− 1

β!
Dβû(x̂0)pβ ∈ Vβ. Since Dβû(x̂0) 6= 0, there

exists some η̂ ∈ Vβ such that

T rx̂0
û− χ̂ =

1

β!
Dβû(x̂0)(pβ − η̂). (4.59)
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Therefore, by Equation 4.55,

‖T rx̂0
û− χ̂‖L∞(TN ) =

1

β!
|Dβû(x̂0)|‖pβ − η̂‖L∞(TN )

≥ C|û|W r
∞(TN ).

(4.60)

By Equations 4.57, 4.60 and 4.58,

‖û− χ̂‖L∞(TN ) ≥ C|û|W r
∞(TN ) − C|û|W r+1

∞ (TN ). (4.61)

It is not possible, in general, to combine the two constants here into one. The

analogous combination of constants in the proof of [15, Lemma 3.3] appears to

be in error. Using scaling inequalities and Equations 4.56 and 4.61, we obtain

Equation 4.28.

Finally we show Equation 4.29. Let x ∈ τ . By [19, Theorem 2.1],

|(u− uh)(x)| ≤ Ch inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),{x},h,1−ε. (4.62)

Using the approximation property of the Lagrange finite element space, as in [19,

Equation 4.4],

inf
χ∈Sh
‖u− χ‖W 1

∞(Ω),{x},h,1−ε ≤ Chr−1|u|W r
∞(Ω),{x},h,1−ε. (4.63)

If y ∈ Ω then dist(y, τ) ≤ |x− y|+ ch. Therefore, by Proposition 1.7,

|u|W r
∞(Ω),{x},h,1−ε ≤ C

(
|u|W r

∞(τ) + h1−ε|u|W r+1
∞ (Ω)

)
. (4.64)

Putting together Equations 4.62, 4.63, and 4.64,

|(u− uh)(x)| ≤ Chr
(
|u|W r

∞(τ) + h1−ε|u|W r+1
∞ (Ω)

)
. (4.65)

Taking the supremum over all x ∈ τ gives Equation 4.29.

120



4.6 An Approximate Identity Operator

Assume that there exist constants c1, c2, c3 > 0 and a subset W of Ω, which is

star-shaped with respect to a point, such that U contains a ball of radius c1H and

is contained in W , measN−1(∂U) ≤ c2H
N−1, and diam(W ) ≤ c3H. In this section,

C will denote different positive constants that depend only on c1, c2, c3, r, and N .

For v ∈ L1(U), the Riesz representation theorem guarantees that there exists

a unique PHv ∈ Πr(U) such that, for all χ ∈ Πr(U),∫
U

(PHv)χ =

∫
U

vχ. (4.66)

That is, PH : L1(U) → Πr(U) is the projection onto the space of polynomials of

degree at most r on U . We will verify that Equations 4.6 and 4.7 hold with PH

defined by Equation 4.66, κ = 0, V = U , and CP depending only on c1, c2, c3, r,

and N .

First we prove an inverse property. Since all norms are equivalent on the

finite-dimensional vector space Πr(RN), we know that, for k ∈ 0 : 1, ` ∈ −1 : 0,

1 ≤ p, q ≤ ∞, and χ̂ ∈ Πr(RN),

‖χ̂‖Wk
p (B1(0)) ≤ C‖χ̂‖W `

q (Bc1 (0)). (4.67)

Let x0 be such that Bc1H(x0) ⊂ U . Since diam(U) ≤ H, we must have U ⊂ BH(x0).

Define Φ : RN → RN by Φ(x) = (x−x0)/H. If k ∈ 0 : 1, ` ∈ −1 : 0, 1 ≤ p, q ≤ ∞,

and χ ∈ Πr(RN) then χ◦Φ−1 ∈ Πr(RN), so, using scaling inequalities and Equation

4.67,

‖χ‖Wk
p (U) ≤ ‖χ‖Wk

p (BH(x0))

≤ CH−k+N/p‖χ ◦ Φ−1‖Wk
p (B1(0))

≤ CH−k+N/p‖χ ◦ Φ−1‖W `
q (Bc1 (0))

≤ CH−(k−`)−N(1/p−1/q)‖χ‖W `
q (Bc1H(x0))

≤ CH−(k−`)−N(1/p−1/q)‖χ‖W `
q (U).

(4.68)
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Next we show that PH is bounded on L2(U). If v ∈ L2(U) then, by Equation

4.66,

‖PHv‖2
L2(U) =

∫
U

(PHv)(PHv)

=

∫
U

v(PHv)

≤ ‖v‖L2(U)‖PHv‖L2(U).

(4.69)

If PHv 6= 0 then, dividing by ‖PHv‖L2(U), we obtain ‖PHv‖L2(U) ≤ ‖v‖L2(U). If

PHv = 0 then this is trivial.

Next we show that PH is bounded on L∞(U). If v ∈ L∞(U) then, using

Equation 4.68, the fact that PH is bounded on L2(U), and the measure inequality,

‖PHv‖L∞(U) ≤ CH−N/2‖PHv‖L2(U)

≤ CH−N/2‖v‖L2(U)

≤ C‖v‖L∞(U).

(4.70)

Now we show that PH satisfies Equation 4.6. Let x be a point with respect

to which W is star-shaped. Suppose that v ∈ W r+1
∞ (Ω). Since T rxv ∈ Πr(U),

PHT
r
xv = T rxv. Therefore,

v − PHv = (v − T rxv)− PH(v − T rxv). (4.71)

By Taylor’s theorem,

‖v − T rxv‖L∞(W ) ≤ CHr+1|v|W r+1
∞ (W ). (4.72)

Using Equation 4.71, the fact that PH is bounded on L∞(U), and Equation 4.72,

we find that

‖v − PHv‖L∞(U) ≤ ‖v − T rxv‖L∞(U) + ‖PH(v − T rxv)‖L∞(U)

≤ C‖v − T rxv‖L∞(U)

≤ CHr+1|v|W r+1
∞ (W ).

(4.73)
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This is slightly better than Equation 4.6 because the right side has the (r + 1)st-

order seminorm of v on W instead of the (r + 1)st-order norm of v on Ω.

Next we show that PH is bounded on L1(U). Suppose that v ∈ L1(U). If

φ ∈ L∞(U) then, using Equation 4.66 twice, along with the fact that PH is bounded

on L∞(U), ∫
U

(PHv)φ =

∫
U

vφ

=

∫
U

v(PHφ)

≤ ‖v‖L1(U)‖PHφ‖L∞(U)

≤ C‖v‖L1(U)‖φ‖L∞(U).

(4.74)

Therefore, by the extremal version of Hölder’s inequality,

‖PHv‖L1(U) = sup
φ∈L∞(U)
‖φ‖L∞(U)=1

∫
U

(PHv)φ

≤ C‖v‖L1(U).

(4.75)

Next we show that PH is bounded on W 1
1 (U). Suppose that v ∈ W 1

1 (U) and

let c denote the average value of v on U . Since c ∈ Πr(U), PHc = c. Therefore, by

Equation 4.68, the fact that PH is bounded on L1(U), and Poincaré’s inequality,

|PHv|W 1
1 (U) = |PH(v − c)|W 1

1 (U)

≤ CH−1‖PH(v − c)‖L1(U)

≤ CH−1‖v − c‖L1(U)

≤ C|v|W 1
1 (U).

(4.76)

Combined with Equation 4.75, this shows that PH is bounded on W 1
1 (U).

Finally we show that PH satisfies Equation 4.7. Suppose that v ∈ L∞(U). We

don’t actually need to assume v ∈ W 1
∞(U) here. By Equation 4.68,

‖PHv‖L∞(U) ≤ CH−1‖PHv‖W−1
∞ (U). (4.77)
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By definition of the negative norm,

‖PHv‖W−1
∞ (U) = sup

φ∈C∞0 (U)
‖φ‖

W1
1 (U)

=1

|
∫
U

(PHv)φ|. (4.78)

Let φ ∈ C∞0 (U) have ‖φ‖W 1
1 (U) = 1. Let ε < c1H/2 and define Uε = {x ∈ U :

dist(x, ∂U) > ε}. Let ωε ∈ C∞0 (U) be such that ωε = 1 on Uε and, for i ∈ 0 : 1,

|ωε|W i
∞(U) ≤ Cε−i. (4.79)

Having made the assumption that measN−1(∂U) ≤ c2H
N−1, we can conclude that

measN(U r Uε) ≤ CHN−1ε. Writing 1 = (1− ωε) + ωε has two advantages. First,

1 − ωε and the first derivatives of ωε are only nonzero on the set U r Uε, whose

measure vanishes with ε. Second, the support of ωε is contained in U , which helps

set up an estimate in a negative norm.

Using Equation 4.66 twice,∫
U

(PHv)φ =

∫
U

vφ

=

∫
U

v(PHφ)

=

∫
U

v(PHφ)(1− ωε) +

∫
U

v(PHφ)ωε.

(4.80)

First we estimate the first term on the right side,

|
∫
U

v(PHφ)(1− ωε)| ≤ ‖v‖L∞(U)‖PHφ‖L∞(U)‖1− ωε‖L1(UrUε). (4.81)

By Equation 4.68 and the fact that PH is bounded on L1(U),

‖PHφ‖L∞(U) ≤ CH−N‖PHφ‖L1(U)

≤ CH−N‖φ‖L1(U)

≤ CH−N .

(4.82)

By the measure inequality and Equation 4.79,

‖1− ωε‖L1(UrUε) ≤ CHN−1ε. (4.83)
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By Equations 4.81, 4.82, and 4.83,

|
∫
U

v(PHφ)(1− ωε)| ≤ CH−1ε‖v‖L∞(U). (4.84)

Now we estimate the second term on the right side of Equation 4.80. Since

supp(ωε) ⊂ U , we have by definition of the negative norm that

|
∫
U

v(PHφ)ωε| ≤ ‖v‖W−1
∞ (U)‖(PHφ)ωε‖W 1

1 (U). (4.85)

The trick is to estimate

‖(PHφ)ωε‖W 1
1 (U) ≤ ‖PHφ‖W 1

1 (U)‖ωε‖L∞(U)

+ ‖PHφ‖L∞(U)‖ωε‖W 1
1 (U).

(4.86)

Using the fact that PH is bounded on W 1
1 (U), along with Equation 4.79,

‖PHφ‖W 1
1 (U)‖ωε‖L∞(U) ≤ C‖φ‖W 1

1 (U)

≤ C.

(4.87)

Using Equation 4.68, the fact that PH is bounded on L1(U), and Poincaré’s in-

equality,

‖PHφ‖L∞(U) ≤ CH−N‖PHφ‖L1(U)

≤ CH−N‖φ‖L1(U)

≤ CH1−N |φ|W 1
1 (U)

≤ CH1−N .

(4.88)

Using the fact that the derivatives of ωε are zero except on U rUε, along with the

measure inequality and Equation 4.79,

‖ωε‖W 1
1 (U) ≤ ‖ωε‖L1(U) + |ωε|W 1

1 (UrUε)

≤ C
(
HN‖ωε‖L∞(U) +HN−1ε|ωε|W 1

∞(U)

)
≤ C(HN +HN−1)

≤ CHN−1.

(4.89)
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By Equations 4.85, 4.86, 4.87, 4.88, and 4.89,

|
∫
U

v(PHφ)ωε| ≤ C‖v‖W−1
∞ (U). (4.90)

Putting together Equations 4.80, 4.84 and 4.90,

|
∫
U

(PHv)φ| ≤ C
(
H−1ε‖v‖L∞(U) + ‖v‖W−1

∞ (U)

)
. (4.91)

Taking ε→ 0+, we are left with

|
∫
U

(PHv)φ| ≤ C‖v‖W−1
∞ (U). (4.92)

Therefore, by Equation 4.78,

‖PHv‖W−1
∞ (U) ≤ C‖v‖W−1

∞ (U). (4.93)

This is equivalent to Equation 4.7 because U ⊂ Ω.

4.7 Future Work

We have only demonstrated one approximate identity operator, in Section 4.6.

Others may be considered. One idea would be to approximate the PH defined in

Equation 4.66 by numerical integration.

It would also be nice to have some numerical examples to demonstrate that

the theory is actually useful in practice. The effectivity of the estimator, which

is the ratio of the predicted error to the true error, is a standard measure of the

quality of an estimator. An effectivity of 1 means that the estimator is perfect.

Effectivities close to 0 or very large mean that the estimator is poor.

First, we would consider a smooth problem whose solution has non-negligible

derivatives of order r. In this case, all elements would be nondegenerate, so we

would expect our estimator to be accurate. That is, the effectivity would be close

to 1.
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After this easy example, we push the estimator to its theoretical limits. Next

we would have a problem which has regions where the rth-order derivatives of the

solution happen to be very small. Elements in these regions would be degenerate.

We would expect that our estimator would be small and that the true error would

be small, although these would not necessarily be commensurate.

Finally we would investigate a nonsmooth problem to observe the effects of

pollution from outside our region of interest. Although our theory does not extend

to this case, it is possible that we could still have decent results.

In all of these examples, we could vary the mesh size h and the patch size H

and observe how this affects the results.
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CHAPTER 5

WEIGHTED L∞ AND W 1
∞ ERROR ESTIMATES FOR THE FINITE

ELEMENT METHOD WITH SUPERPARAMETRIC ELEMENTS

AND NUMERICAL INTEGRATION

5.1 Introduction and Statement of Results

Let N ≥ 2 be an integer and let Ω be a bounded open subset of RN with suf-

ficiently smooth boundary. For i, j ∈ 1 : N , let ai,j, bi, c, f : Ω̄→ R be sufficiently

smooth. Define the bilinear form A on functions v, w : Ω→ R by

A(v, w) =

∫
Ω

( N∑
i,j=1

ai,jDivDjw +
N∑
i=1

biDivw + cvw

)
. (5.1)

We assume that A is coercive over {v ∈ W 1
2 (Ω) : v = 0 on ∂Ω}. That is, there

exists a constant Cco > 0 such that, if v ∈ W 1
2 (Ω) and v = 0 on ∂Ω then

A(v, v) ≥ Cco‖v‖2
W 1

2 (Ω). (5.2)

We also assume that A is uniformly elliptic on Ω. That is, there exists a constant

Cell > 0 such that, if x ∈ Ω and ξ ∈ RN then

N∑
i,j=1

ai,j(x)ξiξj ≥ Cell|ξ|2. (5.3)

Define the linear functional λ on functions v : Ω→ R by

λ(v) =

∫
Ω

fv. (5.4)

Let u ∈ W 1
2 (Ω) have u = 0 on ∂Ω and satisfy

A(u, v) = λ(v) (5.5)

for all v ∈ W 1
2 (Ω) with v = 0 on ∂Ω.

Let h > 0 be sufficiently small, let c > 0, and let Ωh be an open subset of RN .

Let Th be a finite collection of subsets of Ωh for which the following hold.
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1. The union of the elements of Th is Ω̄h.

2. If τ ∈ Th then there exists an invertible map Fτ : TN → τ such that τ =

Fτ (T
N).

3. Elements of Th meet face-to-face or not at all.

4. If τ ∈ Th then Fτ is sufficiently smooth on TN , F−1
τ is sufficiently smooth on

τ , and |Fτ |(W i
∞(TN ))N ≤ chi and |F−1

τ |(W i
∞(τ))N ≤ ch−i for all i ∈ 0 : k, where

k is a sufficiently large integer.

Let r ≥ 2 be an integer and let Sh denote the set of χ ∈ C0(Ωh) such that, if

τ ∈ Th then χ ◦ Fτ ∈ Πr−1(TN).

Let m ≥ 2 be an integer and assume that there exists a homeomorphism

Φh : Ωh → Ω such that, for i ∈ 0 : 1,

|Φh − I|(W i
∞(Ωh))N ≤ chm−i (5.6)

and

|Φ−1
h − I|(W i

∞(Ω))N ≤ chm−i. (5.7)

Furthermore, assume that, if τ ∈ Th, then Φh is sufficiently smooth on τ , Φ−1
h is

sufficiently smooth on Φh(τ), and ‖Φh‖(Wk
∞(τ))N ≤ c and ‖Φ−1

h ‖(Wk
∞(Φh(τ)))N ≤ c for

some sufficiently large integer k.

Let q ≥ 0 be an integer and let Q̂ ∈ (C0(TN))′ be a quadrature rule of order q

on TN . That is, if χ̂ ∈ Πq(TN) then

Q̂χ̂ =

∫
TN

χ̂. (5.8)

Assume that Q̂ ∈ (L∞(TN))′. For τ ∈ Th, define Qτ ∈ (C0(τ))′ by

Qτv = Q̂
(

(v ◦ Fτ ) detDFτ

)
. (5.9)
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For i, j ∈ 1 : N , let āi,j, b̄i, c̄, f̄ : Ω̄h → RN be sufficiently smooth extensions of

ai,j, bi, c, and f , respectively. Define the bilinear form Ah on functions χ, η : Ωh →

R by

Ah(χ, η) =
∑
τ∈Th

Qτ

( N∑
i,j=1

āi,jDiχDjη +
N∑
i=1

b̄iDiχη + c̄χη

)
(5.10)

and define the linear functional λh on functions χ : Ωh → R by

λh(χ) =
∑
τ∈Th

Qτ (f̄χ). (5.11)

Let uh ∈ Sh have uh = 0 on ∂Ωh and satisfy

Ah(uh, χ) = λh(χ) (5.12)

for all χ ∈ Sh with χ = 0 on ∂Ωh.

We will let C denote different positive constants that depend on N , Ω, various

norms of the coefficients of A, Cco, Cell, c, r, m, q, and ‖Q̂‖(L∞(TN ))′ , in addition

to other explicitly stated quantities.

The following two theorems are our main results.

Theorem 5.1. If x ∈ Ω, 0 ≤ s ≤ r − 2, m = r + s, and q = max{2(r − 2), 1}+ s

then

‖u− uh ◦ Φ−1
h ‖L∞(Ω),{x},h,s ≤ Chr`h

(
‖u‖W r

∞(Ω),{x},h,s + hs‖f‖W r+s
∞ (Ω)

)
, (5.13)

where C depends on s.

Theorem 5.2. If x ∈ Ω, 0 ≤ s ≤ r − 1, m = r + s, and q = 2(r − 2) + s then

‖u− uh ◦ Φ−1
h ‖W 1

∞(Ω),{x},h,s ≤ Chr−1`h

(
‖u‖W r

∞(Ω),{x},h,s + hs‖f‖W r−1+s
∞ (Ω)

)
, (5.14)

where C depends on s.
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5.2 Motivation

In this section, we motivate u and uh.

Define the differential operator L on functions v : Ω→ R by

Lv = −
N∑

i,j=1

Di(ai,jDjv) +
N∑
i=1

biDiv + cv. (5.15)

We typically think of u ∈ C2(Ω) ∩ C0(Ω̄) as the solution of the classical homoge-

neous Dirichlet problem

Lu = f on Ω

u = 0 on ∂Ω,

(5.16)

where f ∈ C0(Ω) is given. By integration by parts, it is easily seen that, if u is

a solution of the classical problem, then it is a solution of the weak problem of

Equation 5.5. Notice that the weak problem admits solutions with less regularity

than the classical problem.

In general, it is not feasible to find an explicit formula for u, so we resort to

numerical methods to approximate it. It is typically unrealistic to partition the

domain Ω, so we settle for partitioning an approximation Ωh of it. The space

Sh consists of continuous functions on Ωh which, when mapped from any element

τ ∈ Th back to the unit simplex TN through Fτ , are polynomials of degree at most

r−1. This space has the standard approximation, inverse, and superapproximation

properties. It also respects homogeneous Dirichlet boundary conditions on ∂Ωh.

For m = 2, we could take each element of Th to be a straight simplex that

contains a ball of radius ch and is contained in a ball of radius ch, where c, c > 0

are constants. In this case, we have Fτ ∈ (Π1(TN))N for each τ ∈ Th. In [18,

Section 3], it is shown how to modify such a partition in order to obtain one that

works for general m, in which Fτ ∈ (Πm−1(TN))N for each τ ∈ Th. In this case,

each element of Th is a curved simplex. The use of curved simplices allows Ωh to be
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a better approximation of Ω without decreasing the size of the elements. Actually,

only the faces of simplices which form part of ∂Ωh need to be curved. For this

partition, Equations 5.6 and 5.7 are obtained in [18, Section 5].

We say that Ωh approximates the geometry of Ω to order m and Sh approxi-

mates functions to order r. The method is said to be subparametric or hypopara-

metric if m < r, superparametric or hyperparametric if m > r, and isoparametric

if m = r.

Define the bilinear form A′h on functions χ, η : Ωh → R by

A′h(χ, η) =

∫
Ωh

( N∑
i,j=1

āi,jDiχDjη +
N∑
i=1

b̄iDiχη + c̄χη

)
(5.17)

and define the linear functional λ′h on functions χ : Ωh → R by

λ′h(χ) =

∫
Ωh

f̄χ. (5.18)

The theoretical finite element approximation of the solution of Equation 5.5 is the

solution u′h ∈ Sh with u′h = 0 on ∂Ω of the finite-dimensional linear system

A′h(u
′
h, χ) = λ′h(χ) (5.19)

for all χ ∈ Sh with χ = 0 on ∂Ω. Notice that the boundary condition for the true

solution u is imposed on ∂Ω, but the boundary condition for the finite element

solution u′h is imposed on ∂Ωh.

In practice, the integrals involved in computing A′h and λ′h can not be done

exactly. Instead, the typical procedure is as follows. First, an integral over Ωh is

written as the sum of integrals over all the elements. Second, integrals over each

element are transferred to the unit simplex by the change of variables formula.

Lastly, integrals over the unit simplex are approximated by the quadrature rule Q̂.
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For v ∈ C0(τ), this means that we approximate∫
Ωh

v =
∑
τ∈Th

∫
τ

v

=
∑
τ∈Th

∫
TN

(v ◦ Fτ ) detDFτ

≈
∑
τ∈Th

Q̂
(

(v ◦ Fτ ) detDFτ

)
=
∑
τ∈Th

Qτv.

(5.20)

Approximating the integrals in Equations 5.17 and 5.18 in this manner, we see from

Equations 5.10 and 5.11 that A′h(χ, η) ≈ Ah(χ, η) and λ′h(χ) ≈ λh(χ). Equation

5.12 arises by equating the approximations of the left and right sides of Equation

5.19.

When Ωh = Ω, the finite element error has a clear meaning. We simply compare

u to uh on Ω. It is not true in general that Ωh = Ω, so u will not be defined on all

of Ωh and uh will not be defined on all of Ω. However, we could compare u to uh

on Ω∩Ωh. We could also extend u by zero to Ωh and then compare u to uh on all

of Ωh, or we could extend uh by zero to Ω and then compare u to uh on all of Ω.

Here we take a different approach, following [18, Section 4]. We compare u to

uh ◦ Φ−1
h on all of Ω. This means that u at a point x ∈ Ω is compared to uh at

the corresponding point Φ−1
h (x) ∈ Ωh. By Equation 5.7, the points x and Φ−1

h (x)

are at a distance up to Chm apart. Theorems 5.1 and 5.2 give estimates for global

weighted L∞ and W 1
∞ norms of u− uh ◦ Φ−1

h .

The condition m = r + s means that we need to use superparametric ele-

ments if we want weighted estimates. The order of approximation of the geometry

must exceed the order of approximation of functions by the weight power desired.

Isoparametric elements are sufficient to obtain nonweighted estimates.

The condition q = 2(r−2)+s means that we need to use an integration scheme

133



of order 2(r − 2) to obtain nonweighted estimates. The integration scheme must

be one order higher than this for each weight power we desire. The exception to

this is in the L∞ estimate when r = 2. Here, no weight is possible. Instead of

requiring an integration scheme of order 0, as the general pattern would predict, it

appears that the scheme must be of order 1. Notice that the quadrature accuracy

requirement does not involve m.

5.3 Relationship to Prior Work

Estimates for u− uh in W 1
2 (Ωh) and L2(Ωh) with the combined effect of using

isoparametric elements and numerical integration are given in [8, Examples 6 and

7]. Here, u is extended by zero to Ωh and only the r = m ∈ 3 : 4 cases are

considered.

The combined effect of using isoparametric elements and numerical integration

is again considered in [30, Theorem 1.1]. This time, uh is extended by zero to Ω

and u − uh is estimated in L∞(Ω). Only the specific case N = 2, r = m = 3 of

isoparametric quadratic elements in the plane is examined. The quadrature rule

integrates quadratics exactly, and thus has q = 2. The error is bounded in terms

of ‖f‖W 3
1 (Ω). In the present work, the error in this case is bounded in terms of

‖f‖W 3
∞(Ω) and another term. A more careful analysis would give a sharper result,

but this would complicate matters and obscure the main point of this work.

An estimate for u − uh in W 1
2 (Ω) in the presence of quadratic isoparametric

elements with second-order numerical integration is given in [7, Theorem 43.1].

That is, r = m = 3 and q = 2. The error is bounded in terms of ‖u‖W 3
2 (Ω) and

‖f‖W 2
p (Ω) for some appropriate p ≥ 2. In [7, Section 39], it is stated that this result

could possibly be a fluke. At the time, it was expected that, in general, the use of

curved elements would require more accurate quadrature schemes. In the present
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work, we show that this is not the case.

In [24, Theorem 5.1], estimates for u − uh in L∞(Ω ∩ Ωh) are obtained using

exact integration and straight elements. The results are consistent with those in

the present work.

In [18, Section 5], optimal W 1
2 (Ω) estimates for u−uh ◦Φ−1

h are obtained using

isoparametric elements and exact integration.

It was found in [25, Section 5] that a quadrature rule of order 2(r−2) is required

to preserve the interior W 1
∞ estimates for u− uh of [25, Theorem 1.2]. This result

corresponds to the result of the present work in the case of no weight.

Similarly, it was found in [14, Theorem 1.4] that a quadrature rule of order

2(r − 2) + s is required to preserve the interior weighted W 1
∞ estimates for u− uh

of [20, Theorem 2.1], where s is the desired weight power. This result is consistent

with the result of [25, Section 5] in the case of no weight, and corresponds to the

general result of the present work.

It should be pointed out here that the L∞ estimates are much trickier than the

W 1
∞ estimates in several respects.

5.4 Proof of Results

Define the bilinear form A′′h on functions χ, η : Ωh → R by

A′′h(χ, η) =

∫
Ωh

( N∑
i,j=1

(ai,j ◦ Φh)DiχDjη +
N∑
i=1

(bi ◦ Φh)Diχη + (c ◦ Φh)χη

)
(5.21)

and define the linear functional λ′′h on functions χ : Ωh → R by

λ′′h(χ) =

∫
Ωh

(f ◦ Φh)χ. (5.22)

Define Ťh = {Φh(τ) : τ ∈ Th}. It is easily verified that Ťh is a finite collection

of subsets of Ω with the following properties.

135



1. The union of the elements of Ťh is Ω̄.

2. If τ̌ ∈ Ťh then there exists an invertible map F̌τ̌ : TN → τ̌ such that τ̌ =

F̌τ̌ (T
N).

3. Elements of Ťh meet face-to-face or not at all.

4. If τ̌ ∈ Ťh then F̌τ̌ is sufficiently smooth on TN , F̌−1
τ̌ is sufficiently smooth on

τ̌ , and |F̌τ̌ |(W i
∞(TN ))N ≤ chi and |F̌−1

τ̌ |(W i
∞(τ̌))N ≤ ch−i for all i ∈ 0 : k, where

k is a sufficiently large integer.

Define Šh = {χ◦Φ−1
h : χ ∈ Sh}. That is, Šh is the set of χ̌ ∈ C0(Ω) such that, if

τ̌ ∈ Ťh then χ̌ ◦ F̌τ̌ ∈ Πr−1(TN). Just like Sh, Šh has the standard approximation,

inverse, and superapproximation properties. It also respects homogeneous Dirich-

let boundary conditions on Ω. The crucial difference is that, unlike the functions

in Sh, which are defined on Ωh, the functions in Šh are defined on Ω. It is on Ω,

and not Ωh, that the weak problem of Equation 5.5 is posed.

Define the bilinear form Ǎh on functions χ̌, η̌ : Ω→ R by

Ǎh(χ̌, η̌) = A′′h(χ̌ ◦ Φh, η̌ ◦ Φh) (5.23)

and define the linear functional λ̌h on functions χ̌ : Ω→ R by

λ̌h(χ̌) = λ′′h(χ̌ ◦ Φh). (5.24)

Define ǔh = uh ◦ Φ−1
h . By Equations 5.23, 5.12, 5.24, and 5.5, it is easily seen

that, if χ̌ ∈ Šh and χ̌ = 0 on ∂Ω, then

A(u− ǔh, χ̌) = F (χ̌), (5.25)

where

F =
6∑
i=1

Fi, (5.26)

136



and, for φ : Ω→ R,

F1(φ) = (Ǎh − A)(ǔh, φ), (5.27)

F2(φ) = −(λ̌h − λ)(φ), (5.28)

F3(φ) = (A′h − A′′h)(uh, φ ◦ Φh), (5.29)

F4(φ) = −(λ′h − λ′′h)(φ ◦ Φh), (5.30)

F5(φ) = (Ah − A′h)(uh, φ ◦ Φh), (5.31)

F6(φ) = −(λh − λ′h)(φ ◦ Φh). (5.32)

The terms F1 and F2 arise from transforming the weak problem from Ω to Ωh, the

terms F3 and F4 arise from using extensions of the data instead of composition of

the data with Φh, and the terms F5 and F6 arise from numerical integration,

We now give estimates for global weighted L∞ and W 1
∞ norms of u − ǔh in

terms of the perturbation functional F .

Theorem 5.3. If k ∈ 0 : 1, 0 ≤ s ≤ r − 2 + k, and x ∈ Ω then

‖u− ǔh‖Wk
∞(Ω),{x},h,s ≤ hr−k`s=r−2+k,h‖u‖W r

∞(Ω),{x},h,s + sup
χ̌∈Ǧkh

|F (χ̌)|, (5.33)

where Ǧk
h is the set of χ̌ ∈ Šh with χ̌ = 0 on ∂Ω for which there exists some

v ∈ W 2−k
1 (Ω) with v = 0 on ∂Ω such that

‖v − χ̌‖W 1
1 (Ω) ≤ Ch1−k`h, (5.34)

‖v‖W 1−k
1 (Ω) ≤ C, (5.35)

and

‖v‖W 2−k
1 (Ω) ≤ C`h. (5.36)

Proof. Although the homogeneous Neumann problem is considered in the error

estimates of [19, Theorems 2.1 and 3.1], an essentially identical proof can be used
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to furnish this result. We have used the approximation property of Šh to write

hr−1‖u‖W r
∞(Ω),{x},s in place of inf ‖u− χ̌‖W 1

∞(Ω),{x},h,s over all χ̌ ∈ Šh with χ̌ = 0 on

∂Ω, as in [19, Equation 4.4].

In the k = 0 case, [19, Equation 2.24] shows that the left side of Equation 5.33

can be bounded by the first term on the right side of Equation 5.33 plus |F (gh)|,

where gh ∈ Šh has gh = 0 on ∂Ω. Furthermore, there exists some g ∈ W 2
1 (Ω)

such that, as shown in [19, Equations 2.25 and 2.26], ‖g − gh‖W 1
1 (Ω) ≤ Ch`h and

‖g‖W 2
1 (Ω) ≤ C`h. A proof that ‖g‖W 1

1 (Ω) ≤ C can be easily modelled on [19,

Equation 2.26]. This shows that gh ∈ Ǧ0
h.

In the k = 1 case [19, Section 3(C)] shows that the left side of Equation 5.33

can be bounded by the first term on the right side of Equation 5.33 plus |F (g̃h)|,

where g̃h ∈ Ǧ1
h.

The following result gives estimates for the various components of the pertur-

bation functional that appear on the right side of Equation 5.33.

Lemma 5.4. If φ ∈ W 1
1 (Ω) then

|F1(φ)| ≤ Chm−1
(
‖u− ǔh‖W 1

∞(Ω) + ‖u‖W 1
∞(Ω)

)
‖φ‖W 1

1 (Ω). (5.37)

If φ ∈ W 2
1 (Ω) then

|F1(φ)| ≤ C
(
hm−1‖u− ǔh‖W 1

∞(Ω)‖φ‖W 1
1 (Ω) + hm‖u‖W 2

∞(Ω)‖φ‖W 2
1 (Ω)

)
. (5.38)

If φ ∈ L1(Ω) then

|F2(φ)| ≤ Chm−1‖f‖L∞(Ω)‖φ‖L1(Ω). (5.39)

If φ ∈ W 1
1 (Ω) then

|F2(φ)| ≤ Chm‖f‖W 1
∞(Ω)‖φ‖W 1

1 (Ω). (5.40)

If φ ∈ W 1
1 (Ω) then

|F3(φ)| ≤ Chm
(
‖u− ǔh‖W 1

∞(Ω) + ‖u‖W 1
∞(Ω)

)
‖φ‖W 1

1 (Ω). (5.41)
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If φ ∈ L1(Ω) then

|F4(φ)| ≤ Chm‖f‖W 1
∞(Ω)‖φ‖L1(Ω). (5.42)

If χ̌ ∈ Šh then

|F5(χ̌)| ≤ C
(
hq+1−2(r−2)‖u− ǔh‖W 1

∞(Ω) + hq+3−r‖u‖W r−1
∞ (Ω)

)
‖χ̌‖W 1

1 (Ω). (5.43)

If χ̌ ∈ Šh and r ≥ 3 then

|F5(χ̌)| ≤ C
(
hq+2−2(r−2)‖u− ǔh‖W 1

∞(Ω) + hq+4−r‖u‖W r−1
∞ (Ω)

)
×
∑
τ̌∈Ťh

‖χ̌‖W 2
1 (τ̌).

(5.44)

If χ̌ ∈ Šh then

|F6(χ̌)| ≤ Chq+3−r‖f‖W q+3−r
∞ (Ω)‖χ̌‖W 1

1 (Ω). (5.45)

If χ̌ ∈ Šh and r ≥ 3 then

|F6(χ̌)| ≤ Chq+4−r‖f‖W q+4−r
∞ (Ω)

∑
τ̌∈Ťh

‖χ̌‖W 2
1 (τ̌). (5.46)

We now show how Theorems 5.2 and 5.1 follow from Theorem 5.3 and Lemma

5.4. We defer the proof of Lemma 5.4 to the next section.

First we prove Theorem 5.2. Let χ̌ ∈ Ǧ1
h. That is, χ̌ ∈ Šh and χ̌ = 0 on ∂Ω.

Furthermore, there exists some v ∈ W 1
1 (Ω) such that

‖v − χ̌‖W 1
1 (Ω) ≤ C`h (5.47)

and

‖v‖W 1
1 (Ω) ≤ C`h. (5.48)

Therefore,

‖χ̌‖W 1
1 (Ω) ≤ ‖v − χ̌‖W 1

1 (Ω) + ‖v‖W 1
1 (Ω)

≤ C`h.

(5.49)

139



By Equations 5.26, 5.37, 5.39, 5.41, 5.42, 5.43, 5.45, and 5.49,

|F (χ̌)| ≤ C`h

(
(hm−1 + hq+1−2(r−2))‖u− ǔh‖W 1

∞(Ω)

+ hm−1
(
‖u‖W 1

∞(Ω) + ‖f‖W 1
∞(Ω)

)
+ hq+3−r

(
‖u‖W r−1

∞ (Ω) + ‖f‖W q+3−r
∞ (Ω)

))
.

(5.50)

Since m− 1 ≥ s+ 1 and q + 1− 2(r − 2) = s+ 1,

(hm−1 + hq+1−2(r−2))‖u− ǔh‖W 1
∞(Ω) ≤ Chs+1‖u− ǔh‖W 1

∞(Ω). (5.51)

Since m− 1 = q + 3− r = r − 1 + s,

hm−1‖u‖W 1
∞(Ω) + hq+3−r‖u‖W r−1

∞ (Ω) ≤ Chr−1+s‖u‖W r−1
∞ (Ω) (5.52)

and

hm−1‖f‖W 1
∞(Ω) + hq+3−r‖f‖W q+3−r

∞ (Ω) ≤ Chr−1+s‖f‖W r−1+s
∞ (Ω). (5.53)

Putting together Equations 5.50, 5.51, 5.52, and 5.53, and using the fact that

σ{x},h ≥ Ch on Ω,

|F (χ̌)| ≤ C`h

(
h‖u− ǔh‖W 1

∞(Ω),{x},h,s

+ hr−1
(
‖u‖W r−1

∞ (Ω),{x},h,s + hs‖f‖W r−1+s
∞ (Ω)

))
.

(5.54)

Therefore, by Theorem 5.3,

‖u− ǔh‖W 1
∞(Ω),{x},h,s ≤ C`h

(
h‖u− ǔh‖W 1

∞(Ω),{x},h,s

+ hr−1
(
‖u‖W r

∞(Ω),{x},h,s + hs‖f‖W r−1+s
∞ (Ω)

))
.

(5.55)

For h sufficiently small, C`hh ≤ 1/2, so we can kick back the first term on the

right side. This gives Theorem 5.2.

Next we turn to proving Theorem 5.1. Let χ̌ ∈ Ǧ0
h. That is, χ̌ ∈ Šh and χ̌ = 0

on ∂Ω. Furthermore, there exists some v ∈ W 2
1 (Ω) such that

‖v − χ̌‖W 1
1 (Ω) ≤ Ch`h, (5.56)
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‖v‖W 1
1 (Ω) ≤ C, (5.57)

and

‖v‖W 2
1 (Ω) ≤ C`h. (5.58)

Therefore,

‖χ̌‖W 1
1 (Ω) ≤ ‖v − χ̌‖W 1

1 (Ω) + ‖v‖W 1
1 (Ω)

≤ C.

(5.59)

By the approximation property of Šh, there exists some η̌ ∈ Šh such that, if i ∈ 0 : 2

then ∑
τ̌∈Ťh

|v − η̌|W i
1(τ̌) ≤ Ch2−i‖v‖W 2

1 (Ω). (5.60)

By the inverse property of Šh,∑
τ̌∈Ťh

‖χ̌− η̌‖W 2
1 (τ̌) ≤ Ch−1‖χ̌− η̌‖W 1

1 (Ω)

≤ Ch−1
(
‖v − χ̌‖W 1

1 (Ω) + ‖v − η̌‖W 1
1 (Ω)

)
.

(5.61)

Putting together Equations 5.61, 5.56, 5.60 and 5.58,∑
τ̌∈Ťh

‖χ̌‖W 2
1 (τ̌) ≤

∑
τ̌∈Ťh

(
‖χ̌− η̌‖W 2

1 (τ̌) + ‖v − η̌‖W 2
1 (τ̌) + ‖v‖W 2

1 (τ̌)

)
≤ C`h.

(5.62)

Suppose that r ≥ 3. By Equations 5.26, 5.37, 5.38, 5.40, 5.41, 5.42, 5.44, 5.46,

5.56, 5.57, 5.58, 5.59, and 5.62,

|F (χ̌)| ≤ |F1(χ̌− v)|+ |F1(v)|+
6∑
i=2

|Fi(χ̌)|

≤ C

(
(hm−1 + hq+1−2(r−2))‖u− ǔh‖W 1

∞(Ω)

+ hm
(
`h‖u‖W 2

∞(Ω) + ‖f‖W 1
∞(Ω)

)
+ hq+4−r`h

(
‖u‖W r−1

∞ (Ω) + ‖f‖W q+4−r
∞ (Ω)

))
.

(5.63)
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Since m = q + 4− r = r + s,

hm‖u‖W 2
∞(Ω) + hq+4−r‖u‖W r−1

∞ (Ω) ≤ Chr+s‖u‖W r−1
∞ (Ω) (5.64)

and

hm‖f‖W 1
∞(Ω) + hq+4−r‖f‖W q+4−r

∞ (Ω) ≤ Chr+s‖f‖W r+s
∞ (Ω). (5.65)

Putting together Equations 5.63, 5.51, 5.64, and 5.65, and using the fact that

σ{x},h ≥ Ch on Ω,

|F (χ̌)| ≤ Ch

(
‖u− ǔh‖W 1

∞(Ω),{x},h,s

+ hr−1`h

(
‖u‖W r−1

∞ (Ω),{x},h,s + hs‖f‖W r+s
∞ (Ω)

))
.

(5.66)

Therefore, by Theorem 5.3,

‖u− ǔh‖L∞(Ω),{x},h,s ≤ Ch

(
‖u− ǔh‖W 1

∞(Ω),{x},h,s

+ hr−1`h

(
‖u‖W r

∞(Ω),{x},h,s + hs‖f‖W r+s
∞ (Ω)

))
.

(5.67)

Using Theorem 5.2 to estimate the first term on the right side, we obtain Theorem

5.1.

Now suppose that r = 2. In this case, q = 1 + s. By Equations 5.26, 5.37, 5.38,

5.40, 5.41, 5.42, 5.43, 5.45, 5.56, 5.57, 5.58, and 5.59,

|F (χ̌)| ≤ |F1(χ̌− v)|+ |F1(v)|+
6∑
i=2

|Fi(χ̌)|

≤ C

(
(hm−1 + hq+1−2(r−2))‖u− ǔh‖W 1

∞(Ω)

+ hm
(
`h‖u‖W 2

∞(Ω) + ‖f‖W 1
∞(Ω)

)
+ hq+3−r

(
‖u‖W r−1

∞ (Ω) + ‖f‖W q+3−r
∞ (Ω)

))
.

(5.68)

Since m = q + 3− r = r + s,

hm‖u‖W 2
∞(Ω) + hq+3−r‖u‖W r−1

∞ (Ω) ≤ Chr+s‖u‖W r
∞(Ω) (5.69)
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and

hm‖f‖W 1
∞(Ω) + hq+3−r‖f‖W q+3−r

∞ (Ω) ≤ Chr+s‖f‖W r+s
∞ (Ω). (5.70)

Putting together Equations 5.68, 5.51, 5.69, and 5.70, and using the fact that

σ{x},h ≥ Ch on Ω, we obtain Equation 5.66. Theorem 5.1 follows from this and

Theorems 5.3 and 5.2, as in the r ≥ 3 case.

5.5 Analysis of Perturbation Terms

5.5.1 Terms due to the Mapping Φh

We begin with a simple result in which the difference of two products of the

same length is expressed in terms of the differences of corresponding terms.

Proposition 5.5. If n ≥ 1 is an integer and, for i ∈ 1 : n, ai, bi ∈ R, then

n∏
i=1

ai −
n∏
i=1

bi =
n∑
j=1

( j−1∏
i=1

ai

)
(aj − bj)

( n∏
i=j+1

bi

)
. (5.71)

Proof. The proof is by induction on n. The n = 1 case is trivial. The n = 2 case,

a1a2 − b1b2 = a1a2 − a1b2 + a1b2 − b1b2

= a1(a2 − b2) + (a1 − b1)b2,

(5.72)

is used to prove the induction step. Assuming the proposition holds for some
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arbitrary integer n ≥ 1, we find that

n+1∏
i=1

ai −
n+1∏
i=1

bi =
( n∏
i=1

ai

)
an+1 −

( n∏
i=1

bi

)
bn+1

=
( n∏
i=1

ai

)
(an+1 − bn+1) +

( n∏
i=1

ai −
n∏
i=1

bi

)
bn+1

=
( n∏
i=1

ai

)
(an+1 − bn+1)

( n+1∏
i=n+2

bi

)
+

n∑
j=1

( j−1∏
i=1

ai

)
(aj − bj)

( n∏
i=j+1

bi

)
bn+1

=
n+1∑
j=1

( j−1∏
i=1

ai

)
(aj − bj)

( n+1∏
i=j+1

bi

)
,

(5.73)

which demonstrates the n+ 1 case.

By definition of the matrix determinant and Proposition 5.5,

detDΦ−1
h − 1 = detDΦ−1

h − detDI

=
∑
σ∈SN

sgn(σ)
( N∏
i=1

Dσi(Φ
−1
h )i −

N∏
i=1

DσiIi

)
=
∑
σ∈SN

sgn(σ)

×
N∑
i=1

( i−1∏
j=1

Dσj(Φ
−1
h )j

)
Dσi(Φ

−1
h − I)i

( N∏
j=i+1

DσjIj

)
,

(5.74)

where SN is the set of permutations of 1 : N , considered as elements of (1 : N)N ,

and sgn is the signature map on SN . Therefore, by Equation 5.7,

‖ detDΦ−1
h − 1‖L∞(Ω) ≤ Chm−1. (5.75)

This is given in [18, Proposition 3(ii)] for the particular Φh constructed in [18,

Section 5.1]. We have derived it here in order to make it clear that it follows from

the assumption of Equation 5.7 and is not exclusive to any particular Φh.
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First suppose that v ∈ W 1
∞(Ω) and φ ∈ W 1

1 (Ω). Observe that

Ǎh(v, φ) =

∫
Ω

( N∑
i,j=1

(ǎi,j)hDivDjφ+
N∑
i=1

(b̌i)hDivφ+ čhvφ

)
, (5.76)

where

(ǎi,j)h =
N∑

k,`=1

ak,`((Dk(Φh)iD`(Φh)j) ◦ Φ−1
h ) detDΦ−1

h , (5.77)

(b̌i)h =
N∑
k=1

bk(Dk(Φh)i ◦ Φ−1
h ) detDΦ−1

h , (5.78)

and

čh = c detDΦ−1
h . (5.79)

By Equations 5.76 and 5.1,

(Ǎh − A)(v, φ) =

∫
Ω

( N∑
i,j=1

((ǎi,j)h − ai,j)DivDjφ

+
N∑
i=1

((b̌i)h − bi)Divφ

+ (čh − c)vφ
)
.

(5.80)

Notice that

(ǎi,j)h − ai,j =
N∑

k,`=1

ak,`((Dk(Φh)iD`(Φh)j) ◦ Φ−1
h ) detDΦ−1

h − ai,j

=
N∑

k,`=1

ak,`

(
((Dk(Φh)iD`(Φh)j) ◦ Φ−1

h ) detDΦ−1
h − δi,kδj,`

)
=

N∑
k,`=1

ak,`

(
((Dk(Φh − I)i)D`(Φh)j) ◦ Φ−1

h ) detDΦ−1
h

+ δi,k((D`(Φh − I)j) ◦ Φ−1
h ) detDΦ−1

h

+ δi,kδj,`(detDΦ−1
h − 1)

)
,

(5.81)
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(b̌i)h − bi =
N∑
k=1

bk(Dk(Φh)i ◦ Φ−1
h ) detDΦ−1

h − bi

=
N∑
k=1

bk

(
(Dk(Φh)i ◦ Φ−1

h ) detDΦ−1
h − δi,k

)
=

N∑
k=1

bk

(
((Dk(Φh − I)i) ◦ Φ−1

h ) detDΦ−1
h

+ δi,k(detDΦ−1
h − 1)

)
,

(5.82)

and

čh − c = c(detDΦ−1
h − 1). (5.83)

Using Equations 5.80, 5.81, 5.82, 5.83, 5.7 and 5.75, we see that

|(Ǎh − A)(v, φ)| ≤ Chm−1‖v‖W 1
∞(Ω)‖φ‖W 1

1 (Ω). (5.84)

In particular, by Equation 5.27,

|F1(φ)| ≤ Chm−1‖ǔh‖W 1
∞(Ω)‖φ‖W 1

1 (Ω), (5.85)

from which Equation 5.37 follows.

Now suppose that φ ∈ L1(Ω). Observe that

λ̌h(φ) =

∫
Ω

f̌hφ, (5.86)

where

f̌h = f detDΦ−1
h . (5.87)

By Equations 5.86 and 5.4,

(λ̌h − λ)(φ) =

∫
Ω

(f̌h − f)φ. (5.88)

Notice that

f̌h − f = f(detDΦ−1
h − 1). (5.89)

Using Equations 5.88, 5.89, and 5.75, we see that

|(λ̌h − λ)(φ)| ≤ Chm−1‖f‖L∞(Ω). (5.90)
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Equation 5.39 follows from this and Equation 5.28.

Equations 5.38 and 5.40 are more difficult to prove than Equations 5.37 and

5.39. The basic idea is that we use integration by parts to transfer a derivative

from Φh − I or Φ−1
h − I to φ.

The following result will imply Equations 5.38 and 5.40.

Proposition 5.6. Suppose that K ∈ W 1
1 (Ω) and i, j, k, ` ∈ 1 : N . Let

J1 =

∫
Ω

K(Di(Φh − I)j ◦ Φ−1
h ) detDΦ−1

h , (5.91)

J2 =

∫
Ω

K
(
Di(Φh − I)jDk(Φh)` ◦ Φ−1

h

)
detDΦ−1

h , (5.92)

J3 =

∫
Ω

K(detDΦ−1
h − 1). (5.93)

Then |J1|, |J2|, |J3| ≤ Chm‖K‖W 1
1 (Ω).

Before proving this, we see how Equations 5.38 and 5.40 follow from it.

First suppose that φ ∈ W 2
1 (Ω). By Equation 5.81 and Proposition 5.6,

|
∫

Ω

((ǎi,j)h − ai,j)DiuDjφ| ≤ Chm‖u‖W 2
∞(Ω)‖φ‖W 2

1 (Ω). (5.94)

By Equation 5.82 and Proposition 5.6,

|
∫

Ω

((b̌i)h − bi)Diuφ| ≤ Chm‖u‖W 2
∞(Ω)‖φ‖W 1

1 (Ω). (5.95)

By Equations 5.83 and Proposition 5.6,

|
∫

Ω

(čh − c)uφ| ≤ Chm‖u‖W 1
∞(Ω)‖φ‖W 1

1 (Ω). (5.96)

Putting together Equations 5.80, 5.94, 5.95, and 5.96, we see that

|(Ǎh − A)(u, φ)| ≤ Chm‖u‖W 2
∞(Ω)‖φ‖W 2

1 (Ω). (5.97)

It is not possible to substitute ǔh for u here, because ǔh does not necessarily have

two derivatives on Ω. However, from Equation 5.84, we know that

|(Ǎh − A)(u− ǔh, φ)| ≤ Chm−1‖u− ǔh‖W 1
∞(Ω)‖φ‖W 1

1 (Ω). (5.98)
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Equation 5.38 follows from Equations 5.27, 5.97, and 5.98.

Now suppose that φ ∈ W 1
1 (Ω). By Equation 5.89 and Proposition 5.6,

|
∫

Ω

(f̌h − f)φ| ≤ Chm‖f‖W 1
∞(Ω)‖φ‖W 1

1 (Ω). (5.99)

Equation 5.40 follows from Equations 5.28, 5.88, and 5.99.

Finally we turn to the proof of Proposition 5.6. First observe that, by integra-

tion by parts,∫
Ωh

(K ◦ Φh)Di(Φh − I)j =

∫
∂Ωh

(K ◦ Φh)(Φh − I)j(νΩh)i dS

−
∫

Ωh

Di(K ◦ Φh)(Φh − I)j.

(5.100)

Therefore, by Equation 5.6 and the trace inequality,

|
∫

Ωh

(K ◦ Φh)Di(Φh − I)j| ≤ Chm
(
‖K ◦ Φh‖L1(∂Ωh) + |K ◦ Φh|W 1

1 (Ωh)

)
≤ Chm‖K‖W 1

1 (Ω).

(5.101)

By the change of variables formula,

J1 =

∫
Ωh

(K ◦ Φh)Di(Φh − I)j, (5.102)

so Equation 5.101 furnishes the bound on J1.

By the change of variables formula,

J2 =

∫
Ωh

(K ◦ Φh)Di(Φh − I)jDk(Φh)`

=

∫
Ωh

(K ◦ Φh)Di(Φh − I)j

(
Dk(Φh − I)` +DkI`

)
=

∫
Ωh

(K ◦ Φh)Di(Φh − I)jDk(Φh − I)`

+ δk,`

∫
Ωh

(K ◦ Φh)Di(Φh − I)j.

(5.103)

By Equation 5.6,

|
∫

Ωh

(K ◦ Φh)Di(Φh − I)jDk(Φh − I)`| ≤ Ch2(m−1)‖K ◦ Φh‖L1(Ωh)

≤ Ch2(m−1)‖K‖L1(Ω).

(5.104)
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Equations 5.103, 5.104, and 5.101 give the bound on J2.

All that remains is to prove the bound on J3. A straightforward integration by

parts, using Equation 5.74 to represent detDΦ−1
h − 1, would involve transferring a

derivative from Φ−1
h − I to Φ−1

h . This is not possible because Φ−1
h does not neces-

sarily have two derivatives on Ω. A more intricate representation of detDΦ−1
h − 1

is needed.

For σ ∈ SN and i ∈ 1 : N , let

Pσ,i = sgn(σ)Dσi(Φ
−1
h − I)i

( N∏
j=i+1

DσjIj

)
, (5.105)

Qσ,i =
i−1∏
j=1

DσjIj, (5.106)

and

Rσ,i =
i−1∑
j=1

( j−1∏
k=1

Dσk(Φ
−1
h )k

)
Dσj(Φ

−1
h − I)j

( i−1∏
k=j+1

DσkIk

)
. (5.107)

Obviously

i−1∏
j=1

Dσj(Φ
−1
h )j = Qσ,i +

( i−1∏
j=1

Dσj(Φ
−1
h )j −

i−1∏
j=1

DσjIj

)
. (5.108)

By Proposition 5.5,
i−1∏
j=1

Dσj(Φ
−1
h )j −

i−1∏
j=1

DσjIj = Rσ,i. (5.109)

Putting together Equations 5.74, 5.105, 5.108, and 5.109, we see that

detDΦ−1 − 1 =
∑
σ∈SN

N∑
i=1

Pσ,i(Qσ,i +Rσ,i). (5.110)

Observe that

Pσ,iQσ,i =


Di(Φ

−1
h − I)i, if σ = I

0, otherwise.

(5.111)

By integration by parts,∫
Ω

KDi(Φ
−1
h − I)i =

∫
∂Ω

K(Φ−1
h − I)i(νΩ)i dS

−
∫

Ω

DiK(Φ−1
h − I)i.

(5.112)
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By Equations 5.111, 5.112, and 5.7, along with the trace inequality,

|
∫

Ω

KPσ,iQσ,i| ≤ Chm
(
‖K‖L1(∂Ω) + |K|W 1

1 (Ω)

)
≤ Chm‖K‖W 1

1 (Ω).

(5.113)

By Equation 5.7,

|
∫

Ω

KPσ,iRσ,i| ≤ Ch2(m−1)‖K‖L1(Ω). (5.114)

The bound on J3 follows from Equations 5.110, 5.113, and 5.114.

5.5.2 Terms due to Using Extended and not Mapped Data

These terms are the most straightforward to estimate.

Assume first that φ ∈ W 1
1 (Ω). Then

(A′h − A′′h)(uh, φ ◦ Φh) =

∫
Ωh

( N∑
i,j=1

(ai,j ◦ Φh − āi,j)DiuhDj(φ ◦ Φh)

+
N∑
i=1

(bi ◦ Φh − b̄i)Diuh(φ ◦ Φh)

+ (c ◦ Φh − c̄)uh(φ ◦ Φh)

)
.

(5.115)

Since

ai,j ◦ Φh − āi,j = āi,j ◦ Φh − āi,j ◦ I, (5.116)

we see by the mean value theorem and Equation 5.6 that

‖ai,j ◦ Φh − āi,j‖L∞(Ωh) ≤ Chm. (5.117)

The same argument establishes that

‖bi ◦ Φh − b̄i‖L∞(Ωh) ≤ Chm (5.118)

and

‖c ◦ Φh − c̄‖L∞(Ωh) ≤ Chm. (5.119)
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By Equations 5.115, 5.117, 5.118, and 5.119,

|(A′h − A′′h)(uh, φ ◦ Φh)| ≤ Chm‖uh‖W 1
∞(Ωh)‖φ ◦ Φh‖W 1

1 (Ωh)

≤ Chm‖ǔh‖W 1
∞(Ω)‖φ‖W 1

1 (Ω).

(5.120)

Equation 5.41 follows from this and Equation 5.29.

Next assume only that φ ∈ L1(Ω). Then

(λ′h − λ′′h)(φ ◦ Φh) =

∫
Ωh

(f ◦ Φh − f̄)(φ ◦ Φh). (5.121)

Since

f ◦ Φh − f̄ = f̄ ◦ Φh − f̄ ◦ I, (5.122)

we see by the mean value theorem and Equation 5.6 that

‖f ◦ Φh − f̄‖L∞(Ωh) ≤ Chm|f̄ |W 1
∞(Ωh). (5.123)

By Equations 5.121 and 5.123,

|(λ′h − λ′′h)(φ ◦ Φh)| ≤ Chm|f̄ |W 1
∞(Ωh)‖φ ◦ Φh‖L1(Ωh)

≤ Chm‖f‖W 1
∞(Ω)‖φ‖L1(Ω).

(5.124)

Equation 5.42 follows from this and Equation 5.30.

5.5.3 Terms due to Quadrature Error

We estimate the quadrature error on each element and then sum over all the

elements. Since all quadratures ultimately take place on the unit simplex, we begin

by defining Ê ∈ (C0(TN))′ by

Ê(v̂) =

∫
TN

v̂ − Q̂(v̂). (5.125)

For τ ∈ Th, define Eτ ∈ (C0(τ))′ by

Eτ (v) =

∫
τ

v −Qτ (v)

=

∫
TN

(v ◦ Fτ ) detDFτ − Q̂
(

(v ◦ Fτ ) detDFτ

)
= Ê

(
(v ◦ Fτ ) detDFτ

)
.

(5.126)
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The following is the central result we will use to estimate quadrature error.

Proposition 5.7. If τ ∈ Th, k ∈ 0 : q, χ̂ ∈ Πk(TN), and v ∈ W q−k+1
∞ (τ) then,

with χ = χ̂ ◦ F−1
τ ,

|Eτ (vχ)| ≤ Chq−k+1+N‖v‖W q−k+1
∞ (τ)‖χ̂‖L1(TN ). (5.127)

Proof. Define Ẽ ∈ (C0(TN))′ by Ẽ(v̂) = Ê(v̂χ̂). If v̂ ∈ W q−k+1
∞ (TN) then, using

the facts that Q̂ ∈ (L∞(TN))′ and all norms on the finite-dimensional vector space

Πk(TN) are equivalent,

|Ẽ(v̂)| ≤ C‖v̂‖L∞(TN )‖χ̂‖L∞(TN )

≤ C‖v̂‖W q−k+1
∞ (TN )‖χ̂‖L1(TN ).

(5.128)

That is, ‖Ẽ‖(W q−k+1
∞ (TN ))′ ≤ C‖χ̂‖L1(TN ). By Equation 5.8, if v̂ ∈ Πq−k(TN) then

Ê(v̂χ̂) = 0. Therefore, by the Bramble-Hilbert lemma of [7, Theorem 28.1], if

v̂ ∈ W q−k+1
∞ (TN) then

|Ẽ(v̂)| ≤ C|v̂|W q−k+1
∞ (TN )‖χ̂‖L1(TN ). (5.129)

By Equation 5.126,

|Eτ (vχ)| = |Ẽ
(

(v ◦ Fτ ) detDFτ

)
|

≤ C|(v ◦ Fτ ) detDFτ |W q−k+1
∞ (TN )‖χ̂‖L1(TN ).

(5.130)

By a scaling inequality,

|(v ◦ Fτ ) detDFτ |W q−k+1
∞ (TN ) ≤ Chq−k+1‖v‖W q−k+1

∞ (τ)

× ‖ detDFτ ◦ F−1
τ ‖W q−k+1

∞ (τ).

(5.131)

By a scaling inequality and the assumptions on Fτ and F−1
τ ,

‖ detDFτ ◦ F−1
τ ‖W q−k+1

∞ (τ) ≤ ChN . (5.132)

The proposition follows by combining Equations 5.130, 5.131, and 5.132.
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Let χ ∈ Sh be fixed throughout the rest of this subsection.

First we prove Equations 5.43 and 5.44. Let τ ∈ Th. By Proposition 5.7,

|Eτ
( N∑
i,j=1

āi,jDiuhDjχ+
N∑
i=1

b̄iDiuhχ+ c̄uhχ

)
| ≤ Chq+1+N‖uh‖W q+2

∞ (τ)

× ‖χ‖W q+2
∞ (τ).

(5.133)

By the element approximation property of Sh, there exists some η ∈ Sh such that,

for i ∈ 0 : r − 1,

|u ◦ Φh − η|W i
∞(τ) ≤ Chr−1−i‖u ◦ Φh‖W r−1

∞ (τ). (5.134)

By the element inverse property of Sh,

‖uh‖W q+2
∞ (τ) ≤ C‖uh‖W r−1

∞ (τ)

≤ C
(
‖uh − η‖W r−1

∞ (τ)

+ ‖u ◦ Φh − η‖W r−1
∞ (τ)

+ ‖u ◦ Φh‖W r−1
∞ (τ)

)
.

(5.135)

Again using the element inverse property of Sh,

‖uh − η‖W r−1
∞ (τ) ≤ Ch−(r−2)‖uh − η‖W 1

∞(τ)

≤ Ch−(r−2)
(
‖u ◦ Φh − uh‖W 1

∞(τ) + ‖u ◦ Φh − η‖W 1
∞(τ)

)
.

(5.136)

Putting together Equations 5.135, 5.136, and 5.134, we see that

‖uh‖W q+2
∞ (τ) ≤ C

(
h−(r−2)‖u ◦ Φh − uh‖W 1

∞(τ) + ‖u ◦ Φh‖W r−1
∞ (τ)

)
. (5.137)

Again using the element inverse property of Sh,

‖χ‖W q+1
∞ (τ) ≤ C‖χ‖W r−1

∞ (τ), (5.138)

‖χ‖W r−1
∞ (τ) ≤ Ch−(r−2)−N‖χ‖W 1

1 (τ), (5.139)

and, for r ≥ 3,

‖χ‖W r−1
∞ (τ) ≤ Ch−(r−3)−N‖χ‖W 2

1 (τ). (5.140)
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Putting together Equations 5.17, 5.10, 5.126, 5.133, 5.137, 5.138, and 5.139,

|(A′h − Ah)(uh, χ)| ≤
∑
τ∈Th

|Eτ
( N∑
i,j=1

āi,jDiuhDjχ+
N∑
i=1

b̄iDiuhχ+ c̄uhχ

)
|

≤ C
(
hq+1−2(r−2)‖u ◦ Φh − uh‖W 1

∞(Ωh)

+ hq+3−r‖u ◦ Φh‖W r−1
∞ (Ωh)

)
‖χ‖W 1

1 (Ωh).

(5.141)

Together with Equation 5.31, this implies Equation 5.43. If r ≥ 3 then, using

Equation 5.140 instead of 5.139 in the above, we find that

|(A′h − Ah)(uh, χ)| ≤ C
(
hq+2−2(r−2)‖u ◦ Φh − uh‖W 1

∞(Ωh)

+ hq+4−r‖u ◦ Φh‖W r−1
∞ (Ωh)

)∑
τ∈Th

‖χ‖W 2
1 (τ).

(5.142)

Together with Equation 5.31, this implies Equation 5.44.

Now we prove Equations 5.45 and 5.46. Let τ ∈ Th and k ∈ 1 : 2. Our first

goal is to show that

|Eτ (f̄χ)| ≤ Chq+2+k−r‖f̄‖W q+2+k−r
∞ (τ)‖χ‖Wk

1 (τ). (5.143)

First we handle the cases r ≥ 4 and the case where r = 3 and k = 1. Let

χ̂ = χ ◦ Fτ . By definition of Sh, χ̂ ∈ Πr−1(TN). By the Bramble-Hilbert lemma,

there exists some η̂ ∈ Πk−1(TN) such that

‖χ̂− η̂‖Wk
1 (TN ) ≤ C|χ̂|Wk

1 (TN ). (5.144)

Let η = η̂ ◦F−1
τ . Since k− 1 ≤ r− 1, we have that χ̂− η̂ ∈ Πr−1(TN). Also notice

that r − 1 ≤ q. Therefore, by Proposition 5.7,

|Eτ (f̄(χ− η))| ≤ Chq+2−r+N‖f̄‖W q+2−r
∞ (τ)‖χ̂− η̂‖L1(TN ). (5.145)

By Equation 5.144 and a scaling inequality,

‖χ̂− η̂‖L1(TN ) ≤ Chk−N‖χ‖Wk
1 (τ). (5.146)
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Combining Equations 5.145 and 5.146, we see that

|Eτ (f̄(χ− η))| ≤ Chq+2+k−r‖f̄‖W q+2−r
∞ (τ)‖χ‖Wk

1 (τ). (5.147)

Since k−1 ≤ r−k−1, we have that η̂ ∈ Πr−k−1(TN). Also notice that r−k−1 ≤ q.

Therefore, by Proposition 5.7,

|Eτ (f̄η)| ≤ Chq+2+k−r+N‖f̄‖W q+2+k−r
∞ (τ)‖η̂‖L1(TN ). (5.148)

By Equation 5.144 and a scaling inequality,

‖η̂‖L1(TN ) ≤ ‖χ̂− η̂‖L1(TN ) + ‖χ̂‖L1(TN )

≤ C‖χ̂‖Wk
1 (TN )

≤ Ch−N‖χ‖Wk
1 (τ).

(5.149)

Combining Equations 5.148 and 5.149, we see that

|Eτ (f̄η)| ≤ Chq+2+k−r‖f̄‖W q+2+k−r
∞ (τ)‖χ‖Wk

1 (τ). (5.150)

Equations 5.147 and 5.150 now give Equation 5.143.

Next we consider the cases where either r = 3 and k = 2, or r = 2 and k = 1.

By Proposition 5.7,

|Eτ (f̄χ)| ≤ Chq+1+N‖f̄‖W q+1
∞ (τ)‖χ‖W q+1

∞ (τ). (5.151)

By the element inverse property of Sh,

‖χ‖W q+1
∞ (τ) ≤ C‖χ‖W r−1

∞ (τ)

≤ Ch−N‖χ‖W r−1
1 (τ).

(5.152)

Notice that q + 1 = q + 2 + k − r and r − 1 = k. Therefore, combining Equations

5.151 and 5.152 gives Equation 5.143.
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At this point we have shown Equation 5.143 except in the case where r = 2

and k = 2. Putting together Equations 5.18, 5.11, 5.126, and 5.143,

|(λ′h − λh)(χ)| ≤
∑
τ∈Th

|Eτ (f̄χ)|

≤ Chq+2+k−r‖f̄‖W q+2+k−r
∞ (Ωh)

∑
τ∈Th

‖χ‖Wk
1 (τ).

(5.153)

Together with Equation 5.32, the k = 1 case gives Equation 5.45 and the k = 2

case gives Equation 5.46.

5.6 Future Work

It would be nice to extend these results to handle the case of nonhomogeneous

boundary conditions. To set this up, we let φ ∈ W 1
2 (Ω) and let g : ∂Ω → R be

such that g = φ on ∂Ω. Then, instead of requiring u = 0 on ∂Ω, we require that

u = g on ∂Ω.

Now let φh ∈ Sh be a good approximation of φ and let gh : ∂Ωh → R be such

that gh = φh on ∂Ωh. Then, instead of requiring uh = 0 on ∂Ωh, we require that

uh = gh on ∂Ωh.

The näıve approach is to apply Theorem 5.3 to (u−φ)− (uh−φh)◦Φ−1
h , which

makes sense because u− φ = 0 on ∂Ω and uh− φh = 0 on ∂Ωh. Another approach

would be to rework Theorem 5.3. An idea on how to proceed is given in [26, p.

420].

The only unsatisfactory aspect of our results is that the pattern in Theorem

5.1 for the L∞ estimates is interrupted in the case r = 2. Here, no weight is

possible. It appears that we can not get away with a quadrature rule that does

not integrate linear functions exactly. This is consistent with a report in [30, p.

178] of the midpoint rule, which integrates linear functions exactly, being used to

obtain optimal L∞ estimates.
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