
PRIZE-COLLECTING NETWORK DESIGN

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Jiawei Qian

January 2012



c© 2012 Jiawei Qian

ALL RIGHTS RESERVED



PRIZE-COLLECTING NETWORK DESIGN

Jiawei Qian, Ph.D.

Cornell University 2012

Network design is an active research area in discrete optimization that focuses

on problems arising from the construction of communication networks. The

prize-collecting version of these problems allow some connectivity require-

ments to be violated in exchange for paying a penalty. In this dissertation, we

consider prize-collecting network design problems in two settings, in which in-

puts for the problem are either known in advance or revealed over time.

In the first setting, we give a 3-approximation algorithm for the prize-

collecting Steiner forest problem using iterative rounding. In the second set-

ting, we give an O(log n)-competitive algorithm for the constrained forest prob-

lem with 0-1 proper connectivity requirement functions using the primal-dual

method and extend our algorithm to solve its prize-collecting version. Com-

putational experiments are carried out to compare this online algorithm with

the corresponding offline optimal solutions on a set of random generated large-

scale instances for the special case of the prize-collecting Steiner tree problem.

In addition, we study the problem of finding the worst-case integrality gap

between the traveling salesman problem and its subtour LP relaxation. We re-

strict ourselves to the special case in which costs between cities are either one or

two. We give a proof of upper bound of 106
81 for this integrality gap. By carrying

out computational experiments, we find the worst-case integrality gap to be 10
9

for small number of cities, n ≤ 12.
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CHAPTER 1

INTRODUCTION

Network design is an active research area in discrete optimization that focuses on

problems arising from the construction of communication networks. In a typ-

ical setting, we are given a directed or undirected graph G = (V, E) with node

set V , edge set E and non-negative edge costs ce for every edge e in E, and our

goal is to find a minimum-cost subgraph H of G that satisfies some connectivity

requirements. The nodes of the graph G can be seen as homes, cities or other

types of destinations, and the edges in G can be seen as cables or routes that con-

nect destinations. We want to set up communication between nodes via either

data transmission or physical transportation through edges in the graph, and

we must choose a subset of edges in the most cost-effective way subject to the

connectivity requirements. A direct application of this problem is for telecom-

munication companies, such as AT&T, to construct fiber-optic networks to pro-

vide services to homes and cities across the country. Other examples include

the design of transportation networks and integrated circuit chips.

The prize-collecting versions of these problems allow some connectivity con-

straints to be violated in exchange for paying a penalty. In these variants, our

goal becomes minimizing the sum of the edge costs plus the penalties. In the

fiber-optic network example above, AT&T can choose to not serve some des-

tinations if connecting them is so costly that outsourcing the services to other

vendors generates more profit after the network construction cost. The penal-

ties for not serving some of its customers can be seen as loss of revenues or

payments for outsourcing.
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Many practically relevant instances of network design problems are NP-hard

and so are their prize-collecting versions. Thus it is believed that there are no

efficient algorithms that can always find optimal solutions. In this dissertation,

we focus on the design of approximation algorithms that efficiently compute so-

lutions with objective values guaranteed to be close to the best possible objec-

tive value among all solutions. More precisely, an α-approximation algorithm for

a given problem runs in polynomial time and finds a solution with objective

value at most α times the objective of an optimal solution. We will refer α as

the approximation ratio or performance guarantee of the respective approximation

algorithm.

We consider several variants of network design problems and their corre-

sponding prize-collecting versions in this dissertation.

1.1 The Steiner Problems and Their Prize-Collecting Versions

Given an undirected graph G = (V, E) with non-negative edge costs and a set

of source-sink (si, ti) pairs of nodes in G, the goal of the Steiner forest problem

is to find a minimum-cost set of edges F ⊆ E such that each pair (si, ti) are

connected in (V, F). This problem is, as its name implies, a generalization of the

Steiner tree problem, in which all pairs have the same source. The Steiner tree

problem is well known to be NP-hard, and thus so is the Steiner forest problem.

In fact, the decision version of the Steiner tree problem is one of Karp’s original

21 NP-complete problems [26]. Chlebı́k and Chlebı́ková [10] showed that it is

NP-hard to approximate the Steiner tree problem within any ratio better than

96
95 . The best known approximation algorithm up to the time of this dissertation
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for the Steiner tree problem is a randomized LP-rounding algorithm with an

approximation ratio of 1.39 due to Byrka et al. [9].

An important technique to solve the Steiner problems is the primal-dual

method. After first modeling the problem as a primal integer program and for-

mulating the dual of a corresponding linear programming relaxation, a primal-

dual algorithm usually starts with an empty primal solution and a dual solu-

tion of zero. It will iteratively improve the primal and dual solutions until a

primal feasible solution is obtained. The performance guarantee is obtained by

comparing the cost of primal and dual solution and by using the cost of dual

solution as a lower bound on the cost of the optimal solution. Agrawal, Klein

and Ravi [1] first introduced a 2-approximation algorithm for the Steiner forest

problem. Goemans and Williamson [17] generalized Agrawal et al.’s algorithm

to give a 2-approximation algorithm for a broad class of network design prob-

lems.

The iterative rounding scheme is another elegant technique. A typical itera-

tive rounding algorithm repeatedly does the following until a feasible solution

is obtained: it solves the linear programming relaxation with the values of some

variables fixed in previous iterations, then fixes some additional variables in

the solution to integer values. The performance guarantee is usually obtained

by analyzing the basic solutions of the linear programming relaxation solved in

each iteration. This method was first introduced by Jain [24] to solve the general-

ized Steiner network problem, which is a generalization of the Steiner forest prob-

lem to higher connectivities, i.e. each terminal pair can be required to have any

non-negative number of edge-disjoint paths in the solution. Jain showed that

any basic feasible solution to the linear programming relaxation of this prob-

12



lem must have some variable of value at least 1
2 . This leads to a performance

guarantee of 2.

In the prize-collecting version of the Steiner forest problem, each pair (si, ti)

is assigned additionally a non-negative penalty πi. We need to choose either

connect (si, ti) in the set of solution edges F or pay the penalty πi. Our goal

becomes minimizing the sum of total edge costs in F plus the total penalties for

pairs that are not connected in F.

For the prize-collecting Steiner tree problem, Goemans and Williamson

showed that their algorithm in [17] can be extended to solve this problem with

the same approximation ratio of 2. Haijiaghayi and Jain [21] gave a primal-dual

3-approximation algorithm for the prize-collecting Steiner forest problem and a

LP rounding 2.54-approximation algorithm. It was conjectured by the authors

of [37] that the iterative rounding technique is a promising way to give an bet-

ter approximation ratio for the forest case. They suggested extending Jain’s 2-

approximation algorithm for the generalized Steiner network problem to solve

the prize-collecting Steiner forest problem.

In Chapter 2, we show that we can indeed extend Jain’s algorithm to solve

the prize-collecting Steiner forest problem using iterative rounding, but the ap-

proximation ratio is 3 and tight. Around the same time, Konemann et al. [27]

and Hajiaghayi and Nasri [22] both independently gave similar iterative round-

ing 3-approximation algorithms for prize-collecting versions of Steiner forest

and generalized Steiner network problems respectively. They also use similar

examples as ours to show the approximation factor is tight.
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1.2 The Constrained Forest Problem and Online Algorithms

All algorithms mentioned so far assume that the inputs of the problems are

given in advance. In practice, it is often the case that inputs of problems are

only partially known at the beginning and more inputs will be revealed over

time. In the case of AT&T fiber-optic network construction, customers may sign

contracts with the company over time or the company may expand its network

from some initial regions subsequently to others. We refer to algorithms that

solve problems with inputs revealed in such a serial fashion as online algorithms.

In contrast, algorithms solving problems with all inputs known in advance are

referred to as offline algorithms. The problems themselves can be categorized as

offline and online versions with the same criteria.

The hardness of online algorithms lies in the difficulty of planning for an

unknown future. For example, in the online version of the Steiner forest prob-

lem, instead of knowing all source-sink pairs in advance, pairs arrive one by

one over time. For each new pair, we start a new phase and need to augment

edges in current solution to connect this new pair. Consider Figure 1.1 below:

there are three terminal pairs (s1, t1), (s2, t2), and (s3, t3), and four non-terminal

nodes n1, n2, n3 and n4. All edges have cost 1. Suppose (s1, t1) is the first arriving

pair. We can choose either path (s1, n1, n2, t2) or path (s1, n3, n4, t3) in phase 1 to

connect them. Without loss of generality, we will choose path (s1, n1, n2, t2). Then

in phase 2, if (s3, t3) is the second arriving pair, we could have saved a cost of one

if we had chosen the other path in phase 1. However, even if we did that, (s2, t2)

could be the second arriving pair and we would face the same problem. There-

fore, without knowing the subsequent inputs, it is impossible to make optimal

decisions based on current data.

14



Figure 1.1: Example of the online Steiner forest problem

The quality of an online algorithm is often measured in terms of its competi-

tive ratio: an α-competitive algorithm is one such that at any time step, the value of

current solution is within a factor of α of the value of an optimal offline solution.

In terms of the online Steiner forest problem, the set of edges constructed by the

algorithm at current phase is at most α times the cost of the optimal value on

the set of source-sink pairs that have arrived thus far.

Imase and Waxman [23] gave a greedy O(log n)-competitive algorithm to

solve the online Steiner tree problem, where n = |V | is the number of nodes in the

graphs. They also showed a lower bound of 1
2 log n on the competitive ratio of

this problem. Awerbuch, Azar and Bartal [2] gave an O(log2 n)-competitive algo-

rithm for the online Steiner forest problem. Subsequently, Berman and Coulston

[4] gave an O(log n)-competitive algorithm for this problem, where the compet-

itive ratio is tight up to a constant factor by Imase and Waxman’s result.

Goemans and Williamson [17] first introduced the offline constrained forest

problem with a 0-1 proper connectivity function, for which they gave a primal-

dual offline 2-approximation algorithm. The 0-1 proper function induces the

connectivity requirements by specifying which cuts must have an edge in the

15



solution, where a cut on a subset of nodes S is the set of edges having exactly

one endpoint in S . Their model of constrained forest problems can be seen as a

generalization of many related network design problems such as Steiner forest,

T-join, point-to-point connection, and others. Their framework and algorithm

have been adopted or extended by others to give approximation algorithms for

many problems in the field of discrete optimization; see (for example) [21] and

[37].

In the online version of constrained forest problem, instead of having one

proper function, a series of proper functions are revealed over time, represent-

ing subsequent connectivity requirements. For example, the online Steiner for-

est problem described above is a special case of the constrained forest prob-

lem, since the connectivity requirement of each arriving terminal pair can be

described in a form of the proper function as we mentioned in the offline case.

In Chapter 3, we give a primal-dual O(log n)-competitive algorithm for the on-

line constrained forest problem by reinterpreting Berman and Coulston’s on-

line algorithm for the Steiner forest problem and melding it with Goemans and

Williamson’s offline algorithm for constrained forest problems. We also show

that our algorithm can be extended to solve various prize-collecting network de-

sign problems with the same competitive ratio. For approximation algorithms,

it is often the case that its performance is better than the theoretical worst case

analysis. By implementing this online algorithm and using a package by Ljubic

et al. [28] to solve the corresponding offline problem, we compare the quality of

this online algorithm with the offline optimal solutions on a set of random gen-

erated large-scale inputs similar to real-world instances for the special case of

the prize-collecting Steiner tree problem. We find that the average competitive

ratio is 1.62 among 46 instances with up to 400 nodes.
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1.3 The Traveling Salesman Problem and Its Integrality Gap

The Traveling Salesmen Problem (TSP) is one of the most intensively studied

problems in discrete optimization. Given a list of cities and their pairwise dis-

tances, the goal of the problem is to find the shortest possible tour that visits

each city exactly once. The TSP and its modifications have many applications

in a variety of fields, such as planning, logistics, microchip manufacturing, and

DNA sequencing. When the distance between two cities is the same in each

direction, the problem is called the symmetric TSP, otherwise it is called the

asymmetric TSP. Whether symmetric or asymmetric, the TSP can be modeled as

a subclass of network design problem, where the connectivity requirement for

general network design problem is the tour requirement of the TSP.

The TSP is NP-hard and its decision version is NP-complete. In fact, Sahni

and Gonzalez [35] showed that no TSP approximation algorithm exists with

constant performance guarantee unless P = NP. But if the distance measure is

metric (i.e. it satisfies the triangle inequality) and symmetric, the problem be-

comes APX-hard. Christofides [11] gave a simple and elegant 3
2 -approximation

algorithm for this case and no one has been able to improve upon this algorithm

for over three decades. Many heuristics with no provable performance guaran-

tee have been designed to solve medium to large TSP instances in practice with

good success.

A natural direction for trying to obtain better approximation algorithms for

the symmetric TSP is to use linear programming. The following linear pro-

gramming relaxation of the traveling salesman problem was used by Dantzig,

Fulkerson, and Johnson [13] in 1954. For simplicity of notation, we let G = (V, E)

17



be a complete undirected graph on n vertices. In the LP relaxation, we have a

variable x(e) for all e = (i, j) that denotes whether we travel directly between

cities i and j on our tour. Let c(e) = c(i, j), and let δ(S ) denote the set of all edges

with exactly one endpoint in S ⊆ V . Then the relaxation is

Min
∑
e∈E

c(e)x(e)

(SUBT ) subject to:
∑
e∈δ(i)

x(e) = 2, ∀i ∈ V, (1.1)∑
e∈δ(S )

x(e) ≥ 2, ∀S ⊂ V, 3 ≤ |S | ≤ |V | − 3 (1.2)

0 ≤ x(e) ≤ 1, ∀e ∈ E. (1.3)

The first set of constraints (1.1) are called the degree constraints. The second

set of constraints (1.2) are sometimes called subtour elimination constraints or

sometimes just subtour constraints, since they prevent solutions in which there

is a subtour of just the vertices in S . As a result, the linear program is some-

times called the subtour LP. Wolsey [41] (and later Shmoys and Williamson [38])

showed that Christofides’ algorithm finds a tour of length at most 3
2 times the

optimal value of the subtour LP. This implies that the integrality gap, the worst

case ratio of the length of an optimal tour divided by the optimal value of the

LP, is at most 3
2 . However, no examples are known that show that the integrality

gap can be as large as 3
2 ; in fact, no examples are known for which the integrality

gap is greater than 4
3 . A well known conjecture states that the integrality gap is

indeed 4
3 , see (for example) Goemans [15].

Recently, progress has been made in several directions, both in improving

the best approximation guarantee and in determining the exact integrality gap

of the subtour LP for certain special cases of the symmetric TSP. In the graph-

TSP, the costs c(i, j) are equal to the shortest path distance in an underlying un-

weighted graph. Oveis Gharan, Saberi, and Singh [33] showed that the graph-
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TSP can be approximated to within 3
2 −ε for a small constant ε > 0. Boyd, Sitters,

van der Ster and Stougie [8] gave a 4
3 -approximation algorithm if the underly-

ing graph is cubic. Mömke and Svensson [31] improved these results by giving

a 1.461-approximation for the graph-TSP and an 4
3 -approximation algorithm if

the underlying graph is subcubic. Their results also imply upper bounds on the

integrality gap of 1.461 and 4
3 in these cases. Mucha [32] improved the bound

for graph-TSP to 13
9 .

A 2-matching of a graph is a set of edges such that no edge appears twice

and each node has degree two, i.e. an integer solution to SUBT with only con-

straints (1.1) and (1.3). Note that a minimum-cost 2-matching thus provides a

lower bound on the length of the optimal TSP tour. A minimum-cost 2-matching

can be found in polynomial time using a reduction to a certain minimum-cost

matching problem. Boyd and Carr [7] conjectured that the worst case ratio of

the cost of a minimum-cost 2-matching and the optimal value of the subtour LP

is at most 10
9 . This conjecture was proved to be true by Schalekamp, Williamson

and van Zuylen [36] and examples are known that show this result is tight.

The importance of integrality gap is that it either translates into the approxi-

mation ratio of an approximation algorithm or gives a hint on the best approxi-

mation ratio can be achieved by an LP-based approach. In this dissertation, we

focus on the integrality gap of the special case of the symmetric 1,2-TSP, where

distances between cities are either 1 or 2. The symmetric 1,2-TSP is NP-hard as

well and naturally satisfies the triangle inequality. We prove that this integrality

gap is at most 106
81 ≈ 1.31 < 4

3 . For small number of cities, n ≤ 12, we find the

worst-case integrality gap to be 10
9 by carrying out computational experiments.
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CHAPTER 2

A FACTOR 3 ITERATIVE ROUNDING ALGORITHM FOR

PRIZE-COLLECTING STEINER FOREST

2.1 Introduction

For the prize-collecting Steiner forest problem (PCSF problem), we are given as

input an undirected graph G = (V, E) with non-negative edge costs ce ≥ 0 for

all e ∈ E, a set of terminal pairs T = { i | (si, ti) with si and ti ∈ V }, and a

penalty πi ≥ 0 for each terminal pair i ∈ T . For each terminal pair (si, ti), we

either need to build some edges to connect them or to pay its penalty. Let F ⊆ E

be subset of edges we build and let Q ⊆ T be the set of terminal pairs for which

we pay the penalty. Our goal is to minimize the total cost of edges in F plus the

total penalties for terminal pairs in Q. As we mentioned in Chapter 1, a direct

application of this problem is for telecommunication companies like AT&T to

construct fiber-optic networks to serve customers at different locations while

having the choice to outsource part of the service to other vendors.

The special case in which all terminal pairs have the same source, i.e. si = r

for all i, is the prize-collecting Steiner tree problem. Goemans and Williamson

[17] gave a primal-dual 2-approximation algorithm for this problem. Hajiaghayi

and Jain [21] gave a primal dual 3-approximation algorithm for the general form

of the PCSF problem, where they used a novel integer programming formula-

tion with a doubly-exponential number of variables. They also gave a random-

ized LP rounding algorithm with an approximation ratio of 2.54 for this prob-

lem. Their approach has been generalized by Sharma, Swamy, and Williamson

[37] with the same approximation ratio for PCSF problem with more general
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connectivity constraints and penalty functions.

Jain [24] introduced the iterative rounding technique to give a 2-

approximation algorithm for the generalized Steiner network problem, which

is a generalization of the Steiner Forest problem (or the PCSF problem with

penalty = ∞ for all terminal pairs) to higher connectivity, i.e. each terminal

pair can be required to have any non-negative number of edge disjoint paths

in the solution. A typical iterative rounding algorithm repeatedly does the fol-

lowing until a feasible solution is obtained: it solves the the linear program-

ming relaxation with the values of some variables fixed in previous iterations,

then fixes some additional basic variables in the solution to integer values. The

performance guarantee is usually obtained by analyzing the basic solutions of

the linear programming relaxation solved in each iteration. Jain showed that

any basic feasible solution to the linear programming relaxation of this problem

must have some variable of value at least 1
2 and this leads to the performance

guarantee of 2.

It was conjectured by the authors of [37] that the iterative rounding tech-

nique is a promising way to give a better approximation ratio for the PCSF

problem. In this chapter, we show that we can indeed solve the prize-collecting

Steiner forest problem by extending ideas from Jain [24]. However, the approx-

imation ratio we obtain is 3 and is tight.

2.2 Preliminaries

Consider the PCSF problem with undirected graph G = (V, E), non-negative

edge costs ce ≥ 0 for all e ∈ E, terminal pairs T = { i | (si, ti) ∈ (V,V) and penalties
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πi ≥ 0 for all i ∈ T . We define a cut-terminal pair to be a pair (A, i) with A ⊆ V and

i ∈ T . We also define a class of functions to be extended weakly supermodular as

follows.

Definition 2.2.1 A function f : (2V ,T )→ {0, 1} is extended weakly supermodular

if it satisfies f (∅, i) = f (V, i) = 0 for all i ∈ T , and for any two cut-terminal pairs

(A, i), (B, j) ∈ (2V ,T ), one of the following six conditions holds:

1. f (A, i) + f (B, j) ≤ f (A ∪ B, i) + f (A ∩ B, j)

2. f (A, i) + f (B, j) ≤ f (A ∪ B, j) + f (A ∩ B, i)

3. f (A, i) + f (B, j) ≤ f (A − B, i) + f (B − A, j)

4. f (A, i) + f (B, j) ≤ f (A − B, j) + f (B − A, i)

5. 2 f (A, i) + 2 f (B, j) ≤ f (A ∪ B, i) + f (A ∩ B, i) + f (A − B, j) + f (B − A, j)

6. 2 f (A, i) + 2 f (B, j) ≤ f (A ∪ B, j) + f (A ∩ B, j) + f (A − B, i) + f (B − A, i)

Define δ(S ) to be the subset of edges with exactly one endpoint in S ⊆ V and

the other endpoint not in S . Then we can model the PCSF problem as a special

case of the following integer program (IP) with extended weakly supermodular

function f (S , i) = 1 if and only if |S ∩ (si, ti)| = 1 for some i ∈ T ,

Min
∑
e∈E

cexe +
∑
i∈T

πiyi

(IP)
∑

e∈δ(S )

xe + yi ≥ f (S , i), ∀S ⊆ V ∀i ∈ T,

xe ∈ {0, 1}, ∀e ∈ E,

yi ∈ {0, 1}, ∀i ∈ T,

where f (S , i) is extended weakly supermodular.
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Lemma 2.2.2 The function f (S , i) = 1 if and only if |S ∩ {si, ti}| = 1 for some i ∈ T is

extended weakly supermodular.

Proof : Clearly, f (∅, i) = f (V, i) = 0 for all i ∈ T . We observe that f (S , i) = f (V −S , i)

for any S ⊆ V and i ∈ T . Also, we have for any disjoint A, B ⊆ V and i ∈ T ,

f (A∪B, i) ≤ max( f (A, i), f (B, i)). Then for any two cut-terminal pairs (A, i), (B, j) ∈

(2V ,T ), f satisfies the following four inequalities:

1. f (A, i) ≤ max( f (A − B, i), f (A ∩ B, i))),

2. f (A, i) = f (V −A, i) ≤ max( f (B−A, i), f (V − (A∪B), i)) = max( f (B−A, i), f (A∪

B, i)),

3. f (B, j) ≤ max( f (B − A, j), f (A ∩ B, j))),

4. f (B, j) = f (V−B, j) ≤ max( f (A−B, j), f (V−(A∪B), j)) = max( f (A−B, j), f (A∪

B, j)).

Consider the four of f (A−B, i), f (B−A, i), f (A∩B, i), f (A∪B, i), f (B−A, j), f (A−

B, j), f (A∩B, j), and f (A∪B, j) that attain maximum of max( f (A−B, i), f (A∩B, i)),

max( f (B− A, i), f (A ∪ B, i)), max( f (B− A, j), f (A ∩ B, j)), and max( f (A − B, j), f (A ∪

B, j)). If the four maximums are f (A−B, i), f (B−A, i), f (A∩B, j) and f (A∪B, j), or

f (B−A, j), f (A−B, j), f (A∩B, i) and f (A∪B, i), then condition 5 or 6 in Definition

2.2.1 is satisfied by summing all four inequalities above. In all other cases, the

sum of two above inequalities must imply one of conditions 1 to 4 in Definition

2.2.1; for example, if f (A− B, i) and f (B− A, j) attain maximum of first and third

inequality above, then we have f (A, i) + f (B, j) ≤ f (A − B, i) + f (B − A, j). 2

Lemma 2.2.3 Let G = (V, E) be a graph and δx(S ) = x∩ δ(S ) for any x ∈ {0, 1}E. Then
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the function |δx(·)| satisfies |δx(∅)| = |δx(V)| = 0 and for every two sets A, B ⊆ V , the

following two statements hold:

1. |δx(A)| + |δx(B)| ≥ |δx(A ∪ B)| + |δx(A ∩ B)|

2. |δx(A)| + |δx(B)| ≥ |δx(A − B)| + |δx(B − A)|

Proof : Let S 1 = A− B, S 2 = A∩ B, S 3 = B−A and S 4 = V − (A∪ B) and let δx(S i, S j)

denote the set of edges in x which have one endpoint in S i and the other in S j.

The lemma follows by observing,

1. |δx(A)| = |δx(S 1, S 3)| + |δx(S 1, S 4)| + |δx(S 2, S 3)| + |δx(S 2, S 4)|,

2. |δx(B)| = |δx(S 1, S 2)| + |δx(S 1, S 3)| + |δx(S 2, S 4)| + |δx(S 3, S 4)|,

3. |δx(A − B)| = |δx(S 1, S 2)| + |δx(S 1, S 3)| + |δx(S 1, S 4)|,

4. |δx(B − A)| = |δx(S 1, S 3)| + |δx(S 2, S 3)| + |δx(S 3, S 4)|,

5. |δx(A ∩ B)| = |δx(S 1, S 2)| + |δx(S 2, S 3)| + |δx(S 2, S 4)|,

6. |δx(A ∪ B)| = |δx(S 1, S 4)| + |δx(S 2, S 4)| + |δx(S 3, S 4)|.

2

Lemma 2.2.4 Let x ∈ {0, 1}E. If f : (2V ,T ) → {0, 1} is an extended weakly supermod-

ular function, then f (S , i) − |δx(S )| is also an extended weakly supermodular function.

Proof : This proof is straightforward. By Lemma 2.2.3, we have |δx(∅)| = |δx(V)| =

0, and for every two sets A, B ⊆ V ,

1. |δx(A)| + |δx(B)| ≥ |δx(A ∪ B)| + |δx(A ∩ B)|,

2. |δx(A)| + |δx(B)| ≥ |δx(A − B)| + |δx(B − A)|,
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3. 2|δx(A)| + 2|δx(B)| ≥ δx(A ∪ B)| + |δx(A ∩ B)| + δx(A − B)| + |δx(B − A)|.

Consider any extended weakly supermodular function f , for (A, i), (B, j) ∈

(2V ,T ), one of the six inequalities in Definition 2.2.1 must hold. Assume

f (A, i) + f (B, j) ≤ f (A ∪ B, i) + f (A ∩ B, j) holds; the other cases are similar. Then

by condition 1, we know that

f (A, i) + f (B, j)− |δx(A)| − |δx(B)| ≤ f (A∪ B, i)− |δx(A∪ B)|+ f (A∩ B, j)| − |δx(A∩ B)|.

Last, since f (S , i) − |δx(S )| = 0 when S = ∅ or S = V , we have shown that f (S , i) −

|δx(S )| is again extended weakly supermodular. 2

2.3 A Factor 3 Iterative Rounding Algorithm

Now consider the linear programming relaxation of (IP), where 0 ≤ xe ≤ 1

for all e ∈ E and yi ≥ 0 for all i ∈ T ; call the relaxation (LP). We obtain a 3-

approximation algorithm for the PCSF problem using the following theorem.

Theorem 2.3.1 For any basic solution [x y] to the linear programming relaxation (LP),

there exists xe ≥
1
3 for some edge e ∈ E or yi ≥

1
3 for some i ∈ T .

We will prove this main theorem in Section 2.4. Let us first see how to use this

theorem to give a factor 3 iterative rounding algorithm for the PCSF problem.

Our algorithm is formally stated in Figure 2.1. Starting with F = ∅ and Q = ∅, in

the kth iteration of the algorithm, we solve (LP) on edge set E − F and terminal

pairs T − Q with function fk, where fk(S , i) = f (S , i) − |δF(S )|. Since this linear

program is trivially bounded and feasible, there must be a basic optimal solution
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Algorithm

F ← ∅, Q← ∅
k ← 1
While (F,Q) is not a feasible solution

a) Solve LP on edge set E − F and terminal set T − Q with function fk
where fk(S , i) = f (S , i) − |δF(S )|

b) Fk = {e : xe ≥ 1/3} and Qk = {i : yi ≥ 1/3}
c) F ← F ∪ Fk, Q← Q ∪ Qk
d) k ← k + 1

Return (F,Q)

Figure 2.1: Facter 3 iterative rounding algorithm for the prize-collecting Steiner
forest problem

to it. Then by Theorem 2.3.1, we must have xe ≥
1
3 for some edge e ∈ E or yi ≥

1
3

for some i ∈ T . We round up all xe ≥
1
3 and yi ≥

1
3 to 1, and put these edges

and/or terminal pairs into sets F and Q separately. We iteratively round up

solutions to (LP) until we find a feasible solution for the original problem (IP),

i.e. all terminal pairs in T are either connected by edges in F or are included in

Q.

To show that the algorithm works, each function fk needs to be again ex-

tended weakly supermodular, and this is shown by Lemma 2.2.4. Therefore,

Theorem 2.3.1 applies for all iterations. Then Fk and Qk are not both empty in

each iteration, and thus there are at most |E|+ |T | iterations before the algorithm

terminates. In addition, it is well known that we can find a basic optimal solu-

tion of (LP) efficiently using ellipsoid method and a separation oracle (see [19]).

We can now show that Theorem 2.3.1 implies that the algorithm of Figure

2.1 is a 3-approximation algorithm.

Theorem 2.3.2 Given Theorem 2.3.1, the algorithm of Figure 2.1 is a 3-approximation
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algorithm for prize-collecting Steiner Forest problem.

Proof : We will use induction on the number of iterations of the algorithm. Let

[x y] be the solution to (LP) with function f1 = f for any extended weakly su-

permodular function f . The base case is straightforward: if after one iteration,

(F = F1, Q = Q1) is a feasible solution, then since F1 = {e ∈ E : xe ≥ 1/3} and

Q1 = {i ∈ T : yi ≥ 1/3}, it is clear that c(F)+π(Q) ≤ 3
∑

e∈E cexe+3
∑

i∈T πiyi ≤ 3·OPT .

Now suppose that the statement holds if the algorithm takes t iterations, and

we show that it holds if the algorithm takes t+1 iterations. By induction, the cost

of all edges we decide to add plus the penalty of all terminal pairs we decide to

pay from the second iterations onward is no more than three times the value of

the LP solution on E − F1 and T − Q1 with the extended weakly supermodular

function f2; that is, if [x′ y′] is the solution found in the second iteration for

the LP on E − F1 and T − Q1 with function f2, then c(F − F1) + π(Q − Q1) ≤

3
∑

e∈E−F1
cex′e + 3

∑
i∈T−Q1

πiy′i by induction hypothesis, since the algorithm finds a

solution for second iteration onwards in t iterations. For e ∈ F1 and i ∈ Q1, we

know that c(F1) + π(Q1) ≤ 3
∑

e∈F1
cexe + 3

∑
i∈Q1

πiyi, since xe ≥ 1/3 for all e ∈ F1

and yi ≥ 1/3 for all i ∈ Q1. To complete the proof, we will show that [x y] is a

feasible solution on the edges E − F1 and terminal pairs T − Q1 for the function

f2. Thus, ∑
e∈E−F1

cex′e +
∑

i∈T−Q1

πiy′i ≤
∑

e∈E−F1

cexe +
∑

i∈T−Q1

πiyi,
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so that

c(F) + π(Q) = c(F − F1) + π(Q − Q1) + c(F1) + π(Q1)

≤ 3
∑

e∈E−F1
cex′e + 3

∑
i∈T−Q1

πiy′i + 3
∑

e∈F1
cexe + 3

∑
i∈Q1

πiyi

≤ 3
∑

e∈E−F1
cexe + 3

∑
i∈T−Q1

πiyi + 3
∑

e∈F1
cexe + 3

∑
i∈Q1

πiyi

= 3
∑

e∈E cexe + 3
∑

i∈T πiyi

= 3 · OPT.

To see that [x y] is feasible for the LP with function f2 on E − F1 and T − Q1,

we need to show x(δ(S )∩ (E − F1)) + yi ≥ f2(S ) for all S ⊆ V and for all i ∈ T −Q1.

This is easy to see as for all S ⊆ V and for all i ∈ T − Q1, we have

x(δ(S ) ∩ (E − F1)) + yi = x(δ(S )) − x(δ(S ) ∩ F1) + yi

≥ f1(S ) − x(δ(S ) ∩ F1)

≥ f1(S ) − |δ(S ) ∩ (F1)|

= f2(S ),

where the first inequality follows from x(δ(S )) + yi ≥ f1(S ) by the feasibility of

[x y] on the LP with f1 and the fact that i ∈ T − Q1 implies i ∈ T . For the second

inequality, we use the fact that xe ≤ 1. 2

2.4 Proof of Main Theorem

We now turn to the proof of Theorem 2.3.1. We assume without loss of general-

ity that xe < 1 for all e ∈ E and yi < 1 for all i ∈ T , since if some xe or yi equal to

1, we can proceed to next iteration. Let E′ be the set of edges with xe > 0 and V ′

be the set of terminal pairs with yi > 0. We will need some more definitions and

lemmas.
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Definition 2.4.1 For x ∈ R|E| and a subset of edges F, we define x(F) =
∑

e∈F xe.

Definition 2.4.2 We say two sets A and B are intersecting if A ∩ B, A − B, and B −

A are all nonempty. Two cut-terminal pairs (A, i) and (B, j) are intersecting if the

corresponding cut sets A and B are intersecting.

Definition 2.4.3 For a solution [x y] to LP, we say a cut-terminal pair (S , i) is tight

if x(δ(S )) + yi = f (S , i) = 1, where S ⊆ V and i ∈ T .

Definition 2.4.4 We say a collection of sets S is laminar if no pair of sets A, B ∈ S are

intersecting. A collection of cut-terminal pairs is extended-laminar if the collection of

distinct sets S of its (S , i)-pairs is laminar.

Definition 2.4.5 For a subset of edges F ⊆ E, the characteristic vector of F is ∆F ∈

{0, 1}|E|, where ∆F(e) = 1 if e ∈ F and 0 otherwise. Similiarly, for a subset of terminal

pairs Q ⊆ T , the characteristic vector of Q is ΘQ ∈ {0, 1}|T |, where ΘQ(i) = 1 if i ∈ Q

and 0 otherwise. We define the characteristic vector of a cut-terminal pair (S , i), S ⊆ V

and i ∈ T , to be χ(S ,i) = [∆δ(S ) Θ{i}].

We are now able to state the following theorem and its corollary, which we

will need to prove Theorem 2.3.1.

Theorem 2.4.6 For each basic feasible solution [x y] to LP, there exists a collection L

of cut-terminal pairs with the following properties:

1. For all (S , i) ∈ L, (S , i) is tight.

2. The characteristic vectors χ(S ,i) for (S , i) ∈ L are linearly independent.
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3. |L| = |E′| + |V ′|.

4. The collection L is extended-laminar.

The first three properties follow from the fact that [x y] is a basic solution.

A basic solution is formed by taking |E′| + |V ′| linearly independent constraints

from the linear program, setting them at equality, and solving the resulting lin-

ear system. This is precisely what the first two properties state. The third prop-

erty states that the number of constraints is equal to the number of non-zero

variables.

To show that L is extended-laminar, we will need the following lemma. The

basic idea is that we start with a collection of cut-terminal pairs S that may not

be extended-laminar, and as long as we have two pairs (A, i), (B, j) ∈ S that are

intersecting, we show that we can “uncross” them and replace them with other

non-intersecting pairs.

Lemma 2.4.7 If (A, i) and (B, j) are two tight cut-terminal pairs such that A and B are

intersecting, then one of the following statments must hold:

1. (A ∪ B, i) and (A ∩ B, j) are tight and χ(A,i) + χ(B, j) = χ(A∪B,i) + χ(A∩B, j)

2. (A ∪ B, j) and (A ∩ B, i) are tight and χ(A,i) + χ(B, j) = χ(A∪B, j) + χ(A∩B,i)

3. (A − B, i) and (B − A, j) are tight and χ(A,i) + χ(B, j) = χ(A−B,i) + χ(B−A, j)

4. (A − B, j) and (B − A, i) are tight and χ(A,i) + χ(B, j) = χ(A−B, j) + χ(B−A,i)

5. (A ∪ B, i), (A ∩ B, i), (A − B, j) and (B − A, j) are tight and

2χ(A,i) + 2χ(B, j) = χ(A∪B,i) + χ(A∩B,i) + χ(A−B, j) + χ(B−A, j)

6. (A ∪ B, j), (A ∩ B, j), (A − B, i) and (B − A, i) are tight and

2χ(A,i) + 2χ(B, j) = χ(A∪B, j) + χ(A∩B, j) + χ(A−B,i) + χ(B−A,i)
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A

e*

B

Figure 2.2: Proof of Lemma 2.4.7

Proof : First, by a counting argument, we have

1. x(δ(A)) + x(δ(B)) ≥ x(δ(A ∪ B)) + x(δ(A ∩ B)),

2. x(δ(A)) + x(δ(B)) ≥ x(δ(A − B)) + x(δ(B − A)),

3. 2x(δ(A)) + 2x(δ(B)) ≥ x(δ(A ∪ B)) + x(δ(A ∩ B)) + x(δ(A − B)) + x(δ(B − A)).

We give proof of the first case and the other cases are very similar. Consider

Figure 2.2, which contains all possible types of edges in δ(A) and δ(B), where

e∗ contributes only to left-hand side of the inequality and all others contribute

equally to both sides. So x(δ(A)) + x(δ(B)) ≥ x(δ(A ∪ B)) + x(δ(A ∩ B)).

Second, since f is extended weakly supermodular, one of the six inequalities

in Definition 2.2.1 must hold. Assume f (A, i) + f (B, j) ≤ f (A ∪ B, i) + f (A ∩ B, j)

holds and the other cases are similar. So we have

x(δ(A)) + yi + x(δ(B)) + y j = f (A, i) + f (B, j)

≤ f (A ∪ B, i) + f (A ∩ B, j)

≤ x(δ(A ∪ B)) + yi + x(δ(A ∩ B)) + y j.
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The second inequality holds by the feasibility of [x y] on constraints (A ∪ B, i)

and (A ∩ B, j). Therefore, we have x(δ(A)) + x(δ(B)) = x(δ(A ∪ B)) + x(δ(A ∩ B)).

So both (A ∪ B, i) and (A ∩ B, j) are tight and the two sets do not intersect. It also

must be the case that χ(A,i) + χ(B,i) = χ(A∪B,i) + χ(A∩B, j), since we have assumed that

all edges in E′ have xe > 0. 2

Note that the characteristic vectors include parts corresponding to yi and y j,

and are matched on both sides of the equality. This is one of the differences from

the iterative rounding results in Jain [24]. We now give the proof of Theorem

2.4.6.

Proof : As we showed previously, there exists a collection S of cut-terminal pairs

that have the first three properties of the theorem. Let span(S) be the span

of the set of vectors {χ(S ,i) : (S , i) ∈ S}. Let L be a maximal collection of cut-

terminal pairs that have all four properties. We will show that |L| = |S|; suppose

otherwise. Then there must be a tight pair (S , i) such that χ(S ,i) ∈ span(S) and

χ(S ,i) < span(L); we choose a pair (S , i) such that there is no other such pair inter-

secting fewer sets in L. Note that such a pair (S , i) must be intersecting with at

least one pair in L, otherwise, L is not maximal.

Now pick a pair (T, j) ∈ L such that S and T intersect. By Lemma 2.4.7, one

of the its six cases must hold. Let us consider the last case, i.e. (S ∪ T, j), (S ∩

T, j), (S −T, i) and (T −S , i) are tight and 2χ(S ,i) +2χ(T, j) = χ(S∪T, j) +χ(S∩T, j) +χ(S−T,i) +

χ(T−S ,i); the other cases are similar. Since χ(S ,i) < span(L) and χ(T, j) ∈ span(L), at

least one of χ(S∪T, j), χ(S∩T, j), χ(S−T,i), χ(T−S ,i) must not be in span(L). We will show

that each of the pairs (S ∪ T, j), (S ∩ T, j), (S − T, i) and (T − S , i) intersects fewer

pairs in L, contradicting to the choice of S .
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T

S

Figure 2.3: Proof of Lemma 2.4.6

Figure 2.3 illustrates the three ways in which a pair (T ′, k) ∈ L can intersect

one of these four sets without intersecting T itself (T ′ is shown dotted). In all

cases, T ′ intersects S as well. In addition, S intersects T , while the sets S ∪T, S ∩

T, S −T, and T − S do not intersect T , so they must intersect fewer sets in L than

S . This contradicts the choice of S .

2

Note that we might have cut-terminal pairs (S 1, i), (S 2, j), i , j both belong

to L but δ(S 1) = δ(S 2). In this case, we must have yi = y j since x(δ(S 1)) + yi =

x(δ(S 2)) + y j = 1. We need to eliminate this case in order to apply a technique

similar to Jain’s to prove Theorem 2.3.1.

Corollary 2.4.8 For each basic feasible solution [x y] to LP, there exists a collection

L′ ⊆ L of cut-terminal pairs with the following properties:

1. There are no sets S 1, S 2 with terminals pairs i , j and δ(S 1) = δ(S 2) such that

both (S 1, i) and (S 2, j) are in L′,

2. For all (S , i) ∈ L′, (S , i) is tight,
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3. The characteristic vectors χ(S ,i) for (S , i) ∈ L are linearly independent,

4. |L′| = |E′| + |V ′′|, where V ′′ = {i | (S , i) ∈ L′},

5. The collection L′ is extended-laminar.

Proof : Suppose there are S 1, S 2 with terminals pairs i , j and δ(S 1) = δ(S 2) such

that both (S 1, i) and (S 2, j) are in L′. It cannot be the case that we have (S 3, i),

(S 4, j) with terminals pairs i , j and δ(S 3) = δ(S 4) such that both S 3, S 4 are in L′.

Otherwise, we have χ(S 1,i) - χ(S 2, j) = χ(S 3,i) - χ(S 4, j), so that the characteristic vectors

are linearly dependent, which contradicts the linear independence property of

L.

So for any two cut-terminal pairs (S 1, i) and (S 2, j) inL′ with i , j and δ(S 1) =

δ(S 2) , we can replace yi with y j (or y j with yi), which will produce exactly one

duplicate constraint. We can remove the duplicate constraint so that both the

number of constraints and number of variables are reduced by exactly one. If we

repeatedly do so until no such two cut-terminal pairs exist, we get a collection

L′ ⊆ L satisfying all conditions in the corollary. 2

We are now ready to prove Theorem 2.3.1. Our ideas come from Jain’s origi-

nal argument in [24] with added fractional penalty variables y. In addition, we

need to consider locations of terminals in some of the cases.

Proof : We consider an extended laminar collection L′ described in Corollary

2.4.8. Then we consider only edges in E′ and terminals in V ′′. For cut-terminal

pairs in L′, we will call (R, i) the parent of (C, j) if R is the smallest set strictly

containing C and call (C, j) a child of (R, i). A parentless node is called a root, and

a childless node is called a leaf.
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Consider (R, i) and its children. We define four kinds of edges: children-out

(CO) edges which have one endpoint in a child C and the other endpoint outside

of R, parent-out (PO) edges which have one endpoint in R and the other endpoint

outside of R, children-children (CC) edges which have endpoints in two different

children, and children-parent (CP) edges which have one endpoint in a child C

and the other endpoint in R but not in any child. We will use subscripts to

identify a particular child in the notation when necessary. For example, (C1C2)

is the set of edges having one endpoint in C1 and the other endpoint in C2.

Lemma 2.4.9 Consider any cut-terminal pair (R, i) and its children (C1, j1)..., (Ck, jk)

in L′, if ti, t j1 , .., t jk are all outside of R, then we must have yi = min{y j1 , .., y jk} and si is

in Cl for the y jl attaining the minimum of y j1 , .., y jk .

Proof : Suppose there exists y jl < yi. Since x(δ(R)) + yi = 1 = f (R, i), we have

x(δ(R)) + y jl < 1 = f (R, jl), which contradicts the feasibility of [x y] since s jl ∈ R

and t jl < R. Therefore, yi = min{y j1 , .., y jk}.

Similarly, suppose si ∈ Cl and y jl > yi. Then we have x(δ(Cl))+y jl = 1 = f (Cl, jl)

but x(δ(Cl))+yi < 1, which is again a contradiction. So si is in Cl with y jl attaining

the minimum of y j1 , .., y jk . 2

Lemma 2.4.10 Consider any cut-terminal pair (R, i) and its children (C1, j1)..., (Ck, jk)

in L′. If k > 1, ti, t j1 , .., t jk are all outside of R, and there is no endpoint of an edge of E′

in R −
⋃l=k

l=1 Cl, then there must be no child of (R, i) with only children-out edges.

Proof : Since there is no endpoint of an edge of E′ in R−
⋃l=k

l=1 Cl, we can only have

children-out (CO) and children-children (CC) edges for (R, i) and its children.
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Since k > 1, without loss of generality, assume C1 has only children-out edges.

Let C′ =
⋃l=k

l=2 Cl. Then there must be no (C1C′) edges. Since ti, t j1 , .., t jk are all

outside of R, then by feasibility x(C1O) + y1 ≥ 1 and x(C′O) + y j ≥ 1 for any

terminal pair j in C′. Hence, we must also have x(C1O) > 0 and x(C′O) > 0, since

we assumed all y variables have value less than 1
3 .

If si ∈ C1, we have x(C1O) + x(C′O) + yi = 1 and x(C1O) + yi ≥ 1 (by feasibility).

This contradicts the fact that x(C′O) > 0. Similarly, if si ∈ C′, we have x(C1O) +

x(C′O) + yi = 1 and x(C′O) + yi ≥ 1. This contradicts the fact that x(C1O) > 0. 2

We say an endpoint is incident to a cut-terminal pair (S , i) in L′, if for all

cut-terminal paris in L′, S is the smallest set containing that endpoint. So an

endpoint is incident to one cut-terminal pair only. We define the degree of (S , i)

to be the number of edges in δ(S ), i.e. |δ(S )|. We also say a terminal pair i is

contained in a cut-terminal pair (S , j) in L′ if S is the smallest set contains both

terminals si and ti. For any cut-terminal pair (S , i) ∈ L′, we always assume with

loss of generality that si ∈ S and ti < S .

Our proof is a contradiction-based proof. Assume Theorem 2.3.1 fails, i.e.

xe <
1
3 for all e in E and yi <

1
3 for all i in T . Consider edges in E′ and terminals in

V ′′. We will distribute one token to cut-terminal pair (S , i) ∈ L′ for each endpoint

of E′ incident to (S , i) and distribute two tokens to (S , i) for each terminal pair

i ∈ V ′′ contained in (S , i). We will show that we can redistribute tokens such that

every cut-terminal pair in L′ gets at least two tokens and some pairs get strictly

more than two tokens. This contradicts the equality |L′| = |E′| + |V ′′|.

We define a subtree rooted at cut-terminal pair (R, i) to be a subset of L′ that

consists of (R, i) and all its descendants. We will do the redistribution of tokens
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inductively on every rooted subtree.

Lemma 2.4.11 For any rooted subtree of L′, we can redistribute the tokens in it such

that every cut-terminal pair of its descendants gets at least 2 tokens, and the root gets

at least 3. Furthermore, the root gets exactly 3 tokens only if its degree is 3.

Proof : Consider the base case in which the subtree is just a leaf pair (R, i). If

yi = 0, it must have degree at least four otherwise some edge e in δ(R) must

have xe ≥
1
3 , contradicting to our assumption. So (R, i) must have at least four

endpoints incident to it, i.e. at least four tokens. Similarly, if yi > 0, it must have

at least three endpoints incident to it, i.e. at least three tokens, otherwise some

xe or yi is greater or equal to 1
3 . Furthermore, (R, i) gets exactly 3 tokens only if

its degree is 3. So the lemma is true for the base case.

For the inductive step, consider a subtree rooted at (R, i). We have four cases

depending on the number of children of (R, i).

Case (a): (R, i) has four or more children.

Each of them has at least three tokens by induction hypothesis, so we can

easily redistribute four tokens to (R, i).

Case (b): (R, i) has three children (C1, j1), (C2, j2) and (C3, j3).

We are done if one of them has more than three tokens. If all three children

have exactly three tokens, then each child has degree exactly three by our induc-

tion hypothesis. We need to consider the locations of terminals. If any terminal

sl is in R − C1 − C2 − C3, then (R, i) gets at least three tokens since by feasibility

of [x y] the cut-terminal pair ({s}, l) must have x(δ({s})) + yl ≥ 1 and the degree of
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({s}, l) is at least three by same argument in the base case. If any terminal pair of

j1, j2, and j3 has both terminals in R, then the terminal pair is contained in (R, i)

and (R, i) gets two tokens as well. In both cases, (R, i) can get at least four tokens

by having one token from two of its children.

We can then consider only cases in which no terminal is in R − C1 − C2 − C3

and all terminals ti, t j1 , t j2 , t j3 < R. Now consider endpoints of edges in E′. If

there is a non-terminal endpoint v of an edge e in E′ that is in R − C1 − C2 − C3,

then there must be at least another edge e′ in E′ that also has v as its endpoint,

giving at least two tokens to (R, i). Otherwise, the edge e is either a parent-out

(PO) edge or a children-parent (CO) edge. If it is a (PO) edge, then we have

x(δ(R)) = x(δ(R − {v})) + xe. We know xe > 0 and x(δ(R)) + yi = 1, which implies

that x(δ(R−{v}))+yi < 1, contradicting the feasibility of [x y]. A similar argument

applies to the case that e is a (CP) edge since all terminals t j1 , t j2 , t j3 < R. So (R, i)

can get at least four tokens by having one token from two of its children in this

case as well.

Hence, we can now further assume that there is no non-terminal endpoint of

an edge of E′ in R − C1 − C2 − C3. Then only possible edges in δ(R), δ(C1), δ(C2),

δ(C3) are children-out (CO) edges and children-children (CC) edges. Consider

the degree of (R, i). We have |δ(R)| = |δ(C1)| + |δ(C2)| + |δ(C3)| − 2|CC| = 9 − 2|CC|.

So by parity, (R, i) has odd degree. Also, the degree of (R, i) is at least three by

the same argument for the base case. Therefore, the degree of (R, i) is three, five,

seven or nine. We are done if the degree of (R, i) is exactly three and we will

show all other cases are not possible.

By Lemma 2.4.10, no child can have all three edges be children-out edges.

This implies the degree of (R, i) cannot be seven or nine.
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If degree if (R, i) is five and no child has three children-out edges, then we

can assume without loss of generality that we have one edge in (C1O), two edges

in (C2O) and (C3O), and one edge in (C1C2) and (C1C3). By Lemma 2.4.9, we

must also have yi = min{y j1 , y j2 , y j3} and si is in the child C jl with y jl attained this

minimum.

If si ∈ C1, then yi = y j1 = min{y j1 , y j2 , y j3}. We have x(C1O)+x(C2O)+x(C3O)+yi =

1 and x(C1O) + x(C1C2) + x(C1C3) + y j1 = 1, which implies x(C1C2) + x(C1C3) =

x(C2O) + x(C3O). Then either x(C1C2) ≥ x(C2O) or x(C1C3) ≥ x(C3O). Assume it is

x(C1C2) ≥ x(C2O). Since x(C1C2) + x(C2O) + y j2 = 1, the single edge e of C1C2 has

xe ≥
1
3 since y j2 <

1
3 , contradicting our assumption.

If si ∈ C2 (case for si ∈ C3 is identical), then yi = y j2 = min{y j1 , y j2 , y j3}. A

similar argument as above shows this case is not possible as well. We have

x(C1O) + x(C2O) + x(C3O) + yi = 1 and x(C2O) + x(C1C2) + yi = 1, which implies

x(C1C2) = x(C1O) + x(C3O). We must have x(C1C2) < 1
3 by our assumption since

it is a single edge in (C1C2). Then we have x(C3O) < 1
3 which implies the single

edge e in (C1C3) has xe >
1
3 , since x(C1C3) + x(C3O) + y j3 = 1 and y j3 <

1
3 .

Case (c): (R, i) has two children (C1, j1) and (C2, j2).

We are done if both children have at least four tokens. Assume without loss

of generality (C1, j) has exactly three tokens. As in case (b), we can consider only

the case that ti, t j1 , t j2 < R, s j1 ∈ C1, s j2 ∈ C2, si is in one of C1, or C2 and no terminal

or non-terminal endpoint of E′ is in R − C1 − C2, since otherwise (R, i) can get at

least four tokens by having two tokens from itself and one token from each of

its children. Also, by Lemma 2.4.9, we must also have yi = min{y j1 , y j2} and si is

in the child C jl with y jl attaining this minimum.

39



If si ∈ C1, then yi = y j1 ≤ y j2 . By Lemma 2.4.10, not all three edges of (C1, j1)

can be children-out (C1O) edges. If it has two C1O edges and one C1C2 edge, then

we have x(C1C2) + x(C1O) + y j1 = 1 and x(C1O) + x(C2O) + yi = 1. Since yi = y j1 , we

have x(C1C2) = x(C2O). But we also have x(C1C2) + x(C2O) + y j2 = 1 and y j2 <
1
3 .

So the single edge e of C1C2 has xe ≥
1
3 , contradicting our assumption. If (C1, j1)

has one C1O edges and two C1C2 edges, we have x(C1O) + x(C2O) + yi = 1 and

x(C1C2) + x(C2O) + y j2 = 1. Since yi ≤ y j2 , we have x(C1O) ≥ x(C1C2). But we

also have x(C1O) + x(C1C2) + y j1 = 1 and y j1 ≤
1
3 . So the single edge e of C1O has

xe ≥
1
3 , again, a contradiction. If (C1, j1) has three (C1C2) edges, then we have

x(C1C2) + x(C2O) + y j2 = 1 and x(C2O) + yi = 1. Since yi ≤ y j2 , we must have

x(C1C2) = 0 which contradicts our assumption that all edges in E′ have xe > 0.

If si ∈ C2, then yi = y j2 ≤ y j1 , and a similar argument as above shows this case is

not possible as well.

Case (d): (R, i) has one child (C1, j).

First, (R, i) must have at least one endpoint v of E′ in R − C, otherwise δR

and δC are the same, which is not possible by the linear independence property

of L′. By same argument in case (b), (R, i) has at least three tokens if v is a

terminal and at least two tokens if v is a non-terminal endpoint. We are done

if the surplus token(s) from (C1, j) can leave (R, i) with four tokens. The only

case left is when (R, i) has exactly one endpoint in R − C, (C, j) has exactly three

tokens, and t j < (R, i). In this case, we must have one children-parent edge, one

parent-out edge and two children-out edges for (R, i) and (C, j), so the degree of

(R, i) is exactly three. Then (R, i) can take one token from (C, j) so it has exactly

three tokens.

2
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Figure 2.4: Tight example for iterative rounding algorithm. Penalties for
each terminal pairs are π1 = 10, π2 = 9, π3 = 6. The unique
optimal solution is y1 = 0, y2 = 1

3 , y3 = 1
3 , all solid edges have

xe = 1
3 , and the dotted edge has xe = 0.

Therefore, it cannot be the case that |L′| = |E′| + |V ′′|, contradicting our as-

sumption that Theorem 2.3.1 fails. 2

2.5 Remarks

First, notice that our definition of an extended weakly supermodular function

and Theorem 2.4.6 can both be extended to the higher connectivity case of the

prize-collecting Steiner forest problem, i.e. f (S , i) = ri for any integer ri ≥ 0.

However, our proof for Theorem 2.3.1 relies on the fact that f is a 0-1 function.

Second, Figure 2.4 shows a unique optimal solution to an instance of PCSF

problem where all variables have value less than or equal to 1
3 . This implies that

our algorithm is tight with approximation factor 3 and the iterative rounding

approach cannot be used directly to obtain a performance guarantee better than

3.
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CHAPTER 3

AN O(LOG N)-COMPETITIVE ALGORITHM FOR ONLINE

CONSTRAINED FOREST

3.1 Introduction

Given an undirected graph G = (V, E), edge costs ce ≥ 0 for all e ∈ E, and a

set of l source-sink pairs si-ti, the goal of the generalized Steiner tree problem (also

known as the Steiner forest problem) is to find a minimum-cost set of edges F ⊆ E

such that for each i, si and ti are connected in (V, F). This problem is (as its name

implies) a generalization of the Steiner tree problem: in Steiner tree problem, we

are given an undirected graph with edge costs as above, and also a set R ⊆ V of

terminals. The goal of the Steiner tree problem is to find a minimum-cost tree T

that spans all the terminals R. If we choose one of the terminals r ∈ R arbitrarily,

and set si = r for all i and the sink vertices ti are the remaining vertices in R,

then clearly a Steiner tree instance can be expressed as a generalized Steiner

tree problem instance. In the 1990s, Agrawal, Klein, and Ravi [1] gave a 2-

approximation algorithm for the generalized Steiner tree problem.

At about the same time, online algorithms were being proposed for online

versions of the Steiner tree problem, and later, the generalized Steiner tree prob-

lem. In the online version of the Steiner tree problem, terminals arrive over

time. At each time step we must give a set of edges F that connects all of the

terminals that have arrived thus far; we are not allowed to remove any edges

from F in future iterations. The quality of an online algorithm for this prob-

lem is measured in terms of its competitive ratio: an α-competitive algorithm is

one such that at any time step, the set of edges constructed by the algorithm is
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within a factor of α of the cost of an optimal Steiner tree on the set of terminals

that have arrived thus far. Similarly, in the online generalized Steiner tree prob-

lem, source-sink pairs arrive in each time step, and we must find a set of edges

F such that each si-ti pair that has arrived thus far is connected in (V, F). Imase

and Waxman [23] gave a greedy O(log n)-competitive algorithm for the online

Steiner tree problem, where n = |V |; when a terminal arrives, it finds the short-

est path from the terminal to the tree already constructed, and adds that set of

edges to its solution. Imase and Waxman also showed that the competitive ratio

of any online algorithm must be at least 1
2 log n. Awerbuch, Azar, and Bartal [2]

then showed that a similar greedy algorithm for the online generalized Steiner

tree problem has competitive ratio O(log2 n). In 1997, Berman and Coulston [4]

devised a more complicated algorithm that is an O(log n)-competitive algorithm

for the online generalized Steiner tree problem, matching the lower bound of

Imase and Waxman to within constant factors.

Also in the 1990s, Goemans and Williamson [17] extended the offline algo-

rithm of Agrawal, Klein, and Ravi to a large class of problems they called con-

strained forest problems; in doing so, they cast the algorithm of Agrawal et al.

as a primal-dual algorithm. A constrained forest problem is defined by a func-

tion f : 2V → {0, 1}; for any set S ⊆ V such that f (S ) = 1, a feasible solution

must have selected at least one edge in δ(S ), the set of edges with exactly one

endpoint in S . The Goemans-Williamson algorithm works when the function

f is proper: that is, when f (S ) = f (V − S ) for all S ⊆ V , and for all disjoint sets

A, B ⊆ V , f (A ∪ B) ≤ max( f (A), f (B)). For instance, for the case of the general-

ized Steiner tree problem f (S ) = 1 if and only if there exists some i such that

|S ∩ {si, ti}| = 1, and this function is proper. Another example of constrained

forest problems given in [17] is the nonfixed point-to-point connection problem,
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in which a subset C of the vertices are sources, a disjoint subset D of vertices

are destinations, and we must find a minimum-cost set of edges such that each

connected component has the same number of sources and destinations; this is

modelled by having f (S ) = 1 if |S ∩C| , |S ∩D|. Yet another example given in [17]

is that of partitioning specified vertices D into connected components such that

the number of vertices of D in each connected component C is divisible by some

parameter k. This problem is given the proper function f such that f (S ) = 1 if

|S ∩ D| . 0(mod k).

In this chapter, we show that by melding the ideas of Goemans and

Williamson with those of Berman and Coulston, we can obtain an O(log n)-

competitive algorithm for any online constrained forest problem. In an online

constrained forest problem, in each time step i we are given a proper function fi.

We must choose a set of edges F such that for all S ⊆ V , if max j=1,...,i f j(S ) = 1, then

|δ(S ) ∩ F| ≥ 1. This yields, for example, online algorithms for online variants of

the nonfixed point-to-point connection problem and the partitioning problems

given above.

Our techniques also extend to give an O(log n)-competitive algorithm for an

online version of the prize-collecting Steiner tree problem and its generaliza-

tions. In the offline version of the prize-collecting Steiner tree problem, we are

given an undirected graph G = (V, E), edge costs ce ≥ 0 for all e ∈ E, a root

vertex r ∈ V , and penalties πv ≥ 0 for all v ∈ V . The goal is to find a tree T

spanning the root vertex that minimizes the cost of the edges in the tree plus the

penalties of the vertices not spanned by the tree; that is, we want to minimize∑
e∈T ce +

∑
v∈V−V(T ) πv, where V(T ) is the set of vertices spanned by T . In the on-

line version of the problem, initially every vertex v has penalty πv = 0. At each
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step in time, for one vertex v its penalty πv is increased from 0 to some positive

value. We then must either connect the vertex to the root by adding edges to

our current solution or pay the penalty πv for each remaining time step of the

algorithm even if it is connected to the root later on. The competitive ratio of

the algorithm compares the cost of our solution in each step with the cost of the

optimal solution of the instance at that point in time.

The basic idea of the Berman-Coulston algorithm (BC) is that it constructs

many different families of nonoverlapping balls around terminals as they ar-

rive; in the jth family, balls are limited to have radius at most 2 j. Each family

of balls is a lower bound on the cost of an optimal solution to the generalized

Steiner tree problem. When balls from two different terminals touch, the algo-

rithm buys the set of edges connecting the two terminals, and balls from one

of the two terminals (in some sense the ‘smaller’ one) can be charged for the

cost of the edges, leaving the balls from the other terminal (the ‘larger’ one) un-

charged and able to pay for future connections. One can show that the O(log n)

largest families are essentially all that are relevant for the charging scheme, so

that the largest of these O(log n) families is within an O(log n) factor of the cost

of the constructed solution, thereby giving the competitive ratio. Our algorithm

replaces each family of balls with an analogous solution to the dual of the linear

programming relaxation of the constrained forest problem, as used by Goemans

and Williamson. We need somewhat more complicated dual solutions than the

balls used by BC. However, we can then largely follow the outline of the BC

analysis to obtain our O(log n) competitive ratio.

The rest of this chapter is structured as follows. In Section 3.2, we introduce

the online constrained forest problem more precisely and define some concepts
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we will need for our algorithm. In Section 3.3, we give the algorithm and its

analysis. In Sections 3.4, 3.5 and 3.6, we extend the algorithm and analysis to

the online prize-collecting Steiner tree problem and its generalizations.

3.2 Preliminaries

Given an undirected graph G = (V, E), edges costs ce ≥ 0 and a {0, 1}-proper func-

tion f : 2V → {0, 1}, the offine constrained forest problem studied in Goemans

and Williamson [17] is to find a set of edges F of minimum cost that satisfies a

connectivity requirement function f : 2V → {0, 1}; the function is satisfied if for

each set S ⊆ V with f (S ) = 1, we have |δF(S )| ≥ 1, where δ(S ) is the set of edges

with exactly one endpoint in S , and δF(S ) = δ(S ) ∩ F. In the online version of

this problem, we have a sequence of connectivity functions f1, f2, ..., fi, arriving

one by one. Starting with F = ∅, for each time step i ≥ 1, function fi arrives and

we need to add edges to F to satisfy function fi. Let gi(S ) = max{ f1(S ), ..., fi(S )}

for all S ⊆ V and i ≥ 1. Then our goal is to a find a minimum-cost set of edges F

that satisfies function gi, that is, all connectivity requirements given by f1, ..., fi

that have arrived thus far. We require that each function fi be a proper function,

as defined above. It is easy to see that function gi is also proper.

Call a vertex v a terminal if fl({v}) = 1 for some l ≤ i. Let Ri = {s ∈ V | gi({s}) = 1}

be the set of terminals defined by function gi; that is, Ri is the set of all terminals

that have arrived by time i. A special case of this problem is the online gener-

alized Steiner tree problem where terminal pairs (s1, t1), ..., (si, ti) arrive one at a

time. In this case, fi(S ) = 1 if |S ∩ {si, ti}| = 1 and (si, ti) is the pair of terminals

arrive in time step i; then Ri = {s j, t j : j ≤ i}. Berman and Coulston [4] give an
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O(log |Ri|)-competitive algorithm for the online generalized Steiner tree problem.

Let (IPi) be the integer program corresponding to the online proper con-

strained forest problem with set of functions f1, ..., fi that have arrived thus far

and the corresponding function gi. The integer programming formulation of

(IPi) is

Min
∑
e∈E

cexe

(IPi)
∑

e∈δ(S )

xe ≥ gi(S ), ∀S ⊆ V,

xe ∈ {0, 1}, ∀e ∈ E.

We let (LPi) denote the corresponding linear programming relaxation in

which the constraints xe ∈ {0, 1} are replaced with xe ≥ 0. The dual of this linear

program, (Di), can be described as

Max
∑
S⊆V

gi(S )yS

(Di)
∑

S :e∈δ(S )

yS ≤ ce, ∀e ∈ E,

yS ≥ 0, ∀S ⊆ V.

We now define a number of terms that we will need to describe our algo-

rithm. We will keep an infinite number of feasible dual solutions y j to bound

the cost of edges in F over all time steps; we call this the dual solution for level

j. For each level j, we will maintain that for any terminal s that has arrived thus

far,
∑

S⊆V:s∈S y j
S ≤ 2 j. So we say that the limit of the dual in level j is 2 j, and we say

that a dual variable y j
S reaches its limit if the inequality for level j is tight for any

terminal s ∈ S . As a matter of algorithmic implementation, we don’t need to
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maintain levels j < −1, or j > dlog(maxu,v∈V d(u, v))e, where d(u, v) is the distance

in G between u and v using edge costs ce.

An edge e ∈ E is tight in level j for dual vector y j if the corresponding con-

straint in dual problem (Di),
∑

S :e∈δ(S ) y j
S ≤ ce, holds with equality. A path p ⊆ E

is tight in level j if every edge in the path is tight in level j.

Let F̄ j denote the set of edges that are tight in level j. To avoid confusion with

connected components in F, we will use the term moat to refer to a connected

component S j in F̄ j and use y j
S to refer the dual variable associated with S j.

A set S ⊆ V is a violated set for function gi by edges B if |δB(S )| < gi(S ); that

is, if gi(S ) = 1 but δB(S ) = ∅. A minimal violated set is a violated set with every

strict subset not violated. The connectivity requirement function gi is satisfied

by edges B if every set S ⊆ V is not a violated set for gi by B.

During time step i, a terminal s ∈ Ri is active if for some set S , we have s ∈ S

and S is a violated set for function gi by current solution F. Let A be the set of

active terminals at any time of the algorithm. We define the set of active moats

as the moats S j of the lowest level j that satisfy the following three conditions:

(i) S j contains some active terminal s ∈ A; (ii) S j is a minimum violated set for

gi by edges F̄ j; (iii) y j
S has not yet reached its limit in level j. We denote the

current set of active moats byM. Last, we say a dual variable y j
S is active if its

corresponding moat S j is active.
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3.3 The Algorithm and Its Analysis

3.3.1 The Primal-Dual Online Algorithm

Our algorithm (see Fig. 3.1) is a dual ascent algorithm in which we grow active

dual variables. We say two disjoint moats S j
1 and S j

2 collide in level j during our

dual growing process if both of them have been active at some point and a path

connecting two terminals s1 ∈ S j
1 and s2 ∈ S j

2 becomes tight in level j. In order

for this to happen, at least one of S j
1 and S j

2 must currently be active.

Our algorithm starts with F = ∅ and y j
S = 0 for all j and all S ⊆ V . At

the beginning of each time step i, the function fi arrives and some non-terminal

nodes in V may become terminals. We will update active terminal set A and

active moat setM. In each time step i, while there are still some active terminals

in A, our algorithm will grow uniformly all active dual variables until: (1) an

active y j
S with reaches its limit in level j; (2) an edge e ∈ E becomes tight in level

j; we then add e to F̄ j; (3) two disjoint moats S j
1 and S j

2 collide in level j; we then

let p be the path connecting two terminals s1 ∈ S j
1 and s2 ∈ S j

2 in level j, and we

build path p in F if s1 and s2 are not yet connected in F, and update the set A

of active terminals. At the end of each iteration, we update the setM of active

moats. We output F as the solution for (IPi).

3.3.2 The Analysis

Now, we will now state our main theorem and a few lemmas that we need to

prove it.
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Algorithm

F = ∅, F̄ j = ∅ for all j, and y j
S = 0 for all j and S ⊆ V

For each {0, 1}-proper function fi that arrives
Update active terminals A, and active moatsM
While |A| > 0

Grow uniformly all active dual variables y j
S until

1) An active y j
S with reaches limit in level j

2) An edge e ∈ E becomes tight in level j, then
F̄ j = F̄ j ∪ {e}

3) Two disjoint moats S j
1 and S j

2 collide in level j, then
Let p ⊆ E be the corresponding path that becomes tight in level j
Let s1 and s2 be the two terminals connected by p in F̄ j

If s1 and s2 are yet connected in F
F = F ∪ {p}, i.e. build edges p − F
Update A

UpdateM

Figure 3.1: Primal-dual algorithm for the online proper constrained forest
problem

Theorem 3.3.1 Our algorithm gives an O(log |Ri|) competitive ratio for the online

proper constrained forest problem (IPi).

Lemma 3.3.2 At the end of time step i of our algorithm, F is a feasible solution to (IPi)

and each dual vector y j is a feasible solution to (Di).

Proof : Our algorithm terminates each time step i when there are no active termi-

nals in A. By definition of active terminals, this implies that there is no violated

set for gi for the solutions F; that is, F is a feasible solution to (IPi).

We need to show our algorithm always terminates in each time step. Notice

that if there are no active moats in M, then there must be no active terminals

in A, since there is always a level j for sufficiently large j that conditions (ii)

and (iii) are satisfied in the definition of M. Similarly, if there is still an active
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terminal, there must be an active moat that contains it. Then our algorithm will

continue to grow duals at progressively higher levels; eventually all pairs of

active terminals must be connected.

By construction of the algorithm each dual solution y j is feasible for (Di) since

we stop growing a dual y j
S if it would violate a dual constraint. 2

In order to give a bound on the total cost of edges in F, we create an account

for each connected component X in F, denoted Account(X). We will define a

shadow algorithm to credit potential to accounts as dual grows and remove

potential from accounts to pay for building edges. We will show that the total

cost of edges in F plus the total unused potential remaining in all accounts is

always equal to the sum of all dual variables over all levels, i.e.
∑

j
∑

S y j
S .

We need the following lemma before we describe the shadow algorithm.

Lemma 3.3.3 Any active dual variable y j
S has a unique connected component X in F

that contains all terminals in its corresponding moat S j.

Proof : It is sufficient to show that all terminals in an active moat S j are connected

in F. Suppose not; then we have terminals s1 and s2 both in S j and not connected

in F. Then either s1 and s2 have no path in F̄ j connecting them or at least one of

s1 and s2 was not a terminal when the path in F̄ j connecting s1 and s2 became

tight. The first case contradicts the fact that y j
S is active so that S j must be a

moat, i.e. a connected component in F̄ j . The second case cannot happen by the

construction of our algorithm since we grow duals from lowest levels possible.

When s1 and s2 became terminals, some level j′ with j′ < j small enough will

have s1 and s2 in different moats, and a path p between them becomes tight in
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some level between j′ and j − 1 by our structure of limits in each level (i.e. dual

growth in one level can be no larger than two times of dual growth in one level

below). Then path p is built in F and s1 and s2 will be connected in F before the

algorithm grows dual in level j again. 2

Now the shadow algorithm is as follows. First, whenever we grow an active

dual variable y j
S , we will credit the same amount of potential to Account(X),

where X is the unique connected component in F that contains all terminals

in S j. Second, whenever the algorithm builds a path p in F connecting two

terminal s1 and s2, it must be the case that two disjoint moats S j
1 and S j

2 collide in

some level j with s1 ∈ S j
1 and s2 ∈ S j

2 not yet connected in F. Let Xk be connected

component in F that contains sk for k = 1, 2. As a result of building edges p − F,

X3 = X1 ∪ X2 ∪ {p − F} will become a connected component in F. We will merge

unused potential remaining in Account(X1) and Account(X2) into Account(X3) and

remove potential from Account(X3) to pay for the cost of building edges in p−F.

At any time of the algorithm, for each connected component X, define the

class of X to be the highest level j with a dual variable already grown that credits

X; we denote this as as Class(X) and sometimes refer to it as the top level of X.

Define TopGrowth(X) to be the maximum total dual growth of a terminal in X in

level Class(X), i.e.

TopGrowth(X) = max
s∈X
{

∑
S⊆V:s∈S

yClass(X)
S and s is a terminal}.

We know that TopGrowth(X) ≤ 2 j by dual limit on level j.

Lemma 3.3.4 At any time of the algorithm, the following two invariants hold:
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1. Every connected component X of F has

Account(X) ≥ 2Class(X) + TopGrowth(X);

2.
∑

e∈F ce +
∑

X∈F Account(X) =
∑

j
∑

S y j
S .

Proof : Invariant 1 ensures that for a component X, Account(X) stores at least 2 j

total potential for each level j < Class(X) plus the maximum total dual growth

of a terminal in X at the top level, which gives 2Class(X)−1 + 2Class(X)−2 + ... = 2Class(X)

plus TopGrowth(X).

We prove the first invariant by induction on the algorithm. It is easy to see

that this invariant holds when no edges are added to F since the algorithm

grows dual variables in level j until some active dual variable reaches limit 2 j;

it then grows duals in next higher level. Account(X) is credited 2 j for each level

below the level Class(X) while getting TopGrowth(X) for current level.

Now, assume invariant 1 holds just before we add edges to F. The algorithm

builds a path p in F connecting two terminals s1 and s2 only if there are two dis-

joint moats S j
1 and S j

2 that collide in some level j with s1 ∈ S j
1 and s2 ∈ S j

2 not yet

connected in F. Let Xk be connected component in F that contains sk for k = 1, 2.

We know at least one of S j
1 and S j

2 must be active. Without loss of generality, let

it be S j
1. Then we know Class(X1) = j and Class(X2) = j′ ≥ j since we only grow

active dual variables in the top level of each component in F. Then by assump-

tion, Account(X1) ≥ 2 j +TopGrowth(X1) and Account(X2) ≥ 2 j′ +TopGrowth(X2). Af-

ter building edges p−F, X3 = X1 ∪X2 ∪ {p−F}will be a connected component in

F. Our shadow algorithm merges the unused potential remaining in Account(X1)

and Account(X2) into Account(X3), and removes potential from Account(X3) to pay

for the cost of building edges p − F. Since Class(X3) = max{ j, j′} = j′, we need to
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show Account(X3) ≥ 2 j′ + TopGrowth(X3).

If j = j′, we know TopGrowth(X1) + TopGrowth(X2) ≥
∑

e∈p ce ≥
∑

e∈p−F ce since

S j
1 and S j

2 collide in level j, and the cost of the path from s1 to s2 cannot be more

than the total dual containing s1 and s2 in level j. Also, TopGrowth(X3) ≤ 2 j by

the dual limit on level j. So we have

Account(X3) = Account(X1) + Account(X2) −
∑

e∈p−F ce

≥ 2 j + TopGrowth(X1) + 2 j + TopGrowth(X2) −
∑

e∈p−F ce

≥ 2 j + 2 j ≥ 2 j′ + TopGrowth(X3).

If j < j′, we know TopGrowth(X1) + 2 j ≥
∑

e∈p ce ≥
∑

e∈p−F ce since S j
1 and S j

2

collide in level j and the cost of the path from s1 to s2 cannot be more than the

total dual containing s1 and s2 in level j. Also, TopGrowth(X3) = TopGrowth(X2)

since j < j′. So, we have

Account(X3) = Account(X1) + Account(X2) −
∑

e∈p−F ce

≥ 2 j + TopGrowth(X1) + 2 j′ + TopGrowth(X2) −
∑

e∈p−F ce

≥ 2 j′ + TopGrowth(X3).

Therefore, the invariant 1 holds at any time of the algorithm. Furthermore,

since accounts get credited for dual growth and debited exactly the cost of edges

in F, we also have that invariant 2 holds at any time of the algorithm. 2

Lemma 3.3.5 Let the dual vector y j with the maximum total dual
∑

S y j
S be ymax. At

the end of time step i, we have
∑

e∈F ce ≤ (log |Ri| + 2)
∑

S ymax
S .

Proof : By invariant 2 of Lemma 3.3.4,
∑

e∈F ce =
∑

j
∑

S y j
S −

∑
X∈F Account(X). So it

suffices to show
∑

j
∑

S y j
S −

∑
X∈F Account(X) ≤ (log |Ri| + 2)

∑
S ymax

S .
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At the end of time step i, let X∗ be a connected component in F of high-

est class and let m = Class(X∗). We know Account(X∗) ≥ 2m by invariant 1 of

Lemma 3.3.4. So the total unused potential remaining in all accounts (that is,∑
X∈F Account(X)) is at least 2m.

Let λ = dlog2 |Ri|e. Each terminal s has total dual
∑

S⊆V:s∈S y−λS ≤ 2−λ ≤ 1/|Ri| in

level −λ by the dual limit, so that
∑

S y−λS ≤ 1. Similarly, we have
∑

S ym−λ− j−1
S ≤

2m− j−1. Consider all dual vectors of the form ym−λ− j−1 with j ≥ 0; then we have∑
j≥0

∑
S ym−λ− j−1

S ≤ 2m−1 + 2m−2 + 2m−3 + ... = 2m ≤
∑

X∈F Account(X).

Then, if we consider the dual solutions ym−λ, . . . , ym, we have

∑
j

∑
S

y j
S −

∑
X∈F

Account(X) ≤
λ∑

k=0

∑
S

ym−λ+k
S ≤ (log |Ri| + 2)

∑
S

ymax
S .

The lemma follows. 2

Now, we are ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1: By Lemma 3.3.2, at the end of time step i of the algo-

rithm, F is a feasible solution to (IPi). We have

∑
e∈F ce =

∑
j
∑

S y j
S −

∑
X∈F Account(X) by Lemma 3.3.4

≤ (log |Ri| + 2)
∑

S ymax
S by Lemma 3.3.5

≤ (log |Ri| + 2)OPTi by Lemma 3.3.2

where OPTi is the optimal value of (IPi) and the last inequality follows by the

fact that the cost of a feasible dual solution to (Di) is a lower bound on OPTi.

Therefore, our algorithms is an O(log |Ri|)-competitive algorithm for the online

proper constrained forest problem. Note that we have |Ri| = O(n), where is n is

the number of nodes in G. 2
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3.4 The Online Prize-Collecting Steiner Tree Problem

We now show that our algorithm can be extended to solve the prize-collecting

Steiner tree problem. Define the online prize-collecting Steiner tree problem as

follows: we are given a root node r in G, and a penalty of zero for each non-root

node. In each time step i, a terminal si , r arrives with a new penalty πi > 0. We

have a choice to either connect si to root r or pay a penalty πi for not connecting

it (for time step i and each future time step); in the latter case, we mark the

terminal. Our goal is to find a set of edges F that minimizes the sum of edge

costs in F plus sum of penalties for all marked terminals.

The integer programming formulation of (IPi) is

Min
∑
e∈E

cexe +
∑
sl∈Ri

πlzl

(IPi)
∑

e∈δ(S )

xe + zl ≥ 1, ∀S ⊆ V − {r}, sl ∈ S ∩ Ri,

xe ∈ {0, 1}, ∀e ∈ E,

zl ∈ {0, 1}, ∀sl ∈ Ri.

Let (LPi) denote the corresponding linear programming relaxation in which the

constraints xe ∈ {0, 1} and zl ∈ {0, 1} are replaced with xe ≥ 0 and zl ≥ 0. The dual

of this linear program, (Di), is

Max
∑

S⊆V−{r}

yS

(Di)
∑

S :e∈δ(S )

yS ≤ ce, ∀e ∈ E,∑
S⊆U

yS ≤
∑

sl∈U∩Ri

πl, ∀U ⊂ V, r < U,

yS ≥ 0, ∀S ⊆ V − {r}.

For the each dual problem (Di), call the constraints of type
∑

S :e∈δ(S ) yS ≤ ce the

edge cost constraints and call the constraints of type
∑

S⊆U yS ≤
∑

sl∈U∩Ri
πl the
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penalty constraints. A penalty constraint corresponding to a set U j is tight in

level j if the left-hand side of the inequality is equal to the right-hand side.

A terminal is active during time step i if it is unmarked and it is not yet con-

nected to root r in current solution F. A terminal is marked by our algorithm if

we decide to pay its penalty. A moat S j is active during time step i, if it is on the

lowest level j that satisfies the following three conditions: (i) S j contains some

active terminal s ∈ A; (ii) y j
S has not yet reached its limit in level j; (iii) S j does

not contain root r. We denote the current set of active moats byM.

The rest of the definitions are the same as in the main algorithm.

We extend our main algorithm to give an O(log |Ri|)-competitive algorithm

for the prize-collecting Steiner tree problem. For each time step i, a new termi-

nal si with penalty πi arrives. With the modified definitions of active terminals

and actives moats, we follow along the same lines of the main algorithm to grow

dual variables, with the same conditions (1)-(3) in that algorithm, but addition-

ally: (4) When a path p connecting a terminal s to root r becomes tight in level j,

we buy the path if s and r are not yet connected in F and update active terminal

set A; (5) when a penalty constraint corresponding to a set U j becomes tight in

level j, we mark all terminals in U j to pay their penalties and update active ter-

minal set A. We let a set Q be all the vertices marked by our algorithm in current

time step and in previous time steps. At the end of time step i, our algorithm

outputs F and the set of terminals Q marked to pay penalties.

Theorem 3.4.1 Our extended algorithm gives an O(log |Ri|)-competitive algorithm for

the online prize-collecting Steiner tree problem (IPi).

Proof : To bound total edge costs and penalties, we need to bound the cost of
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Extended Algorithm

F = ∅, F̄ j = ∅ for all j and y j
S = 0 for all j and S ⊆ V

For each terminal si that arrives
Update active terminals A, and active moatsM
While |A| > 0

Grow uniformly all active dual variables y j
S until

(1) An active y j
S with reaches limit in level j

(2) An edge e ∈ E becomes tight in level j, then
F̄ j = F̄ j ∪ {e}

(3) Two disjoint moats S j
1 and S j

2 collide in level j, then
Let p ⊆ E be the corresponding path that becomes tight in level j
Let s1 and s2 be the two terminals connected by p in F̄ j

If s1 and s2 are not yet connected in F
F = F ∪ {p}, i.e. build edges p − F

Update A
(4) A path p connecting a terminal s to root r becomes tight in level j

If s and r are not yet connected in F
F = F ∪ {p}, i.e. build edges p − F

Update A
(5) A penalty constraint corresponding to set U j becomes tight in level j

Mark all terminals in U j to pay penalties
Update A

UpdateM
EndWhile

EndFor
Let Q be the set of terminals marked to pay penalties
Output F and Q

Figure 3.2: Primal-dual algorithm for the online prize-collecting Steiner tree prob-
lem

edges built by conditions (3) and (4), and penalties paid by condition (5).

Consider edges in F. Let P be the set of paths we built in F by condition (4)

of the extended algorithm, i.e. paths that connect a component in F−P to root r.

Then F−P is the set of edges built by condition (3) of the extended algorithm. By

invariant 2 of Lemma 3.3.4, we have
∑

e∈F−P ce =
∑

j
∑

S y j
S −

∑
X∈F−P Account(X).

By condition (4) of the algorithm, for each path p that connects a terminal s

to root r, there must be a moat S j such that
∑

e∈p ce ≤
∑

S ′⊆S j:s∈S ′ y
j
S ′ . Let Xp be
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the component in F − P that is connected to the root by p. All S ′ ⊆ S j with

s ∈ S ′ must credit Account(Xp). Also, j must be equal to Class(Xp) since every

terminal in Xp is connected to root r after building p in F; after Xp connects

to r, our algorithm does not grow any dual that contains a terminal in Xp. By

definition of TopGrowth, we know
∑

e∈p ce ≤ TopGrowth(Xp). Therefore, we have∑
e∈P ce ≤

∑
Xp:p∈P TopGrowth(Xp) so that∑

e∈F ce =
∑

e∈F−P ce +
∑

e∈P ce

≤
∑

j
∑

S y j
S −

∑
X∈F−P Account(X) +

∑
Xp:p∈P TopGrowth(Xp)

≤
∑

j
∑

S y j
S −

∑
X∈F−P:X=Xp,p∈P(Account(Xp) − TopGrowth(Xp))

−
∑

X∈F−P:X,Xp∀p∈P Account(X)

≤ (log |Ri| + 2)
∑

S ymax
S .

The last inequality follows by same argument as Lemma 3.3.5 since for the com-

ponent X∗ in F − P with highest class, whether it has a path that connects it to

root or not, Account(X∗)−TopGrowth(X∗) ≥ 2Class(X∗) by invariant 1 of Lemma 3.3.4.

Next, we use a new copy of dual variables to bound penalties of terminals

in Q, i.e.
∑

sl∈Q πl. For each dual solution y j, let S j be the set of moats in F̄ j

that correspond to a tight penalty constraint. It must the case that
∑

sl∈S j∩Q πl =∑
S ′⊆S j y j

S ′ for any S j ∈ S j by condition (5) of the algorithm. By construction,

each dual variable is charged to pay a penalty at most once. Also, since we keep

growing same set of dual variables in all time steps, our algorithm continues

to pay penalties corresponding to tight penalty constraints over all time steps.

To bound the total penalty, we know that a terminal can be marked to pay a

penalty only by condition (5), so that∑
sl∈Q

πl ≤
∑

j

∑
S j∈S j

∑
S ′⊆S j

y j
S ′ ≤

∑
j

∑
S

y j
S .

Let X∗ be a component in F of highest class and let m = Class(X∗). Con-
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sider
∑

j
∑

S y j
S ≤ 2

∑
j
∑

S y j
S −

∑
j
∑

S y j
S , by invariant 1 of Lemma 3.3.4, we

know
∑

j
∑

S y j
S ≥ Account(X∗) ≥ 2m . By similar technique in Lemma 3.3.5, let

λ = dlog2 |Ri|e, we know
∑

S ym−λ−k−2
S ≤ 2m−k−2. Consider all dual vectors of the

form ym−λ−k−2 with k ≥ 0, we have 2
∑

k≥0
∑

S ym−λ−k−2
S ≤ 2m. Then, for dual solu-

tions ym−λ−1, . . . , ym, we have

2
k=λ+1∑

k=0

∑
S

ym−λ−1+k
S ≤ 2(log |Ri| + 3)

∑
S

ymax
S .

Therefore,∑
e∈F ce +

∑
sl∈Q πl ≤ [(log |Ri| + 2) + 2(log |Ri| + 3)]

∑
S ymax

S

≤ O(log |Ri|)OPTi.

2

3.5 The Online Prize-Collecting Steiner Forest Problem

We now show that our algorithm can be extended to solve the prize-collecting

Steiner forest problem. Define the online prize-collecting Steiner forest prob-

lem as follows: given an undirected graph G, and zero penalty for each pair

of nodes. In each time step i, a terminal pair (k, l) arrives with a new penalty

πkl > 0. We have a choice to either connect k to l or pay a penalty πkl for not

connecting them (for time step i and all future time steps). Our goal is to find a

set of edges F that minimizes the sum of edge costs in F plus sum of penalties

for terminals pairs not connected by F.

For a set S ⊆ V , we denote |{k, l} ∩ S | = 1 by S � (k, l). Define the proper

function fi(S ) = 1 if S � (k, l) for any arrived terminal pair (k, l) and fi(S ) = 0

otherwise. Let gi(S ) = max{ f1(S ), ..., fi(S )} for all S ⊆ V and i ≥ 1.
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The integer programming formulation of (IPi) is

Min
∑
e∈E

cexe +
∑

(k,l)∈(V×V)

πklzkl

(IPi)
∑

e∈δ(S )

xe + zkl ≥ gi(S ), ∀S ⊆ V, (k, l) ∈ (V × V), S � (k, l)

xe ∈ {0, 1}, ∀e ∈ E,

zkl ∈ {0, 1}, (k, l) ∈ (V × V).

Let (LPi) denote the corresponding linear programming relaxation in which

the constraints xe ∈ {0, 1} and zkl ∈ {0, 1} are replaced with xe ≥ 0 and zkl ≥ 0.

By applying Farkas Lemma, Hajiaghayi and Jain [21] introduced a dual of this

linear program, (Di),

Max
∑
S⊆V

gi(S )yS

(Di)
∑

S :e∈δ(S )

yS ≤ ce, ∀e ∈ E,∑
S⊆S

yS ≤
∑

(k,l)∈(V×V),S∈S:S�(k,l)

πkl, ∀S ⊆ 22V

yS ≥ 0, ∀S ⊆ V.

For dual problem (Di), call the constraints of type
∑

S :e∈δ(S ) yS ≤ ce the edge

cost constraints and the constraints of type
∑

S⊆S yS ≤
∑

(k,l)∈(V×V),S∈S:S�(k,l) πkl the

penalty constraints. A penalty constraint corresponding to a family S j is tight in

level j if the left-hand side of the inequality is equal to the right-hand side.

We extend our main algorithm to give an O(log |Ri|)-competitive algorithm

for the prize-collecting Steiner forest problem. For this problem, a terminal is

active during time step i if it is unmarked and every set S containing it is not a

violated set for function gi by current solution F. A terminal is marked by our
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algorithm if we decide to pay the penalty associated with its pair. The rest of

the definitions follow as in the main algorithm.

We will follow the same lines of the main algorithm to grow dual variables,

with the same conditions (1)-(3) in that algorithm, but additionally: (4) when

a penalty constraint corresponding to a family S j becomes tight in level j, we

mark all terminals pairs (k, l) that have S � (k, l) for S ∈ S j to pay their penalties

and update active terminal set A. We let Q be all terminal pairs marked by our

algorithm in current time step and in previous time steps. At the end of time

step i, our algorithm outputs F and the set of marked terminal pairs Q. Note

that to find the next tight constraint in level j for the dual problem efficiently,

we need to apply the algorithm in Section 4 of [21].

Theorem 3.5.1 Our extended algorithm gives an O(log |Ri|)-competitive algorithm for

the online prize-collecting Steiner Forest problem (IPi).

Proof : To bound total edge costs and penalties, we need to bound the cost of

edges built by conditions (3) and penalties paid by condition (4).

By Lemma 3.3.5, we have
∑

e∈F ce ≤ (log |Ri| + 2)
∑

S ymax
S . We need to use

a new copy of dual variables to bound penalties of terminal pairs in Q, i.e.∑
(k,l)∈Q πkl. For each dual solution y j, let X j be the collection of families in

level j that correspond to a tight penalty constraint. It must the case that∑
(k,l)∈Q,S j�(k,l),S j∈S j πkl =

∑
S j⊆S j y j

S for any S j ∈ X j by condition (4) of the algorithm.

By construction, each dual variable is charged to pay a penalty at most once.

Also, since we keep growing the same set of dual variables in all time steps, our

algorithm continues to pay the penalties corresponding to tight penalty con-

straints over all time steps. To bound the total penalty, we know that a terminal
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Algorithm

F = ∅, F̄ j = ∅ for all j, and y j
S = 0 for all j and S ⊆ V

For each terminal pair that arrives
Update active terminals A, and active moatsM
While |A| > 0

Grow uniformly all active dual variables y j
S until

1) An active y j
S with reaches limit in level j

2) An edge e ∈ E becomes tight in level j, then
F̄ j = F̄ j ∪ {e}

3) Two disjoint moats S j
1 and S j

2 collide in level j, then
Let p ⊆ E be the corresponding path that becomes tight in level j
Let s1 and s2 be the two terminals connected by p in F̄ j

If s1 and s2 are not yet connected in F
F = F ∪ {p}, i.e. build edges p − F
Update A

(4) A penalty constraint w.r.t. family S j becomes tight in level j
Mark all terminals pairs (k, l) that have S � (k, l) and S ∈ S j

Update A
UpdateM

Let Q be the set of terminal pairs marked to pay penalties
Output F and Q

Figure 3.3: Primal-dual algorithm for the online prize-collecting Steiner
forest problem

can be marked to pay a penalty only by condition (4), so that∑
(k,l)∈Q

πkl ≤
∑

j

∑
S j∈X j

∑
S j⊆S j

y j
S ≤

∑
j

∑
S

y j
S .

Let X∗ be a component in F of highest class and let m = Class(X∗). Con-

sider
∑

j
∑

S y j
S ≤ 2

∑
j
∑

S y j
S −

∑
j
∑

S y j
S , by invariant 1 of Lemma 3.3.4, we know∑

j
∑

S y j
S ≥ Account(X∗) ≥ 2m . By a similar technique as in Lemma 3.3.5, let

λ = dlog2 |Ri|e, we know
∑

S ym−λ−k−2
S ≤ 2m−k−2. Consider all dual vectors of the

form ym−λ−k−2 with k ≥ 0, we have 2
∑

k≥0
∑

S ym−λ−k−2
S ≤ 2m. Then, for dual solu-

tions ym−λ−1, . . . , ym, we have

2
k=λ+1∑

k=0

∑
S

ym−λ−1+k
S ≤ 2(log |Ri| + 3)

∑
S

ymax
S .
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Therefore,∑
e∈F ce +

∑
sl∈Q πl ≤ [(log |Ri| + 2) + 2(log |Ri| + 3)]

∑
S ymax

S

≤ O(log |Ri|)OPTi.

2

3.6 The Online Prize-Collecting Constrained Forest Problem

with Submodular Penalty Functions

Sharma, Swamy and Williamson [37] introduced a prize-collecting version of

constrained forest problems with an arbitrary 0-1 connectivity requirement

function g : 2V → {0, 1}, and a submodular and monotone penalty function

π : 22V
→ Z≥0. We will further show that our algorithm can be extended to solve

this problem as well.

This framework generalized the prize-collecing Steiner forest framework of

Hajiaghayi and Jain [21] to incorporate more general connectivity requirements

and penalty functions. They show that if the return of a feasible solution for the

connectivity function f is enforced, then f must be proper.

We can define an online version of the prize-collecting constrained for-

est problems with proper connectivity requirement function and submodular

penalty function in the following way. We start with connectivity requirement

function g0 and penalty function π0, where g0(S ) = 0 for all S ⊆ V and π0(S) = 0

for all S ⊆ 2V . In each time step i, a connectivity requirement function gi and a

penalty function πi arrive with the following properties:

1. gi : 2V → {0, 1} is a proper function,
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2. gi(S ) ≥ gi−1(S ) for all S ⊆ V ,

3. πi : 22V
→ Z≥0 is submodular, monotone and satisfies all other properties

described in [37],

4. πi(S) ≥ πi−1(S) for all S ⊆ 22V .

The integer programming formulation of (IPi) is

Min
∑
e∈E

cexe +
∑
S

πi(S)zS

(IPi)
∑

e∈δ(S )

xe +
∑

S :S∈S

zS ≥ gi(S ), ∀S ⊆ V,

xe ∈ {0, 1}, ∀e ∈ E,

zS ∈ {0, 1}, S ⊆ 22V
.

Let (LPi) denote the corresponding linear programming relaxation in which

the constraints xe ∈ {0, 1} and zS ∈ {0, 1} are replaced with xe ≥ 0 and zS ≥ 0. The

dual of this linear program, (Di), is

Max
∑
S⊆V

gi(S )yS

(Di)
∑

S :e∈δ(S )

yS ≤ ce, ∀e ∈ E,∑
S :S∈S

yS ≤ πi(S), ∀S ⊆ 22V

yS ≥ 0, ∀S ⊆ V.

For dual problem (Di), call the constraints of type
∑

S :e∈δ(S ) yS ≤ ce the edge

cost constraints and the constraints of type
∑

S :S∈S yS ≤ π(S) the penalty con-

straints. A penalty constraint corresponding to a family S j is tight in level j if

the left-hand side of the inequality is equal to the right-hand side.
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We extend our main algorithm to give an O(log |Ri|)-competitive algorithm

for the online prize-collecting constrained forest problem with submodular

penalty functions. For this problem, a terminal is active during time step i if

it is unmarked and every set S containing it is not a violated set for function gi

by current solution F. Unlike all the previous prize-collecting results, our algo-

rithm may choose not to pay the penalty for a collection in the future iterations,

just the current iteration. The rest of the definitions follow as in the main algo-

rithm.

We will follow the same lines of main algorithm to grow dual variables,

with the same conditions (1)-(3) in that algorithm, but additionally: (4) when

a penalty constraint corresponding to a family S j becomes tight in level j, in

which case we mark all terminals s with s ∈ S j ∈ S j, mark family S j to pay its

penalty and update active terminal set A. Let Q be the collection of all families

marked by our algorithm currently. At the beginning of time step i, we unmark

family S in Q if its corresponding penalty constraints are no longer tight with

the new penalty function πi, and unmark all terminals contained in a set S in

S if S is a violated set for function gi. (Notice that this allows us to change

our decisions to pay penalty for some families in earlier time steps to not pay

penalty. This is needed because πi(S j) may be strictly greater than πi−1(S j) for

some family S j.) At the end of time step i, our algorithm outputs F and the

collection of marked families Q. Note that to find the next dual constraint to go

tight in level j efficiently, we need to apply algorithm described in [37], which

uses submodular function minimization.

Theorem 3.6.1 Our extended algorithm gives an O(log |Ri|)-competitive algorithm for

the online prize-collecting Steiner Forest problem (IPi).
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Algorithm

F = ∅, F̄ j = ∅ for all j, and y j
S = 0 for all j and S ⊆ V

For each connectivity requirement function gi and penalty function πi that arrive
Update active terminals A, active moatsM, and Q
While |A| > 0

Grow uniformly all active dual variables y j
S until

1) An active y j
S with reaches limit in level j

2) An edge e ∈ E becomes tight in level j, then
F̄ j = F̄ j ∪ {e}

3) Two disjoint moats S j
1 and S j

2 collide in level j, then
Let p ⊆ E be the corresponding path that becomes tight in level j
Let s1 and s2 be the two terminals connected by p in F̄ j

If s1 and s2 are not yet connected in F
F = F ∪ {p}, i.e. build edges p − F
Update A

(4) A penalty constraint w.r.t. family S j becomes tight in level j
Mark all terminals s with s ∈ S j ∈ S j

Mark family S j to pay its penalties
Update A

UpdateM
Let Q be the collection of families marked to pay penalties
Output F and Q

Figure 3.4: Primal-dual algorithm for the online prize-collecting con-
strained forest problem with submodular penalty functions

Proof : Since πi(S) ≥ πi−1(S) for all S ⊆ 22V and i ≥ 1, each dual solution y j that

is feasible at the end of time step i will remain feasible at the beginning of time

step i + 1. Together with Lemma 3.3.2, each dual solution y j is feasible for (Di)

and F is feasible for (IPi) at the end of phase i.

To bound total edge costs and penalties, we need to bound the cost of edges

built by conditions (3) and penalties paid by condition (4). By Lemma 3.3.5, we

have
∑

e∈F ce ≤ (log |Ri| + 2)
∑

S ymax
S . We need to use a new copy of dual variables

to bound the penalties of families in Q, i.e.
∑
S∈Q πi(S). For each dual solution

y j, let X j be the collection of families in level j that correspond to a tight penalty

constraint. It must the case that
∑
S j∈Q πi(S j) =

∑
S j⊆S j y j

S for any S j ∈ X j by con-
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dition (4) of the algorithm. By construction, each dual variable is charged to pay

a penalty at most once. Also, since we keep growing the same set of dual vari-

ables in all time steps, our algorithm continues to pay penalties corresponding

to tight penalty constraints over all time steps. To bound the total penalty, we

know that a terminal can be marked to pay a penalty only by condition (4), so

that ∑
S∈Q

πi(S) ≤
∑

j

∑
S j∈X j

∑
S j⊆S j

y j
S ≤

∑
j

∑
S

y j
S .

Let X∗ be a component in F of highest class and let m = Class(X∗). Con-

sider
∑

j
∑

S y j
S ≤ 2

∑
j
∑

S y j
S −

∑
j
∑

S y j
S , by invariant 1 of Lemma 3.3.4, we know∑

j
∑

S y j
S ≥ Account(X∗) ≥ 2m . By similar technique to that in Lemma 3.3.5, let

λ = dlog2 |Ri|e, we know
∑

S ym−λ−k−2
S ≤ 2m−k−2. Consider all dual vectors of the

form ym−λ−k−2 with k ≥ 0, we have 2
∑

k≥0
∑

S ym−λ−k−2
S ≤ 2m. Then, for dual solu-

tions ym−λ−1, . . . , ym, we have

2
k=λ+1∑

k=0

∑
S

ym−λ−1+k
S ≤ 2(log |Ri| + 3)

∑
S

ymax
S .

Therefore,

∑
e∈E cexe +

∑
S πi(S)zS ≤ [(log |Ri| + 2) + 2(log |Ri| + 3)]

∑
S ymax

S

≤ O(log |Ri|)OPTi.

2

3.7 Computational Results

In this section, we give computational results of our algorithm in the special

case of the online prize-collecting Steiner tree problem.
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We implemented our online algorithm using MATLAB R2010b [29] and a

Macintosh desktop computer with a 2.5GHz Intel Quad-Core i5 processor and 4

GB of memory. We found solutions on two sets of randomly generated instances

from Jonhson et al. [25]. In the so-called P group, instances are unstructured

and designed to have constant expected degree and penalty to weight ratio. The

K group consists of random geometric instances designed to have a structure

similar to street maps. We considered a total of 46 instances with up to 400

vertices, 1500 edges, and 100 terminals. See [25] for a detailed description of

the generators for these instances. For six instances, we tested on two different

random permutations. They are suffixed with .R1 and .R2 after their original

labels.

For each instance G = (V, E), there is a file containing information on nodes

in V with corresponding nonnegative penalties and edges in E with correspond-

ing nonnegative edge costs. A terminal is a node with a positive penalty. We

used the terminal with maximum penalty as the root. We generated a random

permutation of the remaining terminals and used it as the sequence of arrival

terminals. It was shown by Garg et al. [14] that for the special case of the Steiner

tree problem, using a random permutation of the terminals still has an Ω(log n)

lower bound on the competitive ratio. For non-root terminals, we used our al-

gorithm in Figure 3.2 to decide which edges to buy or which penalties to pay.

To find the competitive ratio, i.e. the ratio between cost of online algorithm so-

lution and the cost of the optimal offline solution, we used a package by Ljubic

et al. [28] to find the optimal solutions of the corresponding offline problems.

Tables 3.1 and 3.2 show the results of 46 instances we tested. The range of the

competitive ratios after all terminals arrived is from 1.194 to 2.584 for the in-

stances we tested, with an average ratio of 1.62.
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Instance Online Objective Offline Optimal Competitive Ratio
K100 208416 135511 1.538
K100.1 173007 124108 1.394
K100.2.R1 359671 200262 1.796
K100.2.R2 267150 200262 1.334
K100.3 212194 115953 1.830
K100.4.R1 134659 87498 1.539
K100.4.R2 118385 87498 1. 353
K100.5 298171 119078 2.584
K100.6.R1 173283 132886 1.304
K100.6.R2 197439 132886 1.486
K100.7 334222 172457 1.938
K100.8.R1 382221 210869 1.813
K100.8.R2 365640 210869 1.734
K100.9 154507 122917 1.257
K100.10.R1 187395 133567 1.403
K100.10.R2 252709 133567 1.892
K200.R1 816049 329211 1.879
K200.R2 769520 329211 1.938
K400 552797 350093 1.579
K400.1 686031 490771 1.438
K400.2 617332 477073 1.294
K400.3 896693 415328 2.159
K400.4 588850 389451 1.512
K400.5 953330 519526 1.835
K400.6 469686 374849 1.253
K400.7 694144 474466 1.463
K400.8 690294 418614 1.649
K400.9 545542 383105 1.424
K400.10 600353 394191 1.523
K100.red 174846 113132 1.546
K200.red 723228 296935 2.436
K400.red 733838 322470 2.276

Table 3.1: Competitive ratios for online prize-collecting Steiner tree algo-
rithm on 32 instances from group K .

For several instances, we also computed the competitive ratios after the ar-

rival of each terminal in the random permutation (see Figure 3.6 for example).

We found that our algorithm performs optimally for the first few steps in which
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Instance Online Objective Offline Optimal Competitive Ratio
P100 1086865 803300 1.353
P100.1 1431038 926238 1.545
P100.2 563904 401641 1.404
P100.3 1281688 659644 1.943
P100.4 1012761 827419 1.224
P200 1892467 1317874 1.436
P400 2981404 2459904 1.212
P400.1 6018487 2808440 2.143
P400.2 3407635 2518577 1.353
P400.3 5487257 2951725 1.859
P400.4 4407817 2852956 1.545
P100.red 674380 564753 1.194
P200.red 1760141 1257107 1.400
P400.red 2918481 2255191 1.294

Table 3.2: Competitive ratios for online prize-collecting Steiner tree algo-
rithm on 14 instances from group P.

the online algorithm may choose to buy the same set of edge-distinct shortest

paths as the optimal solution from terminals to the root or other terminals. Later

on, our online algorithm may make a “mistake” compared to the optimal offline

solution and pay a lot more on edge costs or penalties. So the competitive ratio

may increase a lot in one step. As an example, in Figure 3.6(c), after the 30th ter-

minal arrived, the optimal value of the offline algorithm does not change from

the previous phase with 29 terminals. But the online algorithm pays a large cost

to buy a path from the 30th terminal to the root, increasing the competitive ratio

from 1.66 to 2.81 in one step. In other cases, the amount of phase-by-phase costs

increase may be about the same for the online algorithm and the offline algo-

rithm. This usually reduces the competitive ratio. Overall, the competitive ratio

will spike up whenever our online algorithm makes a “big mistake” while its

impact on the competitive ratio is decreasing over the sequence of the terminals

since the cost of the online and offline solutions are increasing. As an illustra-
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tion, in Figure 3.6(e) and 3.6(c), the competitive ratio is mostly trending down

eventually.

As an illustration, Figure 3.7 shows snapshots of online algorithm and opti-

mal solutions on instance K100.8.R1. Circles are the nodes in V , arrived termi-

nals are marked with asterisks in addition, and built edges are drawn between

their two endpoints. After 9 terminals have arrived, the online algorithm al-

ready built edges to connect 5 terminals to the root while the offline optimal

solution only built one edge (a tiny edge on the graph due to scale). With 11

arrived terminals, the online algorithm built a lot more edges than the offline

optimal solution. But for the last two terminals, the competitive ratio is de-

creasing as the online algorithm “paid off” from previous built edges, making a

“smaller mistake” comparing the previous phases.

In addition, it appears that there is no pattern in the competitive ratios be-

tween instances in the P group and those in the K group, nor on the same in-

stance but different permutations (See Figures 3.6 and 3.5, for example). The

reason for this appears to be the fact that the competitive ratio depends on when

and how large the online algorithm makes a “mistake”, which does not solely

depend on the type of an instance nor the permutation of the arriving terminals.
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Figure 3.5: Illustration of step-by-step competitive ratios on two instances
with two different permutations each. The horizontal axis rep-
resents the number of arrived terminals and the vertical axis
represents the competitive ratio.
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Figure 3.6: Illustration of step-by-step competitive ratios on six instances.
The horizontal axis represents the number of arrived terminals
and the vertical axis represents the competitive ratio.
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Figure 3.7: Snapshots of online algorithm and optimal solutions on in-
stance K100.8.R1. Arrived terminals are marked in red.
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CHAPTER 4

ON THE INTEGRALITY GAP OF THE SUBTOUR LP FOR 1,2-TSP

4.1 Introduction

As we mentioned in Chapter 1, the Traveling Salesman Problem (TSP) is one of

the most well studied problems in combinatorial optimization. Given a set of

cities {1, 2, . . . , n}, and distances c(i, j) for traveling from city i to j, the goal is to

find a tour of minimum length that visits each city exactly once. An important

special case of the TSP is the case when the distance forms a metric, i.e., c(i, j) ≤

c(i, k) + c(k, j) for all i, j, k, and all distances are symmetric, i.e., c(i, j) = c( j, i) for

all i, j. The symmetric TSP is known to be APX-hard, even if c(i, j) ∈ {1, 2} for all

i, j [34]; note that such instances trivially obey the triangle inequality.

The symmetric TSP that is also metric can be approximated to within a factor

of 3
2 using an algorithm by Christofides [11] from 1976. The algorithm combines

a minimum spanning tree with a matching on the odd-degree vertices to get an

Eulerian graph that can be shortcut to a tour; the analysis shows that the min-

imum spanning tree and the matching cost no more than the optimal tour and

half the optimal tour respectively. Better results are known for several special

cases, but, surprisingly, no progress has been made on approximating the gen-

eral symmetric TSP in more than thirty years. A natural direction for trying to

obtain better approximation algorithms is to use linear programming. The fol-

lowing linear programming relaxation of the traveling salesman problem was

used by Dantzig, Fulkerson, and Johnson [13] in 1954. For simplicity of nota-

tion, we let G = (V, E) be a complete undirected graph on n vertices. In the LP

relaxation, we have a variable x(e) for all e = (i, j) that denotes whether we travel
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directly between cities i and j on our tour. Let c(e) = c(i, j), and let δ(S ) denote

the set of all edges with exactly one endpoint in S ⊆ V . Then the relaxation is

Min
∑
e∈E

c(e)x(e)

(SUBT ) subject to:
∑
e∈δ(i)

x(e) = 2, ∀i ∈ V, (4.1)∑
e∈δ(S )

x(e) ≥ 2, ∀S ⊂ V, 3 ≤ |S | ≤ |V | − 3, (4.2)

0 ≤ x(e) ≤ 1, ∀e ∈ E. (4.3)

The first set of constraints (4.1) are called the degree constraints. The second

set of constraints (4.2) are sometimes called subtour elimination constraints or

sometimes just subtour constraints, since they prevent solutions in which there

is a subtour of just the vertices in S . As a result, the linear program is some-

times called the subtour LP. Wolsey [41] (and later Shmoys and Williamson [38])

showed that Christofides’ algorithm finds a tour of length at most 3
2 times the

optimal value of the subtour LP; these proofs show that the minimum spanning

tree and the matching on odd-degree nodes can be bounded above by the value

of the subtour LP, and half the value of the subtour LP, respectively. This im-

plies that the integrality gap, the worst case ratio of the length of an optimal

tour divided by the optimal value of the LP, is at most 3
2 . However, no examples

are known that show that the integrality gap can be as large as 3
2 ; in fact, no ex-

amples are known for which the integrality gap is greater than 4
3 . A well known

conjecture states that the integrality gap is indeed 4
3 ; see Goemans [15].

Recently, progress has been made in several directions, both in improving

the best approximation ratio and in determining the exact integrality gap of the

subtour LP for certain special cases of the symmetric TSP. In the graph-TSP, the

costs c(i, j) are equal to the shortest path distance in an underlying unweighted

graph. Oveis Gharan, Saberi, and Singh [33] showed that the graph-TSP can be
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approximated to within 3
2 − ε for a small constant ε > 0. Boyd, Sitters, van der

Ster and Stougie [8] gave a 4
3 -approximation algorithm if the underlying graph is

cubic. Mömke and Svensson [31] gave a 1.461-approximation for the graph-TSP

and an 4
3 -approximation algorithm if the underlying graph is subcubic. Their

results also imply upper bounds on the integrality gap of 1.461 and 4
3 in these

cases. Mucha [32] improved the bound for graph-TSP to 13
9 .

Schalekamp, Williamson and van Zuylen [36] resolved a related conjecture.

A 2-matching of a graph is a set of edges such that no edge appears twice and

each node has degree two, i.e., it is an integer solution to the LP (SUBT ) with

only constraints (4.1) and (4.3). Note that a minimum-cost 2-matching thus

provides a lower bound on the length of the optimal TSP tour. A minimum-

cost 2-matching can be found in polynomial time using a reduction to a certain

minimum-cost matching problem. Boyd and Carr [7] conjectured that the worst

case ratio of the cost of a minimum-cost 2-matching and the optimal value of the

subtour LP is at most 10
9 . This conjecture was proved to be true by Schalekamp

et al. and examples are known that show this result is tight.

Unlike the techniques used to obtain better results for the graph-TSP, the

techniques of Schalekamp et al. work on general weighted instances that are

symmetric and obey the triangle inequality. However, their results only apply

to 2-matchings and it is not clear how to enforce global connectivity on the so-

lution obtained by their method. A potential direction for progress on resolving

the integrality gap for the subtour LP is a conjecture by Schalekamp et al. that

the worst-case integrality gap is attained for instances for which the subtour

elimination constraints are redundant.

In this chapter, we turn our attention to the 1,2-TSP, where c(i, j) ∈ {1, 2} for
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Figure 4.1: Illustration of the worst example known for the integrality gap
for the 1,2-TSP. The figure on the left shows all edges of cost 1.
The figure in the center gives the subtour LP solution, in which
the dotted edges have value 1

2 , and the solid edges have value
1; this is also an optimal fractional 2-matching. The figure on
the left gives the optimal tour and the optimal 2-matching.

all i, j. Papadimitriou and Yannakakis [34] showed how to approximate 1,2-TSP

within a factor of 11
9 starting with a minimum-cost 2-matching. In addition, they

showed a ratio of 7
6 with respect to the the minimum-cost 2-matching that has no

cycles of length 3. Bläser and Ram [6] improved this ratio and the best known

approximation of 8
7 is given by Berman and Karpinski [5].

We do not know a tight bound on the integrality gap of the subtour LP even

in the case of the 1,2-TSP. As an upper bound, we appear to know only that the

gap is at most 3
2 via Wolsey’s result. There is an easy 9 city example showing

that the gap must be at least 10
9 ; see Figure 4.1. This example has been extended

to a class of instances on 9k nodes for any positive integer k by Williamson [39].

The contribution of this work is to begin a study of the integrality gap of the

1,2-TSP, and to improve our state of knowledge for the subtour LP in this case.

We are able to give the first bound that is strictly less than 4
3 for these instances.

This is the first bound on the integrality gap for the subtour LP with value less

than 4
3 for a natural class of TSP instances. Under an analog of a conjecture of

Schalekamp et al. [36], we show that the integrality gap is at most 7
6 , and with

an additional uniqueness assumption, we can improve this bound to 10
9 . We

describe these results in more detail below.
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We start by giving a bound on the subtour LP in the general case of 1,2-TSP.

All the known approximation algorithms since the initial work of Papadim-

itriou and Yannakakis [34] on the problem start by computing a minimum-

cost 2-matching. However, the example of Figure 4.1 shows that an optimal

2-matching can be as much as 10
9 times the value of the subtour LP for the 1,2-

TSP, so we cannot directly replace the bound on the optimal solution in these

approximation algorithms with the subtour LP in the same way that Wolsey did

with Christofides’ algorithm in the general case. Using the result of Schalekamp,

Williamson, and van Zuylen [36] and some additional work, we are able to show

that an algorithm of Papadimitriou and Yannakakis [34] obtains a bound on the

subtour LP for the 1,2-TSP of 7
9 ·

10
9 + 4

9 = 106
81 ≈ 1.3086.

Next, we show stronger results in some cases. A fractional 2-matching

is an optimal solution to the LP (SUBT ) with only constraints (4.1) and (4.3).

Schalekamp et al. [36] have conjectured that the worst-case integrality gap for

the subtour LP is obtained when the subtour elimination constraints are redun-

dant. We show that if this is the case for 1,2-TSP, i.e. in the worst case there is an

optimal solution to the subtour LP that is an optimal solution to the fractional

2-matching problem, we can find a tour of cost at most 7
6 the cost of the frac-

tional 2-matching, implying that the integrality gap is at most 7
6 in these cases.

We then show that if this optimal solution to the fractional 2-matching problem

is the unique optimal fractional 2-matching, then we can find a tour of cost at

most 10
9 times the cost of the fractional 2-matching, implying that the integrality

gap is at most 10
9 in these cases. Figure 4.1 shows that this result is tight.

The results above all lead to polynomial-time algorithms, though we do not

state the exact running times.
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We anticipate that substantially stronger bounds on the integrality gap can

be shown. In particular, we conjecture that the integrality gap is in fact exactly

10
9 . We perform computational experiments that show that this conjecture is true

for n ≤ 12.

The remainder of this chapter is structured as follows. Section 4.2 contains

preliminaries and a general bound on the integrality gap for the 1,2-TSP. We

show how to obtain stronger bounds in some cases in Section 4.3. We describe

our computational experiments in Section 4.4.

4.2 Preliminaries and A First Bound on The Integrality Gap

We will work extensively with 2-matchings and fractional 2-matchings; that is,

extreme points x of the LP (SUBT ) with only constraints (4.1) and (4.3), where in

the first case the solutions are required to be integer. For convenience we will

abbreviate “fractional 2-matching” by F2M and “2-matching” by 2M. F2Ms have

the following well-known structure (attributed to Balinski [3]). Each connected

component of the support graph (that is, the edges e for which x(e) > 0) is either

a cycle on at least three vertices with x(e) = 1 for all edges e in the cycle, or

consists of odd-sized cycles with x(e) = 1
2 for all edges e in the cycle connected

by paths of edges e with x(e) = 1 for each edge e in the path (the center figure

in Figure 4.1 is an example). We call the former components integer components

and the latter fractional components. In a fractional component, we call a path of

edges e with x(e) = 1 a 1-path. The edges e with x(e) = 1
2 in cycles are called

cycle edges. An F2M with a single component is called connected, and we call a

component 2-connected if the sum of the x-values on the edges crossing any cut
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is at least 2.

As mentioned in the introduction, Schalekamp, Williamson, and van

Zuylen [36] have recently shown the following.

Theorem 4.2.1 (Schalekamp et al. [36]) If edge costs obey the triangle inequality,

then the cost of an optimal 2-matching is at most 10
9 times the value of the subtour LP.

We now show that applying an algorithm of Papadimitriou and Yan-

nakakis [34] to this 2-matching will produce a tour of cost at most 106
81 times

the value of the subtour LP.

Theorem 4.2.2 The integrality gap of the subtour LP is at most 106
81 for 1,2-TSP.

Proof : We show that there exists a tour of cost at most 7
9 times the cost of the

optimal 2M plus 4
9 times the value of the subtour LP if all edge costs are either 1

or 2. Using Theorem 4.2.1, this implies that the tour has cost at most 7
9 ×

10
9 + 4

9 =

106
81 times the value of the subtour LP.

Papadimitriou and Yannakakis [34] observe that we can assume without loss

of generality that the optimal 2M solution consists of a number of cycles with

only edges of cost 1 (“pure” cycles) and at most one cycle which has one or more

edges of cost 2 (the “non-pure” cycle). This is because we can always patch

two non-pure cycles into one cycle without increasing the cost of the solution.

Moreover, if i is a node in the non-pure cycle which is incident on an edge of

cost 2 in the cycle, then there can be no edge of cost 1 connecting i to a node in a

pure cycle (since otherwise, we can merge the non-pure cycle with a pure cycle

without increasing the cost).
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The algorithm of Papadimitriou and Yannakakis solves the following bipar-

tite matching problem: On one side we have a node for every pure cycle, and

on the other side, we have a node for every node in the instance. There is an

edge from pure cycle C to node i, if i < C and there is an edge of cost 1 from i to

some node in C. Let r be the number of pure cycles that are unmatched in the

maximum cardinality bipartite matching. Papadimitriou and Yannakakis show

how to “patch together” the matched cycles, and finally how to combine the

resulting cycles into a tour of cost at most 7
9OPT (2M)+ 4

9 |V |+
1
3r, where OPT (2M)

is the cost of an optimal 2M. We claim that

OPT (SUBT ) ≥ |V | + r,

where OPT (SUBT ) denotes the cost of the optimal subtour LP solution. Given

the claim and Theorem 4.2.1, we have that the cost of the tour is then at most

7
9
·

10
9

OPT (SUBT ) +
4
9

OPT (SUBT ).

To prove the claim, we note that for a bipartite matching instance, there al-

ways exists a vertex cover that has size equal to the size of the maximum match-

ing. We use this fact to construct a feasible dual solution to the subtour LP that

has value |V | + r.

The dual of the subtour LP (SUBT ) is

Max 2
∑
S⊂V

y(S ) + 2
∑
i∈V

y(i) −
∑
e∈E

z(e)

(D) subject to:
∑

S⊂V:e∈δ(S )

y(S ) + y(i) + y( j) − z(e) ≤ c(e), ∀e = (i, j),

y(S ) ≥ 0, ∀S ⊂ V, 3 ≤ |S | ≤ |V | − 3,

z(e) ≥ 0, ∀e ∈ E.

We begin by setting z(e) = 0 for each e ∈ E, y(i) = 1
2 for each i ∈ V , and for each

pure cycle on vertices C, we set y(C) = 1
2 . Now, given a maximum matching
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in the bipartite graph constructed by the algorithm of Papadimitriou and Yan-

nakakis, and a vertex cover of the same size, note that the vertex cover contains

nodes and pure cycles of the 2M solution. We decrease the dual value for these

objects to 0. Note that the dual objective for this solution is |V | + r.

It remains to show that the dual constructed is feasible. Define the load on an

edge e = (i, j) of solution (y, z) to be
∑

S⊂V:e∈δ(S ) y(S )+y(i)+y( j)− z(e). For any edge

of cost 1 inside a cycle of the 2M, the load on the edge is at most 1. For an edge

(i, j) where i ∈ C and j ∈ C′ , C, the load is at most 2. Suppose (i, j) has cost

1, and the cycles C and C′ are both pure cycles. Then the edge occurs twice in

the bipartite matching instance (namely, once going from i to C and once going

from j to C′) and hence the dual of at least two of the four objects i, j,C and

C′ has been reduced to 0. The total load on edge (i, j) is thus at most 1. Now,

suppose C′ is the non-pure cycle, then y(C′) = 0, since we only increased the

dual variables for the pure cycles. Moreover, at least one endpoint of the ( j,C)

edge in the bipartite matching instance must be in the vertex cover, so the load

on edge (i, j) is again at most 1. 2

We note that the bound obtained on the integrality gap seems rather weak,

as the best known lower bound on the integrality gap is only 10
9 . Schalekamp,

Williamson, and van Zuylen [36] have conjectured that the integrality gap (or

worst-case ratio) of the subtour LP occurs when the solution to the subtour LP is

a fractional 2-matching. That is, the worst-case ratio for the subtour LP occurs

for costs c such that an optimal subtour LP solution for c is the same as an

optimal fractional 2-matching for c. Schalekamp et al. call such costs c fractional

2-matching costs for the subtour LP.

Conjecture 1 (Schalekamp et al. [36]) The integrality gap for the subtour LP is at-
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tained for a fractional 2-matching cost for the subtour LP.

In the next section, we show that we can obtain better bounds on the inte-

grality gap of the subtour LP in the case that the optimal solution is a fractional

2-matching.

4.3 Better Bounds if The Optimal Solution is A Fractional 2-

Matching

If the optimal solution to the subtour LP is a fractional 2-matching, then a nat-

ural approach to obtaining a good tour is to start with the edges with cost 1

and x-value 1, and add as many edges of cost 1 and x-value 1
2 as possible, with-

out creating a cycle on a subset of the nodes. In other words, we will propose

an algorithm that creates an acyclic spanning subgraph (V,T ) where all nodes

have degree one or two. We will call an acyclic spanning subgraph in which all

nodes have degree 1 or 2 a partial tour. A partial tour can be extended to a tour

by adding d/2 edges of cost 2, where d is the number of degree 1 nodes. The

cost of the tour is c(T ) + d, where c(T ) =
∑

e∈T ce.

We will prove the following lemma.

Lemma 4.3.1 Let G = (V,T ) be a partial tour. Let A be a set of edges not in T that form

an odd cycle or a path on V ′ ⊂ V , where the nodes in V ′ have degree one in T . We can

find A′ ⊂ A such that (V,T ∪ A′) is a partial tour, and

• |A′| ≥ 1
3 |A| if A is a cycle,
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• |A′| ≥ 1
3 (|A| − 1) if A is a path,

We postpone the proof of the lemma and first prove the implication for the

bound on the integrality gap if the optimal subtour LP solution is a fractional

2-matching.

Theorem 4.3.2 There exists a tour of cost at most α times the cost of an F2M solution

if c(i, j) ∈ {1, 2} for all i, j, where α equals

• 7
6 if the F2M solution is 1-connected;

• 10
9 if the F2M solution is 2-connected and every 1-path that is adjacent to four

unit cost cycle edges has cost at least 2.

Proof : Let P = {e ∈ E : x(e) = 1} (the edges in the 1-paths of x). We will start

the algorithm with T = P. Let R = {e ∈ E : x(e) = 1
2 and c(e) = 1} (the edges

of cost 1 in the cycles of x). Note that the connected components of the graph

(V,R) consist of paths and odd cycles. The main idea is that we consider these

components one by one, and use Lemma 4.3.1 to show that we can add a large

number of the edges of each path and cycle, where we keep as an invariant that

T satisfies the conditions of the lemma. Note that by Lemma 4.3.1, the number

of edges added from each path or cycle A is at least |A|/3, except for the paths for

which |A| ≡ 1 (mod 3). Let P1 be this set of paths. We would like to claim that

we add a third of the edges from each component, and we therefore preprocess

the paths in P1, where we attempt to add one edge (either the first or last edge

from each path in P1) to T , and remove this edge and its neighboring edge in R

(if any) from R. After the preprocessing, we use Lemma 4.3.1 to process each of

the components in (V,R).
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More precisely, in the preprocessing step we (try to) add one edge, either the

first or last edge, from each path in P1 to T , while maintaining that T is a partial

tour. We call a path A in P1 “eared” if the 1-paths that are incident on the first

and last node of the path are such that they go between two neighboring nodes

of A. We claim that we can add an edge from at least half of the paths in P1 that

are not eared: If we cannot add either the first or the last edge from a path A

in P1, and A is not eared, then it must be the case that either the first or the last

edge forms a cycle with an edge that was added to T from another path in P1.

We remove the edges that were added to T , and their neighboring edge (if any)

from R.

We now iterate through the connected components in (V,R) and add edges

to T while maintaining that T is a partial tour. By Lemma 4.3.1, the number of

edges added from each path or cycle A is at least |A|/3, except for the paths in

P1. Note that for a path A in P1 that is not eared, and for which we had already

added an edge to T in the preprocessing step, will have added a total of at least

1 + (|A| − 2 − 1)/3 = |A|/3 edges. For a path in P1 for which we did not add an

edge to T in the preprocessing stage, we have added at least (|A| − 1)/3 edges.

Now, recall that a path A in P1 has |A| ≡ 1 (mod 3), and that the number of

edges added is an integer, so in the first case, the number of edges added is at

least |A|/3 + 2
3 and in the second case it is |A|/3 − 1

3 .

Let z be the number of eared paths in P1, and recall that we added an edge

in the preprocessing stage for at least half of the paths in P1 that are not eared.

Hence, the total number of edges from R added can be lower bounded by 1
3 |R| −

1
3z. We now give an upper bound on the number of nodes of degree one in T .

Let k be the number of cycle nodes in x, i.e. k = #{i ∈ V : x(i, j) =
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1
2 for some j ∈ V}, and let p be the number of cycle edges of cost 2 in x, i.e.

p = #{e ∈ E : x(e) = 1
2 and c(e) = 2}. Initially, when T contains only the edges in

the 1-paths, all k nodes have degree one, and there are k − p edges in R. We ar-

gued that we added at least 1
3 |R|−

1
3z = 1

3k− 1
3 p− 1

3z edges to T . Each edge reduces

the number of nodes of degree one by two, and hence, the number of nodes of

degree one at the end of the algorithm is at most k−2(1
3k− 1

3 p− 1
3z) = 1

3k + 2
3 p + 2

3z.

Recall that c(P) denotes the cost of the 1-paths, and the total cost of T at the end

of the algorithm is equal to c(P)+ 1
3k− 1

3 p− 1
3z. Since at most 1

3k+ 2
3 p+ 2

3z nodes have

degree one in T , we can extend T into a tour of cost at most c(P) + 2
3k + 1

3 p + 1
3z.

The cost of the solution x can be expressed as c(P) + 1
2k + 1

2 p. We will now

consider two cases which give different approximation guarantees.

We first consider the case where we only assume that the F2M solution x is

connected. Note that each 1-path connects two cycle nodes, hence c(P) ≥ 1
2k.

Moreover, an eared path A is incident to one (if |A| = 1) or two (if |A| > 1) 1-paths

of length two, since the support graph of x is simple. Therefore we can lower

bound c(P) by 1
2k + z. Therefore, 7

6

(
c(P) + 1

2k + 1
2 p

)
≥ c(P) + 1

12k + 1
6z + 7

12k + 7
12 p ≥

c(P) + 2
3k + 1

3z + 1
3 p, where p ≥ z is used in the last inequality.

If the F2M solution x is 2-connected, then z = 0, since if there is a 1-path

connecting two nodes connected by a cycle edge {i, j}, then {i, j} is a cut in x with

only two cycle edges crossing the cut, and hence x is not 2-connected. Suppose

that, in addition, x is such that every 1-path that is adjacent to four unit-cost

cycle edges has cost at least 2. Then c(P) ≥ k − 2p. Then 10
9

(
c(P) + 1

2k + 1
2 p

)
≥

c(P) + 1
9k − 2

9 p + 5
9k + 5

9 p = 2
3k + 1

3 p + c(P). 2

Proof of Lemma 4.3.1: The basic idea behind the proof of the lemma is the
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following: We go through the edges of A in order, and try to add them to T if

this does not create a cycle or node of degree three in T . If we cannot add an

edge, we simply skip the edge and continue to the next edge. Since the edges

in T form a collection of disjoint paths and each node in A has degree one in T ,

we can always add either the first edge or the second edge of A: if the first edge

cannot be added, then adding it to T must create a cycle, and since the edges in

T form a collection of node disjoint paths, adding the second edge of the path

or cycle to T cannot create a cycle. Similarly, we need to skip at most two edges

between two edges that are successfully added to T : first, an edge is skipped

because otherwise we create a node of degree three in T , and if a second edge is

skipped, then this must be because adding that edge to T would create a cycle.

But then, adding the next edge on the path cannot create a cycle in T . Hence, the

number of edges from we can add from each path or cycle A is at least (|A|−1)/3,

if A is a path, and b|A|/3c, if A is a cycle, where |A| denotes the number of edges

in A.

We now show that by being a little more careful, we can in fact add |A|/3

edges if A is a cycle. Note that the number of nodes in A is odd, and hence there

must be some j such that the path in T that starts in u j ends in some node v < A.

We claim that if we consider the edges in A starting with either edge {u j−1, u j} or

edge {u j, u j+1}, we are guaranteed that for at least one of these starting points,

we can add both the first and the third edge to T .

Clearly, neither {u j−1, u j} nor {u j, u j+1} can create a cycle if we add it to T .

So suppose that T ∪ {u j−1, u j} ∪ {u j+1, u j+2} contains a cycle. This cycle does not

contain the node u j, because the path in T that starts in u j ends in some node

v < C. Hence T contains a path that starts in u j+1 and ends in u j+2. But then
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T ∪ {u j, u j+1} ∪ {u j+2, u j+3} does not have a cycle, since if it did, T must have a path

starting in u j+2 and ending in u j+3 which is only possible if u j+1 = u j+3. Since the

number of nodes in A is at least three, this is not possible. 2

4.4 Computational Results

In the case of the 1,2-TSP, for a fixed n we can generate all instances as follows.

For each value of n, we first generate all nonisomorphic graphs on n nodes using

the software package NAUTY [30]. We let the cost of edges be one for all edges

in G and let the cost of all other edges be two. Then each of the generated graph

G gives us an instance of 1,2-TSP problem with n nodes, and this covers all

instances of the 1,2-TSP for size n up to isomorphism.

In fact, we can do slightly better by only generating biconnected graphs. We

say that a graph G = (V, E) is biconnected if it is connected and there is no vertex

v ∈ V such that removing v disconnects the graph; such a vertex v is a cut vertex.

We show that there must be a biconnected graph that gives rise to the worst case

instances for the integrality gap for the 1,2-TSP.

For each instance of size n, we solve the subtour LP and the corresponding

integer program using CPLEX 12.1 [12] and a Macintosh laptop computer with

dual core 2GHz processor and 1GB of memory. It is known that the integrality

gap is 1 for n ≤ 5, so we only consider problems of size n ≥ 6. The results are

summarized in Table 4.1.

For n = 11, the number of nonisomorphic biconnected graphs is nearly a bil-

lion and thus too large to consider, so we turn to another approach. For n = 11
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n 6 7 8 9 10 11 12
IP/LP ratio 8/7.5 8/7.5 9/8.5 10/9 11/10 12/11 13/12

# graphs 56 468 7,123 194,066 9,743,542 900,969,091 −

Table 4.1: The subtour LP integrality gap for 1,2-TSP for 6 ≤ n ≤ 12, along
with the number of nonisomorphic biconnected graphs for 6 ≤
n ≤ 11.

Figure 4.2: Illustration of the instances with integrality gap at least 12
11 for

n = 11 (without the grey node) and 13
12 for n = 12 (with the grey

node) for the 1,2-TSP. All edges of cost 1 are shown.

and n = 12, we use the fact that we know a lower bound on the integrality

gap of n+1
n , namely for the instances depicted in Figure 4.2. The claimed lower

bounds on the integrality gap for these instances follow readily from the inte-

grality gap for the example in Figure 4.1. We then check whether this is the

worst integrality gap for each vertex of subtour LP. A list of non-isomorphic

vertices of the subtour LP is available for n = 6 to 12 at Sylvia Boyd’s web-

site http://www.site.uottawa.ca/˜sylvia/subtourvertices. In or-

der to check whether the lower bound on the integrality gap is tight, we solve

the following integer programming problem for each vertex x of the polytope

for n = 11 and n = 12, where now the costs c(e) are the decision variables, and x

is fixed:

Max z − αn

∑
e∈E

c(e)x(e)

subject to: ∑
e∈T

c(e) ≥ z, ∀ tours T,
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c(e) ∈ {1, 2}, ∀e ∈ E.

Note that αn is the lower bound on the integrality gap for instances of n nodes.

If the objective is nonpositive for all of the vertices of the subtour LP, then we

know that αn is the integrality gap for a particular value of n.

Since the number of non-isomorphic tours of n nodes is (n−1)!/2, the number

of constraints is too large for CPLEX for n = 11 or 12. We overcome this difficulty

by first solving the problem with only tours that have at least n − 1 edges in the

support graph of the vertex x, and repeatedly adding additional violated tours.

Our results shows that the worst case integrality gap for n = 11 is 12
11 and for

n = 12 is 13
12 .

We now show that the worst-case integrality gap for the subtour LP for the

1,2-TSP can be found on graphs of cost 1 edges that are biconnected. Let OPT (G)

and SUBT (G) be the cost of the optimal tour and the value of the subtour LP

(respectively) when G is the graph of cost 1 edges. We start by proving that the

worst case is obtained on a connected graph.

Lemma 4.4.1 Let G be the graph of cost 1 edges in a 1,2-TSP instance. Then if G

is not connected, there exists a connected graph G′ such that OPT (G)/SUBT (G) ≤

OPT (G′)/SUBT (G′).

Proof : Suppose G has more than one connected component. We create G′ =

(V ′, E′) by adding a new vertex i∗ to the graph, and adding edges from all j ∈ V

to i∗ so that V ′ = V ∪ {i∗} and E′ = E ∪ {(i∗, j) : j ∈ V}. Given a tour of G′,

we can easily produce a tour of G of no greater cost by shortcutting i∗, so that

OPT (G) ≤ OPT (G′). Let x be an optimal solution to the subtour LP for the graph
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G. We now define a solution x′ for G′, where x′i j = xi j if i and j are in the same

connected component of G, while if i and j are in different connected compo-

nents of G, then we set x′i j = 0, x′i∗i = xi j, and x′i∗ j = xi j. It is easy to see that

the cost of x′ is the same as that of x. We now argue that there is some so-

lution x′′ feasible for the subtour LP on G′ such that its cost is no greater, so

that SUBT (G′) ≤ SUBT (G). It is clear that the bounds constraints (4.3) are sat-

isfied for x′ and the degree constraints (4.1) are satisfied for x′ for all i ∈ V ;

however, the degree constraint for i∗ may not be satisfied. Since for any com-

ponent C ⊆ V of G, x(δ(C)) ≥ 2, it is clear that x′(δ(i∗)) ≥ 2, but it may be the

case that x′(δ(i∗)) > 2. For the subtour constraints (4.2), consider any S ⊂ V ′,

S , ∅, such that i∗ < S . Then x′(δ(S )) ≥ x(δ(S )) ≥ 2, and for any S ⊆ V ′ with

i∗ ∈ S , S , {i∗}, x′(δ(S )) = x′(δ(V ′ − S )) ≥ 2 by the previous argument. Finally,

Goemans and Bertsimas [16] have shown (see also Williamson [39]) that if edge

costs obey the triangle inequality, and there is some solution x′ to the subtour

LP in which degree constraints are exceeded but all other constraints are met,

then there is another feasible solution x′′ of no greater cost in which all con-

straints are satisfied. Hence we have that SUBT (G′) ≤ SUBT (G). Thus we have

that OPT (G)/SUBT (G) ≤ OPT (G′)/SUBT (G′). 2

Lemma 4.4.2 Let G be the graph of cost 1 edges in a 1,2-TSP instance. Then if

G is not biconnected, there exists a biconnected G′ such that OPT (G)/SUBT (G) ≤

OPT (G′)/SUBT (G′).

Proof : By Lemma 4.4.1, we can assume that the graph G = (V, E) is con-

nected. Let i1, . . . , ik be all the cut vertices of G, and let C1, . . . ,C` be all

the connected components formed when these vertices are removed, so that

C1, . . . ,C`, {i1}, . . . , {ik} form a partition of V . We create a new graph G′ = (V ′, E′)
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by adding a new vertex i∗, and adding edges from i∗ to each vertex in C1∪· · ·∪C`,

so that V ′ = V ∪ {i∗} and E′ = E ∪ {(i∗, j) : j ∈ Cp for some p}. We note that G′

is biconnected. As before, we have OPT (G) ≤ OPT (G′) since given a tour of G′

we can shortcut i∗ to get a tour of G. Let x be an optimal subtour LP solution

for graph G. We now argue, as we did in the proof of Lemma 4.4.1, that we can

create an x′ that costs no more than x such that all the subtour and bounds con-

straints are obeyed, and all degree constraints are either met or exceeded; this

will imply that SUBT (G′) ≤ SUBT (G), and complete the proof. Suppose with-

out loss of generality that removing cut vertex i1 creates components C1 and

C = C2 ∪ · · · ∪C` ∪ {i2} ∪ · · · ∪ {ik}, so that C1, {i1}, and C partition V . We set x′i j = 0

and x′i∗i = x′i∗ j = xi j if i ∈ C1 and j ∈ C; x′i j = xi j otherwise. If i ∈ C1 and j ∈ C, then

(i, j) < E since i1 is a cut vertex, so the cost of x′ is no more than that of x. The

arguments that all constraints are satisfied except for the degree constraint on i∗

follow as in the proof of Lemma 4.4.1. We now must argue that x′(δ(i∗)) ≥ 2. To

do this, we show that
∑

i∈C1, j∈C xi j ≥ 1. Since x(δ(i1)) = 2, it must be the case that

either
∑

j∈C xi1 j ≤ 1 or
∑

j∈C1
xi1 j ≤ 1; without loss of generality we assume the for-

mer is true. Then since x(δ(C1∪{i1})) ≥ 2, and x(δ(C1∪{i1})) =
∑

j∈C xi1 j+
∑

i∈C1, j∈C xi j,

it follows that
∑

i∈C1, j∈C xi j ≥ 1, and the proof is complete. 2

Notice that the proof of Lemma 4.4.1 shows that the worst-case gap of dis-

connected cost-1 graphs with n nodes can not be larger than the worst-case gap

of connected cost-1 graphs with n + 1 nodes. Similarly, the proof of Lemma

4.4.2 shows that the worst-case gap of connected cost-1 graphs with n + 1 nodes

can not be larger than the worst-case gap of biconnected cost-1 graphs with

n + 2 nodes. Therefore, by finding worst-case gap on biconnected graphs with

6 ≤ n ≤ 10 and worst-case gap for all graphs with n = 11 and n = 12, we show

that the worst-case gap for n ≤ 12 is 10
9 .

94



CHAPTER 5

CONCLUSIONS AND OPEN QUESTIONS

In this chapter, we summarize our results and conclude with some open ques-

tions.

For the prize-collecting Steiner forest problem, our result answers negatively

the open question by authors in [37] that one might be able to obtain an approx-

imation ratio better than 2.54 for this problem using natural extension of Jain

[24]’s iterative rounding. Our algorithm has an approximation ratio of 3 and is

tight. Independently, Konemann et al. [27] and Hajiaghayi and Nasri [22] both

gave iterative rounding 3-approximation algorithms for this problem with simi-

lar structures that every basic feasible solution to (LP) must have a variable with

value greater or equal to 1
3 . They also gave similar tight examples as ours. Haji-

aghayi and Nasri further extended their algorithm to solve the prize-collecting

generalized Steiner network problem.

For the online Steiner forest problem, we give a primal-dual O(log n) approx-

imation algorithm, and compare the solutions of our algorithm to the optimal

solution in the offline case by conducting computational experiments on a set

of randomly generated large-scale inputs similar to real-world instances. An

interesting open question is whether primal-dual algorithms for the offline gen-

eralized Steiner network problem with ri edge-disjoint paths for each terminal

pair i (such as those in [40, 18]) can be adapted to the online case as we did here.

It is known that if Ri is the set of terminals that have arrived by the ith time step,

then there is a lower bound of Ω(|Ri|) on the competitive ratio. If rmax = maxi ri,

Gupta, Krishnaswamy, and Ravi [20] have given an O(rmax log3 n)-competitive

algorithm for the online generalized Steiner network problem, so such an adap-
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tation might be possible.

For the worst-case integrality gap of 1,2-symmetric TSP, our result shows

this gap is at most 106
81 ≈ 1.31 < 4

3 . Our computational experiments shows the

worst-case gap for n ≤ 12 is 10
9 and we conjecture the following.

Conjecture 5.0.3 The integrality gap of the subtour LP for the 1,2-TSP is 10
9 .

Schalekamp, Williamson, and van Zuylen [36] have conjectured that the inte-

grality gap (or worst-case ratio) of the subtour LP occurs when the solution to

the subtour LP is a fractional 2-matching. That is, the worst-case ratio for the

subtour LP occurs for costs c such that an optimal subtour LP solution for c is

the same as an optimal fractional 2-matching for c. Schalekamp et al. call such

costs c fractional 2-matching costs for the subtour LP.

Conjecture 5.0.4 (Schalekamp et al. [36]) The integrality gap for the subtour LP is

attained for a fractional 2-matching cost for the subtour LP.

We have shown in Theorem 4.3.2 that if an analogous conjecture is true for 1,2-

TSP, then the integrality gap for 1,2-TSP is at most 7
6 ; it would be nice to show

that if the analogous conjecture is true for 1,2-TSP then the integrality gap is at

most 10
9 .
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