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Abstract 

Both kriging and nonparametric regression smoothing can model a nonstationary 
regression function with spatially correlated errors. However comparisons have mainly been 
based on ordinary kriging and smoothing with uncorrelated errors. Ordinary kriging attributes 
smoothness of the response to spatial autocorrelation whereas nonparametric regression 
attributes trends to a smooth regression function. For spatial processes it is reasonable to 
suppose that the response is due to both trend and autocorrelation. 

This article reviews methodology for nonparametric regression with autocorrelated errors 
which is a natural compromise between the two methods. Re-analysis of the one-dimensional 
stationary spatial data ofLaslett (1994) and a clearly nonstationary time series demonstrates the 
rather surprising result that for these data, ordinary kriging outperforms more computationally 
intensive models including both universal kriging and correlated splines for spatial prediction. 
For estimating the regression function, nonparametric regression provides adaptive estimation, 
but the autocorrelation must be accounted for in selecting the smoothing parameter. 
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Abstract 

Both kriging and nonparametric regression smoothing can model a nonstationary regres­

sion function with spatially correlated errors. However comparisons have mainly been based 

on ordinary kriging and smoothing with uncorrelated errors. Ordinary kriging attributes 

smoothness of the response to spatial autocorrelation whereas nonparametric regression 

attributes trends to a smooth regression function. For spatial processes it is reasonable to 

suppose that the response is due to both trend and autocorrelation. 

This article reviews methodology for nonparametric regression with autocorrelated er­

rors which is a natural compromise between the two methods. Re-analysis of the one­

dimensional stationary spatial data of Laslett (1994) and a clearly nonstationary time se­

ries demonstrates the rather surprising result that for these data, ordinary kriging outper­

forms more computationally intensive models including both universal kriging and corre­

lated splines for spatial prediction. For estimating the regression function, nonparametric 

regression provides adaptive estimation, but the autocorrelation mtM be accounted for in 

selecting the smoothing parameter. 
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1 Introduction 

Recently, a number of papers have compared nonparametric regression and kriging as ap­

proaches to spatial modeling (Cressie, 1989; Hutchinson and Gessler, 1994; Laslett, 1994; Voltz 

and Webster, 1990; Wahba, 1990; Yakowitz and Szidarovsky, 1985) with varying conclusions 

about the merits of each. Both methods are based on the regression model 

z(s;) = JJ(s;) + f(s;) (1) 

where z is a continuous response variable observed at n spatial locations s1 • • • sn, p. is the 

regression function, and «=(s;) is a second order stationary error term with mean zero, variance 

dl and covariance matrix E. Nonparametric regression {smoothing) models allow the regres­

sion function p. to be in a large smooth nonparametric class, such as differentiable functions. 

Although the errors may be correlated {Altman, 1990, 1992; Diggle and Hutchinson, 1989; 

Engel, Granger, Rice and Weiss, 1986; Hart, 1991; Opsomer, 1996; Wang, 1998) the usual 

implementations assume uncorrelated errors with constant variance {Eubank, 1988; Wand and 

Jones, 1995; Wahba, 1990). Kriging models assume that the regression function is a polyno­

mial (or other orthogonal series) and the errors are second order intrinsically stationary with 

a parametric correlation structure depending on distance {Cressie, 1993). 

The effectiveness of the methods for fitting simulated and real data sets has been compared. 

There are two notions of "effectiveness" that are relevant. For traditional geostatistical appli­

cations, investigators are interested in functions of the current realization of the process, such 

as Z(s*) where s• is an unobserved location. Following current terminology, we will call this the 

prediction problem. The best predictor of Z(s;) is the observed value z(s;), with no prediction 

error, and, with p. known, the best (in terms of mean squared prediction error) predictor of 

2 



. ' 

(2) 

with prediction variance Var(t(s*)lt(st) · · · t(sn)). For most of the data sets analyzed in this 

paper, ordinary kriging outperforms correlated splines, even when the mean of the spatial series 

appears to be nonstationary. 

For applications such as weather prediction, the investigator may be interested in functions 

of a new realization of the process, such as Z*(s*) where z• is independent of the observed z's 

and s• may be an observed or new location. The best predictor of Z*(s*) is p(s*) with prediction 

variance u 2 ~ Var(t(s*)lt(si) · · · t(sn)). We will refer to this problem as the regression problem, 

but the goal is to produce predictions and prediction bands, rather than regression functions 

and confidence intervals. Of course, both J.' and the error process must be estimated from 

the sample, and this should be taken into account when estimating prediction variance. The 

regression function is not explored in detail in this paper. However, if a polynomial trend 

is fitted, as in universal kriging, the regression estimator is centered around the polynomial 

"closest" (in the sense of weighted least squares) to the underlying trend while non parametric 

regression is asymptotically centered on the true trend. 

The purpose of this paper is 3-fold: 

1. to review existing methodology and theory for fitting smoothing models with correlated 

errors and explain the erratic behavior of the smoothing spline (or more correctly, of 

generalized cross-validation) in Laslett's {1994) study 

2. to discuss the difference between prediction and regression as defined above 

3. to compare universal kriging and smoothing with correlated errors for spatial prediction. 

Section 2 of this article summarizes the computational methodology for fitting model {1) 

by universal kriging and correlated smoothing splines. Section 3 is a summary of results for 

nonparametric regression with time series errors which apply to the regular one-dimensional 

spatial series of Laslett. The results extend to higher dimensional spatial samples with arbitrary 

sampling distribution. Section 4 is an analysis of Laslett's data sets and a clearly nonstationary 
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time series. The regression problem is discussed in Section 5. Section 6 is general comparison 

of the two approaches to fitting model (1). 

2 Fitting the Model for Prediction 

In this Section we outline methodology for fitting (2). Estimation of the spatial correlation 

function 

p(d) = Corr ( t:{s), f(s')) is- s'i = d 

or alternatively, the variogram 

Is- s'i =d. 

is an essential step. If the errors f of the observed values and the correlation function or 

variogram were known, then the best linear unbiased estimator {in the sense of mean squared 

error) of the error at location s• would be 

E(f(s*)jf(si) · · · f(sn)) - R12R)}t: (3) 

G12G!lt: 

where R 11 is the matrix of correlations among the observations, R12 is the matrix of correlations 

between the observations and the unobserved value at location s•, Gu is the matrix with entries 

r(si - s;) and G12 is the matrix with entries r(si - s*). Generally, p(d) or equivalently qd) 

is assumed to have a parametric form which is estimated from the data. Inferences are then 

made conditionally on the estimated parameter values. 

When p(d) (or r(d)) has a discontinuity at zero, the variance or variogram is said to have 

a nugget. When there is no nugget, (3) interpolates the errors. When there is a nugget, (3) 

smooths the errors. 

Under the ordinary kriging model, p. is estimated by the sample mean. Under the universal 

kriging model, p. is estimated by a low order polynomial. In either case, the parameters of p( d) 

or r(d) may then be estimated by restricted maximum likelihood (REML), following which the 
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regression is fitted by weighted least squares, to obtain (1.. Details are in Searle, Casella and 

McCulloch, (1992, Chap. 6) and Cressie (1993, Chap 2). 

Under the correlated smoothing model, p. is estimated by a nonparametric regression estima­

tor. Laslett {1994) used a cubic smoothing spline with generalized cross-validation (GCV) for 

smoothing parameter estimation. The smoothing spline estimator is defined as the minimizer 

of 

t(z(si)- p.(si))2 +A J p."(s)2ds. 
i=l 

{4) 

where A is a smoothing parameter estimated from the data. Details are in Wahba {1990) and 

Eubank {1988, Chap. 5). 

Appropriate choice of smoothing parameter is critical to nonparametric regression. Selection 

methods for correlated splines are discussed in Diggle {1989) and Wang {1998); for kernel 

regression in (Altman, 1990; Chiu, 1989; Hart, 1991); and for local polynomials in (Opsomer, 

1996). Bandwidth choice for kernel regression is discussed in the next section. In order to 

understand the poor behavior of GCV in Laslett 's study, illustrated here in Figure 1a, we shall 

need to consider correlation-adjusted GCV as in Altman {1990). 

A linear mixed models approach to joint estimation of the spline and error correlation is 

described in Wang (1998) and is simple to use in application. In that approach, the smoothing 

parameter is a ratio of variance components, and GCV is not required. Joint estimation can 

be handled simply using off-the-shelf software for linear mixed models. 

Although the degree of the polynomial (universal kriging), the smoothing parameter (smooth­

ing spline regression) and the parameters of the correlation function are generally estimated 

from the data (or determined subjectively) prediction intervals are generally computed as if 

these were known a priori. For all three estimators, once these parameters have been estimated, 

{1. is linear in the data: that is it has the form {l.(s*) = F(s)'z(s) where F(s) is a vector. So the 

prediction variance for the regression problem is 

u2 + F(s)'EF(s) 

where E is the variance matrix of the observations. Note that F(s)'EF(s) is typically o(Jt.r) 

where pj.O, so the major contribution to prediction error is the error variance. 
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The predictor of Z ( s) is 

(5) 

This is also linear in the data, Z(s•) = P(s)'z(s), so that the prediction variance for the 

prediction problem is 

P(s)'EP(s). (6) 

3 Nonparametric Regression with Autocorrelated Errors 

The theory for nonparametric regression with autocorrelated errors is most fully developed for 

kernel and local polynomial regression, but similar results should hold for smoothing splines. 

All 3 estimators have the linear form 

jt(s) = FA(s)'z(s) (7) 

where the vector of weights FA dep~nds on a smoothing parameter). which controls the bias 

and variance of the estimator. 

It can readily be shown for kernel and local polynomial regression (e.g. Altman, 1990; 

Opsomer, 1996) that the bias of the estimator does not depend on the correlation of the errors, 

and but that for equally spaced data the variance of the regression estimator asymptotically 

has the form 

q2 . 1 
Var(il(s)) = nA A (1 + 2C(e)) + o(n).) 

where A depends on the form of the estimator, but not on the ~ion or correlation functions 

and C(e) = E~1 p(d). This shows that as long as C(e) < oo the estimator has the same rate 

of convergence. However, if goodness of fit is measured by mean integrated squared error 

MISE(.\) - E (I ~(s) -J.&(s)J2ds) (8) 

- I (Bias({J.(s))2ds +I Var({J.(s))ds 

then when C(e) > 0, which is generally the case for spatially correlated data, MISE is minimized 

by a larger bandwidth than in the uncorrelated case. 
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A number of data-adaptive techniques for selection of .A have been devised, many of which 

are summarized in Wand and Jones {1995). As Laslett (1994) UBed generalized cross-validation 

(GCV) to choose the smoothing parameter for the smoothing spline, the properties of this 

selector under model (1) will be discussed below. The erratic behavior of the smoothing spline 

observed by Laslett when using subsequences of the data was primarily due to the poor behavior 

of ordinary GCV for correlated data. 

The GCV criterion of Craven and Wahba {1979) has the form: 

GCV(.A) = kfz- jl{s)]'[z- jl{s)] 
[1- ktrF>,(s)J2 

(9) 

where tr denotes matrix trace. Note that. ktrF>,(s) = 0(1). For a kernel regression estimator, 

the expectation of GCV(.A) is 

{10) 

where MISE is 0( ~>. )+0( .AP) and p depends on the kernel (equivalently, the degree of the spline) 

and the number of derivatives of J.L (Altman, 1990). When C(€) = 0, the extra 0{1/n.A) term 

following MISE(.A) disappears, so that asymptotically the expectation differs from MISE(>..) 

only by a constant not depending on .A. From (10) we can see that when C(€) > 0, GCV(>..) 

tends to pick smaller bandwidths than in the independent case, although our analysis of 

MISE(.A) above shows that a larger bandwidth is needed. In fact, Chu and Marron {1991) 

and Hart {1991) show that a related criterion, cross-validation, selects arbitrarily small band­

widths with probability approaching 1, when the autocorrelation is greater than a threshold 

that depends on the kernel. 

Chu and Marron {1991) show that if data at a distance greater thank are uncorrelated, 

and the subsequences using every kth point are used for bandwidth selection with CV, the 

resulting "partitioned" CV estimator is consistent for the asymptotically optimal bandwidth 

for C(€) = 0, which is smaller than the required bandwidth. This result is important in 

understanding the behavior of the spline smoother in Laslett's analysis. Laslett used the 

subsequences of every kth point, and noted that the selected smoothing parameters increased 

with k. 
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Figure 1: Smoothing spline estimator of the mean surface height for the drum roller data (first 

300 data points). The solid line is the estimator based on the entire sequence. The dashed lines 

are the estimators based on the subsequences of every second point. a) Smoothing parameter 

selected by GCV without correlation adjustment. Notice that the bandwidth chosen for the 

full data set produces a very wiggly estimate, and that the estimates based on the subsequences 

are substantially smoother. b) Smoothing parameter selected by GCV adjusted for residual 

correlation. Notice that the estimate for the full sequence is very smooth and quite similar to 

the estimates based on the subsequences. 
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Figure 1a demonstrates Chu and Marron's effect for Laslett's drum roller data. The 

solid curve is the value of i' when the smoothing parameter was estimated using GCV and 

the entire series. The two dashed curves are the values of j). based on the subsequences 

{z(si),z(sa),z(ss) ···}and {z(s2),z(s4),z(s6) · ··}. A substantially larger smoothing parame­

ter was selected for each of the subsequences than for the entire sequence. Picking every third 

point leads to selection of yet a larger smoothing parameter. The reason for this is that as the 

distance between the points in the subsequence increases, the autocorrelation decreases and 

C(t:) approaches zero. 

A ·number of methods have been suggested for adjusting GCV to select the bandwidth or 

smoothing parameter in the presence of autocorrelated errors (Altman, 1990; Chiu, 1989; Hart, 

1991; Wang, 1998). A suitably adjusted GCV criterion is, 

_ k Ef=I[Zi- Msi)]2 

GCVp(>.) - [1- ktrF.\(s)(1 + 2C(t:))J2. (11) 

To compute this criterion, an estimator of the multiplier [1 + 20 (f)] is required and a number of 

approaches have been suggested. Truong (1991) shows that if the errors come from an autore­

gressive process with finite order, the process can be consistently estimated from the residuals 

from a kernel smoother. The estimated process can then be used to obtain an estimator of 

C(t:). Noting that a-2(1 + 2C(t:)) is the spectral density of the error process at 0, Chiu (1989), 

Hart (1991) and Opsomer (1996) estimate the spectral density and then extrapolate to zero. 

Herrmann, Gasser and Kneip (1992) estimate C(t:) by the sum of the first few empirical autcr 

correlations of residuals. Other approaches to adjusting GCV for autocorrelation are discussed 

in Altman (1992), Diggle and Hutchinson (1989) and Engle et al (1986). Simulations in Altman 

(1992) suggest that the approaches work about the same in practice. 

Figure 1b displays the fits from the partitioned data when GCVp, rather than ordinary 

GCV was used to select the smoothing parameter. The fitted curves are much smoother than 

those fitted under the assumption of uncorrelated errors, and the effects of partitioning the 

data are (visually) negligible. The resulting smooth supports Laslett's claim that these data 

are close to stationary in the mean. Note, however, that under model (1), the fitted curves 

are estimates of the regression function, not predictors of unobserved values of the process. 

Comparison of these fits with the kriged values would be inappropriate as they do not estimate 
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the same quantities. 

When the observations become dense on a compact region ("in-fill asymptotics") nonpara­

metric estimation of both the regression and correlation functions leads to lack of identifiability. 

However, this confounding, which makes estimation of p(s) difficult, may actually assist in pre­

diction. In particular, choice of.\ too large will have the effect of attributing more of the surface 

trend to the error correlation, but the kriging estimator of the error process should recover this. 

In practise, however, the effect of smoothing is to smooth at the observed data, which is similar 

to introducing a nugget into a kriging estimator. 

4 Reanalysis of Laslett's Data Sets and the Sea Surface Tem­

perature Data 

Laslett (1994) compared the use of ordinary kriging and spline smoothing with independent 

errors for prediction in a number of one-dimensional spatial data sets and concluded that 

kriging provides better prediction for these data. Because he assumed that the errors were 

uncorrelated in the spline model, he used P, as the predicted value for this model. To assess the 

squared prediction error, Laslett partitioned each set of data into predictor subsets P consisting 

of every kth point and predicted at the observed locations not in P. That is: 

- _ Esi¢p(Z(si)- z{si))2 

MSEP- #(si ¢ P) . (12) 

The use of GCV with data partitioning used by Laslett is almost identical to the "partitioned 

cross-validation" idea of Chu and Marron (1991). Laslett's observation that the bandwidth 

increases dramatically when the data are partitioned was the motivation for re-analysis of 

these data. 

Reanalysis of Laslett's data sets is undertaken in Section 4.1. The results suggest that these 

series are indeed close to stationary in the mean. The Miiller and Stadtmiiller (1988) test for 

detection of correlation in the presence of smooth trend was applied to determine if it could be 

used to choose to determine the appropriateness of model (1). All but 4 of the data sets have 

highly significant values of the test statistic. However, when applied to the partitioned data 

sets, the test was not sufficiently sensitive to pick up the moderate residual autocorrelations. 
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To determine the efficacy of universal kriging as a predictor for model (1), a time series 

which is clearly nonstationary in the mean, the sea surface temperature data of Breaker and 

Lewis {1988), is analyzed in the same way. Against the intuition of the author, ordinary 

kriging performed as we~ as correlated splines for point prediction of these data. However, 

for all data sets, a much simpler and model-free method, linear interpolation, provided very 

similar prediction error to the statistical methods. 

4.1 Data Analysis 

In this section, kriging and correlated splines are assessed as predictors for the 11 one-dimensional 

spatial data sets of Laslett (1994, data available from STATLffi), which appear to be generated 

by stationary spatial processes and for a nonstationary time series, the sea surface temperature 

data of Breaker and Lewis, 1988. As well, two other predictors are used, the mean of the data, 

and the simple linear interpolator of the adjacent pairs. The data mean is the appropriate 

predictor when the data are stationary and the errors are independent. When the data are 

generated by model (1) with no nugget, all methods interpolate - the linear interpolating spline 

is used as a computationally simpler alternative. The goodness of prediction is assessed by 

{12). 

Following Laslett {1994) the error covariance is modeled by the spherical function 

C(d) = E(t::(s)t::{s')) 

-I : (: :1
1.5(d/7) + .5(d/'r)3 ) 

Is- s'l = d 

ifd=O 

0<d<1' 

otherwise 

where co is the nugget, co+ c1 is the error variance, and 1' is the range. (Values at distances 

greater than the range are independent.) Use of the simpler exponential covariance function 

had negligible effect on the predictions. Modeling without the nugget parameter co improved 

the prediction for many of the data sets. However, the estimated nugget parameter was zero 

for only a few series {no attempt was made to test for this) and the analyses reported below 

included an estimator of the nugget. 

For the universal kriging predictor, REML is used to estimate E and the regression function 
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is then fitted using general least squares with the estimated covariance function. The prediction 

is computed by (5). The correlated spline predictor is fitted in 4 steps. 

1. A regression function is fitted by the kernel estimator of Altman {1992) and C(£) is 

estimated from the first order autocorrelation. 

2. The regression function is fitted using a cubic smoothing spline, with smoothing param­

eter selected by GCvp and C(E) estimated in Step 1. 

3. The spherical correlation function is fitted to the residuals from Step 2, using the maxi­

mum likelihood equations (i.e. ignoring the fact that these are residuals). 

4. The fitted values are computed by {5). 

A REML-type approach was also tried in Step 3. For most series, this made the fit slightly 

worse, and led to some nw:Derical difficulties. 

4.2 Drum Roller Data 

The data are 1150 observations of adjusted height measured along the drum of a roller, more 

fully described in Laslett {1994). Following Laslett, the modeling set is chosen to be the 

observations at 2, 4, 6, · · · 1150 microns and the interpolation set is chosen to be 3, 5, · · · 1149 

microns. Then the roles of the odd and even numbered observations are switched. Prediction 

is done only at interior points, to avoid extrapolation. 

The empirical autocorrelations are all positive but die away somewhat more slowly than 

they should if the exponential or spherical models suggested by Laslett (1994) are correct. 

Nonetheless, we assume that the data come from an spherical process. 

The MSEP from all the fits are displayed in Table 1. The most notable thing is that 

linear interpolation outperforms the other methods for the "odd" and "even" subsequences. 

This is particularly interesting, because the statistical methods all indicated the presence of a 

substantial "nugget effect" which suggests that smoothing should provide better prediction than 

interpolation. The kriging fits were comparable to one another and better than the correlated 

spline fits. For the subsequence consisting of every lOth point, the spline and kriging fits were 

better than linear interpolation, but only a small improvement over fitting the sample mean. 
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4.3 Gilgai Data Sets 

Laslett (1994) also modeled 9 spatial series taken along on a gilgai, a gentle depression. The 

data are 3 different measures (pH, log( chloride) and log( electrical conductivity)) at 3 depths, 

(0-10 em., 30-40 em. and 80-90 em.) on a transect. We follow Laslett in modeling these 

multivariate data as 9 univariate series. The results are displayed in Table 2. 

The most notable feature of Table 2 is that for 7 of the 9 series, linear interpolation provides 

the best prediction or is within 10% of the best, the exceptions being pH at the shallow 

depths. For these 2 series, the sample mean is at least as good as the statistical methods. 

When the Miiller and Stadtmiiller test did not indicate significant residual autocorrelation, the 

correlated spline model performed well, but was not as good as the kriging methods. When 

the test indicated significant residual autocorrelation, there was often a statistical model which 

performed clearly worst, but there was no clear "winner" over all the data sets. 

4.4 Sea Surface Temperature Data 

To determine the relative merits of kriging and correlated spline modeling for nonstationary 

data, the sea surface temperature data of Breaker and Lewis (1988) was modeled. This data 

set consists of 12 years of daily measurements of sea surface temperatures collected daily at 

Granite Canyon, but to keep the REML computations reasonable, only the first 3 years of data 

were analyzed for this study. The data show pronounced seasonal effects, and the effects of a 

large "El Nino" warming event in 1972 is evident. The full data were previously analyzed with 

kernel regression estimators in Altman (1990, 1992) with a view to estimation of I'· 

Although ordinary and universal kriging models do not appear to be appropriate for these 

data, stationary spherical errors were assumed, and the odd numbered data were predicted 

from the even numbered data and vice versa as described above. Although the smoothing 

spline estimator picks up considerable nonstationarity (Figure 3b, solid line) predictions from 

the kriging models were better, and linear interpolation performed comparably. This is likely 

because the kriging variance estimators did not indicate a nugget effect, and thus kriging 

predictors were interpolators, whereas the variance estimator from the spline model had a 

substantial nugget. The correlated spline, which follows the seasonal trend, performed better 
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when every lOth data point is used for prediction. The mean, not surprising performs very 

poorly. 

4.5 Other Subsequences 

Above we have followed Laslett in interpolating data to a finer scale than the observed predic­

tion set - e.g. when predicting from the even numbered observations, the finest scale for which 

it is possible to estimate the correlation is p(2), but the interpolation requires an estimate of 

p(l). It is clearly difficult to statistically resolve features finer than the scale of the prediction 

set. 

When the data provide resolution finer than the scale for which predictions are to be 

made, we might expect better behavior of estimator (5}. Suppose, for example, that of the 

364 observations on a gilgai, 10 consecutive observations are removed. p(i}, i = 1· · ·10 are 

required for prediction of these data, but due to the assumption of intrinsic stationarity, these 

are available from the remainder of the data. The kriging estimates of the error can therefore 

be quite wiggly. By contrast, the spline estimate of the mean is a cubic polynomial between 

knots (which are all at the data locations) and so is very smooth in gaps. Universal kriging 

assumes a polynomial regression function. If a low order polynomial is used, the regression 

function is forced to be smooth whether or not there are gaps in the data locations. However, 

if high order polynomials are used, spurious bumps can occur in data gaps as the weighted 

least squares measures the fit only at the observed locations. 

To understand the differences between methods better, we removed the data at 101-110, 

161-170 and 261-260 from the gilgai series pH 30, and then predicted at these locations from 

the remaining 334 observations. The MSEP was 0.139, 0.149 and 0.161, for ordinary kriging, 

universal kriging and correlated splines, respectively and 0.210 for the mean. These results are 

perhaps not surprising, since the series is close to stationary in the mean, so that fitting the 

extra parameters of the smoothing spline and cubic regression add variance to the predictions 

without bias reduction. 
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4.6 Conclusions from Data Analysis 

Ordinary kriging provided very good prediction for these data, even when the data were highly 

nonstationary in the mean. Linear interpolation a1so provided very good prediction when the 

data grid was fairly dense compared the scale of interpolation, but did not do well when the 

grid was sparse. Both methods are computationally simpler and require less modeling than 

universal kriging and correlated splines. Ordinary kriging has the additional advantages over 

linear interpolation that it adapts to sparseness of the grid, and that prediction intervals can 

be computed. 

The poor performance of the correlated spline for prediction was somewhat surprising, since 

both the ordinary and universal kriging models can be shown to be limiting cases. The variance 

parameters for the odd sequences of the gilgai data are displayed in Table 6. Examination of the 

estimated variance parameters shows that in most cases, the estimated range decreases and the 

estimated nugget increases as we go from ordinary kriging to universal kriging to correlated 

splines. Accordingly, there is progressively more smoothing and less interpolation as we go 

from the most constrained to the least constrained regression estimator. Not surprisingly, the 

correlated spline does worst when linear interpolation does best. 

5 Regression 

Much of the work in spatial statistics has focused on prediction. However, occasionally the 

goal is to predict the spatial distribution of an independent realization of the process (e.g. 

Hobert, Altman and Schofield, 1997, predicts the number of species that could be supported 

by lakes in the Adirondacks if acid deposition is reduced). In this case, the prediction errors are 

independent of the observed data, so that the best point predictor is the regression estimator. 

Figure 2 displays the predictions and regression estimates for the sea surface temperatures. 

The prediction set was the even numbered subsequence. The solid, dashed and dotted lines are 

the predictions from the smoothing spline, ordinary kriging and universal kriging respectively. 

Figure 2a displays the predictions. These are very wiggly as they track both the variation in 

the mean and the variation in the correlated errors. All three predictors produce very similar 
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Figure 2: Predicted sea surface temperatures at Granite Canyon for the odd numbered days 

based on the data from the even numbered days. a) Predicted values for the odd days. The 

solid lines, dashed lines and dotted lines are the predictions from the smoothing spline estima­

tor, ordinary kriging and universal kriging respectively. Notice that all three models produce 

predictions which are extremely close. b)Predicted values (regression estimates) for a hypo­

thetical independent realization of the process. Notice that the smoothing spline tracks the 

seasonal effects of the data. 
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predictions. The poorer performance of the correlated spline model is clearly seen to be caused 

by the tendency of the predictions from this model to be less extreme in the peaks and dips, 

due to the non-zero nugget. 

The regression estimates for the sea surface temperature data are displayed in Figure 2b. 

As we can see from this extreme example, point predictions for an independent realization vary 

considerably between the models. Fitting a sinusoid, rather than a cubic polynomial, would 

of course be preferable for the universal kriging model. However, the interesting point is that 

choice of the model has little effect on prediction, but a great deal of effect for regression. 

The estimated variance of the data from the ordinary kriging model is 3. 75, from universal 

kriging model is 3.02, and from the correlated spline estimator is 0.29. These differences are due 

the amount of variation in the data which each estimator attributes to the regression function. 

The kriging models attribute the seasonal effect to residual variance. Although all three models 

produce similar predictions for interpolating the current realization, the predictions for an 

independent realization would be very different, and the prediction bands for the spline model 

would be much narrower, due to the small estimated population variance. The appropriateness 

of the various models for regression cannot be determined from the fit to a single realization of 

the process, but must be determined from subject area knowledge and analysis objectives. 

6 Summary 

Reanalysis of Laslett 's data was motivated by Figure 1a, in which partitioning the data caused 

GCV to select a much larger smoothing parameter for subsequences than for the full data 

set. Such behavior is indicative that at least some of the smoothness of the data is due to 

autocorrelation rather than trend. The test statistic suggested by Miiller and Stadtmiiller 

(1988), although useful for detecting high autocorrelation, does not appear to be sufficiently 

sensitive for detecting error autocorrelation if GCV or related techniques are to be used for 

selecting smoothing p~ameters, because of the extreme sensitivity of these techniques to even 

small positive autocorrelation. 

The smoothing spline model is related to universal kriging in a number of ways. The spline 

estimator of the regression function tends to the least squares line as >. -+ oo. An alternative 
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formulation of the smoothing spline as a penalized maximum likelihood estimator for model 1 

leads to use of the estimator which minimizes 

(13) 

(Diggle and Hutchinson, 1988; Engle et al, 1986). In this case, as >. -t oo the smoothing 

spline estimator tends to a linear fit by weighted least squares. Another connection between 

universal kriging and smoothing splines comes from the observation that Jl{s) can be obtained 

as a solution to the linear mixed model 

(14) 

where X is the matrix of cubic polynomials in location, (3 is the vector of regression coefficients, 

Z is a set of truncated polynomials determined by the knots (observed locations), 'Y is a mean 

zero random vector with covariance structure determined by t?, >. and the definition of the 

smoothing spline (equation 4 or 13) and 71 is an uncorrelated error with mean zero and variance 

u2. Thus the smoothing spline model can be seen to be a special case of universal kriging 

with covariance structure determined by the variance of Z-y + 71 ( Wang, 1998). However, 

interpretation differs. The solution to the mixed model equations is an estimate of the regression 

function but the appropriate predictor is (5). 

Note, however, that Model14 can also be used for correlated splines, assuming a spatial (or 

other) covariance structure for 71 (Wang, 1998). This is a convenient formulation for handling 

correlated splines via the linear mixed model and is readily implemented in standard mixed 

model software. 

Comparisons of non parametric smoothing and kriging currently in the literature ( Cressie, 

1989; Hutchinson and Gessler, 1994; Laslett, 1994; Voltz and Webster, 1990; Wahba, 1990; 

Yakowitz and Szidarovsky, 1985) typically assume that the errors in the smoothing model are 

uncorrelated. Thus comparison between fits are really comparisons between models. We have 

seen in this article that ordinary kriging can predict well even in the presence of a nonstationary 

mean, and that there is little improvement (or even deterioration) in point prediction when 

universal kriging or correlated splines are fitted. Differences in estimating the regression func­

tion may be large, since kriging models make very restrictive shape assumptions. Typically, 
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the correlated spline model typically produces a smaller estimate of a2. 

This article has focused primarily on the !-dimensional equally spaced case which was the 

focus of the data analyses in Laslett (1994). However, advances in linear mixed models method­

ology makes it a simple task to use either kriging or correlated splines for higher dimensional, 

irregularly spaced data. 

The rather surprising (at least to the author) result of assessing the methodology on real 

data is that, even in the presence of obvious nonstationarity, the extra effort of regression 

function estimation does not seem to improve the predictions over ordinary kriging, particularly 

if the autocorrelations are strong and the scale at which interpolation is required is not much 

finer than that at which the data were collected. However, in this case linear interpolation of 

the data performs as well as kriging, so that the effort of modeling the covariance or variogram 

also seems superfluous. Of course, more realistically a prediction interval, rather than a point 

prediction, is desired and kriging provides a more statistically valid interval. 

Overall, for prediction, kriging provides a simpler estimator than correlated splines, and 

appears to be quite robust to misspecification of a smooth regression function. For regression, 

correlated splines provide an adaptive fit to the regression function which is not provided by 

parametric kriging. However, it is critical to account for the correlation when choosing the 

smoothing parameter. 
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Drum Roller Data 

Mean Squared Error of Prediction 

Correlated Ordinary Universal Linear 

Estimation Set Prediction Set Spline Kriging Kriging Interpolation Mean 

odd even .356 .252 .260 .237 .460 

even odd .293 .222 .218 .208 .387 

ending in 0 not ending in 0 .406 .398 .390 .500 .423 

Table 1: Mean squared error of prediction for partitions of the drum roller height data using 

various predictors. 

Gilgai Data Sets 

Mean Squared Error of Prediction 

Data Set Correlated Ordinary Universal Linear 

Spline Kriging Kriging Interpolation Mean 

CIO 1.41 1.14 1.14 1.23 1.57 

Cl30* 2.38 1.01 1.02 0.900 2.56 

Cl80* 0.656 0.383 0.359 0.341 0.729 

EcO 0.454 0.416 0.421 0.452 0.562 

Ec 30* 0.897 0.517 0.493 0.459 1.03 

Ec 80* 0.389 0.283 0.263 0.242 0.542 

PhO 0.567 0.569 0.560 0.700 0.574 

Ph30 0.149 0.143 0.142 0.171 0.156 

Ph80* 0.219 0.214 0.180 0.176 0.415 

Table 2: Mean squared error of prediction averaged over even and odd partitions of the gilgai 

data sets '!JSing various predictors. Data sets which had significant residual autocorrelation as 

determined by the Miiller and Stadtmiiller test are flagged with an asterisk (*). 
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