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ABSTRACT 

Regression models which specify independent, homoscedastic and nor.mally 

distributed errors may be analyzed in a stepwise manner to produce calculated 

residuals having this same property. If the n'th residual is calculated as 

the deviation of the n'th observation from its predicted value based on a least 

squares fit to only the first n observations then the resulting sequence of 

residuals, appropriately nor.malized, are not only mutually independent and 

homoscedastic but also are independent of all of the calculated regression 

~ functions. If error variance is a monotonic function of the mean then, under 

certain regularity condition~, the calculated stepv1ise residuals are likewise 

monotonically heteroscedastic. Simple linear regression with equally spaced 

values of the independent variable constitutes one such regular case, and a 

Monte Carlo study of the "peak-test" of homoscedasticity in this instance shm1s 

that for small samples the stepwise residuals are substantially more sensitive 

to monotonic heteroscedasticity than conventional, untransformed residuals. 
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INDEPENDENT STEPWISE RESIDUALS FOR TESTING HOMOSCEDASTICITyJ/ 

A. Hedayat and D~ s. RobsonSf 

Cornell. University 

1. INTRODUCTION AND SUMMARY 

Consider the fixed effects general linear model 

Y=Xf3+€ (1) 

where Y is an N-vector of responses, X is an NXP matrix with rank r ~ p having 

either fixed known coefficients or coefficients that are stochastically inde-

pendent of the error ter.m1 f3 is a p-vector of unknown parameters, € is an N-

vector of unknown stochastic components with mean zero and is usually called the 

error (residual or disturbance) vector. 

Linear models dealt with in practice usually include in their basic 

structure the assumption that the covariance matrix of € is a2IN where a2 is a 

scalar and IN denotes the identity matrix of order N. Specifically it is often 

assumed that €- N(O,a2IN). 

A diagnosis of the validity of these conditions imposed on the linear model 

residuals is impeded by the fact that under the usual hypothesis of independent 

and identically distributed errors, deviations from the least squares fit are 

neither independent nor, in general, identically distributed. Calculated 

residuals e = Y - Xf3 are linear functions of the true errors € = Y - ~ at the 

! points of the experimental design and are subject to linear constraints equal 

This paper was originally presented under the title "Homoscedasticity in 
Linear Regression Analysis with Equally Spaced X' s"1 on April 4, 1967 at 
The one hundred fourteenth meeting of the Institute of Mathematical Statistics, 
At the Georgia Institute of Technology, Atlanta, Georgia. 

Research supported in part by Grant Number GB-4502 from the National Science 
Foundation. 
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in number to the rank r of the design matrix !• If the design is balanced then 

residuals are marginally identically distributed, but their joint distribution 

is singular of rank ! - ! . 

A transformation of these ! estimated residuals into ! - E orthogonal linear 

functions of the true errors eliminates this complication in the normal case but, 

in effect, creates a new set of residuals "ivhich generally lack an easy intuitive 

interpretation conducive to the heuristic approach to analysis. Theil [718] and 

Koerts [5] impose some restrictions on.the transformation of least squares re-

siduals in order to obtain some optimality properties for the set of transformed 

residuals which, however, do not seem to stand in a one-to-one correspondence 

with points of the design. The result is, for example, that an apparently 

anomalous transformed residual cannot be associated with same particular design 

point. Such disadvantages may, in turn, be largely avoided by selecting a linear 

transformation which retains this salient feature of the original least squares 

residuals--namely that each transformed residual, while representing a linear 

function of all N true errors, is clearly identified with a particular design 

point. 

The choice of a particular transformation having this property will be in-

fluenced by the statistician's objective in examining residualso Motivation for 

the analysis of residuals is commonly a suspicion directed toward some specific 

type of alternative to the hamoscedastic hypothesis of independent, normally and/ 

or identically distributed errors. An example is the suspicion that variance is 

a monotonic function of the mean, implying in this context that error variance 

cr2 is a monotonic function of x~. Independent transformed residuals would y•x 

facilitate such heuristic approaches as the half-normal plot of residuals, the 

rank correlation between absolute or squared residuals and x~ or between squared 
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residuals and their expected values with respect to any specified heteroscedastic 

model, or the "peak-test" of heteroscedasticity as developed by Goldfeld and 

Quandt [1 1 2]. For further discussion of the use of transformed residuals see 

[5] 1 [6], [7], and [8]. 

As shown in Section 21 an uncorrelated set of residuals retaining essentially 

the same intuitive appeal as the original residuals may be obtained by a stepwise 

fitting of the linear model to successively more observations. Thus,if xn~(n) is 

the predicted value of Y calculated by fitting only the first n observations 
n 

Y1, ••• 1 Yn to the linear model Y- X~ + € then, excluding all n for which 

x ~ ( ) = Y 1 the residuals in the sequence n n n 

are linearly uncorrelated if the components of € are uncorrelated and homoscedastic. 

The degenerate case Y = x ~( ) arises when inclusion of the n'th observation in-
n n n 

t t ix (by unJ.. ty)i.~ 1' . I creases he rank of the design mar Nor.ma J.ZJ.ng scalars en = cr~ crf 

are known constants and the residuals d = c f are then linearly uncorrelated 
n n n 

with common variance cr 2 = cr€2 1 and if the €-distribution is normal then so is y•x 

the d-distribution. 

* If the r degeneracies occur at Y1, ••• ,y then f could be defined as 
r n 

Yn - x~(n-l) for n > r in order to give more weight to €n ; in any other 

case, hm-1ever 1 the f so defined would depend on ~ as well as € • n 

n 



-4-

The set of numbers ( d } obtained in this manner depends upon the ordering 
n 

imposed on the set of N observations; for a given set of N observations there are 

n!/ d possible sets ( d } • The choice of a particular set, again, '\'Till depend upon 
n 

the statistician's objective in analyzing residuals. Fortunately, this choice may 

be made to depend upon calculated values of the regression functions, X~(n)' for 

any n, without affecting the probability distribution of (d } under the homo-
n 

scedastic nonmal hypothesis. Since residuals are statistically independent of 

estimated regression functions then in constructing a set of residuals dr+l' ••• 1 ~ 

to test for monotonic heteroscedasticity, for example, ~may be chosen as the 
A 

normalized residual associated with the largest of the N predicted values X~~ 

Similarly, YN-l may be defined as the observed Y at the design point corresponding 

to the second largest of X~, and so on. 

In the simplest and, in the present context, degenerate case where Y1, •• &,YN 

are assumed to be identically distributed, say Y. =a+ E., the N predicted values 
~ ~ 

X~ are identically a. For any given ordering of the observations, specified by 

same external consideration, the sequence d2, ••• ,~ becomes the Helmert statistics 

as employed by Hogg, for example, in his heuristic method of iterated tests for 

equality of means [4]. We note that his iterative scheme may in general be applied 

to the sequence of test statistics 

to test the sequence of nested hypotheses 

••• = ,....2 • H • ,....2 
v , • +3. v 

€r+2 r €1 
= ••• = 

(i-r-l)d~ 
~ 

+ ••• + 2 
d. 1 J.-

••• • 
N 

If~ is true (and the € 1 s are normally distributed) then F111, ••• ,F1,k-r-l are 
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mutually independent and distributed as Snedecor's F with the indicated degrees of 

freedom. 

In the case of simple linear regression, Y. =a + ~x. + €., the procedure 
J. J. J. 

outlined above reduces to ordering the Y's according to the rank order of the x's. 

Thus, if the alternative hypothesis is that cr2 is an increasing function of x 
Y•X 

then when ~(N) is positive, 

"' 
fn = Yn- Y(n) - ~(n)(xn-x(n)) ' n = 3,4, ••• ,N 

"' 
where x1 :!=:: x2 :o!: ••• :!=:: xn and Y(n)' x(n)' ~(n)' are the samp'le means and simple 

linear regression coefficient calculated from (x1 ,Y1 ), ••• ,(xn,Yn)• The normaliz­

ing scalars in this case become 

A 

c = n 
1 1---n 

If ~(N) were negative then the ordering would be reversed. 

- i 

• 

From the heuristic point of view the above transformation of residuals would 

be especially satisfactory for testing against the alternative hypothesis that 

cr2 increases with a + ~x. if it were true that under this alternative model y•x. J. 
J. 

the transformed residuals fd } had the corresponding monotonic property, 
n 

o2 s o2 s ••• ~ crd2 • Evidently this property cannot be guaranteed in general 
dn+l dr+2 

N 

when the ordering of the observations is determined by the raru~ order in X~, which 

by chance may differ from the rank order in X~; and, unfortunately, even with a 
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correct ordering of the observations there are design'configurations for which 

monotonicity of a2 is not sufficient to guarantee monotonicity of the sequence y•x 

{a~ }. Counterexamples violating this property are easily constructed with 
n 

simple linear regression models; in the important special case of simple linear 

regression with equally spaced values of x, however, the monotonicity is preserved. 

This fact is demonstrated in Section 3. 

The utility of independent residuals is illustrated in Section 4 where the 

"peak-test" developed by Goldfeld and Quandt [1] is applied to simulated residuals 

from a simple linear regression with equally spaced values of x. This test was 

devised to detect monotonic trends in a sequence of random variables, and the 

distribution of the peak-test statistic was tabulated for the case of independent 

and identically distributed (continuous) random variables. Monte Carlo camputa-

tions are given here, comparing the properties of the peak-test applied to 

ld3,, ••• , 1~1 and applied (as in Goldfeld and Quandt) to the original residuals 

1el1,•••' leNt • 

2. ZERO CORRELATION BETWEEN OLD AND NEW RESIDUALS WHEN ADDITIONAL OBSERVATIONS 

ARE INCORPORATED INTO A LINEAR (MULTIPLE) REGRESSION ANALYSIS. 

Let us rewrite the model (l) in the following form 

l f3+ l- €(1) ] 
€(2) 

(2) 

where Y(l) and Y(2) contain n and N-n observations respectively. Now suppose 

that we ignore the Y( 2) ~bservations and fit only the n observations Y(l); viz., 

(3) 
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where X(l) denotes the transpose of X(l)' the least squares estimate f(l) of 

E(l) from model (3) will be 

• (4) 

If we now fit the entire N observations to the model, and if G is a generalized 

inverse of X'X 1 then the least squares est:i.In.ate e(2) of €(2) "Ylill be 

Note that while f(l) is a function of Y(l) only, e(2) is a function of both 

We now prove the follm-ring theorem 

THEOREI>1 2 .. 1. f(l) and e(2) ~linearly uncorrelated (independent)~~ 

com,c~ents £! € ~ independent and identically (normally) distributed. 

To prove the theorem we need the following well-known lemma 

_!.,EMMA 2,.1<) Let W be ~ p x q matrix. ~ if K is ~ generalized inverse of 

W'W, ~ WI<l.f'W = W • 

Proof of Theorem. f(l) and e(2) can be expressed as folloHs: 

f(l) = Y(l) - x(l)HX(l)Y(l) = (In- x(l)HX(l))€(1) 

e(2) = Y(2) - x(2)GX(l)Y(l) - x(2)GX(2)Y(2) 

= (IN-n - X(2)GX(2))€(2) - X(2)GXC1)€(1) • 

Now if the components of € are independent and identically distributed, then the 

covariance between f(l) and e(2) is 
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0 = E(f(l)eC2)) =[In- X(l)HX(l)]E(E(l)€C2))[IN-n- X(2)G'X~ 2)J 

- [In- X(l)HX(l)]E(€(1)€(l))X(l)G'X(2) 

= - [X(l)G:X( 2) - X(l)HX(ll(l)G'X(2) ]a~ • 

Since by lemma 2.1 X(l)HX(ll(l) = X(l)' 0::; 0. The independence of f(l) and 

e(2) is obvious under normality assumptions. 

The following corollary is an immediate consequence of theorem 2.1. 

A 

COROW.RY 2ole If x !3 is the -predicted value of Y calculated by fitting only 
--- - - n -- - n - -

~he first n observation~ Y1,Y2,o.o 1 Yn ~the linear ~~elY= X!3 + €1 then, 

, 

~ l-inearly uncorrelated (independent) if ~ _9omponent s ?f E: are independent 

~~ iden~ically (normally) distributed. 

The :proof follows by a successive application of theorem 2.1. 

__ Re~rk~ The residual fn is a linear combination of €1, ••• ,€n' say 
n 

f = .E w . €. • The vTeights w • were calculated for several common designs, 
n i=l n~ ~ n~ 

and usually w turned out to be larger {and sometimes much larger) than the 
nn 

other weights w : (i-1, ••• ,n-1). Exceptions to this rule exist, but it seems 
n~ 

that in many cases w € is indeed the dominant term in f , and thus f yields nn n n n 

considerable information about the true residual € • 
n 
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THE MONOTOl'liCITY PROPERTY OF THE VARIANCE OF d IN HErEROSCEDASTIC SIMPLE 
n 

BEGRESSION MODELS1
) •· 

If the errors €. in the simple linear regression model Y. =a + f3x. + E. 
1 1 1 1 

are nonnally and independently distributed with mean 0 and variance 

o2 =- cr~ then the transformed residuals f 3, .... ,fN are likewise normal with 
Y<>X. ... 

J. 

mean 0 and variances 

n ( - ,, - ) (xn- x{n})2 
cJ2 \'[ l: + 

xi - x{EL_t.xn - x(n) l2 
(j~ + [1- 2 -, 

CJ2 =- 2 
- )2 J f L n n ...1 1 n n n 

a 
1 l: (x. - .. ~ '2 

.E ( 
X' ' , ,x. - x(n) 1 1 \ I.l.} I 

l 
1 

When the error variance c 2 is an increasing function of x the condition yox 

x1 < ••o < x , which implicf o~ ~ ••• n .... ~ cr 2 is not sufficient to ensure that n' 

the normalized residuals 

will have lncreasing variances~ how8ver, if x. = d + bi, b > o, t~en the 
1 

follov1ing th~orero obtains: 

~ { crfJ ~ !!! }!lcreas:i.ns sequence a 

Pr-oof~ The variance a~ in this case becomes 
n 

n-1 L _(6i - 2 - 2n) 2 

1 n(n2 - 1)(n - 2) 
0~ + in - 2)(n - 1) 

1 n(n + 1) 

• 
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n-1 I -144i2 + i(72n + 144) - 4(n + 2)(2n + 5) 0~ 
n(n2 - l)(n2 - 4) 1 

l 

n+l 

+ (n - 1)(20 - n2 ) a2 + 

n(n + l)(n + 2) n 

= L 8ni0~ (say) • 
i=l 

n(n - 1) 2 
an+l 

(n +·l)(n + 2) 

Note that E 8 . = 01 because of the nor.malization1 and that for n ~ 5 
i=l n1 

8 . > 0 for 
nl. 

i :::r ·n ·+ 1 

and 8ni < 01 otherwise (where [!] denotes the integer part of !)• This infor.mation 

concerning the signs of the 8 . implies that 
nl. 

k [~] 
L 8ni s I 8ni for [n;~] < k :11: n 
i=l i=l 

where 
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4{n2 - n - 2) if [ n+1 J n+1 

9n(n- l)(n2 - 4) 3 =3 

[ n;1 J 
4{n2 - 6} /5. if [ n;1 ] n 

< 0 if n ~ 5 • = =-
!...I n~ 9(n2 - l)(n2 - 4) 3 

i=1 

4(n2 + n - 2) if [ n;1 J 
9n(n + l)(n2 - 4) 

n+l 
The monotonicity property a~ 

n+1 
!: 5 . a:;; <:!:: 0 then follow·s from 

i=l n1. l. 
n+1 

LEMMA 3.1. For _any non-null vector 8' = (o1 , ••• ,8 +l) such that !: 8. = 0 1 a 
n -- 1 l. 

necessary~ sufficient condition~ o'a2 ~~non-negative (positive)~ 

t 2, - ( 2 2 ) 'th 2 2 ( 2 < 2 ) f . 1 every vee or a - a1 , ••• ,an+l .~ ai s ai+l a1 ai+l _£! 1. = , ••• ,n, 
l. 

is that the partial sums D. = !: o. be non-positive fori= l, ••• ,n. 
- - - - - l. j=l J - -

Proof of sufficiency: Since D. s 0 and not all D. = 0 for i = l, ••• ,n, then 
l. l. 

n 

o'a2;;;; I (a~- a~+l)Di + Dn+la~+l 
1 

n 

= I (a~ - a~+1)Di ~ 0 
1 

with strict inequality if 0 < af < ••• < a~+1 • 

Proof ~ necessity: Suppose Di* > 0 for some i*, 1 s iJ.I- s; n, then a vector a2 

satisfying 

1 if i I= i* 

2 a:;; = ai+l l. 

1 (1 + I 1Dil) if i i{~ = 

i/=i* 
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also satisfies the conditions of the lemma, but in this case 

n 

\ (a2.; - a2 )D .,.. 1 L ... i+l i""' -
1 

in contradiction to the assumption o'a2 ~ o. 

Calculation of the numerical values of oni for n = 3 and n = 4 reveals that 

the conditions of the lemma are also satisfied in these cases. Thus, the mono-

tonicity preserving property holds for all n when xi = a + bi, b > 0 1 and the 
"' 

correct direction of monotonicity is preserved provided only that sgn(~) = sgn(~). 

4. SIMULATION OF THE "PEAK-TEST" OF HOMOSCEDASTICITY IN SIMPLE LINEAR REGRESSION 

Goldfeld and Quandt [1] discuss the problem of testing homoscedasticity 

against a monotone heteroscedastic alternative hypothesis, and present tabulated 

critical values for a so-called "peak-test" of the residuals. A "peak" residual is 

"' "' "' " "' "' "' 
said to occur at Yj =a + ~xj, Y1 < ••• < YN' if and only if lYi - Yi1 < lYj - Yjl 

for all i < j, and the peak-test statistic is then defined as the number of peaks 
A A 

occurring among 1Y2 - Y2,, ••• ,1YN- YN1 • Critical values axe obtained from the 

tabulated distribution of the number of peru~s occurring in a random sample of size 

N from an absolutely continuous distribution. 

In their original application of the peak-test to simple linear regression 

residuals, Goldfeld and Quandt [1] failed to take into account both the dependence 

which exists between residuals and the fact that the distribution of Y. - Y. is a 
~ J. 

function of x.; under the homoscedastic hypothesis the stochastically largest 
J. 

absolute residual occurs with the x. nearest to i. If sample size is large then 
~ 

these shortcomings of their procedure are minor,as the authors later pointed out 

[2]; however, as sample size increases, the mechanics of performing the peak-test 
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became unduly time consuming and a computationally simpler procedure such 

as the F-test described by Goldfeld and Quandt becomes more expedient. For 

small samples, the peak-test applied to the untransformed residuals is 

clearly invalid with respect to the size of the test, and also has poor 

power characteristics. 

Table 1 illustrates these points for sample size N ~ 10, and also 

indicates how they are overcome by applying the peak-test to normalized, 

stepwise residuals. The cumulative distribution of number of peaks for 

selected, monotone heteroscedastic alternative hypotheses was estimated by 

generating 1000 samples of size N = 10 from the standard normal distribution 

and transforming to heteroscedastic errors by appropriate scale changes. 

After scale changes the least squares residuals and stepv1ise least squares 

residuals were then constructed as appropriate linear functions of the 

errors; each sample of size N = 10 \las thus used in all eight columns of 

observed values in Table l. The columns labeled "H Nominal c.d.f." and 
0 

"H EKact c.d.f." were calculated from recursion fonnulae presented by 
0 

Goldfeld and Quandt for the exact probability distribution of number of 

peaks in random samples of size 10 and 8, respectively. Note that the 

homoscedastic exact and observed distribution of pealr.s in normalized step-

wise residuals stand in close agreement, as expected, providing a crude 

guide as to the amount of precision inherent in the other columns of 

observed probabilities. 
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Table 1. Monte Carlo results comparing the properties of the Goldi'eld-Quandt "peak-test" applied to least squares re­

siduals and to independent, normalized stepwise residuals in simple linear regression with N = 10 and x. = i. 
]. 

Distribution of the number of peaks among the last Distribution of the number of peaks among the last 7 
9 least squares residuals normalized stepwise residuals 

Number H Nominal Observed cumulative distribution I 
H Exact Observed cumulative distribution 

of peaks 0 c.d.f. cr2 ::;: 1 02 =2x 02 = x2 02 =lnx 
0 02 = 1 02 =2x 02 = x2 02 =lnx c.d.f. y•x y•x y•x y•X y•x y•x y•x y•x 

0 .100 .305 ·361 .380 -352 .1250 .117 .002 .030 .034 
1 ·3829 .671 .696 ·758 ·716 .4456 .428 .070 .202 .244 
2 ·7061 .888 .864 .88'( .876 ·7707 ·771 ·341 .551 .604 

3 .9055 ·972 ·957 . 94'7 ·959 -9385 .944 ·709 .837 .882 I 

~ 
4 ·9797 .993 ·992 .986 ·991 .9871 .994 .922 .968 .976 I 

5 ·9971 ·998 ·998 ·998 ·997 ·9950 ·999 .989 ·995 -996 
6 ·9997 1.000 1.000 1.000 -998 -9956 . 1.000 1.000 1.000 1.000 

7 ·9999 1.000 1.000 1.000 1.000 1 1 1 1 1 
8 1.0000 1.000 1.000 1.000 1.000 - - - - -
9 1 1 1 1 1 - - - - -
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The "peak-test" which treats the least squares residuals as if they were 

independent and identically distributed errs substantially in the size of the 

test. Thus, taking 4 or more peaks among the 10 residuals as the critical region 

gives a nominal significance level a4 = 1 - .9055 = .0945 while the actual size 

of the test is approximately 1 - .9710 ~ .03; and if any of the three hetero-

scedastic models obtained then the probability of rejecting ho.moscedasticity would 

be at best approximately .05 (less than the nominal size of the test). Applied 

to normalized stepwise residuals the critical region of 4 or more peaks has size 

1 - .9385 = .0615, and the probability of detecting the alternative cr 2 = 2x is y•x 

approximately 1 - .709 ~ .29o 

Since only the errors € were simulated in this Monte Carlo operation the 

estimated distributions under the heteroscedastic models in Table 1 must be re-

garded as estimates of conditional probabilities, the condition being that 

" 
sgn(~) = sgn(~). With independent, normally distributed heteroscedastic errors 

where ~(·) denotes the standard cumulative normal distribution. 
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