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ABSTRACT. This paper continues the study of time series models generated by non-negative innovations which
was begun in Feigin and Resnick (1992,1994). We concentrate on moving average processes. Estimators for moving
average coefficients are proposed and consistency and asymptotic distributions established for the case of an order
one moving average assuming either the right or left tail of the innovation distribution is regularly varying. The
rate of convergence can be superior to that of the Yule~Walker or maximum likelihood estimators.

1. Introduction.

This paper continues the study of time series models generated by non-negative innovations which was
begun in Feigin and Resnick (1992,1994). This program is motivated by the need to model teletraffic and
hydrologic data sets where quantities such as holding times and stream flows are inherently positive and
hence possibly unsuited to the usual time series methods which are based on Gaussian models. In Feigin and
Resnick (1994), we showed how to estimate parameters of a pure autoregression using linear programming
(Ip) techniques. Such lp estimators have a good rate of convergence which is frequently superior to those
achieved by Yule Walker or maximum likelihood estimators. Such estimators can be used for model selection
and for testing for independence (Feigin, Resnick and Starica, 1994). In this paper, we focus on estimation
of moving average coefficients. This is a necessary step along the road to being able to estimate parameters
in more general ARMA processes which combine both autoregressive and moving average components.

The process under consideration is the finite order moving average of order ¢, denoted MA(¢) and specified
as follows: Let {Z;} be an iid sequence of non-negative random variables. For a positive integer ¢ > 1, suppose
we have parameters 61, ...,0, such that §; > 0 for 1 <17 < ¢. The MA(g) process {X;} is

q
(1.1) Xe=Zi+ Y 0:Ziq, t=0,%1,%2,. .
i=1
and we are interested in estimating 61, ...,60,. n It is convenient to be able to write (1.1) compactly and to

achieve this we define the moving average polynomial
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where g = 1 and the backward shift operator B is defined symbolically by
BX: = X1, BZi=7;,.
With this notation we may write the MA(q) as
X:=0(B)Z;, t=0,£1,£2,....

For a pure autoregressive process of order p, denoted by AR(p), with positive innovations {Z;}, and with
autoregressive coefficients ¢1,...,0,, (¢p #0,>.5_, ¢; < 1), of the form

14
(1.2) Xe= pXe_p+ 2y t=0,£1,£2,. .
k=1

Feigin and Resnick (1994) defined the linear programming estimators ¢ based on observing X1,..., X, as

_ /
(1.3) ¢ = arg max 61

where 1’ = (1,...,1) and where the feasible region D, is defined as

P
(1.4) Dy ={6€RP: X, > §X;;>0,t=p+1,...n}

i=1

Assuming regular variation conditions on either the left or right tails of the innovations was sufficient to show
that a limit distribution existed for (;g and that rates of convergence were often superior to the Yule-Walker
estimators. So a natural approach to the estimation problem for moving averages is to see what results from
the autoregressive case can be brought to bear and thus we assume the moving average in (1.1) is invertible
which according to Brockwell and Davis (1991) means ©(z) # 0, |z| < 1. This allows us to write

. 1 - k
(z) := o) = ;ﬂ'kz‘ .zl <L

and we hope we can convert (1.1) into an infinite order autoregression
O(B)X; =2Z2;, t=0,£1,42,....

If we now try to apply the lp estimators we find we have a nice objective function but the constraints involve
an infinite number of variables. If we truncate the constraints suitably, we should obtain an estimator with
worthwhile properties. The precise definition of our estimator of the moving average coefficients in the MA(g)
process is

¢
(1.5) 0 := arg nll)zixlz_; 0;
where

21
(1.6) Dp:={6:> _(I-O(B))]X;>0,t=2q+1,...,n}
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and [ is the first integer such that 2! > ¢. Further motivation and discussion of this estimator is the subject
of Section 2.

Here is a precise statement of the assumptions which will allow discussion of properties of our estimators.
We need conditions which specify the model. In order to obtain a limit distribution for our estimators, we
impose regular variation and moment conditions on the distribution of the innovation sequence. We recall
that a function U : [0, 00) — (0, 00) is regularly varying with exponent p € R if

U(t:v)_‘p ’
Jim 0 =z, x>0.

(1) Condition M (model specification): The process {X; : ¢t = 0,+1,+2, ...} satisfies the equations

(1.1)

q
(1.1) Xe=Zi+ Y 0221, t=0,£1,42,.. .

i=1

where {Z;} is an independent and identically distributed sequence of random variables with essential
infimum (left endpoint) equal to 0 and common distribution function F'. The coefficients 61, ... 6,
satisfy the invertibility condition that the moving average polynomial ©(z) = >_7_, 0; 2" has no roots
in the unit disk {z : |z| < 1}.

(2) Condition L (left tail): The distribution F' of the innovations Z; satisfies, for some a > 0:

1. limM =z for all z > 0;
s|0 JP(S)

o0
2. B(ZP) = / u” F(du) < oo for some > a.
0

(3) Condition R (right tail): The distribution F' of the innovations 7, satisfies, for some o > 0:

Lotim oG8 e e s 0;
s—oo 1 — F(s)

o0
2. B(Z7) :/0 u™P F(du) < oo for some 8 > a.

Our results have as hypotheses M, and either L or R. Condition L is rather mild. It is satisfied if a density
f of F exists which is continuous at 0 and with f(0) > 0. In this case @« = 1. Other common cases where
Condition L holds are the Weibull distributions of the form F(z) = 1 — exp{—2®} where F(z) ~ 2%, as
z | 0 and the gamma densities f(z) = ce=%2"~!, r > 0,2 > 0 so that f(z) ~ c2"~! as 2 | 0 and therefore
the associated Gamma distribution function satisfies F'(z) ~ cr~12", as | 0. Examples of distributions
satisfying condition R include positive stable densities and the Pareto density.

Section 2 further discusses motivation and properties of the mathematical programming estimator given
in (1.6). Section 3 assumes Condition R and engages the point process limit theory (Resnick, 1987) which
underlies discussion of the limit distributions for 0 carried out for the case q = 1. Section 4 parallels section 3
but assumes Condition L. In Section 5 we present some concluding remarks which emphasize the point that
in contrast to the autoregressive case, the moving average estimators in the left tail case suffer a performance
degradation depending on the order ¢ of the model; no such degradation is present under condition R. Some
future issues to be resolved are also considered.
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2. The Parameter Estimator for MA (q).
Assume we have the invertible model {X;} specified by Condition M. Suppose the true value of the moving
average coefficients is 8(°). In inverted form, the model can be written as the AR(o0) process

(2.1) I(B)X; =2, t=0,£1,£2,...
where .
—_— = < 1.
o) I(z), |z|<1

For a finite order autoregression (1.2), the linear programming estimator of autoregressive coefficients is
given by (1.3) and (1.4). If in (1.2) we write as usual the autoregressive polynomial as

P
B(z)=1-Y @i,
i=1

then the objective function in (1.3) can be written as 1 — ®(1) and the constraints in (1.4) can be expressed
as

(2.2) O(B)X, >0, t=p+1,...,n.

If we try to write down an analogous expression for the parameter estimators for the AR(co) process in (2.1),
we obtain as objective function
1 ;]:1 92

o) 1+, 0

which is monotone in Y 7_, 6;. So we try to maximize ) {_, ;. For the constraints, (2.2) suggests the set of
conditions

1—

U(B)X, >0, t=1,... n.

A problem arises in that this constraint set requires knowledge of X;, X;_1,... with the index extending
back to —oo and since we only have knowledge of X1, ..., X,, we must somehow truncate this constraint set.
A suggestion for how to construct a truncated set of constraints comes from symbolically expanding 1/0:

(oo}

9(13) Y - o) ~ 21 0@ R 2 (U -eE),

=0

where [ > 1 is an integer to be specified. Note that
21
DU -0B)FeB) =1-(1-0(B)" =1+Q(B)"*,
k=0

where Q(B) = ©(B) — I =37_, 0;B'. Let 0)(B) =31 09 Bi and Qo(B)=>_1 09 B¢ and thus

=0 "¢ i=1"14

21 21

Y (1-09B)rx, => (I-0(B))*e"(B)z,

k=0 k=0
=(I+ Q3™ (B))Z: > 0,

since all #(9);’s are assumed non-negative. So by truncating the series expansion for 1/© in a judicious
manner, the truncated expansion is always positive at the correct value of the parameter vector.



PARAMETER ESTIMATION FOR MOVING AVERAGES WITH POSITIVE INNOVATIONS 5

Thus our estimator is
. ¢
(2.3) 6 = arg r%ixg %
where the constraint set is

21 q q
k=0 =0 i=0
The choice of [ suggested by the limit theory is to choose ! to be the first integer such that 21 > q.

Change of variable: We seek a limit distribution for qn(é — 0(0)) where ¢, is an appropriate scaling
satisfying ¢, — oo. It will turn out that under Condition R, the right choice of ¢, is

=t === 1= (125) @)

n

and under Condition L the appropriate choice of ¢, is
1
n=a, = F"(=).
I =a ()
We observe that ¢, (é — 6(9) satisfies
72(0 — 0)1 > g, (n - 6)1

for all g € D,,. Let § = ¢, (n—6()) so that ¢;'6 +68(°) = 5. Then qn(é — 0(9)) satisfies qn(é —69y1 > §'1

for all § such that .
é; ’
1+> (q—+9§°)) 440, |2 <1
i=1 n

and
21

>t (@utm + 5(3))k X, >0

k=0

fort = 2lg+1,...,n, where §(B) = Y_¢_, §; B*. Thus

4n (6 —0°)) = arg H{l\axé'l
where

q 21 k
b; ) 6(B
An={6€RE 14 :(—+0§°>) S 40, o] < 1,3 (<1 (QO<B>+Q) X, 20.0=2g11,....n).
k=0

=1 \dn n
In case ¢ = 1, we also have I = 1 and ©(B) = I + 0B so I — ©(B) = —B and the estimator is
é:sup{n €0, 1): Xy —nXs_1 +7°X;_2>0,t=3,...,n}

= \sup{n €[0,1): X; — nX;_1 + 1’ Xi_2 > 0}.

t=3
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Also i
qn(0 — 9(0)) = arg Hzl\aX(S =sup{6>0:6 € A,}
where
PO 0,3 AN
A, ={6>0:1+ q—+0 z#0, |2] <1, X, — [0 +q— X1+ 90+q— Xi—2>0,t=3,...,n}.

Let n = 6/¢, and recall that X; = Z; + 00 7, . If we set

Ay =72+ Q(O)Zt—?n
(2.5) Bi=—Zi_1 4092 _5+2009)7,_3,
Cy=Z; + (0(0))32t—3:

then
A =qa{0<n<1=0®: An? + B+ C, >0,t=3,...,n}

and we find in case ¢ = 1 that

(2.6) qn(é - 0(0)) =q, /\ sup{0 < <1—69: 4> + B+ C; > 0}.

t=3

So the limit distribution depends on the behavior of random parabolas and from extreme value theory we
expect the limit distribution to be in the Weibull family. (Cf. Resnick, 1987, pages 14, 15.)
To analyze the limit distribution in (2.6), we intend to proceed as follows: Denote the random parabola
by
p(n) = A + B+ Ci.

Only those parabolas such that p;(1 — 0(%)) < 0 are of interest since if p,(1 — 0(%)) > 0, then
sup{0 < <1—00 :p(n) >0} =1-0,

which is an uninteresting contribution to the minimum in (2.6). Note that the condition p;(1— 9(0)) < 0 also
implies By < 0 and that the discriminant of the quadratic is positive so that the two roots of the quadratic
are real. (The product of the roots of pi(n) is Cy/A: > 0 so that both roots have the same sign. The sum
of the roots is —B;/2A4;. If pi(1 — 9(0)) < 0, then the bigger root is positive which implies both roots are
positive and hence B; < 0.) Thus the smaller root r; is the desired root and in (2.6)

-0 =q. N

1<t<n
pi(1-6()<0
Now
_ _—B,—\/B} —4A,C,
Tt = 24,
44,0\ ?
= (|Bt|—|Bt| <1_ & t) /24,
1
C

(2.7) z—t|

| B
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where the last step resulted from expanding the function (1 + ;1:)1/2

the behavior of
In /\ Ty

1<t<n
pi(1-8)<0

and neglecting remainder terms. Thus

should be determined by

aw \ Ci/IBi]

1<t<n
pi(1-6())<0
and the behavior of this quantity can be determined by using a point process argument which depends on
whether Condition L or R is assumed.
The approximation in (2.7) can be justified by the following mechanism: Assume pt(l—ﬂ(o)) < 0. Consider
the roots of the lines

L1 ZBtﬂ—FCt, L2 (At(l—lg(o))+Bt)77+Ct,
Lo being the line passing through C; and p;(1 — 0(0)). The roots of the two lines are

_ G Cr
B T T B = (1— 00) A,

Tl

and
zy <1y < 22

If we know the limit behavior of the point process depending on {z;1}, and if 245 is sufficiently close to a1,
then the sandwiched piece r; will behave properly and give us the limit distribution.
Details are in the next two sections which assume Condition R and then L.

3. The limit distribution in the right tail case for ¢ = 1.
In this section we assume Conditions M and R hold. We assume we are dealing with MA(1) so that ¢ = 1.
The goal of this section is to present the limit distribution for . We will prove the following theorem.

Theorem 3.1. Suppose {X;} is the MA(1) process given in (1.1) and that Conditions M, R hold. Suppose
the true parameter is #(°) € (0,1) and that F' is continuous. Let q, = b, be the quantile function

by = (ﬁ)h (n) = F—(1— %)

where F is the distribution of Zy. The estimator 0 given in Section 2 has a Weibull limit distribution: In

[0, 00)

(3.1) ba(0—0) = N\ TV + (00)%y)),
k=1

where {Y3, Y/, k > 1} are iid with common distribution F' and

I'e=E1+ - +FE,, k>1

3

is a sum of iid unit exponentially distributed random variables independent of {(Yy,Y))}. The limit distri-
bution of § is Weibull:

(3.2) lim P[b,(0 —0%) < 2] =1 —exp{—cz®}, z >0,



8 PAUL D. FEIGIN, MARIE F. KRATZ AND SIDNEY I. RESNICK

where
¢ = E|Y; + (009)3y]|~

which is finite by the second statement of Condition R.

Before discussing the limit theory which leads to the asymptotic distribution of é, we review rapidly some
facts about point processes.
For a locally compact, Hausdorff topological space E, we let M,(E) be the space of Radon point measures
on E. This means m € M,(E) is of the form
[e0]
m = Z €z,

=1

where z; € E are the point masses of m and where

1, ifz e A;
ex(A):{ if

0, ifz¢gA.

We emphasize that we assume that all measures in M,(E) are Radon which means that for any m € M,(E)
and any compact K C E, m(K) < co. On the space M,(E) we use the vague metric p(-,-). Its properties
are discussed for example in Resnick (1987, Section 3.4) or Kallenberg (1983). Note that a sequence of
measures m, € M,(E) converge vaguely to mg € M,(E) if for any continuous function f : £+ [0, co) with
compact support we have my(f) — mg(f) where m,(f) = fE fdm,,. The non-negative continuous functions
with compact support will be denoted Ct(E).

A Poisson process on E with mean measure g will be denoted PRM(u). Two examples of the space
E that interest us are £ = [0,00), where compact sets are those closed sets bounded away from oo and
E =[0,00]P \ {0}, where compact sets are closed subsets of [0, c0]? which are bounded away from 0. Other
examples of the space F will be needed as well.

The fact that (3.1) implies (3.2) is a standard fact in extreme value theory. Since

[ee]

Z E(T5,Ya+(6)3Y)

k=1
is a Poisson process with mean measure du x P[Y; + (0(0))33/1’ € dv] (Resnick, 1987, page 135), if we set
A = {(u,v) €[0,00)%: ul/ v < 2},
then for z > 0
PIA T (Ve + (00PY]) > 2] =PI €(r, yes(enovy)(A) = 0]
k=1 k=1

:wm—f/@xpm+w@fw€@ﬂ

A

ZHM—/ /) duP[Y; + (009)2Y/ € dv]}
v=0JuL(L)e

:exp{—x“/ v P[Yy + (09)3Y] € dv]}
0

which is (3.2).

The main point process limit theorem which underlies our work in this section now follows. It is more
general than we need for considering the asymptotic behavior of § in the MA(1) case but is stated in full
generality for application to future work.
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Proposition 3.2. Suppose Conditions M and R hold and that P[Z; = 0] = 0. Define the measure
v(dz) = ax~* tde, = >0.

For any positive integer m we have
‘ Zi . , .
nP[ZOEdyo,b—Edmi,z: L,...m;Z; €dy;,j=1,...,m]

(3.3) F(dyo) Zl/ de;)eo (dy;) H eo(dej) F(dy;),

i=1 j#i
1<j<m

in

(3.4) 1 2= [0,00] % ([0, 5] \ {0}) x [0, ]

Furthermore let I be defined as in (3.4) and for l =1,..., m set
er=(0,...,1,...,0) € R™

where the 1 appears in the lth spot. Suppose {Yj 1, Yy ;, k> 1,1 > 1} are iid with distribution I'. Then

Z C(Zeb7 (Zemii=1,..m), Z_;,§=1,..,m) :‘Z a1, T Y ey 00, YooY o)

(35) + Z (Yk 2, e27Yk 1,00, ¥y 1Yy o) +ot Z (Yk,myrzl/aewuyk,m—ly~~~7Yk,17°o)
k=1

in M,(E).

Proof. The proof of (3.3) is based on the following two simple results. For y,a,b > 0, since b, — oo

0, if b < oo,

m%#@>%zemme{ |
y~ %, ifb=oc0

and for z > 0,y > 0
z=* ify=0,

Pz > 2 b 21 >
n [n t 2 &,0, Tl_y]ﬁ{o’ lfy>0,

and furthermore we have checked the vague convergence of

nP[(é,Zt) €]3vxe
bn

as measures on (0, co] x [0, 00]. To prove (3.5) we let p be the vague metric on M,(E). Then we can show
that

(36) Z (Zt, n (Zt 1hi—a,nLiem ) L1, L2, L m)’zz (Zt7 'Zi_ieiZi 1,24 2,... 24 m))

t=11¢=1
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and

n m n

m
P
(37) p(z Z €(Zhb;1Zt—zeuZt—1th—2y~~~ Zi—m)? Z Z G(Zt+iybzlztezyzt+z—1th+z—2y~~~7Z1+z—m)) — 0.

t=11i=1 t=11i=1

The proof of (3.6) is almost exactly the same as that of the Proposition 4.26 of Resnick (1987) and rests on
the fact that for any § > 0

n
Iy = Z €(Zt7b;1(Zt—1th—Zy“'th—m)th—lth—Zy“' Zt—m)
t=1

has the property that

ETL( U {(yo, 21, -, Ty Y1, - Ym) s > 6,25 > 6}) < <T;)nPr[Z1 > 6by, Za > 6by]
1<i<j<m
which tends to 0 as n — oo (cf. Feigin and Resnick (1992), (3.37)). The proof of (3.7) is identical to that of

(3.40) in Feigin and Resnick (1992). From (3.7) and (3.6) we see that to prove (3.5), it suffices to show that
the right most point process in (3.7) converges to the limit in (3.5). Towards showing this, we assert that

n
Z 6(ZH_m,... Zi1, 00 24,24 2 D) = Z E(Yk,my~~~ ,Yk,hF;l/a,OOVYk’ Do Y 1)
t=1 k>1 ) )
where {Y/ ;Y3 j, k> 1,1 <1i,j < m} are iid random variables with the distribution of Z; and independent
of {T'x}. To see this, let
Zy
Xn,t = (Zt—+—ma ey Zt+1; b_i Zta Zt—l; ] Zt—m—+—1)
n
and observe that {X, ;, —00 <t < oo} satisfies

(1) {X,:,—00 <t < oo} is stationary and 2m—dependent.

(2) We have
m m—1
nP[Xp1 € (dzm, ..., dz1,dz,dy, duq, . . ., dum_1)] SN H F(dz)v(de)eoo(dy) H F(du;y),
i=1 i=1

on [0, 00]™ x (0, 0] x [0, 00]™ := E'.
(3) For g € CH(E")
[n/k]
lim limsupn Z Eg(Xn1)9(Xn,:) =0.

k=00 n—co t=2

The desired result then follows from Theorem 2.1 in Davis and Resnick (1988).
By projecting, we then get in (M, ([0, cc] x (0, 0] x [0, 00]™~1))™ that

n n

( Z 6(Zt+1,bZth,Zt,m Zit1—m)’ Z G(Zt+2,bZIZth+1,w Ziga—m)’
t=1 t=1

n
T ’Z e(Zt+myb;IZtth+m—1w“ 721)) =
t=1

€ 1/ E € —1/a
(Xk: (Yk,lxrkl/ 7007Y£,17~~~7Yk1,m—1)’ P’ (Yk,2vrk1/ VYk,lvOOVYkI,U“'VYkI,m—2)’ ’

€ -1/ .
Z (Ye,m, 'y Y ka,m—17~~~7Yk,17°o))
k
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Hence by using a mapping argument, we have

n

(Z e(Zt+lyb;IZtelth+z—l7Z1+z—27'~' Liticm)’ i=1... ’m) =
t=1

(Z G(Yk,iyr):l/aelka,z—1y"'VYk,lywa}:)ly'“ka,m—z).
k
Since addition is vaguely continuous we finally obtain that the right most point process in (3.7) converges

weakly to the limit in (3.5) and therefore by using (3.6) and (3.7), we deduce the result of the Proposition. O

Before proceeding with the proof of Theorem 3.1 based on Proposition 3.2, we state some preliminaries.
Suppose E' C E and give E’ the relative topology inherited from E. The compact subsets of E’ are those
subsets K’ C E' such that K’ is compact when considered as a subset of E. To see this, suppose K’ is
compact in E’. Suppose Og, [ € A is an open covering of K’ in F, so that K’ C UgcaOg. Since K’ C E/,

we also have
kel lUJos) Ne=U (05 NE).

BEA BEA
Since Og N E' is open in E' and K’ is compact in E’, we have
K'C U (0@ ﬂEI) C U Oﬁ,
Bel Bel
where I is a finite index set. Thus K’ is compact in E. The converse is similar.

Proposition 3.3. Suppose E’ is a measurable subset of E and give FE’ the relative topology inherited from
E. For a set B C E' denote by g/ B the boundary of B in E' and denote by Og B the boundary of B in E.
(a) Define
T My(E) — Mp(E')

by i
Tm=m(-NE").

Ifm € M,(E) and m(0gE') = 0, then T is continuous at m so that if m, — m in M, (E), then Tm, > Tm
in M,(E").
(b) The same conclusion holds if we define T the same way but consider it as a mapping
T: My(E) — M,(E).
(c) Conversely, suppose m,, € M,(E) for n > 0 and that m, — mq in M,(E"). If
m,((E')) =0, n>0
and m(dgE') = 0, then m,, — mq in M,(E) as well.

Proof. (a) Suppose B C E' is relatively compact in E' and m(dg: B) = 0. It suffices to show m,(B) — m(B)
(Resnick, 1987, page 142). Since m, — m in M,(E), it suffices to show that m(dg B) = 0. One can readily
check the inclusion

for B C E'. Thus,

The proof of (b) and (c¢) is very similar except one needs the inclusion

(3.9) Op(BNE') C(0pB)NE'| JogE. O

The following simple result allows us to discard components in a point process convergence result.



12 PAUL D. FEIGIN, MARIE F. KRATZ AND SIDNEY I. RESNICK

Lemma 3.4. Suppose E;,i = 1,2 are locally compact, Hausdorff topological spaces and that E5 is compact.
If m, € M,(E1 x Ey) for n > 0 and m,, Zomyg in M,(E1 x E3), then

mn( X Eg) L m0(~ X Eg)

in Mp(El)

Proof. Let fi € C£(E1) and define f : By x Es — Ry by f(z,y) = fi(z). The support of f is contained in
K x E5 where K is the compact support of f;. Thus the support of f is compact and m,(f) — mo(f)
which translates to

fi(@)mp(dz x Ey) — fi(@)mo(dz x Es)
E, Ey

which is equivalent to the desired convergence in M,(E;). O

We now proceed to prove Theorem 3.1. From Proposition 3.2 and Lemma 3.4 we have

n

Np = E S Zeb7 (Zio1,Z1-2,Z1-3),Z1—1,%1—2,F1—3)

t=1

[ee] [ee]
= Neo 1= Z €W TEY 00,007, V) T Zf(Yk,z,o,r;”",o,Yk,l,oo,Yk' )
k=1 k=1
o0
(3.10) + Ze(Yk,e’yO,OyF;l/ayyk,zyyk,1700)
k=1

in M,(E) where recall £ := [0, 0] x ([0,00]®\ {0}) x [0, oc]?.

Referring back to the end of Section 2 and (2.5), recall that we are interested only in the case where
pi(1— 0(0)) < 0. However, it is initially easier to deal with the restriction of the point process convergence in
(3.10) for the case that B; < 0 which is implied by p;(1 — 0(®)) < 0. So we define the region [B < 0] C E by

[B < 0] :={(z0,...,26) € E: (24> 00254+ 20000226, 21 # 00y + 2(01) 223}
={(z0,...,25) € [0,00] x ((0,00] x [0,00)%)? : (24 > 025 + 2(6°) 226, 21 > 02y + 2(0(0)) %25}
U{(zo,...,2s) €[0,00] x [0,00) x ([0,00]*\ {(0,0)}) x (0,00] x [0,00)*:
24> 0 2s + 2(6’(0))2136, 21 < 00z, + 2(6'(0))21'3}
=[B < 0]s U[B < 0]<.

Note that for b > 0,¢ > 0,b; > 0,04 > 0,a; < oc0,j = 2,3,5,6 the set

{(zo,...,z6) €[0,00] x ((0, 0] x [0,00)2)2 :
(24 > 025 +2(09) 226, 21 > 002y 4+ 2000205, 2, > biyi=1,4;2; < a;,5 = 2,3,5,6}

is a compact subset of [0, c0] x ((0,00] x [0, 00)?)?. Define the mappings

Tl(.Z'o, ceey Ie) =xg + (6(0))3‘]36,
TQ(.Z‘(), ceey 176) Z:| —r1 + 9(0).1‘2 + 2(6(0))2.Z‘3|,
(311) T($0, ey ‘136) II(Tl(ﬁo, ey $5), Tg(l‘o, ceey $6), 4,5, ‘IG)
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and think of T" as

T:[B<0]— E" :=[0,00] x (0,00] x {(24, 25, zs) € [0, )?:xg > 0D gs + 2(9(0))2;1@6}
=[0, 0] x (0,00] x {(2a, 25, 25) € (0,00] x [0,00)% : &g > 0D zs + 2(68(9) 22}

Note that By|
T(Zta brzl(Zt—la Zt—2; Zt—S)a Zt—l: Zt—?; Zt—3) = (Ct: b—ta Zt—l; Zt—27 Zt—S)-
We seek to show
n [ee)
(3'12) Z I[B’<0]€(Chb;1|3t|th—17Zt—2yzt—3) = Nf) = Z €(Yk,1+(€(0))ayli zvr;l/ayooykl Yy )
t=1 k=1 ’ ’ ’

in g@([o,oo] x (0, 00] x [0, 00]?).

PINw(96([B < 0)) = 0] = 1,

we obtain from Proposition 3.3 that if we take restrictions to [B < 0] in (3.10), we get

(313) Nn|[B<0] = Noo |[B<0] = Z €(Yk,1,F;1/a 0.0.00. Y/ Ykl,2)’
k=1

)OOy s

in M,([B < 0]). It is tempting to try to apply Proposition 3.18, page 148, of Resnick, 1987. To apply this
theorem, we need to check that 7" is continuous (no problem) and that 7~ maps compact sets into compact
sets (problem). This last compactness property fails, so to get around the problem, truncation of the domain
is necessary. For M > 0, let

[B < 0ly =[B<0]s N{(z0,...,26) 21 > M ' xyVas <M}
U[B <0« N{(x0,...,26) 121 < M,z9V 23 > M1}
From (3.13) we get by restriction
NiliB<ow = NeoliB<0)u
in M,([B < 0]pr). Considered as a mapping on [B < 0]ar, 7'~ maps compacta into compacta. For instance,
for a > 0,b,b',¢>0,a; < 00,i=5,6
T7H[0,a] x [b,00] x {(2a, x5, 26) : x4 > b, x; < a;,i=5,6;24 > 902y + 2(9(0))2736 +¢c})
={(zo,...,26) €[0,00] x ((0,00] x [0,00)})? : &4 > b, 2; < a;,i = 5,6;24 > g0y + 2(6(0))2;1:6 + ¢,
o + (9(0))31‘6 <a,zaVrez< Mz > 00z, + 2(6(0))21‘3 +b}

is compact in [0, 00] x ((0, 0] x [0,00)?)? and hence in [B < 0]p7. Thus we conclude from Proposition 3.13,

page 148, Resnick, 1987 that
Nn|[B<0]M oT™ ! = N00|[B<0]M oT 1

in M,(E"). Part (c) of Proposition 3.3 then implies

n

Nooy o= E LB <0IN([Z1o1>baM =1, 242V 215 <bnuMIU[Z1—1 <baM,Z1— oV Zi_s>M =16} E(C b2 Byl 2o, 2t Z1s)
t=1

= N#
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in M, ([0, 00] x (0, 00] x [0, o¢]?). From Billingsley, 1968, Theorem 4.2, to show (3.12) we need to verify that
for any n > 0
im limsup P[p(N, m, Ny) > 1] = 0.

1
M—0 noco

Let g € C£(]0,00] x (0, 00] x [0,00]3) and suppose the support of g is in [0, 00] x [b, 00] x [0, 00]3. It suffices
to show for all > 0 that
Mlim lim sup P[| Ny a(g) — Nn(g)| > n] = 0.
—X n—co

Now

n

|Nnm(g) — Nu(g)| < E KB, <0In([Z1o1>ba M =1, 242V 245 <bu M1UZ1o1 <bu M, Z1—2V Z4_s> b, M=1])}
t=1

g(ct;b;1|Bt|;Zt—1;Zt—2;Zt—3)
and so
P[|Nnm(g) = Nulg)| > 7]
<nP{[B; < 0,|By|/bn > b N ([Z1—1 > by M ™1, Z4_2V Z4_3 < by MU
[Zi1 SboM, Z4_oV Zy_3 > by M~ 1)}

and since B; < 0 and |B;|/b, > b imply Z;_1/b, > b we have the bound

<nP{[Zi_1/bn > b]N ([Zio1 < baM YU [Z4_2V Zi_3 > by M])}
STLP[Zt_l > bnb, Zi_oN Zi_3 > bnM]
:nP[Zt_l > bnb]P[Zt_Q V Zi_3 > bnM]

As n — oo this last expression is asymptotic to
b_aP[Zt_Q V Zi_3 > bnM]

which goes to zero as n — co.
Now corresponding to the condition py(1 — (%)) define

NEG :={(xo, x1, 22, 23,24) € [0,00] x (0,00] x [0, 00]?:
(234 00 24)(1 — 09)? 4 (—y 4+ 02z + 2002 24)(1 — 0)) + 2o + (0)324 < 0}.

Since

PINE(O(NEG)) = 0] = 1,

=0]
and p;(1 — 0(®)) < 0 implies B, < 0, we get from parts (a) and (c) of Proposition 3.3 that
. # _
(3.14) Z Ipi-sen<o€ (e 7181l 20cr, 20m0,20m0) = NE = Z Y +(0©@)3Y, T ™ 00, Y,) Y/ L)
t=1 k=1
and applying Lemma 3.4 gives

(3.15) D Upu (1000 <010 05184 = D o091, 17
k=1

t=1
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in M, ([0, c0] x (0, o0]). Finally, another application of Proposition 3.3 (a) gives the desired result

(3.16) Z Lp (10 <ol€cy 7 1B = Z a4 (6@)y, , Iy

t=1

in M, ([0, 00) x (0, c]).

The next step is to show that we can take the ratio of the components in (3.16) and we show

(317) Yon = Z 1[p (1—6(9)<0]€b,C+/|By| = V0,0 1= Z Fl/a(yk 1H(8()3Y]/ ):

t=1

in M, ([0,00)). The map
T3 : (u,v) € [0,00) x (0,00] — u/v € [0, c0),

although continuous, does not have the property that Ts_l carries compacta into compacta and so a truncation
of the domain must be done. For small § > 0, we restrict attention to [0,§71] x [, o] and then apply T3 to
get as n — oo

n

Vs = E :l[pt(l—G(U))<0,C¢§6—1,b;1|Bt|25]€ant/|Bt|
t=1

V500 = g 1[Yk,1 (6(0))3y/ 2<6_1,Fk_1/a>6]€Fi/a(Y 1 (9(0))35/): L)
T k2= = k )
ll’lj\Jp([O, OO)) As 6 — 0 we have

Vé,oo == Zln L+ (BO)IY, <61 T 0T ¥ (Vi 1+ (80)Yy ) T V00 1T ZE R CTICIONR EANY
k

in Mp([0,00)), which is the right side of (3.17). To show (3.17), therefore, it suffices by Theorem 4.2 of
Billingsley, 1968 to prove that for any > 0

(3.18) lim lim sup P[p(vsn, vo,n) > 0] = 0,

—0 nocco

where p is the vague metric.
Let g € C£([0,00)) and suppose the support of g is in [0, a]. For (3.18), it suffices to show that

lim lim sup P[[v5,n(g) — vo,n(9)] > 7] = 0,

or equivalently

. - Cy . Cy
(3.19) }1_1’% hrlirls;ipPH E g(b "B, |) Bil> 5,081 pe(1-00))<0] E 9(bn —|Bt|)1[p¢(1—€(0))<0]| > 7] = 0.
t=1 =1

The absolute value of the difference between the two sums is bounded by

n Ct
bn— 1 —g(o 1 A A —17e

;g( |Bt|) [pe(1—8(®)<0] L[| Be|>6bn,Ci1<6-1]

—Z |B | LB, <0n|B.|>6b,,Co<5-1]e

< E |B | 1B, <0,|Bi|<8bn,Ci<6-1]

+Zg |B | IiB,<0,c>6-1]
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Taking into account the compact support of g, the probability in (3.19) is thus bounded by

By
P{U < Bt<0,| | <671}
+P{U <aBt<OCt>6 o
By
SnP[bniga,B¢<0,| |<6C’ <64
| B:| bn
C
—|—TLP[b <ClB¢<OCt>(S ]
[
=I+1I.
Now I[ is bounded as follows:
51 B
H<nP[—<|bt|,Bt<0]

and because B; < 0 implies Z;_; > 0007, 5+ 2(9(0))3%_3, the previous expression is dominated by

n

=6% "~ — 0, ((5 — 0)
To bound I observe that for arbitrarily small w < 6§~ we have

Cy | By |
I <nP[b,— < a B, <0, 24
<n [ |Bt| <a, D < bn

+nP[by

S(S:Ctgw]

Cy
— <a,B;<0,C
|Bt|_a, : < 0,Cy > w)
=Tla+ Ib.

Now Ib has a double limit which is zero by the argument that handled I7 so we concentrate on Ia. From
the definition of Cy we have Cy > Z;, and C; > (0(0))3Zt_3. Recall that Z,_q > 09 Z,_, + 2(0(0))3&_3,
when B; < 0. Thus Ia is bounded by

|Be|
by

Zi_1
b

Ta <nPla™ < (Z7') =—,B; < 0,0} < w]

<nPla™ < (Z71) ==, (0" Zi—5 < ]
—E(Z)"%a®P[(019) Z,_3 < w], (n— )
since by Condition R, E(Z;)™? < oo for some 3 > o and thus

lim limsup Ia < (constant)P[(ﬁ(o))?’Zt_g < w]

and since w can be picked arbitrarily small, the double limit must be zero as desired. This completes the
verification of (3.17).
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From (3.13), a standard argument mapping the points of v ,, into the minimum (see, for example, Resnick,

1987, page 214) yields

(3.20) by /\ :> /‘\ T (Vir + ( (0©)3Y, ).
1<t<n |
pe(1-6)<0

The rest of the proof consists in showing that in fact b, (é — 0(0)) has the same limit distribution as the limit
random variable in (3.20).

To do this, recall the outline presented at the end of Section 2. When p;(1 — 9(0)) < 0, we approximate
the polynomial p;(n) with two lines

Ly :By+n+C;, Lay:(A(1- 0(0)) + Bi)n + Ci,
which have roots

o G
[B.]” "7 1B, - (1—0)4,

L1 =
and therefore the smallest root r; of the random polynomial satisfies
(3.21) zy < rp < o
We know from (3.13) that

Z lp,(1-6@)<0)€bnon = V0,00 1= Z T (Vi 1+ (6)3Y, )
t=1

in M,([0,00)), and we now propose to show that the same holds true with x5 replacing 41 and we show

n n
P
(3.22) P(Z 1[pt(1—9(0))<0]€bnl‘tlaz Lp (1-6))<0]€bnzi2) — 0,

t=1 t=1

as n — o0. Suppose f € CE([0,00)) with support in [0, k]. It is enough to show for any 7

n

lim P[Z |f(bnzt1) — f(bnxt2)|1[pt(1_9(0))<0] > 7]] =0.

n—00
t=1

For any small é > 0, this probability is bounded by

Py |f(bawsn)—f (bnso) |11, <o) > 1]

t=1
P 1 (bnzin) = F(bae2) |18, <05 nz o>kt 8,buliazel<e] > 1/3]

P[E [f(bne1) = F(bne2)| 1B, <0,b,za>k+8,bn|2iamze1|>8] > 1/3)]

+ P 1f(bnein) = F(baza2)|1Bo<o buzasire] > 1/3]

=I+ 11411l
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Note that I is zero because both arguments of f are outside the support of f.
For II, we have the bounds

I7 SP[Z f(bnxﬂ)1[bn$t1Sk,Bt<0,|l‘t1—£L‘tz|25] > 77/3]
t=1
SP{U_ [[bnze < k, By < 0,bp]x1 — @42] > 6]}

STLP[[anﬂ S ]{7, Bt < 0, bn|€rt1 — ;Et2| Z (S]

Now

_ 1
1—(1-00)

1

bn|=’L‘t1 - éL‘t2| = by

Ay
| B:
and on the set [b,z¢1 < k] this difference is bounded by

1

k .
(1 — p(0)y_Ar
1—(1-6 ')IBtI

1—

Thus for some ' > 0

A
[By < 0,bpzy < k|2 — 242] > 8] C [By < 0, bpaegs < b, = > 6'].

| By
On [byz;1 < k], we have
1 k
T <
|B:| = b,Cy

which implies

A A

|By| = b,Cy

Thus using the definitions of A;, C; we have the bound for some new 6"

Zteg + 007, _3
bn(Zy + (0(9)3Z,_3)
Zi oy +090Z, 3 S §" Zi g +00 7, 3

bz T (093 7,5

II <nP[B, <0, > 6]

<nP[B; < 0, > §"].

On the set [B; < 0], we have (9(0))_1Zt_1 > Zy_o+ 09 7Z,_5 and so

Zy_1 S §" ey + 007 _3
5,000 2, T b (00)37; 5
Ziy+ 02,5

b (0(9))37;_5
Zi_ g+ 007, 3

b (0(0)3Z;_5

11 < nPJ > 6]
Zi_1

S"P[bna@)zt

> §"1P| > §"]

~(const)(§")"*P[ > §"]

(by a result of Breiman, 1965 which is applicable from the second part of Condition R)

—0, (n — )
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which shows I7 — 0.
Observe that what was proven in the treatment of 77 is that for any constants & > 0 and é > 0 that

(3.23) lim nP[B; < 0,b,|@i1 — 42| > 6, bpze1 < k] =0.
For 111, we note that

n
Z [f(bnxi1) — f(bn2i2)1[B,<0,b,z 0 <k+5]

t=1

n
< Z |[f(bnzi1) — F(bni2)|1[B,<0,b0wis<k+8bn|eio—zi]<6]
t=1

+ Y 1f(brwir) = F(bnea)| 1B, <0,buz o<kt bulwamzanl>5]
t=1

=51 + 5s.

So
1T < P[S; > /6] + P[Se > /6] = I11a + I1Ib.

Letting w;(6) be the modulus of continuity for f:
w(6) := sup |f(z) = f(y)l,

le—y|<é
we have for I71a the bound
HlIa < Plws(6) Y 1B,<ob,en<itas > 1/6],
t=1
and by the argument which showed (3.17), this probability converges to (n — o)
Plws(6)vo,00([0, k + 26]) > /6]

which converges to 0 as § — 0 since wf(6) — 0.

For I1Ib we have by (3.23) that
ITTb < nP[B; < 0,bpsa < k 4 8,by |20 — 241| > 6, bpwer > 2k] + o(1)
:O(l):

since 31 < Ty9.
The proof of Theorem 3.1 is concluded by recalling that when p;(1 — 0(0)) <0

zu <1 < Zyo

and
ba(0—0) = N\ bary.
1<t<n
pe(1-0))<0
Since
N bwa< A b < N baze,
1<t<n 1<t<n 1<t<n
pi(1-6®<0 pi(1-6®<0 pi(1-6)<0

and the two extremes converge to the same weak limit, the minimum in the middle converges to the same
weak limit. The proof of Theorem 3.1 is complete.
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4. The limit distribution in the left tail case for ¢ = 1.

In this section we assume Conditions M and L hold. We continue to assume the order is ¢ = 1 and we
present the limit distribution for 9. We will discuss the following theorem whose proof parallels that of
Theorem 3.1 for the right tail case.

Theorem 4.1. Suppose {X;} is the MA(1) process given in (1.1) and that Conditions M, L hold. Suppose
the true parameter is 0(°) € (0,1) and that F, the distribution of 7y, is continuous. Let q,, = a(n)~"' where
a(n) is the quantile function

a(n) = F~(1/n).
Note a(n) — 0. The estimator § given in Section 2 has a Weibull limit distribution: In [0,c0)

@ /2a
15 (02 Iy
(4.1) a(vm)~H (0 — o) = S ,
o)tz Ll e = (09)Yy |
Y 1>Ye 2

where {Y; 1,Yy 2,k > 1} are iid with common distribution F' and
ly=E1+4+---+E, k>1,

is a sum of iid unit exponentially distributed random variables. The constant c(«) is defined by the Beta
integral

1
cla) = / (1—8)*as* ds.
0
The limit distribution of  is Weibull:
(4.2) lim Pla(v/n)™H(0 — 0) < 2] = 1 — exp{—ka?*}, >0,

n—oo

where ‘
k= (00)72c(@)B (Vi = (0)Ye o1y, 15y, 1)

which is finite by Condition L. The convergence rate is 1/a(\/n).

Remark. In the right tail case the convergence rate was b, which up to a slowly varying multiplicative factor
is of order n'/®. However, under Condition L, the convergence rate is only 1/a(y/n) which up to a slowly
varying multiplicative factor is of order n'/2%. The convergence rate is slowed by the presence of a moving
average component.

The proof of Theorem 4.1 parallels that of Theorem 3.1 and is only outlined. Our plan of attack is to
show first that min{C;/|B;| : 1 <t < n,p;(1 — 0(9) < 0} has the limit distribution given in (4.2) and then
we show that 6 has in fact this limit distribution.

We begin with the following limit theorem which parallels Proposition 3.2. It is built on the observations
that for x > 0,y > 0,

lim /nP[Z; < z,
n—co BTV

lim /nP[Z; >z, —— < y] =0
n—co "= (V)
and
Z Ty A Ty
limnP[—t<a: tlﬁy]:hm\/ﬁp[ y <z|P| tl<y]

nmes "Nl = ety =Y T e V)

=z%y~.
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Proposition 4.2. Suppose Conditions L and R hold. Define the measure

p(de) = ax® tde, = >0.

We have
. Z Zt_3
PlZi_;e€dy;,1=0,...,3;——= € drg, —— € d:
n [ t—i € AYi,? Oa ’3’a(\/ﬁ)€ xO;a(\/ﬁ)E 173]
(4.3) —eo(dyo) F'(dyr) F(dys)eo(dys) u(dzo) u(dzs),
in
(4.4) E = {(yo, y1, y2, y3, xo, x3) € [0, 00]* x ([0, 00]*}.

Furthermore, with E as defined in (4.4), we have in M,(E) that

n
(4.5) Nn:zg € z, =z = N ::Egoyy 0 iy i
(Z4,Z 11,712,743, — 122 0 (0,Y%1,Yk2,0,jk1,5x2)>
=1 a(Vvn)’ a(vn) 3

where

Z €(Gr1,dr2)

k
is PRM with mean measure y x p on [0, 00)?.

Again, as in Section 3, we wish to only consider points corresponding to p;(1 — 9(0)) < 0 but because it is
easier, we start by restricting attention to the part of the state space corresponding to B; < 0. So we define

[B<0]:={(z0,...,25) € E : 21 > fpxs+ 2(00°)z3}.
Further we need the maps
T1 (.1‘0, ceey $5) =x4+ (6(0))31‘5,

TQ(JJQ, ceey ,1‘5) ZI| —r+ 9(0);132 + 2(9(0))2I3|,
(46) T(l‘o, ey I5) ZI(JJQ, ZX1,T2,x3, Tl(Io, ceey Is), TQ(IQ, P 15))

with domains and ranges

T, :[B<0]—[0,00), T3:[B<0]~ (0,0]

and
T:[B< 0]+~ E' :=0,00]* x [0,00) x (0, 00].

Also, T is continuous and 7~! maps compact sets into compact sets since for instance

T7H(x=o[0, ai] x [as, oc])

={(z0,...,25) € F:2; <a;,i=0,...3; 24+ (6’(0))3135 < a4,a5 < 21— (9(0)1‘2 + 2(6’(0))21‘3)}.
From Proposition 4.2 and Proposition 3.3 we have

NuliB<o] = NeoliB<0]
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in M,([B < 0]). Applying Proposition 3.18, page 148, of Resnick, 1987 yields
Nn|[3<0] ol = Noo|[B<0] ot

in M,(E') where remember E' = [0, o0]* x [0, 00) x (0, cc0]. Written another way, this is

Z 1[B<0]G(Zt,Zt_l,Zt_z,Zt_a,%\/;—)JB”) = Z 1[Yk1>9(D)Yk2]e(Okal7Yk2707jk1+(€(0))3jk27|_Yk1+€(D)Yk2|)
t=1 k

in M,(E").
Now define

NEG :={(zg, 21,22, 23,25) € E' : (22 + 9(0)1‘3)(1 — 0(0))2
+ (=21 + 0025 4+ 2(09)225)(1 — 0©) + (20 + (09)323) < 0}.

We get from parts (a) and (¢) of Proposition 3.3 that

Z 1[171(1_9(0))<0]€(Z172t—17Zt—27Zt—37ct/a(\/E)7|Bt|)
t=1
00

= Z 1[Yk1>Yk2]6(07Yk1kaZyoyjk1+(€(D))3jk27|_Yk1+€(D)Yk2|)'
k=1

Note that in the indicator on the right, the condition [Yx1 > Y}2] is equivalent to the condition
Via(1 = 0)? 4 (=Y + 0O V;0) (1 — 0 < 0.
Applying Lemma 3.4 yields
Z l[P (1-6(0)<0]€(Ce/a(v/n),|Bil) = N Z [Yi1>Yi2]€(ir1+(0(9 )32, | - Y1 4+6(9) Yia|)-
t=1 k=1

After an argument that verifies division between the two components is permitted we get

(4.7 Z Lp1—p@)<o__ce = Z Iia > ¥ia]€ sy 460025 5

a(V/m)|Byl) =Yy 46 O Yyal

in M,(([0, c0). Now one finishes the derivation with a comparison argument as in Section 3.
The form of the limit in (3.1) is based on the fact that

E €(jr1,dk2)

[
is PRM with mean measure of [0, z] equal to (6(°))=3%¢(a)2?* and so is
2 (0ol
k=1

The form of the Weibull limit is gotten from the usual argument that the minimum of the points is greater
than z iff the point process has no points in [0, z].
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5. Concluding Remarks.

It is noteworthy that in contrast to the autoregressive case, the moving average estimators in the left
tail case suffer a performance degradation depending on the order ¢ of the model; no such degradation is
present under condition R. From the results of Section 4 we see that the convergence rate for the estimator
of the MA(1) parameter is 1/a(y/n) which is a regularly varying function of index «/2. Contrast this to the
convergence rate of the Ip estimators in the autoregressive case which is regularly varying of index . We
anticipate that the convergence rate in the left tail case for MA(q) parameters will have index «/g. Thus
under Condition L, a sharp penalty is paid for using models which have moving average components and
the penalty increases as the order of the model increases. This is in contrast to results under Condition R
and to the results found for lp estimators for autoregressive parameters.

The challenge now is to extend these results from the MA(1) case to more general moving average processes
and then on to the general ARMA model. We anticipate that for ARMA models, the rate of convergence
under Condition L of the Ip estimators will suffer depending on the order of the moving average component.
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