
 

ESTIMATING THE THERMAL PROPERTIES 

OF THIN FILM AND MULTILAYER STRUCTURES 

USING PHOTOTHERMAL DEFLECTION SPECTROSCOPY 

 

 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University 

in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

by 

Michael Shannon Moorhead 

January 2009 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2009 Michael Shannon Moorhead 
  



 

ESTIMATING THE THERMAL PROPERTIES OF THIN FILM AND 

MULTILAYER STRUCTURES USING PHOTOTHERMAL DEFLECTION 

SPECTROSCOPY 

Michael Shannon Moorhead, Ph.D. 

Cornell University 2009 

 

Photothermal deflection spectroscopy (PDS) is an experimental technique 

which may be used to determine the thermal properties of materials.  An intensity 

modulated heating laser is used to generate periodic thermal waves in the material and 

the surrounding gas phase.  A probe laser is passed through the gas phase above the 

material and experiences periodic deflections due to the temperature dependence of 

the refractive index.  This is commonly referred to as the mirage effect.   

We have developed a model which allows for the calculation of the thermal 

field in a multilayer structure resulting from periodic laser heating.  The model 

incorporates the effects of anisotropic thermal conductivity, interlayer thermal contact 

resistance, and volumetric optical-to-thermal energy conversion.  The resulting 

temperature field is used to calculate the optical probe beam deflections. 

A maximum a posteriori parameter estimation algorithm has been developed 

which allows for the determination of model parameters from experimental PDS 

measurements.  This algorithm has the capability of accounting for a priori parameter 

information in the event that it may be known from prior measurements.  Special 

attention is paid to the cases where the model may be insensitive to certain parameters 

or where linear combinations of parameters may exist. 

Experiments were performed on bulk NIST standard references materials, 

including electrolytic iron (SRM8421) and stainless steel (SRM1462).  The thermal 

conductivity of these materials was recovered from the estimation algorithm to within 



 

a reasonable accuracy.  This data was also used to extract the thermal conductivity of a 

“virtual film” atop the otherwise bulk material.  We determined that for virtual film 

thicknesses larger than the thermal penetration depth, the algorithm was successfully 

able to determine the thermal conductivity.  For thicknesses significantly less than the 

thermal penetration depth, however, the algorithm loses sensitivity to the properties of 

the film. 

Experiments were also performed on a series of W/B4C multilayer materials 

used as X-ray monochromator mirrors at Cornell’s High Energy Synchrotron Source 

(CHESS).  Although we were unable to resolve the thermal properties of the 

individual layers, the effective thermal conductivity of the multilayer was found to be 

significantly less than either of its constituent bulk materials.  We also found that there 

is a lack of sensitivity to the degree of anisotropy within the multilayer, thus we are 

only able to quote a cross-plane value for thermal conductivity. 
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CHAPTER ONE 

 

Modeling the temperature field and optical probe beam deflections of a periodically 

heated multilayer structure 
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ABSTRACT 

 A model has been developed to determine the periodic temperature field 

caused by modulated laser heating of a multi-layer material system.  Using this model, 

it is possible to determine the periodic deflections of an optical probe beam passing 

through the air above the material, with direct applications toward photothermal 

deflection spectroscopy (PDS).  The salient features of the model include anisotropic 

thermal conductivity, interfacial thermal contact resistance, and volumetric optical-to-

thermal energy conversion.  A solution technique using Hankel and Fourier transform 

methods has been employed to solve the governing energy equation.  The model was 

validated by comparing experimental measurements of the probe beam deflections 

with model predictions for a NIST standard reference material (SRM) for which the 

thermal properties are known.  In addition to treating the material as a bulk system, it 

was modeled as being a “virtual film”, whose properties were determined using a 

model-based estimation algorithm.  A parametric study was also performed in order to 

determine the effect of model parameters on the temperature field and probe beam 

deflections. 
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1.  Introduction 

Photothermal deflection spectroscopy (PDS) is a laser heating technique which 

may be used for thermal property measurement.  As shown schematically in Figure 1-

1, the concept uses an intensity modulated laser to strike the surface of a test material.  

The effect of this laser is to heat the material and surrounding air, which will cause the 

refractive index of the air above the sample to vary in a periodic manner.  A second 

laser is passed through the heated air and experiences periodic deflections.  This is 

commonly referred to as the “mirage effect” [1, 2].  A quadrant photodetector is used 

to measure the deflections of this probe laser, which may then be related to the thermal 

properties of the sample material. 

PDS falls within a broader category of "thermal wave" techniques, which 

include photoacoustic spectroscopy [3], 3-ω [4], modulated thermal reflectance 

(MTR) [5], and scanning thermal microscopy (ScThM) [6].  The unifying 

characteristic of these techniques is their ability to confine thermal penetration in the 

medium by controlling the frequency of the stimulus which heats the material (e.g. 

heating beam for PDS). This is important because it allows us to confine the “probe” 

to an area of interest in order to achieve maximum sensitivity to a particular feature 

(e.g. the thermal conductivity of a thin film).  This feature also allows for profiling 

features below the surface of a material [7].   We note here that a limiting 

characteristic of PDS is that the thermal field cannot be substantially smaller than the 

probe beam.  When this condition occurs, the measurements rapidly become 

insensitive to model parameters. 

PDS was initially introduced as a method to measure the optical absorption 

properties of solids, liquids, gases, and thin films [1, 8-10].  It was later utilized to 

determine the thermal properties of bulk materials through the use of an ad hoc data 

reduction technique called the “zero-crossing” method [11, 12].  This technique relied 
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Figure 1-1:  Schematic of transverse PDS w/ alignment inset 
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on the use of linear relationships between the probe beam deflections and the inverse 

square root of the modulation frequency.  It was originally developed for optically and 

thermally thick samples, but was later adapted to allow for optically and thermally thin 

samples by solving the problem for a three-domain system (i.e. introduction of a 

backing layer) [2, 13].  More complete data analysis approaches than zero-crossing 

consist of multi-parameter least squares curve-fitting algorithms designed to minimize 

the difference between measured and predicted probe beam deflections [14-18].   

In order to use PDS to extract useful information about a material’s properties, 

it is necessary to have a suitable model of heat transfer in the solid and gas phases.  

Several models have been presented to predict the temperature of a spot-heated 

material as configured in Figure 1-2.  They differ primarily in the assumptions 

employed, which have included the following:  dimensionality (i.e. 1-D, 2-D, 

axisymmetry), layer structure (i.e. bulk, film-on-substrate, multi-layer), anisotropy of 

thermal properties, thermal contact resistance, boundary conditions, optical properties, 

and solution technique.  All assume that conduction heat transfer is the dominant form 

of energy transport in the gas, with negligible convective and radiative transport [19].  

Jackson et al. [10] utilized a three-domain system where volumetric optical 

absorption of the heating beam occurs only in the middle layer.  This is appropriate for 

a single film suspended in air.  There was no treatment of anisotropy or thermal 

boundary resistance, and their probe beam was treated as a single optical ray.  Opsal & 

Rosencwaig [7] extended the theory for photoacoustics to an arbitrary number of 

layers but used a simplified 1-D geometry with surface absorption of the incident heat 

flux.  McGahan & Cole [20] presented a Green’s function solution to the heat equation 

in a multi-layered structure which incorporates volumetric energy absorption in each 

layer.   Li and Zhang [21] account for the existence of inter-layer thermal boundary 

resistance and anisotropic thermal conductivity, but allowed for volumetric heat 
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Figure 1-2:  Schematic of multilayer structure 
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generation in only the top-most layer.  No single work appears to have incorporated all 

of the above assumptions concurrently in the context of PDS.  A more comprehensive 

review of PDS and related literature has been performed by our colleague, Dr. Jason 

Foley [22]. 

The purpose of this paper is the following:  1) develop a broadly applicable 

model for the thermal field and optical probe beam deflections caused by spot-heating 

a multi-layered solid with a modulated laser beam, 2) validate the model by 

comparisons with probe beam deflection measurements for a NIST standard reference 

material (SRM), and 3) apply the model to multi-layered systems to show the 

influence of parameters including modulation frequency, anisotropy, contact 

resistance, and heating and probe beam characteristics on the temperature field and 

probe beam deflections. 

2. Model 

 The following assumptions are made in the present study:  transverse PDS in a 

bounced probe beam configuration (Figures 1-1 & 1-3), a multilayered material 

structure (Figure 1-2), axi-symmetric heat flow, homogeneous density and specific 

heat within each layer, anisotropic thermal conductivity within each layer, a thermal 

contact resistance at each interface, temperature invariant properties, volumetric 

optical-to-thermal energy conversion, periodically modulated heating beam, and 

Gaussian (TEM00) heating and probe beams. 

We further assume that the continuum hypothesis is satisfied.  Certainly, at 

length-scales below the mean free path of the energy carriers (i.e. electrons and 

phonons) this is not a valid assumption [23].  A continuum model, however, is 

conventionally applied even when phonon boundary effects are not negligible [24, 25].  

This allows us to use corrected properties (i.e. not bulk) which incorporate the  
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Figure 1-3a:  Schematic of skimmed probe beam (y-z plane, x = xoffset) 

 

 

 

Figure 1-3b:  Schematic of bounced probe beam (y-z plane, x = xoffset) 

 

 

 

Figure 1-3c:  Schematic of bounced probe beam (x-z plane, y = 0) 
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influence of quantum effects that may be applied to Fourier conduction.  This is a 

reasonable approach based on the need for such properties in engineering design.   

2.1 Thermal Field 

 A heating beam is used to provide periodic heating, by means of volumetric 

optical-to-thermal energy conversion, within the sample.  The periodic heating 

waveform can be expressed as the sum of an infinite series of sinusoidal contributions 

in addition to a steady-state contribution. 

( ), . .h h n S S
n

P P t P= +∑   1.1 

Each of the terms in Eq 1.1 may be evaluated by performing a Fourier expansion of 

the heating beam’s waveform [26].  The resulting temperature field is similarly 

( ) . .n S S
n

tθ θ θ= +∑  1.2. 

We intend to solve for the temperature field resulting from a single harmonic of the 

heating waveform.  This solution contains all of the information necessary to relate the 

temperature field and subsequent probe beam deflections to the thermal properties of 

the multilayer structure.  Furthermore, the lock-in amplifier techniques we employ 

allow us to measure the behavior of the system at individual frequencies.  Therefore, 

there is no need to discuss the steady-state contribution in Eq 1.2. 

 The energy equation for a particular layer j is 
2 2

, , , , ,
, , ,2 2

n j r j n j n j n j
r j z j n j j j

k
k k q C

r r r z t
θ θ θ θ

ρ
∂ ∂ ∂ ∂

′′′+ + + =
∂ ∂ ∂ ∂

 1.3. 

The boundary conditions for Eq 1.3 are given in Table 1-1.  The source term, ,n jq′′′ , can 

be expressed by a Gaussian radial intensity distribution of the heating beam with 

optical absorption governed by the Beer-Lambert law and sinusoidal modulation in the 

time domain as 
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Table 1-1:  Boundary conditions to Eq 1.3 (physical domain) and Eq 1.6 (transform domain)  

 

Physical Domain Transform Domain 

( ), , ,n j r z tθ   ( ),
ˆ , ,n j zθ κ ω  

( ), 0, , 0n j r z t
r
θ∂

= =
∂

 Satisfied by Hankel transform 

( ), , , 0n j r z tθ →∞ =  Satisfied by Hankel transform 

( ), ,, , , , , where m = integer
2n j n j

n

mr z t r z tθ θ
πω

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
Satisfied by Fourier transform 

( ), , , 0n j r z tθ →±∞ = ( ),
ˆ , , 0n j zθ κ ω→±∞ =  

, , 1

, , 1
, , 1

bot j top j

n j n j
z j z j

z z z z

k k
z z
θ θ

+

+
+

= =

∂ ∂
=

∂ ∂
 

, , 1

, , 1
, , 1

ˆ ˆ

bot j top j

n j n j
z j z j

z z z z

k k
z z
θ θ

+

+
+

= =

∂ ∂
=

∂ ∂
 

, 1, 1 ,
,

,
, 1 , ,j jtop j bot j

bot j

n j
n j n j bdry z jz z z z

z z

R k
z
θ

θ θ
+

+
+ = =

=

⎛ ⎞∂
⎜ ⎟− = −
⎜ ⎟∂
⎝ ⎠  

, 1
, 1 ,

,

,
, 1 , ,

ˆ
ˆ ˆ

j j
top j bot j

bot j

n j
n j n j bdry z j

z z z z
z z

R k
z
θ

θ θ
+

+

+
= =

=

⎛ ⎞
∂⎜ ⎟− = −⎜ ⎟∂⎜ ⎟

⎝ ⎠
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( ) ( ) ( )
2

2
, ,

2

, , , , , 2

2 sinj top j j bot j h

r
z z z z R

n j top n j j bot n j j n
h

q P e P e e t
R

α αα α ω
π

−
− − − −⎡ ⎤′′′ = + × ×⎢ ⎥⎣ ⎦

 1.4, 

where αj is the absorption coefficient in a particular layer.  The terms , ,top n jP  and 

, ,bot n jP  represent the total amount of downward propagating optical power at the top 

surface of each layer and upward propagating optical power at the bottom surface of 

each layer, respectively.  They may be calculated by accounting for reflections at each 

interface and subsequent absorption within each layer.  These techniques have been 

discussed elsewhere in the literature [27, 28].  Since we are interested primarily in the 

thermal properties of the material, our analysis is simplified considerably by the 

addition of an optical absorption layer atop the multilayer structure.  This reduces Eq 

1.4 to 

( ) ( )
2

2
2

2

, 2 2
,

21 sin 2

0 2

h

r
Rz

surf h n n
n j h

refl P e e t jq R
j

αα ω
π

−⎧ ⎫
⎪ ⎪− × × =′′′ = ⎨ ⎬
⎪ ⎪

≠⎩ ⎭

 1.5, 

where the term surfrefl  is the reflectivity of the absorption layer at normal incidence at 

a particular wavelength. 

Eq 1.3 can be reduced to a second-order ordinary differential equation by 

applying Hankel and Fourier transformations (see Appendix for details).   

2
, 2

, ,2
,

ˆ 1ˆ ˆn j
j n j n j

z j

d
q

dz k
θ

θ ′′′− Λ = −  1.6, 

where 

, 2

, ,

r j j j
j

z j z j

k C
i

k k
ρ

κ ωΛ = +
 1.7 

and 
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( ) ( ) ( )
2 2

2 8
, 2

,

21 2ˆ 2
0 2

hR
z

surf h n n n
n j

refl P e e jq i
j

κ
α πα δ ω ω δ ω ω

−⎧ ⎫⎛ ⎞⎡ ⎤− × × − − + =⎪ ⎪⎜ ⎟⎣ ⎦′′′ = ⎨ ⎬⎝ ⎠
⎪ ⎪≠⎩ ⎭

 1.8. 

The boundary conditions for Eq 1.6 are given in Table 1-1.  The general form of the 

solution to Eq 1.6 is 

( ) ( )
2 2 2 2

, ,

, ,

8 8
, 1 2 ,2 2

,

1 1ˆ ˆ
h h

j top j j bot j

n j n j

R R
z z z z

n j n j
z j j j

c e c e q
k

κ κ

θ
α

Λ − − −Λ − −
′′′= + +

Λ −
 1.9. 

To solve for the unknown coefficients 
,1n j

c  and 
,2n j

c  in Eq 1.9, we must apply the 

boundary conditions expressed in Table 1-1.  This results in the following equations 

which are to be evaluated at each interface between two adjacent layers. 

( ) ( ) ( )

1 1

, , , 1 , 1, 1 , 2 , 1 1 1 , 1 1 2

2
2

,2 2
2 2

21 j = 1
2
0 1

j j j j

n j n j n j n jz j j z j j z j j z j j

surf h n n n

k e c k c k c k e c

refl P
i

j

δ δ

α π δ ω ω δ ω ω
α

+ +

+ +

−Λ −Λ
+ + + +

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤Λ + − Λ + − Λ + Λ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎧ ⎫⎛ ⎞⎡ ⎤− − − +⎪ ⎪⎜ ⎟⎣ ⎦= Λ − ⎝ ⎠⎨ ⎬
⎪ ⎪≠⎩ ⎭

 1.10 

and 

( ) ( )
[ ]

( ) ( ) ( )

, 1 , , 1 ,

1 1

, 1 , 1

, , 1 , , 2

1 2

2
,2 2

,2 2 2

1 1

1

1 21 1
2

0 1

j j

j j n j j j n j

j j

n j n j

bdry z j z j bdry z j z j

surf h n n n
z

R k e c R k c

c e c

refl P j
k i

j

δ

δ

α π δ ω ω δ ω ω
α

+ +

+ +

+ +

−Λ

−Λ

⎡ ⎤ ⎡ ⎤Λ − + − Λ −⎣ ⎦ ⎣ ⎦
⎡ ⎤+ + ⎣ ⎦

⎧ ⎫⎛ ⎞⎡ ⎤− − − − + =⎪ ⎪⎜ ⎟⎣ ⎦Λ −= ⎝ ⎠⎨ ⎬
⎪ ⎪≠⎩ ⎭

 1.11. 

 In order to maintain a bounded solution in the top and bottom semi-infinite 
layers, we must set 

, 11 0
n j

c
=
=  and 

,2 0
n j Nlayers

c
=

= .  Written for each interface, Eqs 1.10 

and 1.11 result in a block tri-diagonal matrix of size ( )2 1layersN× − , which must be 

solved for each value of the spatial wavenumber, κ.  A matrix inversion solution may 
be used to solve for the unknown coefficients, ( )

,1n j
c κ

 
and ( )

,2n j
c κ  in Eq 1.9.  Beyond 

a 3-layer system, the algebraic manipulations required to obtain a closed-form solution 

for the coefficients becomes intractable, and a generalized solution for an arbitrary 
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multilayered system is not possible.   The calculations are readily handled, however, 

by software such as MATLAB.   

The temperature field may be determined in physical space by performing the 

requisite inverse transformations, given by 

( ), , 0
0

1 1 ˆ
2 2

i t
n j n j J r d e dω

ω κ

θ κθ κ κ ω
π π

∞ ∞

=−∞ =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ ∫  1.12, 

where ,
ˆ
n jθ  is given by Eq 1.9.  The term in the square brackets is the Fourier 

transformed temperature field.  Due to the sinusoidal source term, this may be shown 

to have solutions at nω ω= ±  [29], which is also evident in the Dirac delta function 

terms contained in Eqs 1.8, 1.10 and 1.11.  It may be shown that the proper linear 

combination of these two conditions produces a real-valued, sinusoidal result for Eq 

1.12.  The square-bracketed term is solved using a trapezoidal rule numerical 

integration scheme, although the use of quasi fast Hankel transforms [30] should be 

investigated to facilitate more rapid computations.  

 2.2 Probe Beam Deflections 

 We will calculate the intensity-averaged probe beam deflections caused by the 

temperature field determined in the Section 2.1.  The deflection of a single ray, which 

is parallel to the sample surface (Figure 1-3a), can be broken into orthogonal 

components which are normal and tangential to the surface (Figure 1-3c).  Similar to 

Eqs 1.1 and 1.2, these deflections are the sum of an infinite series of sinusoidal 

contributions in addition to a steady-state contribution. 

( )norm,tan, norm,tan, norm,tan, . .n S S
n

tΦ = Φ +Φ∑  1.13, 

where the normal and tangential components are given by [17, 31-34] 

, 1
tan,

0

1 n j
n

y

dn dy
n dT x

θ∞
=

=−∞

∂
Φ =

∂∫
 1.14 
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and 

, 1
norm,

0

1 n j
n

y

dn dy
n dT z

θ∞
=

=−∞

∂
Φ =

∂∫  1.15. 

 It must be recognized that our probe beam consists of not a single ray, but a 

bundle of rays of differing intensity (Figure 1-3).  We will assume that the probe beam 

is collimated in the region of the thermal field and define an intensity-averaged probe 

beam deflection as the convolution of a single ray (Eq 1.14 or 1.15) with the probe 

beam intensity distribution as 

norm,tan, norm,tan,
0

1
n p n

p z x

I dxdz
P

∞ ∞

= =−∞

Φ = Φ∫ ∫  1.16 

where pI  is the intensity distribution of the probe beam.  Although we utilize a 

bounced probe beam (Figure 1-3b) in our experiment, we are basing our computations 

on Eqs 1.14 and 1.15, which have been developed for a ray parallel to the sample 

surface.  We use a model for our bounced beam which consists of the contribution 

from two beams parallel to the sample surface which are mirror images of each other 

separated by a distance 2h (Figure 1-3c) [17].   

( ) ( ) ( )2 2 2
0

2 2 2
2 2 2

2

2
for z 0p p p

x x z h z h
R R Rp

p
p

P
I e e e

Rπ

− − − − − +⎛ ⎞
⎜ ⎟= + ≥⎜ ⎟⎜ ⎟
⎝ ⎠

 1.17 

The first of these terms is based on the portion of the probe beam which bounces 

downstream of the thermal field (i.e. the incident portion), while the second is based 

on the portion of the probe beam which bounces upstream of the thermal field (i.e. the 

reflected portion).  The height h is determined by the z-coordinate of the center of the 

probe beam as it crosses the x-z plane of the heated spot (Figure 1-2b).  One important 

consequence of this model is that normal deflections which occur prior to bouncing 

are negated (i.e. sign flip) since the angle of incidence of a ray striking the surface 

must equal its angle of reflection.  The result of this is that the normal deflections will 
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be zero when the probe beam is bounced at the heated spot, due to symmetry of the 

thermal field.  This is not the case for a purely skimmed beam, nor is it the case for the 

tangential deflections under any circumstance.   

We have solved for the intensity-averaged probe beam deflections at a 

particular harmonic induced by the temperature field in Eq 1.12 for j=1 (i.e. the gas 

phase).  We first insert Eq 1.12 into either Eqs 1.14 or 1.15, which are subsequently 

inserted into Eq 1.16.  It may be shown that the resulting intensity-averaged probe 

beam deflections are 

( ) ( )

( )

2 2

2 2

2 2 2

1

, 1

2 2

tan,
0 0

8
2

1 1 1 2
2 2

1
2

p p

h p
j

n j

z h z h
R R

n
z p

R R
z i x i t

dn e e
n dT R

i c e e d dz e d

ω

κ
κ ω

κ

π π

κ κ ω
π

=

=

− − − +∞ ∞

=−∞ =

+∞
−Λ −

=−∞

⎧ ⎛ ⎞
⎪ ⎜ ⎟Φ = +⎨ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎩

⎫⎡ ⎤ ⎪⎢ ⎥ ⎬
⎢ ⎥ ⎪⎣ ⎦ ⎭

∫ ∫

∫

…
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and 

( ) ( )

( )

2 2

2 2

2 2 2

1

, 1

2 2

,
0 0

8
1 2

1 1 1 2
2 2

1
2

p p

h p
j

n j

z h z h
R R

norm n
z p

R R
z i x i t

j

dn e e
n dT R

c e e d dz e d

ω

κ
κ ω

κ

π π

κ ω
π

=

=

− − − +∞ ∞

=−∞ =

+∞
−Λ −

=
=−∞

⎧ ⎛ ⎞
⎪ ⎜ ⎟Φ = ±⎨ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎩

⎫⎡ ⎤ ⎪⎢ ⎥Λ ⎬
⎢ ⎥ ⎪⎣ ⎦ ⎭

∫ ∫

∫

 1.19. 

The  in Eq 1.19 allows the normal probe beam deflections to be used for either a 
skimmed (+) or a bounced (-) probe beam.  For a bounced beam, ( ), 0 0norm n hΦ = = .  

This produces a “notch” in the normal deflection signal whose location is useful in 

aligning the experiment.  Performing the experiment at this condition is advantageous 

in data analysis since h is known. 

 The physics of the thermal transport within the multilayer structure are 
embedded in the coefficient 

, 12n j
c

=
.  As with Eq 1.12, it may be shown that Eqs 1.18 

and 1.19 produce real-valued, sinusoidal results.  Observe that the terms in square 
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brackets represent an inverse Fourier transform in the spatial domain, which may be 

efficiently solved using commercially available fast Fourier transform (FFT) routines.  

The integration over the z-dimension is solved using a trapezoidal rule numerical 

integration scheme.  Subsequent references to the real and imaginary components of 

the probe beam deflections (in this and future works) are referring to the complex-

valued arguments to the inverse Fourier transforms in the time domain in Eqs 1.18 and 

1.19 (i.e. the term in curly brackets). 

3. Model Validation 

 3.1 Introduction 

 In order to validate our model, we effectively have two choices:  measure the 

temperature field determined in Section 2.3, or measure the probe beam deflections 

determined in Section 2.4.  Since our primary application is PDS, we take the latter 

approach.  Our measured variables are the optical probe beam deflections from a PDS 

experiment using a series of NIST standard reference materials (SRMs).  Specifically, 

we will be using NIST SRM8421 (Electrolytic Iron) [35] and NIST SRM1462 

(Stainless Steel) [36].  We directly compare the probe beam deflections predicted by 

the model to those measured experimentally.  Additionally, a model-based parameter 

estimation algorithm (Chapter 2) is used to determine a set of parameters that allows 

for the best agreement with the data.   

 We first make comparisons by treating the SRMs as bulk materials.  Our 

model, however, allows for the effects of a more complex multi-layered system.  

Unfortunately, there are no thin film or multilayer systems that we know of which are 

able to serve as standard reference materials with known properties.  Therefore, we 

developed a method to test the models ability to determine the thermal conductivity of 

a “virtual” film atop an otherwise bulk substrate.  Unfortunately, we are unable to 
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validate the inclusion of thermal contact resistance and anisotropy due to a similar lack 

of standardization. 

 3.2 Experimental Apparatus 

Figure 1-4 shows a schematic of the experimental apparatus.  The heating 

beam was produced by a Coherent Innova 70 argon-ion laser operating at 514.5 nm 

which is coupled into a 9 μm diameter optical fiber.  This fiber was coupled to a 

Brimrose acousto-optical modulator (AOM) (model TEM-100-5-514-2FP-9/125) to 

achieve square-wave intensity modulation at the desired frequencies.  The modulated 

light exiting the fiber is then focused onto the sample surface using a matched pair of 

aspheric lenses (f = 11 mm).  The focused spot size is assumed to have a radius Rh = 

4.5 μm.  The nominal amplitude of the heating beam power at the first harmonic 

frequency was 50 mW (c.f. Ph,p-p = 78.5 mW).  Although higher power would allow 

for a better signal-to-noise ratio, it should be kept low enough to avoid convective and 

radiative phenomena that may be associated with high temperatures.  In order to 

estimate the maximum temperature of the sample, we use the method of conduction 

shape factors presented by Incropera & DeWitt [37].  For a disk of diameter 9 μm 

(corresponding to the laser heated spot), with a steady-state incident power of 39.3 

mW (c.f. 50% of Ph,p-p), we calculate that the maximum temperature in the sample will 

be 33 °C and 141 °C above the ambient temperature for SRM8421 and SRM1462, 

respectively.  We believe that this estimate places an upper bound on the steady-state 

temperature rise, since it neglects heat transfer to the gas phase, which we know to 

occur.  It is clear that there is a degree of ambiguity involved when thermal properties 

vary with temperature. 
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Figure 1-4:  Schematic of experimental apparatus 
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 The probe beam is produced by a JDS Uniphase HeNe laser operating at 632.8 

nm which is focused onto the sample at a shallow angle (θtilt ~ 2° in Figure 1-3b) such 

that the heating beam, probe beam, and sample surface are mutually aligned.  The 

radius at the waist of the focused beam was measured to be 23.9 μm using a f = 25 

mm plano-convex lens.  The power of the probe beam is 0.8 mW, and is expected to 

make a negligible contribution toward steady-state heating, and no contribution toward 

periodic heating. 

 Deflections of the probe beam were detected using a Pacific Silicon Sensors 

QP50-6SD2 quadrant photodetector (QPD) with built-in amplification, summing, and 

differencing circuitry.  An EG&G Princeton Applied Research model 5302 lock-in 

amplifier was used to measure the phase and amplitude of the signal from the QPD.  A 

band-pass filter (12 dB exponential) was tuned to the modulation frequency to 

eliminate higher harmonics, extraneous noise sources, and to utilize the lock-in 

amplifier’s full dynamic reserve.  The time constant and sensitivity of the lock-in were 

set to 1 sec and 1 mV, respectively.  A built-in analog-to-digital converter (ADC) was 

used to monitor the power of the probe beam, which is necessary for subsequent signal 

normalization. 

 The modulation frequencies selected for our experiment were f = 1, 2, 4, 8, 16, 

32, 64 and 128 kHz.  The highest frequency represents the limit of our amplifier 

bandwidth, above which the signal-to-noise ratio becomes poor.  The one-dimensional 

thermal penetration depth, defined by  

2 z
tpd

n

kl
Cω ρ

=  1.20, 

is 7.53μm and 3.07μm at 128 kHz for SRM8421 and SRM1462, respectively.  The 

question of whether we will have sensitivity to films significantly thinner than this 

will be determined.  At such a condition, the thermal wave propagates far into the 
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substrate, whose properties will dominate the temperature field and probe beam 

deflections. 

 The sample, probe laser, and QPD were moved in unison under a fixed heating 

beam using a Newport PMC400 motion controller and linear actuation stages.  

Scanning was performed in the X-Y plane for alignment and data collection.  The 

heating beam’s focusing lens was positioned to ensure that the waist was aligned to 

the sample surface.  Furthermore, the height of the sample could be changed 

independently of the lasers using a manual elevation stage. 

 Alignment was achieved through observations of characteristics (e.g. minima, 

maxima) in the probe beam deflection signals (Figure 1-1 inset).  X-direction 

alignment was determined by locating a characteristic “notch” in the tangential 

deflection signal which occurs when each half of the probe beam is deflected equally 

in opposite directions.  Y-direction alignment was determined by locating a similar 

notch in the normal deflection signal.  It can be shown in Eq 1.19 that the 

contributions from the incident and reflected portions of the probe beam nullify the 

normal deflection signal when the probe beam height is zero.   Z-direction alignment 

was achieved by locating the maxima of the normal deflection signal as the heating 

beam focusing lens is scanned perpendicularly to the surface.  This condition must be 

found at a position other than the aligned position to avoid the normal channel 

nullification which previously determined the Y-direction alignment.  Looking ahead 

to Figures 1-5c and 1-6c, we acknowledge that there is mild asymmetry in the 

measurements.  This effect is not predicted by the model, and seems most pronounced 

at the lowest frequencies.  We have not been able to definitively determine the cause 

of this, but we believe that it may be due to misalignment of the quadrant 

photodetector or tilt of the sample surface.  Furthermore, convection effects have been 
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reported to be most pronounced at low frequencies [19], which could possibly 

contribute to this asymmetry. 

 We will be comparing the measured probe beam deflections to those predicted 

by the model.  There are two general cases for which this comparison will be made:  

1.) using model parameters which we initially believe to be true (a priori), and 2.) 

using model parameters resulting from an estimation algorithm (a posteriori).  The 

details of the estimation algorithm, which is based on a Levenberg-Marquardt [38] 

non-linear least-squares approach, are provided in (Chapter 2).  The parameters which 

result from the algorithm are those which minimize the cost function, defined as 

( ) ( )22
model, data, 0,2 2

0,

1 1 1CF
2 i i j j

i ji j

s s
σ σ

⎡ ⎤
≡ Φ −Φ + −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑  1.21 

 In Eq 1.21, iσ  represents the uncertainty (i.e. noise) in a measurement, 0, js  

represents the initial value of an estimated parameter, and 0, jσ  represents its initial 

uncertainty (which may be known with some accuracy from an alternate measurement, 

or may be infinite in the case of no prior knowledge).  The subscript i represents an 

index over all measurements, while the subscribe j represents an index over all 

parameters being estimated.  modelΦ  represents the predicted probe beam deflections 

evaluated at s , the suite of model parameters at the current iteration.  The parameters 

resulting from the algorithm are not single-valued, but are represented by a normal 
probability density function (pdf) and may be described by a mean 

jsμ  and standard 

deviation 
jsσ  for each parameter js .  

There are several terms in our model that act as linear multipliers to the probe 

beam deflection equations.  These terms are embedded in either the transformed 

temperature coefficients (from Eq 1.9) or the probe beam deflection equations (Eqs 

1.18 and 1.19).  We re-write Eqs 1.18 and 1.19 as 
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1
norm, tan, 1 norm, tan,

1

1n n
G G

G
⎛ ⎞Δ ′Φ = + Φ⎜ ⎟
⎝ ⎠

 1.22, 

where 

( )1 ,
0

1 1 surf h n
dnG refl P

n dT
= −  1.23. 

1G  is a collection of model parameters and 1GΔ  is the error associated with our 

knowledge of these parameters.  In the case of perfect knowledge of the terms in Eq 

1.23, the pre-factor in Eq 1.22 simply reduces to one.  The “primed” probe beam 

deflections in Eq 1.22 have been defined such that we have removed the dependence 

of the parameters contained in 1G  as 

( ) ( )

( )

2 2

2 2

2 2 2

1

, 1

2 2

tan,
0

8
2

1 1 2
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and  
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where 

( )
, 1 , 12 , 21

n j n jsurf h nc refl P c
= =

′= −  1.26. 

Another linear multiplier to our probe beam deflections is the conversion factor 

between angular deflections and measured signals, G0.  This parameter has been 

determined by calibration to be G0 = 180.1 rad-1 for our experimental setup.  



23 
 

Assembling the above information, the probe beam deflection signals may be 

expressed as   

norm,tan, 0 norm,tansig multG GΦ = Φ  1.27, 

where the gain multiplier is defined as 

1

1

1mult
GG

G
⎛ ⎞Δ

= +⎜ ⎟
⎝ ⎠

 1.28. 

This gain multiplier may be used as a floating parameter in our estimation algorithm in 

order to account for uncertainty in the terms contained in Eq 1.23. 

 3.3 Validation Results 

  3.3.1 Bulk 

 Figures 1-5a and 1-6a compare the experimental probe beam deflections for 

SRM8421 and SRM1462 to the probe beam deflections predicted by Eq 1.18 using the 

NIST published values of thermal conductivity at 300 K [35, 36] and model 

parameters which we initially believe to be true from the experiment (Table 1-2, Case 

1).  Although the model is qualitatively similar to the measurements, there are some 

obvious differences in the magnitude and spread of the data.  In particular, the peaks 

of the magnitude of the tangential deflection seem to differ the most, indicating that 

we may have imperfect knowledge of certain model parameters.  In order to determine 

whether this may be due to temperature dependence of the thermal conductivity, we 

predicted the probe beam deflections using thermal conductivities evaluated at the 

steady-state temperature approximated by the shape factor analysis performed in 

Section 3.2.  The numerical results for this condition are provided in Table 1-2, Case 

2, while the graphical results are provided in Figures 1-5b and 1-6b for SRM8421 and 

SRM1462, respectively.  Based on the cost function, improvement over Case 1 was 

found for SRM1462, but not for SRM8421.  This indicates that the differences may be 

due to parameters other than just thermal conductivity.  In particular, we have found 
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that by letting the thermal conductivity, probe beam radius and linear gain multiplier 

to act as “floating” parameters in the estimation algorithm, we are able to achieve 

better agreement with the data (i.e. lower cost function).  There are several 

combinations of model parameters which could have been used (e.g. density, specific 

heat, absorption coefficient, etc.), but it is prudent to use the smallest number of 

parameters possible in order for the estimation algorithm to converge.   

 Figures 1-5c and 1-6c compare the experimental probe beam deflections for 

SRM8421 and SRM1462 using parameters resulting from the 3-parameter fit (Table 1-

2, Case 3).  Although differences exist, we do not challenge the NIST published 

results, primarily due to the ambiguity over temperatures associated with the values 

we have obtained.  We again point out the slight asymmetries which are evident in the 

data (Figures 5c and 6c) which are not predicted by the model.  Similar occurrences 

may be found throughout the PDS literature (for example, Figure 12 in [39]), and their 

cause has not been clearly identified.  We note that, although we show the magnitude 

of the tangential deflection in Figures 1-5 and 1-6, we actually the fit the real and 

imaginary components of this deflection in order to preserve phase information.  We 

believe that the results of this analysis validate the two-layer subset of our multilayer 

model. 

  3.3.2 Film on Substrate 

 Given a well-characterized NIST SRM, we will create a “virtual” film of 

arbitrary thickness on the surface of the otherwise bulk material.  Since the “film” and 

“substrate” in Figure 1-1 are comprised of identical materials, we know that their 

properties match.  The task, then, is to use our estimation algorithm to attempt to 

recover the properties of the “film” from the same experimental data used for the bulk 

analysis. 
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 In our model, we allow the thickness of the virtual film to vary between 1 nm 

< δ < 1 mm.  We again recognize that, at the smallest scales, the continuum 

assumption breaks down.  This approach, however, allows us to explore the sensitivity 

of our model to the existence of such films, regardless of the precise mechanisms of 

heat transfer.  The resulting mean and standard deviation (indicated by error bars) of 

the thermal conductivity estimates at each thickness can be found in Figures 1-7a and 

1-7b for SRM8421 and SRM1462, respectively.  The one-dimensional thermal 

penetration depths (Eq 1.20) are provided at the highest (f = 1 kHz) and lowest (f = 

128 kHz) frequencies for each material.  At film thicknesses which are on the order of, 

or greater than the thermal penetration depth in each material, we find excellent 

agreement with the thermal conductivity obtained for the bulk analysis in Section 

3.3.1 (Table 1-2, Case 3).  We believe that this provides a measure of validation to the 

three-layer subset of our multi-layer model. 

 For virtual films significantly thinner than the thermal penetration depth, the 

estimation algorithm is unable to accurately predict the thermal conductivity of the 

film, as evidenced by the large standard deviation of the estimated thermal 

conductivity at very thin film thicknesses.  In this case, the thermal wave propagates 

far into the substrate, whose properties dominate the heat transfer into the gas phase 

and subsequent probe beam deflections.  In order to corroborate this, we plot the 
maximum value of tan maxfilmk∂Φ ∂  as a function of film thickness in Figure 1-8.  At 

film thicknesses which are thinner than the thermal penetration depth, the sensitivity to 

the properties of the film drops off precipitously. 
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Table 1-2:  Comparison of model parameters and results for NIST SRM8421 and 
SRM1462 [35, 36].  Case 1 uses NIST published values for thermal conductivity @ 
300K.  Case 2 uses NIST published values for thermal conductivity evaluated at 
steady-state temperature approximated by shape-factor analysis.  Case 3 shows the 
results of a 3-parameter fit using kz, Rp, and gain multiplier. 

 

 

 SRM8421 SRM1462 

Parameter Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

kz [W/m-K] 76.4 
(300K) 

73.3 
(333K) 

70.9 14.32 
(300K) 

16.71 
(441K) 

13.45 

ρC [J/m3-kg] 3.52x106 3.52x106 3.52x106 3.77x106 3.77x106 3.77x106 

Rp [μm] 23.9 23.9 24.0 23.9 23.9 25.3 

Rh [μm] 4.5 4.5 4.5 4.5 4.5 4.5 

|Ph,n| [mW] 50 50 50 50 50 50 

Reflsurf 0.492 0.492 0.492 0.492 0.492 0.492 

Gain Mult 1 1 0.81 1 1 0.94 

Cost 
Function 

3.34x105 4.65x105 9.23x104 1.88x106 1.05x106 3.35x105 
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Figure 1-5a – 1-5c:  Comparison of experimental measurements and modeled probe beam deflections for SRM8421 (Electrolytic 
Iron).  Conditions are:  a.) thermal conductivity of SRM8421 @ 300K, b.) thermal conductivity of SRM8421 @ 333K, and c.) 3-
parameter fit with thermal conductivity, probe beam radius, and gain multiplier.  Other a priori model parameters provided in 
Table 1-2. 
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Figure 1-5 (continued) 

 

 

 

(b) 
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Figure 1-5 (continued) 

 

 

 

(c)  
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Figure 1-6a – 1-6c:  Comparison of experimental measurements and modeled probe beam deflections for SRM1462 (Stainless 
Steel).  Conditions are:  a.) thermal conductivity of SRM8421 @ 300K, b.) thermal conductivity of SRM8421 @ 441K, and c.) 3-
parameter fit with thermal conductivity, probe beam radius, and gain multiplier.  Other a priori model parameters provided in 
Table 1-2. 
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Figure 1-6 (continued) 

 

 

 

(b)  
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Figure 1-6 (continued) 

 

 

 

(c)  
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Figure 1-7a:  Results of virtual film analysis for NIST SRM8421 
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Figure 1-7b:  Results of virtual film analysis for NIST SRM1462 
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Figure 1-8:  Sensitivity of probe beam deflections to the thermal conductivity of a 
virtual film of thickness δ.  Dashed lines represent thermal penetration depth (Eq 1.20) 
at each frequency. 
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4. Parametric Investigation 

 In this section, we illustrate the influence of several model parameters on the 

periodic components of the temperature field and optical probe beam deflections 

developed in Section 2.  For the purposes of these simulations, we use the following 

systems:  bulk Si, SiO2 film on Si substrate, and SiO2/Si multilayer on Si substrate.  In 

each case, a 100nm layer of tungsten (W) is used as the top-most optical absorption 

layer.  The bulk properties used for these calculations may be found in Table 1-3, 

understanding that the true properties of these materials may differ significantly 

depending on factors such as doping concentration and fabrication process [40, 41].  

Other model parameters may be found in Table 1-4.  Variations to these values will be 

indicated where necessary.  It is worthy of noting that the heating beam power is 

modeled to be 1 W in this investigation.  This is a truly unreasonable power with such 

a small heating beam radius.  The temperature fields and probe beam deflections will 

scale, however, with this temperature.  The following figures should be interpreted 

accordingly (i.e. per Watt of heating beam power).   

Figures 1-9a through 1-9d show the magnitude of the temperature oscillations 

as the modulation frequency is varied from 1 kHz < f < 1 MHz.  The contour lines, 
which indicate drops of e-n/4 (n=1,2,3…) from maxθ  (which always occurs at r = 0, z = 

0), show that the temperatures decay more rapidly at high frequencies (Figure 1-9d) 

than at low frequencies (Figure 1-9a).  It is clear that there is more confinement of the 

thermal field at high frequencies, as would be predicted from the thermal penetration 

depth in Eq 1.20.  The peak temperature varies only slightly between each case, since 

the integrated amount of energy put into the sample is the same.  Figure 1-9e shows 

that the reduced size of the thermal field creates tangential probe beam deflections of 

smaller magnitude.  This is due to the fact that the probe beam becomes large  
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Table 1-3:  Default material properties used in Section 4.  Properties @ 300K obtained 
from Incropera & DeWitt [37]. 
 
 

Property Si SiO2 W 

kz [W/m-K] 148 1.38 174 

kr/kz 1 1 1 

ρ [kg/m3] 2,330 2,220 19,300 

C [J/kg-K] 712 745 132 
 
 
 
 
 
 
 
Table 1-4:  Default model parameters used in Section 4 

 
 

 
  

Parameter Value 

Ph [W] 1 

Rh [μm] 2.0 

Rp [μm] 21.3 

h [μm] 0 

Gain [rad-1] 150 

f [Hz] 1000 
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Figures 1-9a – 1-9e:  Effect of modulation frequency (f) on the temperature field and 
probe beam deflections in Si.  Frequencies are:  a.) 1 kHz, b.) 10 kHz, c.) 100 kHz and 
d.) 1 MHz.  Figures 1-9a – 1-9d show the magnitude of the temperature field at each 
frequency.  The contour lines indicate drops of e-n/4 (n=1,2,3,…,24) from maxθ , which 
occurs at (0,0).  Figure 1-9e shows the magnitude of the tangential probe beam 
deflection at each frequency.   
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compared to the size of the thermal field, and less of it passes through heated portions 

of the gas. 

Figures 1-10a through 1-10d show the effect of heating beam radius (Rh) on 

the thermal field.  At small radii, the temperature field is clearly two-dimensional in 

nature.  As the radius increases, however, the temperature field becomes progressively 

one-dimensional.  At the limit of an infinitely wide heating beam, we expect the 

thermal penetration depth to be predicted by Eq 1.20.  This is clearly the case, even at 

Rp = 2.0 mm in Figure 1-10d.  In Figure 1-10e, we observe that the tangential probe 

beam deflections become vanishingly small as the radius increases.  This is because a 

one-dimensional thermal field has no temperature gradients in the x-direction, which 

is what drives the tangential deflections in Eq 1.14.  This condition is not helpful at the 

aligned position, since both the normal and tangential deflection signals will be zero. 

Figures 1-11a through 1-11e show the effect of anisotropic thermal 

conductivity (defined as kr /kz) on the thermal field.  At low levels of anisotropy, we 

see strong effects of confinement in the radial direction, directing energy deep into the 

substrate.  As anisotropy is increased, however, there is strong radial spreading.  As it 

tends toward infinity, all heat flow will be in the radial direction.  This is the reason 

why, in Figure 1-11f, the tangential probe beam deflections diminish as anisotropy is 

increased.  Once again, the radial spreading decreases the temperature gradients in the 

x-direction of the gas through which the probe beam passes. 

 Figures 1-12a through 1-12d show the effect of increasing thermal contact 

resistance from 10-8 < Rbdry < 10-5 m2-K/W located between a 1μm film of SiO2 and a 

semi-infinite Si substrate.  The inset figures show the full thermal field, while the main 

figures provide a close-up of the film/substrate interface.  In these figures, the W 

absorption layer is visible atop the SiO2 film (dashed line).  At small values of contact  
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Figures 1-10a – 1-10e:  Effect of heating beam radius (Rh) on the temperature field 
and probe beam deflections in Si.  Radii are:  a.) 2μm, b.) 20μm, c.) 200μm and d.) 
2mm indicated by dashed vertical line.  Figures 1-10a – 1-10d show the magnitude of 
the temperature field at each radius.  The contour lines indicate drops of e-n/4 
(n=1,2,3,…,24) from maxθ , which occurs at (0,0).   1-10e shows the magnitude of the 
tangential probe beam deflection at each radius. 
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Figures 1-11a – 1-11f:  Effect of anisotropy (kr/kz) on the temperature field and probe beam deflections in Si.  Anisotropy levels 
are:  a.) 0.1, b.) 0.5, c.) 1.0, d.) 2.0 and e.) 10.0.  Figures 1-11a – 1-11e show the magnitude of the temperature field at each level of 
anisotropy.  The contour lines indicate drops of e-n/4 (n=1,2,3,…,24) from maxθ , which occurs at (0,0).  Figure 1-11f shows the 
magnitude of the tangential probe beam deflection at each level of anisotropy. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
 

Figures 1-12a – 1-12e:  Effect of thermal contact resistance (Rbdry) located between a 1 
μm SiO2 film and Si substrate on the temperature field and probe beam deflections.  
Rbdry is a.) 10-8 m2-K/W, b.) 10-7 m2-K/W, c.) 10-6 m2-K/W and d.) 10-5 m2-K/W.  
Figures 1-12a – 1-12d show the magnitude of the temperature field for each value of 
contact resistance.  Layer interfaces, including the 100nm W absorption layer, are 
indicated by dashed lines.  The contour lines indicate drops of e-n/4 (n=1,2,3,…,24) 
from maxθ , which occurs at (0,0).  Figure 1-12e shows the magnitude of the tangential 
probe beam deflections for each value of contact resistance. 
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Figure 1-12 (continued) 
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resistance, we see only small temperature excursions across the boundary.  As the 

resistance increases, however, substantial jumps become evident, particularly in the 

locations of greatest heat flux (i.e. greatest temperature gradients).  Ultimately, the 

contact resistance may be so high that it prohibits any heat from entering the substrate.  

This localization of energy in the film and gas phase causes higher temperature 

gradients, thus larger probe beam deflections in Figure 1-12e. 

Figures 1-13a and 1-13b show the thermal field in a multi-layer stack of 

alternating SiO2/Si films.  In Figure 1-13a, the bi-layer thickness is 0.5μm with a total 

stack height of 1μm (i.e. 2 periods).  In Figure 1-13b, the bi-layer thickness is 0.25μm 

with the same total stack height (i.e. 4 periods).  In both of these cases, we see a large 

temperature drop across the individual SiO2 layers, with virtually no temperature drop 

across the more conductive Si layers.  This indicates a predominantly radial heat flow 

pattern in the conductive Si layer, and a predominantly axial heat flow pattern in the 

insulating SiO2 layer. 

In Figure 1-14a, we show the effect of increasing the probe beam radius from 

15.4 μm < Rp < 60.7 μm.  The most notable effect is that the magnitude of the probe 

beam deflections diminish with increasing radius.  This is due to the convolution 

effect (i.e. 
( )2 2 2

8
h pR R

e
κ +

−
 in Eqs 1.18 and 1.19) that the probe beam has on the single-ray 

deflections.  At small radii, the probe “volume” is small, and the gas within this 

volume is at a higher average temperature.  Conversely, at large radii, the probe 

volume is large and may extend outside of the influence of the thermal field.  It 

appears evident that one should choose the smallest probe beam possible, but there are 

some physical and practical limitations involved.  Certainly, the optical setup must 

allow for physical clearance of the components.  Furthermore, it was implicit in the 

development of our model that the probe beam is collimated throughout the entire 

thermal field.  In laser optics, the depth of focus scales with the focused spot size.  
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Although it is physically possible to focus a laser beam to the order of its wavelength 
(i.e. 1pR mμ∼ ), such a beam is rapidly divergent and may not be considered 

collimated.  Larger probe beams also allow for a degree of relaxation in the relatively 

difficult alignment procedure. 

Figure 1-14b demonstrates the effect of probe beam height on the probe beam 

deflections.  This figure shows that the tangential probe beam deflections are strongest 

when the center of the probe beam is very close to the surface, where the highest 

temperature gradients exist.  As the probe beam height is increased, however, the 

probe volume begins to rise above the influence of the thermal field resulting in 

smaller magnitude deflections.  Notice that the effects seen in Figure 1-14b are very 

similar to those seen in Figure 1-14a.  This provides evidence that it may be difficult 

to differentiate between the effect of probe beam height and probe beam radius in our 

estimation algorithm.  For this reason, we typically prefer to perform the experiment at 

an aligned position of h = 0. 

5. Summary & Conclusions 

 A model has been developed to determine the modulated thermal field and 

optical probe beam deflections caused by periodic laser heating of a multi-layer 

material system.  Fourier and Hankel transform methods have been used to reduce the 

governing heat equation to an ordinary differential equation.  Application of interfacial 

boundary conditions leads to a solution in transform space, which is related to the 

physical domain through the requisite inverse transform procedures.  These 

temperature fields were used to determine expressions for the intensity-average probe 

beam deflections.  All information about the thermal properties in the multi-layer 

system is contained in a single coefficient resulting from the solution of the 

temperature field in the gas phase. 
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(a) 

 

(b) 
 
Figures 1-13a – 1-13b:  Temperature field in a multi-layer stack of SiO2/Si with a Si substrate.  In Figure 1-13a, there are 2 periods 
with individual film thicknesses of 0.25 μm, providing a total stack height of 1 μm.  In Figure 1-13b, there are 4 periods with 
individual film thicknesses of 0.125 μm, providing a total stack height of 1 μm.  In each system, the top-most layer is a 100nm film 
of W used for optical absorption.  The contour lines indicate drops of e-n/4 (n=1,2,3,…,24) from maxθ , which occurs at (0,0). 



 

52 
 

 
 
 
 
 

 

(a) 

 

 

(b) 
 
Figures 1-14a – 1-14b:  Effect of probe beam parameters on the magnitude probe 
beam deflections for Si.   Figure 1-14a shows the effect of increasing probe beam 
radius (Rp) on the magnitude of the tangential probe beam deflections.  Figure 1-14b 
shows the effect of increasing probe beam height (h) on the magnitude of the 
tangential probe beam deflections.   
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 The model was validated for the case of bulk and film-on-substrate subsets of 

the full multi-layer case using measured probe beam deflections for NIST SRM8432 

and SRM1462 in a bounced-probe transverse PDS experiment.  The film-on-substrate 

case was accomplished by treating the material as having a “virtual film” of varying 

thickness atop the otherwise bulk substrate.  Using a non-linear least-squares 

estimation algorithm, we were able to reproduce the thermal conductivity of this film 

when its virtual thickness was greater than or equal to the thermal penetration depth in 

the material.  For virtual thicknesses much smaller than this length-scale, however, the 

sensitivity of the model to the properties of the virtual film were too small to allow the 

estimation algorithm to accurately predict the thermal conductivity.
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CHAPTER TWO 

 

A maximum a posteriori non-linear least squares estimation algorithm 

for the determination of thermal properties using PDS 
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1. Introduction 

 Thin films and multi-layer structures represent the cornerstone of micro and 

nano-scale technology.  These films range from several atomic layers (~ 1 Å = 10-10 

m) to several micrometers (~ 1 μm = 10-6 m) in thickness.  For many years, one of the 

limiting factors in the computer industry, as captured by Moore’s Law [1], has been 

how thin a layer of silicon dioxide (SiO2) can be deposited for use as a gate dielectric 

in a transistor.  For example, Intel’s current 65 nm chip architecture uses a SiO2 film 

which is only 1.2 nm (1 nm = 10-9 m) thick, a mere five atomic layers [2].  Similarly 

thin multi-layered structures of alternating films have found extensive use in areas 

such as x-ray optics [3], vertical cavity surface emitting lasers (VCSELs) [4], and 

thermoelectrics [5]. 

 Materials at such small length scales are known to have thermal properties 

which differ significantly from their bulk quantities due to confinement effects of the 

energy carriers (i.e. electrons and phonons) [6].  Significant reduction in thermal 

conductivity is expected, and has been observed [7, 8], when the thickness of a film is 

less than the mean free path of the energy carriers (~10 nm for electrons in metals and 

~10-100 nm for phonons in insulators and semiconductors) [9].  Thermal transport at 

these scales is most often analyzed using the Boltzmann or ballistic-diffusive 

equations [10, 11].  Conventional thermal design, however, uses continuum theories 

such as Fourier conduction for which we may identify macroscopic properties such as 

thermal conductivity and thermal diffusivity.  It is clear that the continuum hypothesis 

is not satisfied at these small length-scales, but knowledge of “effective” properties 

which incorporate confinement and quantum effects is essential for engineering 

design. 

 We have previously developed a model (Chapter 1) for the temperature field 

and optical probe beam deflections of a periodically heated multi-layer structure which 
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has direct applications toward photothermal deflection spectroscopy (PDS).  PDS, 

commonly referred to as the “mirage” [12] or “photothermal deflection” [13] 

technique, uses a modulated laser (i.e. heating beam) to periodically heat a material.  

Heat flow through the solid and into the surrounding gas phase causes deflections of a 

second laser (i.e. probe beam) which may be related to the thermal properties of the 

material.  The concept is depicted schematically in Figure 2-1.  The strength of PDS is 

its ability to confine the temperature field, effectively a thermal probe, to small length-

scales by adjusting the modulation frequency of the applied heat source.  This is also 

true of other “thermal wave” techniques such as photoacoustic spectroscopy [14], 3-ω 

[15], modulated thermal reflectance [16], and scanning thermal microscopy [17].  

These techniques are particularly useful in the study of thin films, since the thermal 

probe may be confined to the thin film or multi-layer structure, allowing maximum 

sensitivity to the region of interest.  One of the limiting traits of PDS which prevents it 

from analyzing infinitesimally small thermal fields is that the probe beam is of finite 

size.  Our ability to detect fluctuations in the thermal field diminishes as the field 

becomes small with respect to the size of the probe beam. 

 The principal measurement of PDS is the oscillatory deflection angle of the 

probe beam, which can be decomposed into orthogonal normal and tangential 

components.  In order to determine the thermal properties of the material from these 

deflections, it is necessary to have an appropriate model of heat transfer in both the 

solid and gas phases.  Our model incorporates the effects of anisotropic thermal 

conductivity and inter-layer thermal contact resistance on heat flow in an arbitrary 

multi-layer system.  With this model in hand, we may estimate the properties of the 

material system by determining the suite of model parameters which allows for the 

best agreement between the measured and predicted probe beam deflections.  This will 

be done by means of a maximum a posteriori non-linear least squares estimator. 
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Figure 2-1:  Schematic of transverse PDS concept 
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 The objective of this chapter is the following:  1.)  develop a maximum a 

posteriori estimation algorithm to determine the thermal properties and other model 

parameters from simulated PDS probe beam deflection data, 2.)  develop a procedure 

to determine the thermal properties of a “black box” material system, 3.)  examine the 

existence and uniqueness of the set of parameters resulting from the estimation 

algorithm. 

2. Estimation Algorithm 

 Previous works relating to the estimation of thermal properties using PDS have 

used blanket statements such as “a curve fitting routine was used” or have provided 

only limited information about their multi-parameter fitting procedure [18-20].  Our 

intent is to clearly spell out the mechanics of our estimation algorithm so that it may 

be used as a reference for future work.  This should not be seen as a contribution 

toward the well developed field of estimation [21, 22], but rather a particular 

application of using our model to extract thermal properties and other model 

parameters from PDS measurements.  The flow-chart in Figure 2-2 will provide a 

useful tool for navigating the algorithm.  We point out that that the algorithm 

presented here is general enough that it may be used for bulk materials, film-on-

substrate, and multi-layer systems. 

We begin by assuming that a measurement of the probe beam deflection (

meas,iΦ ) is equal to that computed by the model ( model,iΦ ) at the true set of model 

parameters ( trues ), in addition to some normally distrubted measurement noise ( iw ), 

such that 

( )meas,i model,i true iwΦ = Φ +s  2.1. 

The vector of model parameters ( s ) may include any, or all of the following:  thermal 

conductivity or diffusivity of each layer, anisotropy ratio of thermal conductivity in  
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Figure 2-2:  Flow chart of estimation algorithm 
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each layer, thermal contact resistance between adjacent layers, probe and heating 

beam parameters (e.g. Rp, Rh, Ph), and signal gain (or gain multiplier).  A “full” 

treatment of the problem would include all possible parameters in the model.  This, 

however, is prohibitively difficult and will not be done here. 

From Bayes’ Rule [22], the probability density function (pdf) of a set of model 

parameters conditioned on a set of measurements is 

( ) ( )
( )1 1

0 000

1 21 2 1
2

2 2 w sw s
meas

meas

p e
p

π π − −′ ′− +
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

Δ R Δ Δ R ΔR R
s Φ

Φ
 2.2. 

For a maximum a posteriori estimator, we wish to determine the set of model 

parameters which maximizes the probability in Eq 2.2 (the uniqueness of this solution 

will be discussed later in this chapter).  We may accomplish this by minimizing the 

argument of the exponential term.  This leads us to define a scalar “cost function” as 

( ) ( )0

1 1
0 0

1
2 w sCF − −′ ′= +s Δ R Δ Δ R Δ  2.3. 

Minimization of Eq 2.3 creates, in effect, a non-linear least squares problem which is 

weighted by the variance of the measurement noise and a priori parameter 

information.  The first term in the cost function normalizes the difference between the 

measurements and the model (i.e. Δ, the residuals) by the level of measurement noise 

at each point.  If the residuals are normally distributed, then we expect 95% of them to 
fall within , ,2 2w i i w iσ σ− ≤ Δ ≤  when evaluated at trues .    The second term is a measure 

of how far the parameters are from their a priori values.  It may be possible, perhaps 

by means of a secondary measurement, to have prior knowledge of the distribution of 

each parameter.  This may include “perfect” knowledge, where 0sσ → , or “diffuse” 

knowledge, where sσ →∞ .  Practically speaking, it makes no sense to estimate 

parameters for which you have perfect knowledge, but allowing for this term enables 
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the parameters to move slightly away from their a priori values during the estimation 

process. 

Theoretically, it is possible to calculate the value of Eq 2.3 throughout the 

entire parameter space.  This is, however, a computationally prohibitive task.  The 
minima of the cost function is located at trues .  At this point, ( ) 0trueCF∇ =s .  We do 

not yet know the value of trues , but we will assume that it is a distance Δs  from our 

current point in parameter space currents .  In order to calculate the necessary step size, 

we linearize the gradient of the cost function by performing a Taylor series expansion 

about currents . 

( ) ( ) ( )
current current

true currentCF CF CF CF∇ = ∇ + ≈ ∇ +
s s

s s Δs H Δs  2.4, 

where elements of the Hessian of the cost function are defined as 

( ) ( )
2

ij
i j

H CF CF
s s
∂

=
∂ ∂

 2.5. 

The step size may be computed by setting Eq 2.4 equal to zero, resulting in 

( )( ) ( )0 0

11 1 1 1 1
model 0w w s w s

−− − − − −′ ′ ′= − + −Δs J R J Δ R H Φ R J R Δ R Δ  2.6. 

Evaluation of the Jacobian matrix J  in Eq 2.6 is a critical step in this process.  

Its elements are  

model,ij i
j

J
s
∂

= Φ
∂

 2.7. 

The Jacobian represents the sensitivity of the each point in the model to a change in 

each model parameter.  Since our physical model may take on any number of 

embodiments, and the combination of parameters which we choose to estimate may 

differ, it is not productive for us to present a generalized analytical expression for the 

elements of this matrix.  Instead, we compute it numerically using a forward-

difference approximation   
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( ) ( )
( ) ( )

model, model,i j i j
ij

j j

s s
J

s s

χ

χ

Φ −Φ
≈

−
 2.8, 

where χ  quantifies the step size.  In practice, we typically use 1.01χ =  for a 1% step 

size. 
The Hessian of the model, ( )modelH Φ  in Eq 2.6, is a computationally 

expensive operation to perform.  Its elements are 

( )
2

model model,ijk k
i j

H
s s
∂

Φ = Φ
∂ ∂

 2.9. 

We will neglect this term, however, by invoking the assumption that the residuals are 

“sufficiently small”, allowing us to reduce Eq 2.6 to 

( ) ( )0 0

11 1 1 1
0w s w s

−− − − −′ ′= + −Δs J R J R J R Δ R Δ  2.10. 

This is a poor assumption when currents  is far from trues , but we are simply using it as a 

tool to approach the point where the assumption becomes valid.  This step size, 

referred to as a Gauss-Newton step, allows for a much more efficient calculation than 

Eq 2.6.   

 Since the cost function is a non-linear function of s , we have no guarantee that 

the step size given by Eq 2.10 has either minimized or even reduced its value.  To 

guarantee reduction of the cost function, we will implement a method developed by 

Levenberg & Marquardt [23].  We add a scalar parameter 0λ ≥ to Eq 2.10 such that 

( ) ( )0 0

11 1 1 1
0w s w sλ

−− − − −′ ′= + + −Δs J R J R I J R Δ R Δ  2.11. 

A similar technique was implemented by Foley [24].  When 0λ = , we recover the 

Gauss-Newton step in Eq 2.10.  Asλ →∞ , the step size follows the direction of 

“steepest descent”.  The algorithm will preferentially step in the direction of the 

parameter which causes the greatest reduction in cost function.  We generally initialize 
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the estimation algorithm with a small value, such as 310λ −= .  Once the step size has 

been calculated, we check to see if the following condition has been met 

( ) ( )CF CF+ <s Δs s  2.12. 

If Eq 2.12 is true, we decrease the value of λ ( 0.1new oldλ λ= ) and update the 

parameters such that  

new old= +s s Δs  2.13. 

If Eq 2.12 is not true, we increase the value of λ ( 10new oldλ λ= ) and re-compute the 

step size in Eq 2.11.  Note that the factors of 0.1 and 10 are arbitrary and may be 

adjusted as necessary.  Larger factors may speed convergence, but if they are too 

large, algorithm may not converge at all. 

The process is terminated under the following conditions:  1.)  the change in 

cost function is below a specified tolerance, 2.)  the changes in parameter values are 

below a specified tolerance, 3.)  the maximum number of iterations has been reached, 

or 4.)  the maximum number of λ updates has been reached. 

2.1 Posterior Results 

The estimation algorithm does not produce a single-valued result for each of 

the parameters, but rather a mean and standard deviation which may be used to define 
the posterior pdf of each parameter.  The mean value is reported as finals .  The 

covariance of the estimation error is 

( )0

11 1
s w s

−− −′= +R J R J R  2.14. 

The posterior standard deviation of each parameter is the square root of the diagonal 

elements in Eq 2.14. 

, ,s i s iiRσ =  2.15. 
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Large values of ,s iσ  represent poor knowledge of a particular estimated parameter.  

Due to our inclusion of a priori information, however, it is not possible to have worse 

knowledge of a parameter than that which we initially had (although it does not 

necessarily improve). 

The correlation between any two parameters is 

,

, ,

s ij
ij

s ii s jj

R
R R

ρ =  2.16. 

This parameter is useful in helping us determine linear combinations of parameters in 
the model.  Values of 1ijρ ≈ ±  indicate parameters which are tightly coupled in the 

model.  A value of 1ijρ =  indicates that two parameters have the same effect on the 

model, while a value of  1ijρ = −  indicates that they have the opposite effect.  In such 

cases, it may not be possible to determine a unique set of parameters which minimize 

the cost function. 

From the standpoint of estimation, observability refers to an algorithm’s ability 

to uniquely and unambiguously determine each of the parameters in s .  If our system 

is not observable, there are two possibilities:  1.)  a parameter (or several) has no effect 

on the measurements (i.e. the measurements are insensitive to changes in that 

parameter), or 2.)  a linear combination of two (or more) parameters influence the 

measurement in the same way as one parameter alone.   

According to the method of Ham and Brown [25], we may examine the 

eigenvalues and eigenvectors of a scaled version of Eq 2.16 to determine the 

observability of the system.  We will define 

( )trace
s

scaled
N

≡ρ ρ
ρ

 2.17, 

where sN is the number of parameters in s .  The eigenvectors of scaledρ  are related to 

the variance of the model parameters in such a way that smaller eigenvalues indicate a 
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more observable system.  The eigenvector associated with the smallest eigenvalue 

indicates the “direction” in parameter space associated with the highest degree of 

observability.  Elements in the eigenvector that are of comparable magnitude indicate 

a linear combination of parameters, rather than a single parameter, that is highly 

observable.  In such a case, we must either combine these parameters into a new one, 

or assume a fixed value of the parameter (e.g. set its a priori uncertainty to zero or 

remove it from s ).  The best circumstance is when the most observable direction in 

parameter space is the single parameter you are most interested in determining. 

 2.2 Uniform Noise 

In the event of uniform measurement noise, the posterior pdf in Eq 2.2 is 

( ) ( )
( )2 1

0 02 00

1 2 1
2

meas
meas

21
2

w s
w

s

w

p e
p

σ
σ

π

πσ

−′ ′− +⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

Δ Δ Δ R ΔR
s Φ

Φ
 2.18. 

In this case, the cost function in Eq 2.3 becomes 

( ) ( )0

2 1
0 02

1
2 w s

w

CF σ
σ

−′ ′= +s Δ Δ Δ R Δ  2.19. 

The step-size in Eq 2.11 becomes 

( ) ( )0 0

12 1 2 1
0w s w sσ λ σ

−− −′ ′= + + −Δs J J R I J Δ R Δ  2.20. 

The posterior parameter covariance in Eq 2.14 becomes 

( )0

12 2 1
s w w sσ σ

−−′= +R J J R  2.21. 

 In order to test the algorithm, we will generate “truth model” data.  This data 

will contain no additional noise other than the small contribution from discretization 

and digitization error.  We observe that, as 0wσ → , the pdf in Eq 2.18 takes on the 

form of a Dirac delta function.  There is zero probability that the parameters can exist 

anywhere but the location where they are at their true value.  Similarly, the cost 

function in Eq 2.19 takes on a value of infinity unless the residuals are identically 
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zero.  Since our objective is the minimization of the cost function, and we cannot 

effectively deal with values of infinity, we must re-define the cost function for the case 

when 0wσ →  (or when CF is computationally equivalent to infinity) as 

( ) ( )CF ′=s Δ Δ  2.22.  

This reduces the problem, in effect, to an un-weighted non-linear least squares 

problem. 

In the case of zero measurement noise, we also find that the step size in Eq 

2.20 loses the influence of a priori information, and the posterior covariance in Eq 

2.21 tends to zero.  Essentially, all of these results indicate that one should have 

perfect knowledge of model parameters.  The reason why we will test the estimator 

using such data is to determine whether it is able to converge to the true set of 

parameters from any initial guess.  If it does not, it is possible that the algorithm has 

locked onto a local (rather than global) minima of the cost function, or that a condition 

has been encountered such that two (or more) parameters are perfectly correlated and 

the system becomes unobservable.  If our algorithm is unable to determine the desired 

properties using perfect data, it certainly will not work for real data, which suffers 

from noise and other factors (e.g. temperature dependant properties, thermo-elastic 

effects) which are not included in our model. 

 In order to determine the quality of the estimated results, we may re-evaluate 

Eq 2.21 in the absence of prior information to obtain the normalized posterior 

covariance as 

( ) 1
2

1
s

wσ
−′=R J J  2.23. 

The normalized posterior standard deviation of the parameters is the square root of the 

diagonal terms in Eq 2.23, 
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,
,2

1s i
s ii

w w

R
σ
σ σ

=  2.24. 

2.3 Scaling 

The sensitivity of the measurements to each parameter may differ by many 

orders of magnitude.  For example, since the probe beam radius is of the order 10-5 m 

and the thermal conductivity may be of the order 102 W/m-K, we may assume that 

model modelp zR k∂Φ ∂ ∂Φ ∂ .  A change of 1 m in probe beam radius is much more 

dramatic than a change of 1 W/m-K in thermal conductivity.  Because of this, it is 

prudent to utilize a scaling algorithm which makes the columns of the Jacobian matrix 

of comparable size.  This is particularly important in the computation of the matrix 

inverse in Eq 2.11, which may be ill-conditioned without appropriate scaling.  We will 

use a scaling matrix D   such that its diagonal elements are the maximum value from 

each corresponding column of the Jacobian matrix.  

( )maxii jiD J=  2.25. 

 Scaling definitions can be found in the nomenclature.  The scaled step size becomes 

[26] 

( ) ( )0 0

11 1 1 1 1 1
0w s w sλ

−− − − − − −′ ′≡ = + + −Δs DΔs J R J R D D J R Δ R Δ  2.26. 

The physical step size from Eq 2.11 may be re-expressed using scaled quantities as 

1−=Δs D Δ s  2.27. 

The covariance of the measurement error from Eq 2.14 may be re-expressed using 

scaled quantities as 

( )0

11 1 1 1
s w s

−− − − −′= +R D J R J R D  2.28. 

2.4 Pre-Processing Data 

In order to prepare the data for the estimation algorithm, it is necessary to 

perform several pre-processing steps. 



 

73 
 

Step 1:  Removing Offsets 

The data acquired from the lock-in amplifier has offsets which are difficult to 

remove using hardware.  To remove them using software, we manually select several 

data points which are far from the influence of the thermal field.  The mean of these 

far-field measurements is taken, and then subtracted from the measurements.  This 

procedure is performed for the real and imaginary components of the tangential and 

normal (if applicable) probe beam deflections 

Step 2:  Determine Measurement Noise 

The measurements contain some random variation resulting from thermal, 

electronic, and mechanical noise sources.  To quantify this noise, we calculate the 

standard deviation of the data points selected in Step 1.  Although it would be 

preferred, we do not readily have the ability to acquire an in situ estimate of 

measurement noise at each data point (as it would significantly increase the time of the 

experiment).  This procedure is performed for the real and imaginary components of 

the tangential and normal (if applicable) probe beam deflections. 

Step 3:  Removing Position Error 

Although we go to great lengths to align the experiment, there is some finite 

positional error due to backlash in the linear actuators.  The position of xoffset = 0 may 

be accurately determined by locating the position at which the real and imaginary 

components of the tangential probe beam deflections pass through zero (after the 

offsets have been removed).  The data is shifted accordingly. 

Step 4:  Interpolating Position Data 

In the estimation algorithm, it is necessary for the model and measurements to 

be evaluated at the same locations.  Due to the resolution of the linear actuators, there 

are small fluctuations (  1 μm) in position about the desired measurement location.  
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We linearly interpolate the data between two adjacent points in order to determine the 

value at the desired measurement location.  

Step 5:  Phase Nulling 

The electronic amplifiers introduce phase shifts to our measurements that are a 

function of frequency.  This shift is primarily due to the high impedance amplifiers 

used in the quadrant photodetector [27].  We have not quantified these shifts in our 

experimental apparatus, but we may remove their effect by setting a reference phase of 

zero at xoffset = 0.  As shown in Figure 2-3, we determine the slope of the tangential 

probe beam deflections in the complex plane and uniformly rotate the data by an angle 

φrotate such that the central-most points are horizontal (i.e. purely real) in the complex 

plane.  Theoretically, any reference phase (e.g. φ = 45° at  xoffset = 0) may be used as 

long as it is uniform.  This operation is performed on the data during pre-processing 

and on the model for each intermediate calculation of probe beam deflections. 

 Our model predicts a phase shift due to frequency-dependent temperature 

gradients alone (Figure 2-4), but we are unable to separate this effect from that of the 

electronic phase shift.  It is possible that we are losing “information” by performing 

this phase-nulling operation.  The operation maintains the point-to-point phase shift at 

each individual frequency, but removes the relative inter-frequency phase shift.  The 

phase-nulled counterpart to Figure 2-4 is provided in Figure 2-5.  A recommendation 

for future work is to quantify the electronically introduced phase shift and incorporate 

its effect into the model.   

 Historically, this phase-nulling operation was used for the zero-crossing 

method [19, 28, 29] to identify the offset position where the tangential probe beam 

deflections have a phase which is 2 radπ different from the aligned position.  The 

slope of this distance plotted against 1 f  can be related to the thermal diffusivity of 

bulk materials. 



 

75 
 

 
Figure 2-3:  Phase-nulling operation on the tangential probe beam deflections 

 
Figure 2-4:  Simulated PDS data at several frequencies prior to phase-nulling 

operation 
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Figure 2-5:  Simulated PDS data at several frequencies after phase-nulling operation 

 

Step 6:  Assembly 

In the estimation algorithm, we will analyze data taken at multiple frequencies 

simultaneously.  In order to assemble the necessary data vector, we append the pre-

processed data taken at each individual frequency in the appropriate order.  The 

resulting data vector will be of the form 

( ) ( ) ( ) ( ){ },model tan 1 tan tan 1 tanRe ;...;Re ; Im ;...; Immeas N Nf f f f⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦Φ Φ Φ Φ Φ  2.29. 

There are several other possible assembly techniques which could be used, consisting 

of various combinations of the real and imaginary components, magnitude, and phase 

of the probe beam deflections.  We prefer this method since the real and imaginary 

components allow for the calculation of both the magnitude and phase of the data.  

They are also of comparable magnitude, while the phase is bound by significantly 

larger values of π φ π− ≤ ≤ .  We believe that this would artificially skew the 
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estimator to preferentially favor the phase representation over the real, imaginary, or 

magnitude representations of the probe beam deflections.  Regardless of assembly 

order, the most critical aspect is to ensure that the model output is assembled in the 

same way as the data. 

3. Multi-Frequency Analysis 

 Ideally, the estimation algorithm would be able to converge to the true set of 

parameters under any set of conditions from any reasonable initial guess.  We know 

from experience, however, that this does not always occur.  We would like to develop 

a technique which offers some ability to aid in convergence, observability, and 

accuracy of the results. 

One of the strengths of PDS is its ability to control the penetration depth of a 

thermal wave by adjusting the modulation frequency of the applied heat source.  At 

very low frequencies, the thermal wave propagates deep into the substrate of a film-

on-substrate system (Figure 2-6, left).  At this condition, we expect probe beam 

deflections to be most sensitive to the properties of the substrate rather than those of 

the film.  At high frequencies, we can constrain the thermal field to within the film, 

but the size of the field becomes very small in contrast to the size of the probe beam 

(Figure 2-6, right).  We will show that there is a substantial benefit to estimating 

properties by simultaneously processing measurements at multiple frequencies.  Such 

measurements will contain “information” contained at either extreme. 

 We model the system depicted in Figure 2-7 consisting of the following:  a 100 

nm Tungsten (W) film used as an optical absorption layer, a 1 μm SiO2 film, and a 

semi-infinite Si substrate.  The properties used to model these materials are found in 
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Figure 2-6:  Schematic of thermal penetration dependence on heating beam modulation frequency 
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Figure 2-7:  Multi-layer model applied to a film-on-substrate system with an optical absorption layer 
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Table 2-1 [30].  Furthermore, a thermal contact resistance of 10-6 m2-K/W will be 

modeled between the film and substrate.  This value was chosen since it is close to the 

1-D thermal resistance of a 1 μm SiO2 film assuming bulk properties (
7 27.25 10 /film filmk m K Wδ −= × − ).  Therefore, it can neither be considered dominant 

or negligible in contrast to the resistance of the film alone. 

The one-dimensional thermal penetration depth is (c.f. Eq 1-20) 

1 z
tpd

kl
f Cπ ρ

=
 2.30.

 

In order for the SiO2 film to be considered “thermally thin”, we will select a frequency 
of 2.656 kHz such that 0.1film tpdlδ = .  In order for the film to be considered 

“thermally thick”, we will select a frequency of 26.56 MHz such that 10film tpdlδ = .  

We note, in advance, that the latter condition is not a practically attainable frequency 

from an experimental standpoint (due to amplification and signal strength issues), but 

since our current analysis is based in simulation, it remains useful to demonstrate our 

point.  For our multi-frequency approach, we will select frequencies and relative film 

thicknesses according to Table 2-2.   

 In order to determine the extent to which the system is observable at each of 

these three (i.e. low frequency, high frequency, and multi-frequency) conditions, we 

will calculate the posterior parameter standard deviation in Eq 2.24 (Table 2-3) and 

the associated correlation matrix in Eq 2.16 (Tables 2-4 through 2-6).  The parameter 
vector will be ( ), , , , ,z film r z bdry p multfilm

k k k R R G⎡ ⎤= ⎣ ⎦s .  We will assume no prior 

knowledge of their parameter distributions ( ,s iσ →∞ ).  All other model parameters 

(e.g. those of the absorption layer, substrate, and gas phase) are assumed to be known 

precisely.  We note that no actual parameter estimation is being performed in this 

section.  We are only calculating the uncertainty at the true set of parameters (since 

they are known).  Trial estimation runs will be performed in Section 4. 
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Table 2-1:  Bulk properties @ 300K [30] 
 

Property Air W SiO2 Si 
3kg mρ ⎡ ⎤⎣ ⎦  1.1614 19300 2220 2330 

[ ]C J kg K−  1007 132 745 712 
[ ]k W m K−  0.0263 174 1.38 148 

 
 
 
 
 
 
 
 
 

Table 2-2:  Relative thermal penetration depths and frequency selection used for 
multi-frequency validation 

 
film tpdlδ  f [Hz] 
0.1 2.656x103 
0.2 10.624x103 
0.5 66.399x103 
1 265.6x103 
2 1.0624x106 
5 6.6399x106 
10 26.56x106 
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 The results in Table 2-3 provide the normalized standard deviation of the 

parameters that would be calculated if the estimator had converged to trues .  For 

example, at the low-frequency condition, we report that 41 3.47 10rk

w rk
σ

σ
⎛ ⎞

= ×⎜ ⎟
⎝ ⎠

.  If we 

wish to have a relative uncertainty of 10%rk

rk
σ

= , the level of noise must be 

62.88 10wσ −= × .  In our PDS experiment, both the signal and noise level have non-

dimensional units of 
( )diff sumV V

rad
rad

× , where the first term represents a normalized 

calibration constant and the second term represents the angular deflections of the 

probe beam.  Using lock-in amplifier techniques, it is possible to “custom tailor” the 

noise level by choosing longer time constants.  Lower levels of noise come at the 

expensive of longer measurements.  The equivalent noise bandwidth (ENBW) of our 

lock-in amplifier is 1 8τ , where τ is the time constant.  In practice, we use a time 

constant of 1 sec. 

 At the lowest frequency condition (i.e. 2.656 kHz), the film may be considered 

thermally thin.  Much of the heat flow will be in the substrate, and we expect that the 

details of the film structure will not be the major contributor toward the probe beam 

deflections.  Figure 2-8 and Table 2-3 show us that the lowest normalized uncertainty 

is attained for the probe beam radius and gain multiplier.  Although this is not a 

negative result, we are likely to already have a good a priori estimate of these 

parameters.  Comparing the remaining three parameters, we see that the thermal 

contact resistance has the lowest uncertainty, followed by cross-plane thermal 

conductivity and anisotropy ratio.  Figure 2-9 and Table 2-4 show the cross-correlation 

values for anisotropy ratio, thermal contact resistance, and gain with respect to cross-

plane thermal conductivity.  The greatest concern with the low frequency case is the 
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Table 2-3:  Normalized relative uncertainty for multi-frequency validation 
 1 s

w s
σ

σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Modulation 
Frequency 2.656 kHz 26.56 MHz Multi 

kz (W/m-K) 3.47x104 1.04x1011 4.97x103 
kr/kz 1.37x105 6.93x1012 2.10x104 
Rbdry (m2-K/W) 2.32x104 2.90x1015 1.17x103 
Rp (m) 7.13x102 1.13x107 1.42x102 
Gain (rad-1) 2.83x103 1.47x1010 1.37x103 
 
 
 
Table 2-4:  Correlation matrix for f = 2.656 kHz 

ijρ  kz kr/kz Rbdry Rp Gain 
kz 1 -0.77 0.98 0.59 0.41 

kr/kz  1 -0.75 -0.91 -0.33 
Rbdry   1 0.50 0.21 
Rp    1 0.58 

Gain     1 
 
 
 
Table 2-5:  Correlation matrix for f = 26.56 MHz 

ijρ  kz kr/kz Rbdry Rp Gain 
kz 1 1.00 -0.12 1.00 1.00 

kr/kz  1 -0.12 1.00 1.00 
Rbdry   1 -0.12 -0.12 
Rp    1 1.00 

Gain     1 
 
 
 
Table 2-6:  Correlation matrix for multi-frequency 

ijρ  kz kr/kz Rbdry Rp Gain 
kz 1 0.35 0.87 0.36 0.98 

kr/kz  1 0.53 -0.63 0.24 
Rbdry   1 0.02 0.75 
Rp    1 0.50 

Gain     1 
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extremely high degree of correlation between thermal contact resistance and cross-
plane thermal conductivity ( , 0.98

z bdryk Rρ = ).  This is not unexpected, however, as low 

frequencies are the least likely to resolve the features of the film due to the large 

thermal penetration depth.  We will use this case as a baseline for comparison with the 

other cases. 

 We anticipate that the high frequency condition might dissociate the cross-

plane thermal conductivity from the thermal contact resistance.  This is because the 

thermal wave is confined within the film and is minimally affected by the presence of 

the contact resistance.  Unfortunately, the length-scale of the thermal field will be on 

the order of 0.1 μm at this condition, while our probe beam has a radius of 23.9 μm.  

Our probe is not nearly small enough to pick up the fine detail in the thermal field.  

This becomes clear by observing the extremely large uncertainty in all parameters at 

the high frequency condition in Figure 2-8 and Table 2-3.  The correlation matrix 

(Table 2-5) is even more disturbing, in that it contains many values of unity.  The 

cross-plane thermal conductivity alone is identically correlated to anisotropy, probe 

beam radius, and signal gain.  It is evident, however, that our initial desire to uncouple 

the effects of thermal conductivity and contact resistance was successful, with 

, 0.12
z bdryk Rρ = − .  Other than this uncoupling effect, however, the results at this 

frequency have little value to us. 

 More insight can be found into this condition by analyzing the eigenvalues and 

eigenvectors (Table 2-7) to the scaled correlation matrix from Eq 2.17.  Again, the 

smallest eigenvalue represents the state of the system with the highest degree of 

observability.  The eigenvector associated with this state indicates the direction of 

maximum observability in parameter space.  It is clear that even in its most observable 

state, there is a linear combination of thermal conductivity and signal gain (i.e. the 1st 
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Figure 2-8:  Normalized relative uncertainty of estimation parameters for low frequency, high 

frequency, and multi-frequency data from a simulated film-on-substrate system 
 

 
Figure 2-9:  Elements of the correlation matrix for low frequency, high frequency, and multi-

frequency data from a simulated film-on-substrate system 
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and 5th elements) to which the system is most observable, and the system is least 

observable for contact resistance (i.e. the 3rd element). 

 
 

Table 2-7:  Eigenvalue and eigenvectors for scaled correlation matrix in high 
frequency analysis 

 
Parameter Eigenvalues 4.02 0.981 9.09x10-5 2.73x10-6 3.91x10-11 

kz 

Ei
ge

nv
ec

to
rs

 

0.498 -0.0391 0.313 0.389 0.707 
kr/kz 0.498 -0.0392 0.240 -0.832 -0.00145 
Rbdry 0.0785 -0.997 2.55x10-4 6.25x10-5 1.25x10-5 
Rp 0.498 -0.0395 -0.865 0.0513 0.00125 

Gain 0.498 -0.0392 0.311 0.391 -0.707 

 

 Our initial hypothesis is confirmed by the results of the multi-frequency 

analysis.  The normalized relative uncertainty results in Figure 2-8 and Table 2-3 show 

improvement by nearly an order of magnitude for thermal conductivity, anisotropy 

ratio, and contact resistance over the low frequency results.  Furthermore, we have 

significantly de-coupled thermal conductivity from contact resistance, with 

, 0.87
z bdryk Rρ =  (Figure 2-9 and Table 2-6).  The only downfall of this technique is that 

we have increased the correlation between thermal conductivity and gain multiplier.  

Fortunately, we have a good a priori estimate of the value for signal gain, which will 

effectively decouple these two parameters.  We conclude that the multi-frequency 

approach has the benefit of providing better (i.e. lower uncertainty) parameter 

estimates and the ability to decouple parameters which are highly correlated in either 

the high frequency or low frequency regimes. 

4. “Black Box” Estimation Procedure 
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 In Section 3, we had the benefit of knowing the true set of parameters used in 

the model.  This will not be the case in any realistic analysis of a material system.  

Even if we know the bulk properties, the values for a thin film may be substantially 

different.  We must therefore develop a sufficiently robust procedure that will allow 

for the determination of thermal properties for any thin film system.  The system we 

wish to analyze is shown in Figure 2-7, where the properties of the film and its 

interface with the substrate are unknown. 

 Since the properties of the “black box” film are unknown, it is not possible to 

select modulation frequencies according to relative thermal penetration depths.  We 

still believe, however, that the multi-frequency approach provides us with more 

valuable information than a single frequency alone.  Experimentally, our electronic 

amplification system limits us to modulation frequencies on the order of 100 kHz 

before the signal-to-noise ratio becomes prohibitively small.  On the low end, a 

frequency of 1 kHz leads to a one-dimensional thermal penetration depth of 10’s of 

μm in low diffusivity materials such as SiO2.  This length-scale will only increase in 

higher diffusivity materials.  We therefore propose a frequency doubling scheme 

which includes f = 1, 2, 4, 8, 16, 32, 64, and 128 kHz. 

 Originally in Eq 2.10, we employed the assumption that the residuals were 

“sufficiently small”.  Starting from any arbitrary point in parameter space, however, 

this is likely not the case.  The measurements and the model may, in fact, be separated 

by several orders of magnitude.  In light of this, it is necessary to take an initial step to 

reduce the residuals to the point where this assumption becomes better.  We 

accomplish this by fixing all model parameters at their a priori estimate, with the 

exception of the cross-plane thermal conductivity of the film, which we allow to 

“float”.  We initially assume that the film is isotropic (kr = kz) and that there is no 

thermal contact resistance between the film and the substrate (Rbdry = 0).  The result of 
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this is an estimate for thermal conductivity which minimizes the difference between 

the model and the measurements with all other parameters fixed.  We do not claim that 

this is the true value for thermal conductivity, since our a priori estimates of other 

model parameters may be incorrect. 

 In the next step, we allow multiple parameters to float simultaneously.  For the 

thermal conductivity, we use an initial guess resulting from the previous step with a 
“diffuse” prior uncertainty (i.e. 

zkσ →∞ ).    For the anisotropy ratio, we use an initial 

guess of 1r zk k =  and a diffuse prior.  For the thermal contact resistance, we use an 

initial guess of 6 210 /bdryR m K W−= −  (our forward difference computation of the 

Jacobian in Eq 2.8 is not possible for 0bdryR = ) and a diffuse prior.  For the probe 

beam radius and gain multiplier, we will use appropriate a priori estimates which 

come from calibration or external measurement. 

 After running the multi-parameter estimation, it is important to examine the 

posterior results discussed in Section 2.1.  We first examine the correlation matrix 

defined in Eq 2.16 to determine which parameters, if any, are highly correlated.  There 
is no specific value at which the algorithm “breaks down”, but values of 1ijρ ≈ ±  

indicate that the results may be questionable.  We also look for parameters with a very 

high uncertainty.  This is a strong indication that the model is insensitive to this 

parameter at the current set of conditions. 

4.1 Test Case 

 In order to test our procedure for determining the properties of a black-box 

material system, we will generate simulated probe beam deflections for the system 

depicted in Figure 7 consisting of the following:  a 100 nm W film used as an 

absorption layer, a 1 μm SiO2 film, and a semi-infinite Si substrate.  We will modify 

the thermal contact resistance between the SiO2 and Si layers and the anisotropy ratio 

of the film’s thermal conductivity according to the cases in Table 2-8.  The final 
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estimated values and the normalized uncertainties for each parameter are in Tables 9a 

– 9i.  The cross correlation matrices for each case are in Tables 10a – 10i. 

With the exception of Case 1, all cases converged to the trues .  Case 1 was 

halted at 100 iterations due to extremely slow convergence.  At this case, we find that 
the correlation between thermal contact resistance and thermal conductivity, ,z bdryk Rρ , is 

effectively unity (Table 2-10a, Figure 2-17).  These two parameters have nearly the 

same effect on the probe beam deflections, and the estimation algorithm is unable to 

determine whether an increase in kz (Figure 2-10) or an increase in Rbdry (Figure 2-11) 

is necessary to reduce the cost function (Figure 2-13).  The columns of the Jacobian 

matrix associated with kz and Rbdry will differ by a linear factor.  In more severe cases 

of high correlation, the estimation algorithm will report an ill-conditioned or rank 

deficient matrix when attempting to perform the matrix inversion required by Eq 2.23.  

In such situations, it may be necessary to combine highly correlated parameters into a 

single parameter.  For instance, one may estimate an “equivalent” thermal 

conductivity which accounts for the effects of both thermal contact resistance and 

cross-plane thermal conductivity.  We hypothesize that this combination may be in the 

form of a series thermal resistance across the film layer and boundary.  Figure 2-14 
illustrates this by showing that the value of film z bdryk Rδ +  does not change from one 

iteration to the next (after the first ~10 iterations).  Although the anisotropy ratio in the 

film is not as highly correlated to the other parameters, we see (Figure 2-12) that its 

convergence is likewise hindered by the other parameters. 

 From Figure 2-15, we see that the relative uncertainty in cross-plane thermal 
conductivity, 

zk wσ σ , is a strong function of anisotropy.  High ratios of anisotropy 

produce lower uncertainty in thermal conductivity.  We associate these high ratios of 

anisotropy with low values of cross-plane thermal conductivity (since kr has been 

fixed), or films which are more insulating across their thickness.  Such films have a 
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smaller thermal penetration depth, keeping more thermal energy in the film and gas 

phase rather than the substrate.  Because of this, it is reasonable to expect that the 

probe beam deflections will be more sensitive to the thermal conductivity of the film.  

Thermal contact resistance seems to play much less of a role in our ability to 

accurately predict thermal conductivity. 
 
 
 

Table 2-8:  Conditions for varying anisotropy ratio and test case in truth-model 
validation 

 

 Rbdry (m2-K/W) 

kr/kz 
kr = 1.38 

 10-7 10-6 10-5 

0.1 Case 1 Case 2 Case 3 
1 Case 4 Case 5 Case 6 
10 Case 7 Case 8 Case 9 

 
 
 

 From Figure 2-16, we see that the uncertainty in thermal contact resistance, 

bdryR wσ σ , is a strong function of thermal contact resistance.  Higher values of contact 

resistance produce lower uncertainty in contact resistance.  Such large values confine 

energy to the film and gas phase.  Even for films with a large thermal penetration 

depth, the existence of a contact resistance may prevent energy flow from entering the 

substrate.  This causes the probe beam deflections to be more sensitive to the 

composition of the film.  Anisotropy seems to play less of a role in our ability to 

accurately predict thermal contact resistance.  Increasing ratios of anisotropy provide 

only a slight decrease in this uncertainty. 

 From Figure 2-17, we see that the uncertainty in the anisotropy ratio of thermal 
conductivity, /r zk k wσ σ , is a more complicated function of both anisotropy and 

thermal conductivity than the previous cases.  The general trend is that the uncertainty  
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Figure 2-10:  Estimation results (by iteration) for cross-plane thermal conductivity in 

Case 1 
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Figure 2-11:  Estimation results (by iteration) for thermal contact resistance in Case 1 

 
Figure 2-12:  Estimation results (by iteration) for anisotropy ratio in Case 1 
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Figure 2-13:  Cost function (by iteration) for Case 1 

 
Figure 2-14:  Equivalent resistance (by iteration) for Case 1 
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Table 2-9 (Case 1 – Case 9):  Final parameter estimates and normalized parameter 
uncertainty for truth-model validation 

 
Case 1 (Halted after 100 iterations) 
s  

finals  s wσ σ  
kz [W/m-K] 10.3 3.98x105 
log10(Rbdry) [m2-K/W] -7.13 2.39x104 
kr/kz  0.13 2.70x104 
Cost Function 2.74x10-11  

 
Case 2 
s 

finals  s wσ σ  
kz [W/m-K] 13.8 1.35x105 
log10(Rbdry) [m2-K/W] -6.0 3.33x102 
kr/kz  0.1 1.25x103 
Cost Function 1.93x10-18  

 
Case 3 
s 

finals  s wσ σ  
kz [W/m-K] 13.8 1.22x105 
log10(Rbdry) [m2-K/W] -5.0 3.11x101 
kr/kz  0.1 8.89x102 
Cost Function 6.71x10-19  

 
Case 4 
s 

finals  s wσ σ  
kz [W/m-K] 1.38 1.73x103 
log10(Rbdry) [m2-K/W] -7.0 4.29x103 
kr/kz  1.0 2.52x104 
Cost Function 1.70x10-15  

 
Case 5 
s 

finals  s wσ σ  
kz [W/m-K] 1.38 9.37x102 
log10(Rbdry) [m2-K/W] -6.0 2.34x102 
kr/kz  1.0 5.51x103 
Cost Function 1.32x10-16  

 
Case 6 
s 

finals  s wσ σ  
kz [W/m-K] 1.38 9.71x102 
log10(Rbdry) [m2-K/W] -5.0 2.56x101 
kr/kz  1.0 9.20x102 
Cost Function 6.20x10-15  
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Table 2-9 (continued) 

Case 7 
s 

finals  s wσ σ  
kz [W/m-K] 0.138 1.11x101 
log10(Rbdry) [m2-K/W] -7.0 2.79x103 
kr/kz  10 1.74x104 
Cost Function 8.35x10-20  

 
Case 8 
s 

finals  s wσ σ  
kz [W/m-K] 0.138 1.01x101 
log10(Rbdry) [m2-K/W] -6.0 2.54x102 
kr/kz  10 1.41x104 
Cost Function 1.08x10-19  

 
Case 9 
s 

finals  s wσ σ  
kz [W/m-K] 0.138 8.84x100 
log10(Rbdry) [m2-K/W] -5.0 2.42x101 
kr/kz  10 4.99x103 
Cost Function 3.68x10-18  
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Table 2-10 (Case 1 – Case 9):  Correlation matrix for truth-model validation 
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Case 1  

2s  

 
1 2,s sρ  kz log10(Rbdry) kr/kz 

1s  

kz 1.00 1.00 -0.05 

log10(Rbdry)  1.00 -0.03 

kr/kz   1.00 

 
Case 2  

2s  

 
1 2,s sρ  kz log10(Rbdry) kr/kz 

1s  

kz 1.00 0.99 -0.80 

log10(Rbdry)  1.00 -0.74 

kr/kz   1.00 

 
Case 3  

2s  

 
1 2,s sρ  kz log10(Rbdry) kr/kz 

1s  

kz 1.00 0.95 -1.00 

log10(Rbdry)  1.00 0.94 

kr/kz   1.00 

 
Case 4  

2s  

 
1 2,s sρ  kz log10(Rbdry) kr/kz 

1s  

kz 1.00 1.00 -0.14 

log10(Rbdry)  1.00 -0.07 

kr/kz   1.00 
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Table 2-10 (continued) 
 

Case 5  
2s  

 
1 2,s sρ  kz log10(Rbdry) kr/kz 

1s  

kz 1.00 0.98 -0.22 

log10(Rbdry)  1.00 -0.08 

kr/kz   1.00 

 

Case 6  
2s  

 
1 2,s sρ  kz log10(Rbdry) kr/kz 

1s  

kz 1.00 0.92 -0.84 

log10(Rbdry)  1.00 -0.63 

kr/kz   1.00 

 
Case 7  2s  

 
1 2,s sρ  kz log10(Rbdry) kr/kz 

1s  

kz 1.00 0.96 -0.30 

log10(Rbdry)  1.00 -0.11 

kr/kz   1.00 

 
Case 8  

2s  

 
1 2,s sρ  kz log10(Rbdry) kr/kz 

1s  

kz 1.00 0.95 -0.30 

log10(Rbdry)  1.00 -0.08 

kr/kz   1.00 
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Table 2-10 (continued) 
 

Case 9  
2s  

 
1 2,s sρ  kz log10(Rbdry) kr/kz 

1s  

kz 1.00 0.84 -0.35 

log10(Rbdry)  1.00 -0.04 

kr/kz   1.00 
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Figure 2-15:  Normalized uncertainty in cross-plane thermal conductivity for film-on-substrate 

test cases 

 
Figure 2-16:  Normalized uncertainty in thermal contact resistance for film-on-substrate test 

cases 



 

101 
 

 
 

Figure 2-17:  Normalized uncertainty in anisotropy ratio for film-on-substrate test cases 
 
 

 
Figure 2-18:  Cross correlation between cross-plane thermal conductivity and thermal contact 

resistance for film-on-substrate test cases 
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is reduced with increasing contact resistance, but increases with increasing anisotropy.  

In any case, there is no clear winner.  It appears that anisotropy will often be the most 

uncertain of all of our parameters.  Since the films we are analyzing are so thin, and 

the in-plane conductivity is so low, there is negligible heat spreading present to 

influence the probe beam deflections. 

5. Conclusion 

 In this chapter, we have developed a maximum a posteriori parameter 

estimation algorithm which may be used to determine thermal properties of materials 

using PDS data.  Special attention was paid to the posterior results, which include 

parameter covariances, uncertainty, and cross correlation values.  A multi-frequency 

analysis scheme was developed which increases the overall accuracy of the parameter 

estimates and decreases the cross correlation between parameters such as thermal 

contact resistance and cross-plane thermal conductivity.  A procedure was outlined for 

analyzing a “black box” film on substrate system in which the properties of the film 

are unknown. 

 Several test cases were run using simulated data sets for a representative film 

on substrate system.  In most cases, the estimation algorithm was able to recover the 

properties of the film.  For one case, however, the algorithm did not converge to the 

proper results.  We diagnosed that the correlation between cross-plane thermal 

conductivity and thermal contact resistance was unity, indicating that these two 

parameters cannot be uniquely determined.  In this case, the proper parameter 

grouping appears to be a series thermal resistance combining the thermal resistance of 

the film with the thermal contact resistance. 
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CHAPTER THREE 

 

Determining the thermal conductivity of W/B4C multilayer structures 
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1. Introduction 

 Our current objective is to determine the thermal properties of a series of 

multilayer (ML) materials consisting of alternating films of tungsten (W) and boron 

carbide (B4C).  These materials serve as X-ray monochromator mirrors in Cornell’s 

High Energy Synchrotron Source (CHESS) [1].  One of the challenges faced with ML 

monochromators is that they experience a thermo-elastic deformation (i.e. a “thermal 

bump”) due to the tremendous heat load of the incident synchrotron radiation [2].  

This bump produces an undesirable broadening of the X-ray rocking curve.  It is 

possible to compensate for this effect through a deconvolution process, but the thermal 

properties of the ML must be known in order to correctly model the temperature 

distribution and resulting deformation.  Unfortunately, the value of the thermal 

conductivity of thin films and ML structures is known to experience a significant 

reduction when contrasted to its bulk counterpart, thus the bulk values may not be 

used.  This difference may be the result of:  1.)  confinement effects when the 

thickness of the film is much less than the mean free path (mfp) of the energy carriers 

(i.e. electrons and phonons), 2.)  thermal contact resistance between adjacent layers, 

and 3.)  defects in the film or ML crystal structure. 

 There are several excellent review articles which discuss heat transfer at the 

micro and nano-scales [3-6].  It is clear that, despite much effort and progress, the 

mechanisms of heat transfer in ML structures continue to be poorly understood.  It is 

known, however, that crystal lattice vibrations called “phonons” play a significant part 

in the thermal conductivity of such materials.  From kinetic theory, thermal 

conductivity is 
1
3 gk cv l=  3.1, 

where c  is the volumetric specific heat, gv  is the phonon group velocity, and l  is the 

phonon mfp.  When the thickness of a film, δ , is significantly less than l , the thermal 
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conductivity is expected to be reduced.  Cahill et al. [5] have previously reported that 

the mfp for phonons in bulk insulators and semiconductors ranges from 10-100 nm, 

with a corresponding group velocity ranging from 3-10x103 m/s.  The individual 

layers in our W/B4C ML structures have thicknesses ranging from 0.41-4.6 nm, well 

below the expected phonon mfp. 

 Traditional methods for the determination of thermal conductivity, such as the 

cut-bar method [7], are not suitable for use with thin films or ML structures.  The 

thickness of the sample is so small that an unreasonably large heat flux is necessary to 

produce a measurable temperature drop across the sample.  Over the past several 

years, researchers have begun using a class of “thermal wave” techniques which share 

the characteristic that they are able to confine a thermal wave to specified length-

scales by controlling the modulation frequency of an applied heat source.  Using these 

techniques, it is possible to thermally probe thin films and ML structures at length-

scales comparable to their thickness. 

 The most commonly used thermal wave technique is the 3-ω method [8], an 

AC calorimetry technique which utilizes a combined heater/resistance thermometer on 

the sample surface to provide a modulated heat source and measure the resulting 

temperature response.  This method has successfully been used to determine the 

thermal conductivity of materials such as oxide films [9-11], Si/Ge [12-14], Bi/Sb 

[15], InGaAs/InGaAsP [13], and GaAs/AlGaAs [16] superlattices.  The 

modulated/transient thermoreflectance (TR) technique uses surface reflectivity as a 

thermometric property to determine the surface temperature from modulated or pulsed 

laser heating of a sample.  It has been successful in determining the thermal 

conductivity of materials such as SiO2 films [17], metallic films [18-20], and 

GaAs/AlAs superlattices [21].  The scanning thermal microscope (SThM) uses an 

AFM-like stylus as a thermocouple to determine the surface temperature from 
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modulated laser heating of a sample.  It has been successful in determining the thermal 

conductivity of Au [22] and SiO2 [23] films.  The photoacoustic (PA) method, which 

measures pressure changes caused by variations in temperature, has also been used to 

determine the thermal conductivity of several thin films [24].  The method which we 

will use (discussed in previous chapters) is photothermal deflection spectroscopy 

(PDS).  PDS has previously been used to determine the thermal conductivity of 

diamond films [25], GaAs epitaxial layers [26], and Al/Ti multilayers [27].  To our 

knowledge, none of these techniques have been used to determine the thermal 

properties of W/B4C multilayers.  A more comprehensive literature review on thermal 

wave techniques and PDS is given in [28]. 

2. Multilayer Samples 

 The W/B4C ML samples used for this study were fabricated by Rigaku, Inc. 

(9009 New Trails Dr, The Woodlands, TX, USA, 77381-5209).  Each of the 

multilayers was deposited on a 4”, 9 mil (228.6 μm) Si wafer using a magnetron 

sputtering process.  In order to neglect the complicated condition in which there are 

multiple reflections with partial optical absorption of the heating beam in each layer 

(see Chapter 1), we deposited a nominally 110 nm thick W layer atop the ML structure 

using a magnetron sputtering process to act as an optical absorption layer.  Prior to 

deposition, a “gentle” ion beam cleaning step was taken to remove organic 

contamination from the ML surface.  The top-most layer of the ML is B4C, an 

extremely hard substance, so there is little concern of damage to the underlying ML.  

This process was performed at the Cornell NanoScale Science & Technology Center 

(CNF). 

 The ML samples were selected such that they each have the same overall 

thickness (nominally 0.45 μm), with a different number of bi-layer periods.  The term 

“bi-layer” is defined as a single period consisting of a W film and a B4C film.  This 
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choice was made in order to remove any effect of overall thickness in the 

determination of thermal conductivity.  Any change that occurs should be due to the 

number of layer interfaces present or the thickness of the individual film layers.  We 

note that we would have preferred a larger overall thickness (i.e. 1ML mδ μ≥ ) in order 

to have more sensitivity to the film, but this was not possible for the following 

reasons:  1.) the fabrication of ML samples is costly and time consuming, and 2.) the 

strain build-up due to lattice mismatch of the W and B4C layers prevents the 

fabrication of an arbitrarily large number of layers (common to many ML 

combinations).  The design specifications are listed in Table 3-1. 

 

Table 3-1:  W/B4C multilayer specifications 
Property Sample 2 Sample 3 Sample 4 Sample 5 
2-d Design [Å] 15 30 45 60 

periodsN  300 150 100 75 

,W meas Åδ ⎡ ⎤⎣ ⎦  4.3 8 11.2 14.5 

4 ,B C meas Åδ ⎡ ⎤⎣ ⎦  10.5 21.7 33.7 46 
2-d Calculated [Å] 14.8 29.7 44.9 60.5 

total Åδ ⎡ ⎤⎣ ⎦  4440 4455 4490 4537.5 

 

 Our method of estimating the thermal conductivity of the ML using PDS 

measurements does not have the sensitivity required to estimate the properties of each 

individual layer.  In fact, layers at these scales may not even have distinct interfaces 

due to processes such as molecular diffusion.   Instead, what we propose is to estimate 

the effective thermal conductivity of the entire ML structure as a single film on a Si 

substrate.  In order to do this, it is necessary to have proper estimates for the heat 

capacity, Cρ , since the thermal conductivity appears in a grouping of parameters 

representing the thermal diffusivity, zk Cρ , of the film.  We will define an effective 

film density as 
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effective ML i i
i

ρ δ ρ δ=∑  3.2. 

We will similarly define an effective specific heat as 
effective ML i i

i
C Cδ δ=∑  3.3. 

Although our intent is to determine the thermal conductivity of the ML, it is 

illustrative to compare the value to an effective thermal conductivity that would result 

from stacking individual layers of W and B4C assuming bulk properties and negligible 

thermal contact resistance at layer interfaces.  This effective thermal conductivity 

comes from 
iML

ieffective ik k
δδ

= ∑  3.4. 

The bulk properties of W and B4C evaluated at 300 K [29, 30] are provided in Table 

3-2.  The effective bulk properties of the ML from Eqs 3.2 - 3.4 are provided in Table 

3-3.  A schematic of how we treat the ML as an equivalent film is provided in Figure 

3-1. 

 

 
Table 3-2:  Bulk properties @ 300 K [29, 30] 

Property W B4C Si Air 
3kg mρ ⎡ ⎤⎣ ⎦  19300 2520 2330 1.1614 

[ ]C J kg K−  132 921 712 1007 

[ ]k W m K−  174 30 148 0.0263 
 

 

Table 3-3:  Equivalent bulk properties of multilayer samples (Eqs 3.2 – 3.4) 
Property Sample 2 Sample 3 Sample 4 Sample 5 

3
equiv kg mρ ⎡ ⎤⎣ ⎦  7395.3 7039.9 6705.7 6541.7 

[ ]equivC J kg K−  691.8 708.5 724.2 731.9 

[ ],z equivk W m K−  39.5 38.6 37.8 37.4 
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Figure 3-1:  Equivalent film representation of a multilayer structure 
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3. Experimental Results 

 Our experimental apparatus for bounced-beam, transverse PDS has been 

described in detail in Chapter 1.  Probe beam deflection signals were recorded for each 

of the four (4) ML samples at modulation frequencies of 1, 2, 4, 8, 16, 32, 64, and 128 

kHz with a nominal heating beam power of 50 mW at the first harmonic of these 

frequencies.  The heating beam radius (1/e2) is estimated to be 4.5 μm, and the probe 

beam radius (1/e2) at its waist was measured to be 23.9 μm.  The experiment was 

operated about an aligned position such that the height of the probe beam above the 

sample is zero, resulting in negligible probe beam deflections in the direction normal 

to the surface.  Only the tangential components of the probe beam deflection will be 

used in the current analysis.  Pre-processing of the experimental data was performed 

as outlined in Chapter 2.  The estimation of parameters was performed in several steps 

using the algorithm developed in Chapter 2.  Table 3-4 provides a key of model 

parameters that are fixed/varied in the following cases. 

 For the first case, the estimation algorithm was implemented using the thermal 
conductivity of the ML as the only floating parameter (i.e. ,z MLk⎡ ⎤= ⎣ ⎦s ).  The ML was 

assumed to have an isotropic thermal conductivity (i.e. , ,r ML z MLk k= ), and the thermal 

contact resistance between the ML and the substrate was assumed to be zero (i.e. 

, / 0bdry ML subR = ).  This step was done in order to make the modeled probe beam 

deflections “sufficiently close” to the measured probe beam deflections such that the 

residuals become small, a pre-condition to our neglecting the Hessian matrix of the 

model (refer to Eq 2.9).  The “initial guess” values of thermal conductivity ranged 

from ,0.1 1000z MLk W m K≤ ≤ −  by factors of 10 with a diffuse prior uncertainty (i.e. 

,z MLkσ →∞ ).  The results of this first step are provided in Tables 3-5 through 3-8, Case 

1.   
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Table 3-4:  Summary of fixed and variable parameters 

 Parameter 
Case zk  pR  multG  bdryR  r zk k  

1 variable 23.9 μm 1 0 1 
2 variable variable 1 0 1 
3 variable variable variable 0 1 
4 variable variable variable variable 1 
5 variable variable variable 0 variable 
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Table 3-5:  Results of estimation for W/B4C (Sample 2) 

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 

,z ML
Wk

m K
⎡ ⎤
⎢ ⎥−⎣ ⎦

 
1.36 

(0.1,1,10,10
0,1000) 

1.18 
(1.36) 

1.35 
(1.36) 

3.01 
(1.36) 

1.35 
(1.36) 

[ ]pR mμ   25.6 
(23.9) 

25.5 
(23.9) 

25.5 
(23.9) 

25.5 
(23.9) 

[ ]. .multG N D    1.09 
(1) 

1.08 
(1) 

1.09 
(1) 

2

, /bdry ML sub
m KR

W
⎡ ⎤−
⎢ ⎥
⎣ ⎦

 
   10-6.73 

(10-6)  

[ ],

,
. .r ML

z ML

k N Dk      0.001 
(1) 

[ ]. .CF N D  3.77x106 2.95x106 2.93x106 2.91x106 2.93x106 
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Table 3-6:  Results of estimation for W/B4C (Sample 3) 

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 

,z ML
Wk

m K
⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.79 

(0.1,1,10,10
0,1000) 

0.71 
(0.79) 

0.72 
(0.79) 

1.05 
(0.79) 

0.72 
(0.79) 

[ ]pR mμ   25.5 
(23.9) 

25.5 
(23.9) 

25.5 
(23.9) 

25.5 
(23.9) 

[ ]. .multG N D    1.01 
(1) 

1.03 
(1) 

1.01 
(1) 

2

, /bdry ML sub
m KR

W
⎡ ⎤−
⎢ ⎥
⎣ ⎦

 
   10-6.74 

(10-6)  

[ ],

,
. .r ML

z ML

k N Dk      0.001 
(1) 

[ ]. .CF N D  1.29x106 3.75x105 3.75x105 3.75x105 3.75x105 
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Table 3-7:  Results of estimation for W/B4C (Sample 4) 

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 

,z ML
Wk

m K
⎡ ⎤
⎢ ⎥−⎣ ⎦

 
1.00 

(0.1,1,10,10
0,1000) 

0.90 
(1.00) 

0.79 
(1.00) 

0.82 
(1.00) 

0.79 
(1.00) 

[ ]pR mμ   25.3 
(23.9) 

25.3 
(23.9) 

25.3 
(23.9) 

25.3 
(23.9) 

[ ]. .multG N D    0.90 
(1) 

0.91 
(1) 

0.90 
(1) 

2

, /bdry ML sub
m KR

W
⎡ ⎤−
⎢ ⎥
⎣ ⎦

 
   10-7.67 

(10-6)  

[ ],

,
. .r ML

z ML

k N Dk      0.001 
(1) 

[ ]. .CF N D  7.88x105 2.60x105 2.42x105 2.46x105 2.42x105 
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Table 3-8:  Results of estimation for W/B4C (Sample 5) 

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 

,z ML
Wk

m K
⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.65 

(0.1,1,10,10
0,1000) 

0.59 
(0.65) 

0.51 
(0.65) 

0.54 
(0.65) 

0.51 
(0.65) 

[ ]pR mμ   25.1 
(23.9) 

25.0 
(23.9) 

25.0 
(23.9) 

25.0 
(23.9) 

[ ]. .multG N D    0.88 
(1) 

0.89 
(1) 

0.88 
(1) 

2

, /bdry ML sub
m KR

W
⎡ ⎤−
⎢ ⎥
⎣ ⎦

 
   10-7.38 

(10-6)  

[ ],

,
. .r ML

z ML

k N Dk      0.001 
(1) 

[ ]. .CF N D  1.59x106 5.81x105 5.48x105 5.46x105 2.42x105 
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For each sample, the estimator converged to a unique value of thermal conductivity, 

regardless of initial guess.  We do not hold up these values as being the true values of 

thermal conductivity for the ML, as other model parameters may not be known with 

certainty. 

 For the case 2, the estimation algorithm was run using a parameter vector 
which included thermal conductivity and probe beam radius (i.e. , ,z ML pk R⎡ ⎤= ⎣ ⎦s ).  The 

decision to add probe beam radius is based on our inability to measure its value in situ.  

Although we know the radius at the focused beam waist, the experiment may be 

aligned such that the waist does not precisely coincide with the center of the thermal 

field.  The differences should be small, but the probe beam deflections are very 

sensitive to the value of the probe beam radius.  The initial guess used for the probe 

beam radius was 23.9 μm with an a priori standard deviation of 10% (i.e. 

,0
2.39

pR mσ μ= ).  The ML was assumed to have an isotropic thermal conductivity (i.e. 

, ,r ML z MLk k= ), and the thermal contact resistance was assumed to be zero (i.e. 

, / 0bdry ML subR = ).  The results of this step are provided in Tables 3-5 through 3-8, Case 

2. 

For case 3, the estimation algorithm was run using a parameter vector which 

included thermal conductivity, probe beam radius, and gain multiplier (i.e. 

, , ,z ML p multk R G⎡ ⎤= ⎣ ⎦s ).  The decision to add gain multiplier is based on the fact that we 

may have imperfect knowledge of model parameters which act as linear multipliers to 

the probe beam deflection signal (e.g. surface reflectivity, heating beam power, 

electronic amplification, geometric factors).  The initial guess used for the gain 
multiplier was 1 (non-dimensional), with a diffuse prior uncertainty (i.e. ,0multGσ → ∞ ).  

In the event of poor convergence, it is not unreasonable to assume a finite prior 

uncertainty, but we did not wish to overly constrain the estimator.  Once again, the 
ML was assumed to have an isotropic thermal conductivity (i.e. , ,r ML z MLk k= ), and the 



 

120 
 

thermal contact resistance was assumed to be zero (i.e. , / 0bdry ML subR = ).  We note that 

this combination of parameters was successfully used in Chapter 1 to determine the 

thermal conductivity of bulk standard reference materials.  The results of this step are 

provided in Tables 3-5 through 3-8, Case 3.  Furthermore, we have produced plots 

comparing the measured probe beam deflections to the modeled probe beam 

deflections for Samples 2-5 in Figures 3-2 through 3-5, respectively.  Figures were not 

produced for the other cases, as they will be visually similar.  

For case 4, the estimation algorithm was run using a parameter vector which 

included thermal conductivity, probe beam radius, gain multiplier, and thermal contact 
resistance (i.e. , , /, , ,z ML p mult bdry ML subk R G R⎡ ⎤= ⎣ ⎦s ).  Our decision to model a concentrated 

thermal contact resistance between the ML and the substrate may serve to act as an 

“equivalent” resistance which accounts for the cumulative effect of each of the 

individual resistances.  The initial guess used for thermal contact resistance was 10-6 

m2-K/W (an arbitrary, but reasonable value) with a diffuse prior uncertainty (i.e. 

, / ,0bdry ML subRσ →∞ ).  Once again, the ML was assumed to have an isotropic thermal 

conductivity (i.e. , ,r ML z MLk k= ).  The results of this step are provided in Tables 3-5 

through 3-8, Case 4. 

For the fifth step, the estimation algorithm was run using a parameter vector 

which included thermal conductivity, probe beam radius, gain multiplier, and 

anisotropy ratio of the thermal conductivity in the ML (i.e. 

, , ,, , ,z ML p mult r ML z MLk R G k k⎡ ⎤= ⎣ ⎦s ).  Each of the layers in the ML may have a different 

degree of anisotropy.  For instance, the metallic W layers may act as effective heat 

spreaders in the in-plane direction, while experiencing a reduced thermal conductivity 

in the cross-plane direction.  We are not modeling this effect in the individual layers, 

but rather an “equivalent” anisotropy which accounts for the cumulative effect 
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Figure 3-2:  Measured and predicted probe beam deflections for Sample 2 (Case 3) 
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Figure 3-3:  Measured and predicted probe beam deflections for Sample 3 (Case 3) 
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Figure 3-4:  Measured and predicted probe beam deflections for Sample 4 (Case 3) 
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Figure 3-5:  Measured and predicted probe beam deflections for Sample 5 (Case 4)
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throughout the ML.  The initial guess used for anisotropy ratio was 1 (non-
dimensional) with a diffuse prior uncertainty (i.e. 

, , ,0r ML z MLk kσ →∞ ).  The thermal 

contact resistance was again assumed to be zero (i.e. , / 0bdry ML subR = ).  The results of 

this step are provided in Tables 3-5 through 3-8, Case 5. 

Our original expectation was that we would see a decrease in cross-plane 

thermal conductivity as the number of periods increases (i.e. as the individual layers 

become thinner).  The results, as summarized in Figure 3-6, indicate this is not the 

case with our ML samples.  Although we obtain values of thermal conductivity which 

are significantly less than the bulk equivalent calculated by Eq 3.4, the value seems to 

decrease slightly as the number of periods decreases.  This trend has been observed 

previously in the literature [12, 14, 21], and has been attributed to the formation of 

dislocations due to strain build-up from lattice mismatch between the constituent 

layers in the ML.  The ensemble average of our four ML samples over five estimation 
trials produces a thermal conductivity of , 0.97z MLk W m K= − , which is significantly 

less than the bulk values of ,37.4 39.5z MLk W m K≤ ≤ −  predicted by Eq 3.4.  We 

believe that this provides strong evidence that there is non-macroscopic thermal 

behavior in the samples. 

One of the features that stands out in Figure 3-6 is the significantly higher 

thermal conductivity predicted for Sample 2, Case 4, in which the thermal contact 

resistance was allowed to float.  Taking a closer look at this case, we find that the 

cross-correlation value between cross-plane thermal conductivity and thermal contact 
resistance is , 0.985

z bdryk Rρ = .  This indicates that these two parameters have nearly the 

same effect on our measurements, and it is very difficult for the estimation algorithm 
to distinguish between the effects of zk  and bdryR .  This high degree of correlation is, 

in fact, the case for many of our Case 4 estimates.  We believe that the proper 

relationship may be in the form of an “equivalent” series resistance given by 
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eq ML z bdryR k Rδ= +  3.5 

Calculations of eqR  are provided in Figure 3-7 for each of the estimation trials.  Note 

that the equivalent resistance for Sample 2, Case 4 is comparable to those of the other 

cases.  It also follows that the equivalent resistance across the ML should increase as 

the number of periods decreases. 

 We have previously stated that our model has cross-plane thermal conductivity 

appearing with the heat capacity of the material in the form of thermal diffusivity.  

Thermal waves are, after all, diffusion processes.  In Figure 3-8, we calculate the 

effective thermal diffusivity based on our estimation results for thermal conductivity 

and the equivalent values of ρ and C provided in Table 3-3. 

 For case 5 of each of the ML samples, in which we allow the anisotropy ratio 

to float, this parameter uniformly hits the user-specified lower bound in our estimation 
algorithm (i.e. , , 0.001r ML z MLk k = ).  This indicates that the in-plane thermal 

conductivity is achieving values which are 1000 times greater than the cross-plane 

thermal conductivity, which we are estimating as a separate parameter.  There is no 

physical argument that can be made which would explain this behavior.  The 

expectation is that the in-plane thermal conductivity should be close to the bulk 

thermal conductivity since there are no boundaries (i.e. layer interfaces) and the 

phonon mfp should be unaffected in that direction.  What is actually happening here is 

that the algorithm has no sensitivity to the anisotropy at this set of model parameters.  

Virtually any value of in-plane thermal conductivity will produce the same estimate of 

cross-plane thermal conductivity.  Therefore, we are unable to make a claim regarding 

whether the ML has isotropic or anisotropic thermal conductivity. 

 We note that in the development of the mathematical model (refer to Eq 1.3 

through 1.11), that zk  and rk  appear in several places.  At times, they appear in the 

form of a ratio, which we have referred to as the anisotropy.  At other times, zk  
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Figure 3-6:  Estimation results for cross-plane thermal conductivity of ML samples 
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Figure 3-7:  Equivalent thermal resistance of ML samples 
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Figure 3-8:  Thermal diffusivity of ML samples 
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appears on its own.  rk , on the other hand, never appears on its own.  Due to this, it is 

possible (as seen in case 5) for us have sensitivity to zk , but not to rk  or to the ratio 

of the two.  For future work, it would be illustrative to show the Jacobian (Eq 2-7) of 

the model with respect to zk , rk , and r zk k .  The relative magnitudes of this 

quantity will be able to explain insensitivity to one or all of the parameters. 

4. Conclusion 

 The thermal conductivity of a series of W/B4C ML samples has been 

evaluated using PDS data in a parameter estimation algorithm.  Each of the samples 

has a cross-plane thermal conductivity that is smaller than the bulk value of its 

constituent layers.  The thermal conductivity of these samples decreases slightly as the 

number of periods in the ML decreases.  This was an unanticipated, although 

previously observed, occurrence.  Due to the high degree of correlation between 

thermal contact resistance and cross-plane thermal conductivity, an effective thermal 

resistance across the ML was computed and observed to increase and the number of 

periods in the ML decreased.  Results indicate that the measurements are insensitive to 

the anisotropy ratio of thermal conductivity for these ML samples.   
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Appendix A:  Fourier and Hankel Transformations 

We use the following definitions for the forward and inverse Fourier 
transforms 

( ), , ,
i t

n j n j n j
t

F e dtωθ θ θ
∞

−

=−∞

= = ∫  1 

( )1
, , ,

1
2

i t
n j n j n jF e dω

ω

θ θ θ ω
π

∞
−

=−∞

= = ∫  2 

One of the features of the Fourier transform is the following transformation of time 
derivatives 

,
,

n j
n jF i

t
θ

ωθ
∂⎛ ⎞

=⎜ ⎟∂⎝ ⎠
 3 

We use the following definitions for the forward and inverse Hankel 
transforms 

( ) ( ), , , 0
0

ˆ 2n j n j n j
r

H r J r drθ θ π θ κ
∞

=

= = ∫  4 

( ) ( )1
, , , 0

0

1ˆ ˆ
2n j n j n jH J r d

κ

θ θ κθ κ κ
π

∞
−

=

= = ∫  5 

One of the features of the Hankel transform is the following transformation of the 
radial derivatives 

2
, , 2

,2

1 ˆn j n j
n jH

r r r
θ θ

κ θ
⎛ ⎞∂ ∂

+ = −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 6 

Fourier and Hankel transformations are linear operators, and may be applied in 
any order. 

( )( ) ( )( ), , ,
ˆ

n j n j n jF H H Fθ θ θ= =  7 

The energy equation (Eq 3, Chapter 1) is 

2 2
, , , , ,

, , ,2 2
n j r j n j n j n j

r j z j n j j j

k
k k q C

r r r z t
θ θ θ θ

ρ
∂ ∂ ∂ ∂

′′′+ + + =
∂ ∂ ∂ ∂

 8 
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Direct application of Eqs 3 and 6 to Eq 8 results in 

( )
2

,2
, , , , ,2

ˆ
ˆ ˆˆn j

r j n j z j n j j j n jk k q C i
z
θ

κ θ ρ ωθ
∂

′′′− + + =
∂

 9 

which may be restructured as 
2

, , ,2
,2

, , ,

ˆ ˆˆn j r j j j n j
n j

z j z j z j

k C q
i

z k k k
θ ρ

κ ω θ
⎛ ⎞ ′′′∂

− + + = −⎜ ⎟⎜ ⎟∂ ⎝ ⎠
 10 

Since differentiation is now in the z-direction only, we may replace the partial 

derivatives with ordinary derivatives. 
2

, , ,2
,2

, , ,

ˆ ˆˆn j r j j j n j
n j

z j z j z j

d k C q
i

dz k k k
θ ρ

κ ω θ
⎛ ⎞ ′′′

− + + = −⎜ ⎟⎜ ⎟
⎝ ⎠

 11 

which is the form given in (Eq 6, Chapter 1). 
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APPENDIX B:  Fourier Transformation of a Real-Valued Sinusoidal Function 

We will define an arbitrary sinusoidal function to have an amplitude A, 

circular frequency nω , and phase φ. 

( ) ( )sin nf t A tω φ= +  1 

Expressing the sin in terms of exponentials, one obtains 

( )
( ) ( )

2

n ni t i te ef t A
i

ω φ ω φ+ − +⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 2 

This may be expanded as 

( )
2 2

n ni t i t
i ie ef t Ae Ae

i i

ω ω
φ φ

−
−= −  3 

The functions iAe φ  and iAe φ−  are, by definition, complex conjugates of each other 

( )i iAe Aeφ φ ∗− =  4 

Taking the Fourier transform of Eq 3, one obtains 

( )
( ) ( )

2 2

n ni t i t
i i

t t

e ef Ae dt Ae dt
i i

ω ω ω ω
φ φω

∞ ∞− − − +
−

=−∞ =−∞

= −∫ ∫  5 

Orthagonality of the exponentials results in 

( ) ( ) ( )2 2
2 2

i i
n nf Ae Ae

i i
φ φπ πω δ ω ω δ ω ω−= − − +  6 

 Because of the Dirac delta function, the only non-zero values of Eq 6 exist at 

nω ω= ± . 

( ) ( )2
2

i
n nf Ae

i
φ πω δ ω ω= −  7 

( ) ( )2
2

i
n nf Ae

i
φ πω δ ω ω−− = − +  8 

This indicates that  

( ) ( )n nf fω ω ∗− = −  9 

Therefore, it is only necessary to solve for one of the constituent frequencies (i.e. 

nω ω= ) since the other (i.e. nω ω= − ) is the complex conjugate.  We will apply this 

toward the transformed temperature field (i.e. θ̂ ). 
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APPENDIX C:  Probe Beam Deflection Equations 

 Due to the significant amount of math required to develop the intensity-

averaged probe beam deflection equations, much of the work was omitted from 

Chapter 1.  It is provided here in detail.  Since the results for the normal component of 

the deflection closely resemble those for the tangential component, we will 

concentrate our discussion on the tangential component and note differences when 

they occur. 

 The tangential component of the deflection of a single ray from Eq 14 (Chapter 

1) is 
, 1

tan,
0

1 n j
n

y

dn dy
n dT x

θ∞
=

=−∞

∂
Φ =

∂∫  1 

Applying Leibniz Rule, we may move the partial derivative outside of the integration. 

tan, , 1
0

1
n n j

y

dn dy
n dT x

θ
∞

=
=−∞

∂
Φ =

∂ ∫  2 

From Eq 12 (Chapter 1), the temperature field was reported as 

( ), 1 , 1 0
0

1 1 ˆ
2 2

i t
n j n j J r d e dω

ω κ

θ κθ κ κ ω
π π

∞ ∞

= =
=−∞ =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ ∫  3 

Inserting Eq 3 into Eq 2 

( )tan, , 1 0
0 0

1 1 1 ˆ
2 2

i t
n n j

y

dn J r d e d dy
n dT x

ω

ω κ

κθ κ κ ω
π π

∞ ∞ ∞

=
=−∞ =−∞ =

⎡ ⎤∂
Φ = ⎢ ⎥∂ ⎣ ⎦

∫ ∫ ∫  4 

Rearranging Eq 4 into a more recognizable form 

( )tan, , 1 0
0 0

1 1 1 ˆ
2 2

i t
n n j

y

dn J r d dy e d
n dT x

ω

ω κ

κθ κ κ ω
π π

∞ ∞ ∞

=
=−∞ =−∞ =

⎛ ⎞⎡ ⎤∂
Φ = ⎜ ⎟⎢ ⎥⎜ ⎟∂ ⎣ ⎦⎝ ⎠

∫ ∫ ∫  5 

Since the outermost integration in Eq 5 is an inverse Fourier transform (in the tω→  

direction), it is reasonable to call 

( )tan, , 1 0
0 0

1 1 ˆ
2n n j

y

dn J r d dy
n dT x κ

κθ κ κ
π

∞ ∞

=
=−∞ =

⎡ ⎤∂
Φ = ⎢ ⎥∂ ⎣ ⎦

∫ ∫  6 

Changing the order of y-integration in Eq 6 
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( )tan, , 1 0
0 0

1 1 ˆ
2n n j

y

dn J r dy d
n dT x κ

κθ κ κ
π

∞ ∞

=
= =−∞

⎡ ⎤∂
Φ = ⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
∫ ∫  7 

Recognizing that 
2 2r x y= +  8 

The integral 

( ) ( )2 2
0
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y

x
J x y dy

κ
κ

κ

∞

=−∞

+ =∫  9 

which Reduces Eq 7 to 

( )tan, , 1
0 0

1 1 ˆ cos
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dn x d
n dT x κ

θ κ κ
π

∞

=
=

∂
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∂ ∫  10 

The function , 1
ˆ
n jθ =  has even symmetry with respect to κ, therefore 

( ), 1 , 1
0

1 1 1ˆ ˆcos
2 2 2

i x
n j n jx d e dκ

κ κ

θ κ κ θ κ
π π

∞ ∞

= =
= =−∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ ∫  11 

We recognize that Eq 11 contains the inverse Fourier transform of , 1
ˆ
n jθ =  in the xκ →  

(rather than tω→  dimensions). 

Eq 10 becomes 

tan, , 1
0

1 1 1 ˆ
2 2

i x
n n j

dn e d
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κ

κ

θ κ
π

∞

=
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∫  12 

Carrying through the partial derivative in Eq 12 
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κθ κ
π
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Analogous arguments can be made for the tangential direction, resulting in 

, 1 , 1
0

1 1 1 ˆ
2 2

i x
norm n j n j

dn e d
n dT

κ

κ

θ κ
π

∞

= =
=−∞
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Φ = − Λ⎢ ⎥
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∫  14 

Eqs 14 and 15 (Chapter 1) become 

tan, tan,
1

2
i t

n ne dω

ω

ω
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Φ = Φ∫  15 

, ,
1

2
i t

norm n norm ne dω

ω

ω
π

∞
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Φ = Φ∫  16 
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Eq 16 (Chapter 1) deals with the convolution of the probe beam with the deflection of 

a single ray. 

norm,tan, norm,tan,
0

1
n p n

p z x

I dxdz
P

∞ ∞

= =−∞

Φ = Φ∫ ∫  17 

The integration of the x-direction is a straightforward application of Fourier 

convolution theory 

( )1
norm,tan, norm,tan,p n p n

x

I dx F F I F
∞

−

=−∞

⎡ ⎤ ⎡ ⎤Φ = Φ⎣ ⎦⎣ ⎦∫  18 

Where the indicated Fourier transforms are in the x κ→  direction 
( ) ( )2 2

2 2

2 2
2 2

8
2 p
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z h z h R
R Rp

p
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P
F I e e e

R

κ

π

− − − +
−

⎛ ⎞
⎜ ⎟⎡ ⎤ = +⎣ ⎦ ⎜ ⎟⎜ ⎟
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 19 
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1

2
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n n nF F e dω

ω

ω
π

∞

=−∞

⎡ ⎤⎡ ⎤Φ = Φ = Φ⎣ ⎦ ⎣ ⎦∫  20 

tan, , 1
0

1 1 ˆ
2n n j

dnF i
n dT

κθ =⎡ ⎤Φ =⎣ ⎦  21 

, 1 , 1
0

1 1 ˆ
2norm n j n j

dnF
n dT

θ= =⎡ ⎤Φ = − Λ⎣ ⎦  22 

From Eq 9 (Chapter 1), the transformed temperature field in the j=1 layer is 
( )

2 2

1 ,

, 1

8
, 1 2

ˆ h
j bot j

n j

Rz z

n j c e
κ

θ =

=

−Λ − −

= =  23 

Therefore, Eq 18 becomes 
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( ) ( )
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2 2 2
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∫

∫

 24 

and 
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Incorporating the remaining z-integration in Eq 17, we recover the Eqs 18 and 19 

(Chapter 1). 
( ) ( )

( )

2 2

2 2

2 2 2
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, 1
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1 1 1 2
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and 
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 27 

Note that in Eq 27 we have re-introduced the  sign.  The rationale for this was 

discussed in Chapter 1. 
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APPENDIX D:  Z-integration of Probe Beam Deflection Equations 

 In practice, we use a trapezoidal rule numerical integration scheme to solve the 

z-integration term in Eqs 18 and 19 (Chapter 1).  There is an analytical solution to 

these integrals, but it is not possible using MATLAB. 

 An integral of will be encountered of the form 
( )

( )
2 2

2
1 2 2

2 2

0 2 2

j
p p

z h hz Z
R Rp

z

R
e dz e erfc Z

π=
±∞ −Λ − − +

=

=∫  1 

where 

( ) 22 t

t Z

erfc Z e dt
π

∞
−

=

= ∫  2 

and 
1 2

2
p j

p

R hZ
R

=Λ
= ±  3 

Although MATLAB has an ERFC command, it does not accept arguments 

which are complex-valued.  This is because ERFC has a limited radius of convergence 

in the complex plane.  For points outside of this radius, it is necessary to use a 

technique called “analytic continuation” [1] to obtain a solution for Eq 2. 

 

 

 

 

 

 

 

 
[1]  M. D. Greenberg, Advanced engineering mathematics, 2nd ed. Upper Saddle River, 

N.J.: Prentice Hall, 1998. 
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APPENDIX E:  Calibration of Quadrant Photodetector 

 We have performed a calibration of the quadrant photodetector (QPD) by 

scanning the probe beam across the face of the QPD and recording the normalized 

voltage output at each position.  The normalization consists of dividing the difference 

of the voltages from the right and left-hand quadrants by the sum of the voltages from 

all four quadrants (Figure 1). 

( ) ( ) ( ) ( ) ( )
( )

1 4 2 3

1 2 3 4

Q Q Q Q
norm

Q Q Q Q

V x V x
Sig x

V
+ +

+ + +

−
=  1 

The slope of this relationship represents a conversion factor between linear 

displacements and the normalized signal.  From our calibration (Figure 2), the slope is 

( ) 11000.4normd Sig dx m−= .  We are interested, however, in measuring angular 

displacements rather than linear displacements (Figure 3).  The trigonometric 

relationship which allows us to convert between the two is  

( )tan
QPD

dxd
l

Φ =   2 

where QPDl  is the distance between the heated spot (i.e. where the deflection occurs) 

and the QPD.  In our experiment, this distance is approximately 180 mm.  Employing 

the small angle approximation for tangent, we may re-write Eq 2 as 

QPDdx l d≈ Φ  3 

The normalized signal which would result from an angular deflection is therefore 

( ) ( ) ( )norm norm
norm QPD

d Sig d Sig
d Sig dx l d

dx dx
= = Φ  4 

The gain, or conversion factor between angular deflections and normalized signals is 

therefore 
( ) ( )norm norm

QPD

d Sig d Sig
Gain l

d dx
= =

Φ
 5 

In our experiment, the gain factor has a value of 180.07 rad-1. 
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Figure 1:  Schematic of quadrant photodetector calibration (front view) 
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Figure 2:  Results of quadrant photodetector calibration 
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Figure 3:  Schematic of quadrant photodetector calibration (top view) 
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APPENDIX F:  Relative Probe Beam Size 

 One of the important features of thermal wave techniques is their ability to 

confine the thermal probe to small length-scales by increasing the modulation 

frequency of the applied heat source.  This is the primary reason why such techniques 

are valuable when working with thin films and multilayer structures.  One of the issues 

we have encountered with PDS, however, is that we lose sensitivity to model 

parameters at very high modulation frequencies.  The reason is relatively straight 

forward, but there is no obvious solution. 

 The films we are interested in typically have a thickness on the order of 1 μm.  

Ideally, we would like to operate at sufficiently high frequencies to contain the 

thermal field inside of the film (Figure 1).  This means that the thermal field will also 

be on the order of 1 μm.  Unfortunately, our probe beam has a radius of 23.9 μm, so a 

large portion of the probe beam will be unaffected by the presence of the thermal field, 

resulting in a poor signal-to-noise ratio. 

 It seems evident that one should use a smaller probe beam.  There are two 

major problems with that premise:  1.)  it is only possible to focus light to the order of 

its wavelength, 2.) the shorter the focal length of the lens, the shorter the depth of 

focus (leading to decreased collimation lengths and increased alignment difficulty).  

This is in addition to the more practical matter that there may be insufficient physical 

clearance to accommodate the necessary optics. 
 Ideally, we would like to encounter a situation where tpd filml δ<  and p tpdR l . 

Unfortunately, it does not appear that transverse PDS can handle these conditions 

simultaneously when dealing with thin films or multilayer structures.  Fortunately, this 

is not a “binary” problem.  Loss of sensitivity is gradual rather than instantaneous.  We 

have found that we still have sensitivity to the properties of a film when the thermal 

penetration depth is larger than the film thickness. 
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Figure 1:  Relative size of film, thermal field, and probe beam 
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APPENDIX G:  Probe Beam Collimation 

 We have assumed that the probe beam is collimated as it passes through the 

thermal field.  In actuality, the probe beam has regions of convergence, collimation, 

and divergence (Figure 1).  The integrals found in Eqs 14 and 15 (Chapter 1) are 

evaluated from negative infinity to positive infinity in the y-direction.  We may break 

these up into three regions (written for the tangential direction only, but applicable 

normal direction as well). 

, 1 , 1 , 1
tan,

0 convergence collimation divergence
region region region

1 n j n j n j
n

dn dy dy dy
n dT dx dx dx

θ θ θ= = =

⎛ ⎞
∂ ∂ ∂⎜ ⎟Φ = + +⎜ ⎟

⎜ ⎟
⎝ ⎠

∫ ∫ ∫  1 

Our implicit assumption is that there are no temperature gradients in the convergence 

or divergence regions, such that 

, 1 , 1

convergence divergence
region region

0n j n jdy dy
dx dx
θ θ= =∂ ∂

= =∫ ∫  2 

The length of the collimation region may be approximated by the depth of 

focus, which is given by 

28 fDOF
D

λ
π

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 3 

where λ is the wavelength of the laser, f is the focal length of the lens, and D is the 

diameter (1/e2) of the light entering the lens.  Over this region, the radius increases by 

a factor of 2  over its value at the waist.  In other words, the probe beam is never 

“perfectly” collimated.  Using the parameters of our experiment (f = 25.4 mm, λ = 

632.8 nm, D = 0.48 mm), the DOF is approximately 4.5 mm. 
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Figure 1:  Convergence, collimation, and divergence regions of probe beam 
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APPENDIX H:  Analysis of Bulk Materials 

 Although the focus of our work has been on thin films and multi-layered 

structures, our techniques are equally valid when applied to bulk materials.  Our multi-

layer model may be used by setting the number of layers to two (2), where j = 1 is the 

semi-infinite gas phase and j = 2 is the semi-infinite bulk solid phase.  The estimation 

algorithm was developed in such a general manner that it may be used for bulk, film-

on-substrate, or multi-layer systems.  The only minor difference lies in applying the 

“black box” estimation procedure.  We will discuss our previous efforts toward 

determining the thermal conductivity of NIST SRM8421 and SRM1462. 

 For a bulk material, we are primarily interested in obtaining the isotropic 

thermal conductivity.  The first step in our procedure is to take an initial step toward 

reducing the residual difference between the measurements and the model.  As with 

the film, we will select a series of “initial guesses” for thermal conductivity, and allow 

that parameter to “float” by itself in the estimation algorithm, assuming that all other 
parameters are known precisely (i.e. [ ]zk=s ).  The initial guesses ranged from 0.1 

W/m-K to 1000 W/m-K with a diffuse prior uncertainty.  In all cases, the final 

estimate was 90.94 W/m-K for SRM8421 (Figure 1) and 15.82 W/m-K for SRM1462.  

Figure 2 shows the cost function for each iteration at each initial guess.  We believe 

that these values represent a global minima in the cost function, but to verify that this 

is the case we have plotted the cost function for all possible values of kz (for 

SRM8421 only) in Figure 3.  A minima of the cost function is evident at the same 

location predicted by the estimation algorithm.  Although this procedure is possible for 

one or two model parameters, the computational time becomes prohibitive and 

visualization becomes difficult for a larger number of parameters.  This is precisely 

the reason why estimation algorithms are valuable.   
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We make no claim that the resulting values are the “correct” values for thermal 

conductivity, as other model parameters may not be known accurately.  We have 

found that letting the probe beam radius and gain act as floating parameters along with 

thermal conductivity, we are able to achieve better agreement with the data than by 

letting thermal conductivity float by itself.  For the second step of our process, we 

initialize the estimation algorithm with the value for kz from the previous step (i.e. kz = 

90.94 W/m-K for SRM8421 and kz = 15.82 W/m-K for SRM1462), and a priori 

values for the probe beam radius (Rp = 23.9 μm) and gain (gain = 180 rad-1).  We note 

that the single value for gain used here is in lieu of the “gain multiplier” discussed in 

Chapter 1.  Therefore, a final value of gain = 162 rad-1 is equivalent to reporting a gain 

multiplier of 1 1162 180 0.9multG rad rad− −= = .  To remind the reader, the gain 

multiplier was used to account for the effects of uncertainty or imperfect knowledge in 

any term that is a linear multiplier of the probe beam deflection signal.  The results of 

this 3-parameter estimation have previously been given in Chapter 1, Table 2, Case 3. 
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Figure 1:  Results of estimation algorithm for SRM8421 with several initial guesses for thermal conductivity in a  

one-parameter (kz) fit 
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Figure 2:  Cost function for estimation of SRM8421 with several initial guesses for thermal conductivity in a one-parameter (kz) fit 
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Figure 3:  Evaluation of cost function at all values of thermal conductivity for SRM8421 with all other model parameters fixed. 
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APPENDIX I 

PHOTOGRAPHS OF EXPERIMENTAL APPARATUS  
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Figure 1:  Photograph of PDS apparatus 
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Figure 2:  Heating beam and probe beam intersecting at sample surface
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Figure 3:  Probe beam striking face of quadrant photodetector
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Figure 4:  Brimrose acousto-optic modulator
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APPENDIX J 

COMPUTER CODES 

(Note:  The following MATLAB codes have been used by the author and are intended 

for informational purposes only.) 



1/4/09 6:44 PM E:\PDS Estimation Fa...\PDSstackedfrequency.m 1 of 4

P0 = Ph; % Computes the optical power of the n-th harmonic of a 
square wave.
 
[Ptop,Pbot] = PDSpower(P0,Rh,refind,alpha,delta);
 
% Define physical/spatial frequency extent of problem
 
N = 1024; % Number of data points in both frequency and spatial 
domain.  Fastest when N is a power of 2
 
xmax = 0.5e-3; % Maximum distance from center that signal is expected
xvec = linspace(-xmax,xmax,N+1);
xvec = xvec(1:end-1);
deltax = xvec(2)-xvec(1);
 
% Determine spatial circular frequency
 
kappamax = pi/deltax;
deltakappa = 2*kappamax/N;
kappavec = (-kappamax:deltakappa:kappamax-deltakappa);
 
stackedoutput = [];
stackedxvec = [];
 
for ii = 1:length(freqs)
    freq = freqs(ii);
    omegan = 2*pi*freq;
 
%     h = waitbar(0,'Calculating coefficients');
 
    for jj = 1:length(kappavec)
 
        kappa = kappavec(jj);
        lambda = sqrt(krat*kappa^2+i*omegan*rho.*Cp./kz);
        lambdaair(jj) = lambda(1);
        coeffvec(:,jj) = PDScoeff(kz,Rbdry,lambda,alpha,delta,Ptop,
Pbot,Rh,kappa);
%         waitbar(jj/length(kappavec));
 
    end
 
%     close(h);
 
    c2air = coeffvec(1,:);
 
    zvec = linspace(0,height+2*Rp);
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    hinc = height;
    hrefl = -height;
 
    for zz = 1:length(zvec)
 
        phibarnorm(zz,:) = ifftshift(-1/n0*dndT*1/2*sqrt(2/pi)
/Rp*ifft(fftshift(lambdaair.*c2air.*...
            (exp(-lambdaair*zvec(zz)-kappavec.^2.*(Rh^2+Rp^2)/8-2*
(zvec(zz)-hinc)^2/Rp^2)-exp(-lambdaair*zvec(zz)-kappavec.^2.*
(Rh^2+Rp^2)/8-2*(zvec(zz)-hrefl)^2/Rp^2)))))*(deltakappa*N/(2*pi));
 
 
        phibartan(zz,:) = ifftshift(i/n0*dndT*1/2*sqrt(2/pi)/Rp*ifft
(fftshift(kappavec.*c2air.*...
            (exp(-lambdaair*zvec(zz)-kappavec.^2.*(Rh^2+Rp^2)/8-2*
(zvec(zz)-hinc)^2/Rp^2)+exp(-lambdaair*zvec(zz)-kappavec.^2.*
(Rh^2+Rp^2)/8-2*(zvec(zz)-hrefl)^2/Rp^2)))))*(deltakappa*N/(2*pi));
 
        
%         plot(kappavec,abs(phibartan));
%         pause(0.05);
    end
 
    phibarnorm = trapz(zvec,phibarnorm,1);
    phibartan = trapz(zvec,phibartan,1);
    
    
 
%% Null phase of tangential deflections
 
    fitresults = fit(real(phibartan(1,N/2-2:N/2+2)'),imag(phibartan
(1,N/2-2:N/2+2)'),'poly1');
    ctrslope = fitresults.p1;
    ctrangle = atan(ctrslope);
 
    phibartan = phibartan*exp(i*ctrangle);
    phibarnorm = phibarnorm*exp(i*ctrangle);
    
%%
 
    signormRMS = gain*gmult*phibarnorm;
    sigtanRMS = gain*gmult*phibartan;
 
    % This portion of the code plots the PDS signals
 
    % xmaxplot = 0.2e-3; % Maximum x-coordinate for plotting purposes
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    %
    % subplot(2,2,1:2)
    % plot(xvec,real(sigtanRMS),xvec,imag(sigtanRMS),xvec,real
(signormRMS),xvec,imag(signormRMS))
    % xlabel('X-Offset Position (m)')
    % ylabel('Complex Signal (V_{RMS})')
    % legend('\Re(V_{tan})','\Im(V_{tan})','\Re(V_{norm})','\Im(V_
{norm})')
    % xlim([-xmaxplot,xmaxplot])
    %
    % subplot(2,2,3)
    % plot(xvec,abs(sigtanRMS),xvec,abs(signormRMS))
    % xlabel('X-Offset Position (m)')
    % ylabel('Signal Magnitude (V_{RMS})')
    % legend('|V_{tan}|','|V_{norm}|')
    % xlim([-xmaxplot,xmaxplot])
    %
    %
    % subplot(2,2,4)
    % plot(xvec,angle(sigtanRMS),xvec,angle(signormRMS))
    % xlabel('X-Offset Position (m)')
    % ylabel('Signal Phase (Rad)')
    % legend('Phase(V_{tan})','Phase(V_{norm})')
 
    % This portion of the code prepares the results as useable output 
to be
    % stored in an EXCEL spreadsheet.
 
    outputarray = [real(sigtanRMS'),imag(sigtanRMS'),abs(sigtanRMS'),
angle(sigtanRMS'),...
        real(signormRMS'),imag(signormRMS'),abs(signormRMS'),angle
(signormRMS')];
 
    xstep = 1e-6;
    xvecinterp = (-xmax:xstep:xmax-xstep);
 
    outputarray = interp1(xvec,outputarray,xvecinterp,'linear',0);
 
    stackedoutput = [stackedoutput;outputarray];
    stackedxvec = [stackedxvec;xvecinterp'];
 
end
 
saveflag = 0;
 
if saveflag == 1;
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    [filename,pathname] = uiputfile('*.pds');
%     xlswrite([pathname,filename],[xvecinterp',outputarray])
    xlswrite([pathname,filename],[stackedxvec,stackedoutput]);
 
end
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clear all; close all; clc;
format short e;
 
%% load data file
 
[filename,pathname] = uigetfile('*.xls*','Please Select Data File');
datafilename = [pathname,filename];
dataarray = xlsread(datafilename,1);
 
%% assemble data file
 
dataxvec = repmat(dataarray(:,1),2,1)*10^-3;
% datavec = [dataarray(:,4);dataarray(:,5);dataarray(:,2);dataarray
(:,3)];
datavec = [-dataarray(:,4);dataarray(:,5)];
noisevec = [dataarray(:,8);dataarray(:,9)];
 
% dataxvec = repmat(dataarray(:,1),2,1);
% datavec = [dataarray(:,2);dataarray(:,3)];
% noisevec = [dataarray(:,6);dataarray(:,7)];
 
 
%% simulate PDS signals
 
[filename,pathname] = uigetfile('*.xls*','Select PDS Configuration 
File');
configfilename = [pathname,filename];
 
maxiterations = inputdlg('Iterations','Input number of iterations',1,
{'20'});
maxiterations = str2num(maxiterations{1,1});
 
estarray = xlsread(configfilename,'Estimation','C7:G14');
% noiselevel = xlsread(configfilename,'Estimation','B16');
paramvec0 = estarray(:,1);
paramvec = paramvec0;
stdvec0 = estarray(:,2);
infovec0 = 1./(stdvec0).^2;
minboundvec = estarray(:,3);
maxboundvec = estarray(:,4);
minchange = estarray(:,5);
 
PDSconfig_excel;
PDSmodifyparameters;
PDSstackedfrequency;
modeloutput = stackedoutput;
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modelxvec = repmat(stackedxvec,2,1);
% modelvec = [modeloutput(:,1);modeloutput(:,2);modeloutput(:,5);
modeloutput(:,6)];
modelvec = [modeloutput(:,1);modeloutput(:,2)];
 
plot(modelxvec,modelvec,dataxvec,datavec)
pause(1.0);
 
%% Estimation
 
infomat0 = diag(infovec0);
noisevec = 1./noisevec.^2;
noisemat = spdiags(noisevec,0,length(modelvec),length(modelvec));
numparams = length(paramvec0);
 
residualvec = datavec-modelvec;
 
residualvec0 = paramvec-paramvec0;
 
costfunc(1) = 1/2*
(residualvec'*noisemat*residualvec+residualvec0'*infomat0'*residualve
c0)
 
lambdalm = 1e-3; % Initialize Levenburg-Marquardt parameter
iterindex = 2;
iterflag = 0;
 
 
 
while iterflag == 0;
 
    % compute jacobian
 
    for kk = 1:numparams
 
        paramvec(:,iterindex) = paramvec(:,iterindex-1);
        paramvec(kk,iterindex) = 1.01*paramvec(kk,iterindex);
 
        PDSmodifyparameters;
        PDSstackedfrequency;
        perturboutput = stackedoutput;
 
        dmoddparam = (perturboutput-modeloutput)/(0.01*paramvec(kk,
iterindex-1));
        %         jacobian(:,kk) = [dmoddparam(:,1);dmoddparam(:,2);
dmoddparam(:,5);dmoddparam(:,6)];
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        jacobian(:,kk) = [dmoddparam(:,1);dmoddparam(:,2)];
 
    end
 
    scalemat = diag(max(jacobian));
 
    %     [jacobianrows,jacobiancols] = size(jacobian);
    %     for ii = 1:jacobiancols
    %         scalevec(ii) = norm(jacobian(:,ii));
    %     end
    %     scalemat = diag(scalevec);
 
    residualvec0bar = scalemat*residualvec0;
    jacobianbar = jacobian*inv(scalemat);
    infomat0bar = inv(scalemat)*infomat0*inv(scalemat);
    residualvec0bar = scalemat*residualvec0;
 
 
    lmflag = 0;
    while lmflag == 0;
 
%         stepvecbar = inv(jacobianbar'*noisemat*jacobianbar + 
infomat0bar + lambdalm*inv(scalemat)*inv(scalemat))*...
%             (jacobianbar'*noisemat*residualvec - 
infomat0bar*residualvec0);
        stepvecbar = inv(jacobianbar'*noisemat*jacobianbar + 
infomat0bar + lambdalm*inv(scalemat)*inv(scalemat))*...
            (jacobianbar'*noisemat*residualvec - 
infomat0bar*residualvec0bar);
        stepvec = inv(scalemat)*stepvecbar
 
        underminchange = abs(stepvec) < minchange;
 
        if sum(underminchange) == length(stepvec)
            iterflag = 1;
            lmflag = 1;
            disp('All paramters are under minimum change')
        end
 
        newparamvec = paramvec(:,iterindex-1) + stepvec;
 
        underminbound = newparamvec < minboundvec;
        underminboundindex = find(underminbound);
        newparamvec(underminboundindex) = minboundvec
(underminboundindex);
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        overmaxbound = newparamvec > maxboundvec;
        overmaxboundindex = find(overmaxbound);
        newparamvec(overmaxboundindex) = maxboundvec
(overmaxboundindex);
 
        if sum([underminboundindex;overmaxboundindex])~=0;
            disp('One or more parameters may have hit bound')
        end
 
        paramvec(:,iterindex) = newparamvec;
        PDSmodifyparameters;
        PDSstackedfrequency;
        modeloutput = stackedoutput;
        modelxvec = repmat(stackedxvec,2,1);
        %         modelvec = [modeloutput(:,1);modeloutput(:,2);
modeloutput(:,5);modeloutput(:,6)];
        modelvec = [modeloutput(:,1);modeloutput(:,2)];
 
        plot(modelxvec,modelvec,dataxvec,datavec,'r+','MarkerSize',
2);
        legend('Model','Data')
        title('Estimation Results')
        xlabel('X-Offset (m)')
        ylabel('Deflection Signal (V)')
        pause(0.1)
 
        residualvec_post = datavec-modelvec;
        residualvec0_post = paramvec(:,iterindex)-paramvec0;
 
        costfunc(iterindex) = 1/2*
(residualvec_post'*noisemat*residualvec_post+residualvec0_post'*infom
at0'*residualvec0_post);
 
        if costfunc(iterindex) >= costfunc(iterindex-1);
            lambdalm = 10*lambdalm;
            disp(sprintf('Increasing Lambda = %0.1e',lambdalm))
            if lambdalm >= 10^100
                lmflag = 1;
                iterflag = 1;
                disp('Levenburg Marquardt unable to reduce cost 
function')
            end
        else if costfunc(iterindex) <= costfunc(iterindex-1);
                lambdalm = 0.1*lambdalm;
                residualvec = residualvec_post;
                residualvec0 = residualvec0_post;
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                %                 lambdalm = 1e-3;
                %                 paramvec(:,iterindex) = 
newparamvec;
                lmflag = 1;
                iterindex = iterindex + 1;
            end
        end % end of checking cost function
    end % end of the levenburg-marquardt adjustment
 
    %     xlswrite(configfilename,[dataxvec,datavec,modelxvec,
modelvec],'GraphData','A3');
 
    if iterindex == maxiterations;
        iterflag = 1;
    end
 
    disp(sprintf('Iteration number %0d',iterindex-1))
    disp(sprintf('Cost fuction = %0.3f',costfunc(end)))
    disp('  Parameter   Step Size')
    disp([paramvec(:,end),stepvec])
 
end % end of parameter estimation
 
%% Measures of Goodness
 
MSE = inv(scalemat)*inv
(jacobianbar'*noisemat*jacobianbar+infomat0bar)*inv(scalemat)
 
sigmaparam = sqrt(diag(MSE))
 
for ii = 1:numparams
    for jj = 1:numparams
 
        PDScorr(ii,jj) = MSE(ii,jj)/sqrt(MSE(ii,ii)*MSE(jj,jj));
    end
end
 
disp('Parameter Mean Standard Deviation')
format short e;
disp([paramvec(:,end),sigmaparam])
disp(sprintf('Cost Function = %0.4e',costfunc(end)))
 
%%  File output
 
xlswrite(configfilename,MSE,'PostProcessing','B3');
xlswrite(configfilename,sigmaparam,'PostProcessing','B14');
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xlswrite(configfilename,PDScorr,'PostProcessing','B26');
xlswrite(configfilename,costfunc','PostProcessing','L3');
xlswrite(configfilename,paramvec','PostProcessing','M3');
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function [coeffvec] = PDScoeff(kz,Rbdry,lambda,alpha,delta,Ptop,Pbot,
Rh,kappa)
 
% This program will generate the transformed temperature coefficients
% (c1,c2) for each layer in the system.
%
% INPUTS:
% kz = vector of thermal conductivity [W/m-K]
% lambda = vector of complex t.p.d. [1/m]
% alpha = vector of optical absorption coefficient [1/m]
% delta = vector of layer thickness [m]
% Ptop = vector of optical power at top of layer [W]
% Pbot = vector of optical power at bottom of layer [W]
% Rh = 1/e^2 heating beam radius [m]
% kappa = spatial circular frequency [1/m]
%
% OUTPUTS:
% coeffvec = vector of transformed temperature coefficients of form
%               [c(2,1);c(1,2);c(2,2);...;c(1,n-1);c(2,n-1);c(1,n)]
%
 
warning on all
 
numlayers = length(kz);
coeffmat = spalloc(2*(numlayers-1),2*(numlayers-1),4);
 
if numlayers == 2
 
    coeffmat(1,1) = -kz(1)*lambda(1);
    coeffmat(1,2) = -kz(2)*lambda(2);
 
    coeffmat(2,1) = -Rbdry(1)*kz(1)*lambda(1)-1;
    coeffmat(2,2) = 1;
 
    constvec(1,1) = (alpha(2)^2/(lambda(2)^2-alpha(2)^2)*(Ptop(2))-
...
        alpha(1)^2/(lambda(1)^2-alpha(1)^2)*(-Pbot(1)))*...
        exp(-kappa^2*Rh^2/8);
 
    constvec(2,1) = (1/kz(1)*alpha(1)/(lambda(1)^2-alpha(1)^2)*(-Pbot
(1))-...
        1/kz(2)*alpha(2)/(lambda(2)^2-alpha(2)^2)*(Ptop(2)))*...
        exp(-kappa^2*Rh^2/8);
 
else
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    for jj = 1:numlayers-1
 
        if jj == 1
 
            coeffmat(2*jj-1,2*jj-1) = -kz(jj)*lambda(jj);
            coeffmat(2*jj-1,2*jj) = -kz(jj+1)*lambda(jj+1);
            coeffmat(2*jj-1,2*jj+1) = kz(jj+1)*lambda(jj+1)*exp(-
lambda(jj+1)*delta(jj+1));
 
            coeffmat(2*jj,2*jj-1) = (-Rbdry(jj)*kz(jj)*lambda(jj)-1);
            coeffmat(2*jj,2*jj) = 1;
            coeffmat(2*jj,2*jj+1) = exp(-lambda(jj+1)*delta(jj+1));
 
            constvec(2*jj-1,1) = (alpha(jj+1)^2/(lambda(jj+1)^2-alpha
(jj+1)^2)*...
                (Ptop(jj+1)-Pbot(jj+1)*exp(-alpha(jj+1)*delta(jj+1)))
-...
                alpha(jj)^2/(lambda(jj)^2-alpha(jj)^2)*...
                (-Pbot(jj)))*...
                exp(-kappa^2*Rh^2/8);
 
            constvec(2*jj,1) = (1/kz(jj)*alpha(jj)/(lambda(jj)^2-
alpha(jj)^2)*...
                (1-Rbdry(jj)*kz(jj)*alpha(jj))*...
                (-Pbot(jj))-...
                1/kz(jj+1)*alpha(jj+1)/(lambda(jj+1)^2-alpha(jj+1)^2)
*...
                (Ptop(jj+1)+Pbot(jj+1)*exp(-alpha(jj+1)*delta
(jj+1))))*...
                exp(-kappa^2*Rh^2/8);
 
        else if jj == numlayers-1
 
                coeffmat(2*jj-1,2*jj-2) = kz(jj)*lambda(jj)*exp(-
lambda(jj)*delta(jj));
                coeffmat(2*jj-1,2*jj-1) = -kz(jj)*lambda(jj);
                coeffmat(2*jj-1,2*jj) = -kz(jj+1)*lambda(jj+1);
 
                coeffmat(2*jj,2*jj-2) = (Rbdry(jj)*kz(jj)*lambda(jj)
-1)*exp(-lambda(jj)*delta(jj));
                coeffmat(2*jj,2*jj-1) = (-Rbdry(jj)*kz(jj)*lambda(jj)
-1);
                coeffmat(2*jj,2*jj) = 1;
 
                constvec(2*jj-1,1) = (alpha(jj+1)^2/(lambda(jj+1)^2-
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alpha(jj+1)^2)*...
                    (Ptop(jj+1))-...
                    alpha(jj)^2/(lambda(jj)^2-alpha(jj)^2)*...
                    (Ptop(jj)*exp(-alpha(jj)*delta(jj))-Pbot(jj)))
*...
                    exp(-kappa^2*Rh^2/8);
 
                constvec(2*jj,1) = (1/kz(jj)*alpha(jj)/(lambda(jj)^2-
alpha(jj)^2)*...
                    (1-Rbdry(jj)*kz(jj)*alpha(jj))*...
                    (Ptop(jj)*exp(-alpha(jj)*delta(jj))-Pbot(jj))-...
                    1/kz(jj+1)*alpha(jj+1)/(lambda(jj+1)^2-alpha
(jj+1)^2)*...
                    (Ptop(jj+1)))*...
                    exp(-kappa^2*Rh^2/8);
 
            else
 
                coeffmat(2*jj-1,2*jj-2) = kz(jj)*lambda(jj)*exp(-
lambda(jj)*delta(jj));
                coeffmat(2*jj-1,2*jj-1) = -kz(jj)*lambda(jj);
                coeffmat(2*jj-1,2*jj) = -kz(jj+1)*lambda(jj+1);
                coeffmat(2*jj-1,2*jj+1) = kz(jj+1)*lambda(jj+1)*exp(-
lambda(jj+1)*delta(jj+1));
 
                coeffmat(2*jj,2*jj-2) = (Rbdry(jj)*kz(jj)*lambda(jj)
-1)*exp(-lambda(jj)*delta(jj));
                coeffmat(2*jj,2*jj-1) = (-Rbdry(jj)*kz(jj)*lambda(jj)
-1);
                coeffmat(2*jj,2*jj) = 1;
                coeffmat(2*jj,2*jj+1) = exp(-lambda(jj+1)*delta
(jj+1));
 
                constvec(2*jj-1,1) = (alpha(jj+1)^2/(lambda(jj+1)^2-
alpha(jj+1)^2)*...
                    (Ptop(jj+1)-Pbot(jj+1)*exp(-alpha(jj+1)*delta
(jj+1)))-...
                    alpha(jj)^2/(lambda(jj)^2-alpha(jj)^2)*...
                    (Ptop(jj)*exp(-alpha(jj)*delta(jj))-Pbot(jj)))
*...
                    exp(-kappa^2*Rh^2/8);
 
                constvec(2*jj,1) = (1/kz(jj)*alpha(jj)/(lambda(jj)^2-
alpha(jj)^2)*...
                    (1-Rbdry(jj)*kz(jj)*alpha(jj))*...
                    (Ptop(jj)*exp(-alpha(jj)*delta(jj))-Pbot(jj))-...
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                    1/kz(jj+1)*alpha(jj+1)/(lambda(jj+1)^2-alpha
(jj+1)^2)*...
                    (Ptop(jj+1)+Pbot(jj+1)*exp(-alpha(jj+1)*delta
(jj+1))))*...
                    exp(-kappa^2*Rh^2/8);
 
            end
        end
    end
end
 
coeffvec = conj(coeffmat)\constvec; % modified on 7/8/08 for 
temperature field plotting
 
% coeffmat = conj(coeffmat);
% invcoeffmat = inv(coeffmat);
% % [lcoeffmat,ucoeffmat]=lu(coeffmat);
% % invcoeffmat = inv(ucoeffmat)*inv(lcoeffmat);
% coeffvec = invcoeffmat * constvec;
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% This file allows for the modification of parameters in an 
estimation
% scheme.  The input is a vector of parameters that must correspond 
to
% elements in the configuration file.
%
% For example:  To modify the heating beam radius, element paramvec
(1) will
% be the current estimate of the radius.  In the configuration file 
below,
% you must enter Rh = paramvec(1) in its appropriate location.
%
% It is suggested that you comment out the original entry in the
% configuration file rather than overwriting it.
 
% Constants
 
gasprops = xlsread(configfilename,'Materials','A6:H6');
absprops = xlsread(configfilename,'Materials','A12:I12');
perprops = xlsread(configfilename,'Materials','A19:I20');
subprops = xlsread(configfilename,'Materials','A27:G27');
hbeamprops = xlsread(configfilename,'Lasers','A6:C6');
pbeamprops = xlsread(configfilename,'Lasers','A11:D11');
qpdprops = xlsread(configfilename,'Lasers','A16:C16');
freqs = xlsread(configfilename,'Lasers','A20:A30');
 
n0 = gasprops(5); % n of air at 20C
dndT = gasprops(8); % dn/dT for air near 20C
 
% Experimental Configuration
 
lambdah = hbeamprops(1); % Wavelength of heating beam [m]
Ph = hbeamprops(2); % Power of heating beam [W, Peak]
Rh = hbeamprops(3); % 1/e^2 radius of heating beam at z = 0 [m]
 
lambdap = pbeamprops(1); % Wavelength of probe beam [m]
Pp = pbeamprops(2); % Power of probe beam [W]
Rp = pbeamprops(3); % 30e-6; % 1/e^2 radius of probe beam at y = 0 
[m]
height = pbeamprops(4); % Height of probe beam above sample [m]
 
dispgain = qpdprops(1); % I-V Gain of QPD circuitry [V/A]
lQPD = qpdprops(2); % Distance from y = 0 to QPD [m]
gain = qpdprops(3);
gmult = 1; % added here in lieu of EXCEL file
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% Layer Configuration
 
kzair = gasprops(1); % Thermal conductivity of air in z-direction 
[W/m-K]
kratair = gasprops(2); % kr/kz of air
rhoair = gasprops(3); % Density of air [kg/m^3]
Cpair = gasprops(4); % Specific heaet of air [J/kg-K]
refindair = gasprops(5)+i*gasprops(6); % Complex refractive index of 
air @ 514nm
alphaair = gasprops(7); % Absorption coefficient of air [1/m]
 
kzsub = subprops(1); % Thermal conductivity of substrate in z-
direction [W/m-K]
kratsub = subprops(2); % kr/kz of substrate
rhosub = subprops(3); % Density of substrate [kg/m^3]
Cpsub = subprops(4); % Specific heat of substrate [J/kg-K]
refindsub = subprops(5)+i*subprops(6); % Complex refractive index of 
substrate @ 514nm
alphasub = subprops(7); % Absorption coefficient of air [1/m]
 
absflag = xlsread(configfilename,'Materials','B13'); % On/Off flag 
for absorbing layer
kzabs = absprops(1); % Thermal conductivity of absorbing layer in z-
direction [W/m-K]
kratabs = absprops(2); % kr/kz of absorbing layer
rhoabs = absprops(3); % Density of absorbing layer [kg/m^3]
Cpabs = absprops(4); % Specific heat of absoring layer [J/kg-K]
refindabs = absprops(5)+i*absprops(6); % Complex refractive index of 
substrate @ 514nm
alphaabs = absprops(7); % Absorption coefficient of absorbing layer 
[1/m]
deltaabs = absprops(9); % Thickness of absorbing layer [m]
Rbdryabs = absprops(8); % Thermal resistance at bottom of absorbing 
layer [m^2-K/W]
 
[numperlayers,junk] = size(perprops);
for npl = 1:numperlayers;
 
kzper(npl) = perprops(npl,1); % Thermal conductivity of a single 
period in z-direction [W/m-K]
kratper(npl) = perprops(npl,2); % kr/kz of single period
rhoper(npl) = perprops(npl,3); % Density of  single period [kg/m^3]
Cpper(npl) = perprops(npl,4); % Specific heat of single period [J/kg-
K]
refindper(npl) = perprops(npl,5)+i*perprops(npl,6); % Complex 
refractive index of single period @ 514nm
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alphaper(npl) = perprops(npl,7); % Absorption coefficient of single 
period [1/m]
deltaper(npl) = perprops(npl,9); % Thickness of layers in a single 
period [m]
Rbdryper(npl) = perprops(npl,8); % Thermal resistance at bottom of 
layers in a single period [m^2-K/W]
 
end
 
numper = xlsread(configfilename,'Materials','B21'); % Number of 
periods in multilayer
 
% Assemble output arrays
 
if absflag == 1
 
    kz = [kzair,kzabs,repmat(kzper,1,numper),kzsub];
    krat = [kratair,kratabs,repmat(kratper,1,numper),kratsub];
    rho = [rhoair,rhoabs,repmat(rhoper,1,numper),rhosub];
    Cp = [Cpair,Cpabs,repmat(Cpper,1,numper),Cpsub];
    refind = [refindair,refindabs,repmat(refindper,1,numper),
refindsub];
    alpha = [alphaair,alphaabs,repmat(alphaper,1,numper),alphasub];
    Rbdry = [0,Rbdryabs,repmat(Rbdryper,1,numper),0];
    delta = [inf,deltaabs,repmat(deltaper,1,numper),inf];
    ztop = [inf,0,-cumsum(delta(2:end))];
    zbot = [0,-cumsum(delta(2:end)),-inf];
 
else
 
    kz = [kzair,repmat(kzper,1,numper),kzsub];
    krat = [kratair,repmat(kratper,1,numper),kratsub];
    rho = [rhoair,repmat(rhoper,1,numper),rhosub];
    Cp = [Cpair,repmat(Cpper,1,numper),Cpsub];
    refind = [refindair,repmat(refindper,1,numper),refindsub];
    alpha = [alphaair,repmat(alphaper,1,numper),alphasub];
    Rbdry = [0,repmat(Rbdryper,1,numper),0];
    delta = [inf,repmat(deltaper,1,numper),inf];
    ztop = [inf,0,-cumsum(delta(2:end))];
    zbot = [0,-cumsum(delta(2:end)),-inf];
 
end
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% Use this template to modify PDS model parameters.  For instance, in 
the
% scenario below, the 3rd parameter in the parameter vector will be 
the
% probe beam radius.
 
% kz(3) = paramvec(1,end);
% gain = paramvec(2,end);
% Rp = paramvec(3,end);
% Rbdry(3) = paramvec(4,end);
% krat(3) = paramvec(5,end);
% Rh = paramvec(6,end);
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clear all;
close all;
clc;
 
deflvec = [];
noisevec = [];
positionvec = [];
outputarray = [];
 
xmin = -0.5e-3;
xmax = 0.5e-3;
deltax = 1.0e-6;
posvec = (xmin:deltax:xmax-deltax)';
posvec = posvec*10^3;
 
%% Load Data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load data files and extract data %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
[filename,pathname]=uigetfile('Please choose data file to 
condition');
filename = strcat(pathname,filename);
 
PDSdata = xlsread(filename,-1);
xpos = PDSdata(:,2);
 
%% Find copies of x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find non-distinct values of x (copies) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
delx = diff(xpos);
uniquevals = find(delx ~= 0);
 
xpos = PDSdata(uniquevals,2);
ypos = PDSdata(uniquevals,3);
zpos = PDSdata(uniquevals,1);
renorm = PDSdata(uniquevals,6);
imnorm = PDSdata(uniquevals,7);
retan = PDSdata(uniquevals,4);
imtan = PDSdata(uniquevals,5);
 
%%  Find dropped points
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find dropped (=0) data points (copies) %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
[droprow,dropcol] = find([renorm,imnorm,retan,imtan]==0);
droprow = unique(droprow);
[xpos,ps] = removerows(xpos,droprow);
[ypos,ps] = removerows(ypos,droprow);
[zpos,ps] = removerows(zpos,droprow);
[renorm,ps] = removerows(renorm,droprow);
[imnorm,ps] = removerows(imnorm,droprow);
[retan,ps] = removerows(retan,droprow);
[imtan,ps] = removerows(imtan,droprow);
 
%% Plot Raw Data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot raw data                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
figure(1)
plot(xpos,abs(renorm+i*imnorm),xpos,abs(retan+i*imtan))
title('Experimental PDS Data')
xlabel('X-Offset Position [m]')
ylabel('Deflection Signal [V]')
legend('|\Phi_{norm}|','|\Phi_{tan}|')
xlim([xpos(1),xpos(end)]);
 
%% Subtract Mean
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Subract offset voltages and estimate noise %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
waitforbuttonpress;
point1=get(gca,'CurrentPoint');
rbbox;
point2=get(gca,'CurrentPoint');
 
offsetind = find(xpos>=point1(1) & xpos<=point2(1));
 
retan_offset = mean(retan(offsetind));
retan_noise = std(retan(offsetind));
 
imtan_offset = mean(imtan(offsetind));
imtan_noise = std(imtan(offsetind));
 
renorm_offset = mean(renorm(offsetind));
renorm_noise = std(renorm(offsetind));
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imnorm_offset = mean(imnorm(offsetind));
imnorm_noise = std(imnorm(offsetind));
 
% numendpts = 250;
% 
% retan_offset = mean([retan(1:numendpts);retan(end-numendpts:end)]);
% retan_noise = std([retan(1:numendpts);retan(end-numendpts:end)]);
% 
% imtan_offset = mean([imtan(1:numendpts);imtan(end-numendpts:end)]);
% imtan_noise = std([imtan(1:numendpts);imtan(end-numendpts:end)]);
% 
% renorm_offset = mean([renorm(1:numendpts);renorm(end-numendpts:
end)]);
% renorm_noise = std([renorm(1:numendpts);renorm(end-numendpts:
end)]);
% 
% imnorm_offset = mean([imnorm(1:numendpts);imnorm(end-numendpts:
end)]);
% imnorm_noise = std([imnorm(1:numendpts);imnorm(end-numendpts:
end)]);
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Subract offset voltages                    %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
retan = retan-retan_offset;
imtan = imtan-imtan_offset;
renorm = renorm-renorm_offset;
imnorm = imnorm-imnorm_offset;
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot data with offset subtracted           %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
figure(1)
plot(xpos,abs(renorm+i*imnorm),xpos,abs(retan+i*imtan))
title('Offsets Removed')
xlabel('X-Offset Position [m]')
ylabel('Deflection Signal [V]')
legend('|\Phi_{norm}|','|\Phi_{tan}|')
xlim([xpos(1),xpos(end)]);
 
%% Rotate QPD Coordinates
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rotate photodetector to properly separate norm/tan channels %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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index = 1;
 
recompdefl = retan + i*renorm;
imcompdefl = imtan + i*imnorm;
 
ctrindex = 1250;
 
for thetadeg = -15:0.5:15
 
    thetarad(index) = thetadeg*pi/180;
 
    recompdeflrot = recompdefl*exp(i*thetarad(index));
    imcompdeflrot = imcompdefl*exp(i*thetarad(index));
 
    magtandeflrot = (real(recompdeflrot).^2+real(imcompdeflrot).^2).^
(1/2);
    magnormdeflrot = (imag(recompdeflrot).^2+imag(imcompdeflrot).^2).
^(1/2);
 
    [leftmax,leftmaxpos] = max(magtandeflrot(1:ctrindex));
    [rightmax,rightmaxpos] = max(magtandeflrot(ctrindex:end));
    deltasig(index) = rightmax-leftmax;
 
    norm_magnormdefl(index) = norm(magnormdeflrot);
 
            plot(xpos,magtandeflrot,xpos,magnormdeflrot)
            legend(sprintf('Angle = %0.2f',thetadeg))
            pause(0.1);
 
    index = index+1;
end
 
plot(thetarad*180/pi,deltasig,'o')
pause;
 
% rotationline = polyfit(thetarad,deltasig,1);
% alignangle = roots(rotationline);
 
[min_norm,min_index] = min(norm_magnormdefl);
alignangle = thetarad(min_index);
 
recompdeflrot = recompdefl*exp(i*alignangle);
imcompdeflrot = imcompdefl*exp(i*alignangle);
 
retan = real(recompdeflrot);

191



1/4/09 6:51 PM E:\PDS Estima...\PDS_ConditionData_yaligned.m 5 of 7

imtan = real(imcompdeflrot); 
renorm = imag(recompdeflrot);
imnorm = imag(imcompdeflrot);
 
%% Determine x-offset
%%%%%%%%%%%%%%%%%%%%%%
% Determine X-Offset %
%%%%%%%%%%%%%%%%%%%%%%
 
figure(2)
plot(xpos,retan,'*','MarkerSize',3)
xlim([-0.1,0.1])
title('Box central points to determine x-offset')
waitforbuttonpress;
point1=get(gca,'CurrentPoint');
rbbox;
point2=get(gca,'CurrentPoint');
outliers = excludedata(xpos,retan,'box',[point1(1) point2(1) point1
(2) point2(2)]);
opts = fitoptions('Exclude',outliers);
fitresult = fit(xpos,retan,'poly1',opts);
xoffset = -fitresult.p2/fitresult.p1;
 
xpos = xpos - xoffset;
 
%%  Interpolate positions  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Interpolate points to desired x-positions %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
retan = interp1(xpos,retan,posvec,'cubic',0);
imtan = interp1(xpos,imtan,posvec,'cubic',0);
renorm = interp1(xpos,renorm,posvec,'cubic',0);
imnorm = interp1(xpos,imnorm,posvec,'cubic',0);
 
%%  Null tangential
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Null phase of tangential channel %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(2)
plot(posvec,[retan,imtan],'*','MarkerSize',3)
xlim([-0.1,0.1])
title('Identify linear points near center')
 
waitforbuttonpress;
point1=get(gca,'CurrentPoint');
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rbbox;
point2=get(gca,'CurrentPoint');
outliers = excludedata(posvec,retan,'box',[point1(1) point2(1) point1
(2) point2(2)]);
opts = fitoptions('Exclude',outliers);
fitresult = fit(retan,imtan,'poly1',opts);
ctrslope = fitresult.p1;
ctrangle = atan(ctrslope);
 
% ctrangle = 0; % this was added to remove nullification
 
phitan = (retan + i*imtan)*exp(-i*ctrangle);
phinorm = (renorm + i*imnorm)*(-i*ctrangle);
 
figure(3)
plot(phitan,'r*','MarkerSize',3)
title('Phase Space Deflections')
xlabel('\Re(\Phi_{tan})')
ylabel('\Im(\Phi_{tan})')
legend('Original','Rotated')
 
retan = real(phitan);
imtan = imag(phitan);
renorm = real(phinorm);
imnorm = imag(phinorm);
 
figure(4)
plot(posvec,abs(renorm+i*imnorm),posvec,abs(retan+i*imtan))
title('Conditioned PDS Data Set')
xlabel('X-Offset Position [m]')
ylabel('Deflection Signal [V]')
legend('|\Phi_{norm}|','|\Phi_{tan}|')
 
figure(5)
plot(posvec,renorm,'b*',posvec,imnorm,'ro',posvec,retan,'gs',posvec,
imtan,'kd','MarkerSize',3)
title('Conditioned PDS Data Set')
xlabel('X-Offset Position [m]')
ylabel('Deflection Signal [V]')
legend('\Re(\Phi_{norm})','\Im(\Phi_{norm})','\Re(\Phi_{tan})','\Im
(\Phi_{tan})')
 
revnormbut = questdlg('Reverse phase of normal channel?','Normal 
Chennel','No')
 
if strcmp(revnormbut,'Yes')==1
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    renorm = -renorm;
    imnorm = -imnorm;
end
 
revtanbut = questdlg('Reverse phase of tangential 
channel?','Tangential Channel','No');
 
if strcmp(revtanbut,'Yes')==1
    retan = -retan;
    imtan = -imtan;
end
 
close all;
 
figure(5)
plot(posvec,renorm,'b*',posvec,imnorm,'ro',posvec,retan,'gs',posvec,
imtan,'kd','MarkerSize',3)
title('Conditioned PDS Data Set')
xlabel('X-Offset Position [m]')
ylabel('Deflection Signal [V]')
legend('\Re(\Phi_{norm})','\Im(\Phi_{norm})','\Re(\Phi_{tan})','\Im
(\Phi_{tan})')
 
deflarray = [renorm,imnorm,retan,imtan];
 
noisearray = [repmat(renorm_noise,length(posvec),1),...
    repmat(imnorm_noise,length(posvec),1),...
    repmat(retan_noise,length(posvec),1),...
    repmat(imtan_noise,length(posvec),1)];
 
% ypos = repmat(ypos(1),size(posvec));
% zpos = repmat(zpos(1),size(posvec));
 
%%  File output
 
outputarray = [posvec,deflarray,noisearray];
 
[savefilename,savepathname] = uiputfile('Save conditioned data as');
savefilename = strcat(savepathname,savefilename);
xlswrite(savefilename,outputarray)
% fid = fopen(savefilename,'w');
% fprintf(fid,'%0.6e\t%0.6e\t%0.6e\t%0.6e\t%0.6e\t%0.6e\t%0.6e\t%0.6
e\t%0.6e\t%0.6e\t%0.6e\n',outputarray');
% fclose(fid);
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

A B C D E F G H I

Gas Properties
kz kr/kz ρ Cp n k α dn/dT

W/m2-K kg/m3 J/kg-K m-1 K-1

0.02588 1 1.164 1007 1 0 0.00E+00 -9.13E-07

Absorbing Layer Properties
kz kr/kz ρ Cp n k α Rbdry δ

W/m2-K kg/m3 J/kg-K m-1 m2-K/W m
174 1 19300 132 3.38 2.68 6.55E+07 0 1.10E-07

Use absorb 1

Multilayer Properties
kz kr/kz ρ Cp n k α Rbdry δ

W/m2-K kg/m3 J/kg-K m-1 m2-K/W m
148 1 2330 712 1 0 0.00E+00 1.00E+00 2.29E-04

Number of 1

Substrate Properties
kz kr/kz ρ Cp n k α

W/m2-K kg/m3 J/kg-K m-1

148 1 2330 712 1 0 0.00E+00

Material Property Datasheet
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

A B C D E

Heating Beam
λh Ph Rh

m W m
5.15E-07 0.05 4.50E-06

Probe Beam
λp Pp Rp(y=0) height
m W m m

6.33E-07 0.0008 2.39E-05 0

Quadrant Photodiode
Disp Gain lQPD Total Gain

V/m m V/rad
1000.4 1.80E-01 1.80E+02

Frequency
Hz

1000
2000
4000
8000
16000
32000
64000
128000

Optical Setup
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H

Estimation Parameters

min change
Parameter # Description μ0 σ0 Min Max

1 kz 9.98E+01 1.00E+307 0.01 10000 1.00E-03
2 gain 1.80E+02 1.00E+307 1.00E+00 1.00E+04 1.00E-03
3 Rp 2.39E-05 2.39E-06 1.00E-06 1.00E-03 1.00E-09
4 Cp 7.12E+02 7.12E+01 1.00E+02 1.00E+04 1.00E-03  
5
6
7
8

noiselevel 5.00E-06 V

note:  inf is 1e307

.

Estimation Setup

a priori  distribution bounds
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