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CHAPTER 1. INTRODUCTION

1.1, ABSTRACT

Suppose there are given k > 2 populations ﬂl""’ﬂ%; observations

from population m, are normally distributed with unknown mean g and

. 2 2 ..
common (known or unknown) variance g, =0 (i =1,...,k). Let

. . .
“[1]53“§P{k] denote the ranked values of IPERERRE In this thesis

we assume throughout that both the numerical values of ITERERItY and
the pairings of the M[1]7 "M K] with the populations Tyseersm 8TE
completely unknown (although we vary the distribution from normality)
and consider the problem: estirate some (or all) of “{1]"“’“[k]

based on ii,...,?&, where ii,...,i% come from use of the following

single-stage rule: Take n independent vectors zj = (le,...,xkj),

j=1,...,n (Xij denotes the jth observation from ﬂi); for each popu-

n
j§1 Xij/n (i =1,...,k), and base the terminal

decision on Yi,...,i?. (The fixed number n of vectors required depends

lation compute i; =

on the particular problem.) This rule has been used in many instances
of statistical decision problems. Applications to ranking and selection
problems are noted.

— — ved T — .

Let X[l]ff‘°fx[k] denote the ranked Xl""’xk‘ A natural point
estimator of “[i] is i&i} (1 <i<k), and its bias is studied when
observations from m have density £(x - ei), xeR, where the location
parameter 6; is unknown (i = 1,...,k) and Ef = zxf(x)dx<w. Upper and
X s
ufi
the vector (ul,...,u?)), and condition S(i), sufficient to imply that

lower bounds, Ui and Li’ are derived for E ] (1 <i <k) (u denotes

is asymptotically unbiased as n =+ «, is obtained. VWhen i = k

X4



i=1), Ui(Li) is the supremum (infimum) of Euiti]' It is shown that
uniform integrability condition Cl(i) implies S{i). Condition C2 {which
holds if, e.g., _zxzf(x)dx<w)‘also implies S(i). The relationship is
C, <=> {Cl(l),...,gék)}, The minimax |bias|estimator of type Yfi] + a
is found for certain cases. These results are applied to the case
where f(-) is the normal density, and a uniform integrability argument
shows that Ui and Li are the supremum and infimum. It is noted that,
for the location parameter case, Eti} is strongly consistent for H[i]
1<1i < k); applications are noted. Bounds are obtained on the mean
squared error Eu(ﬁti} - u{i])z (1<i < k), also for the location
parameter case. For the case when £(°) is the normal density these
bounds are evaluated, and intervals in which the supremum and infimum
of the mean squared error lie are determined.

Maximum likelihood estimation of (“{1]""’“[k]) based on
itl]""’itk] is studied. It is shown that any critical point for
this problem is a solution of a system with derivatives taken for
e Q) = {u Mgl # M1z N u{k}} if boundary points are con-
sidercd solutions and that (X,...,X) with X = (Etll + ..+ itk])/k
is a critical point. The nature of (¥,...,X) is completely determined,
and w.p. > 1 as n~> it isa saddle point (unless Mr1] = e T
in which case it may be a relative maximum). Some results on the form
of the maximum likelihood estimator (LE) for k > 2 are given, while
for k = 2 the MLE is found explicitly. MLE's for non-1-1 functions are
discussed, and a concept of iterated MLE's (IMLE's) is introduced and

discussed. The generalized MLE (GMLE) introduced by Weiss and Wolfowitz,

which has a certain optimality property, is found to be Xfll"“’3€[k}’




which has desirable large sample concentration. It is shown that there
is not just one GMLE but rather a whole class of GMLE's, and for k=2
the MLE is shown to be in this class along with itll’ itzl' It is shown
that for our problem (and others) a GMLE (if one exists) is equivalent
to the maximum probability estimator (MPE) introduced by Weiss and
Wolfowitz, if the latter is Yigood. "

Confidence interval estimation of “{1]”“" u[k} is discussed, and
upper and lower intervals on u[i] (1’5_1 < k) are found, along with
their maximal overprotection, for location parameter populations.
Generalizing a result of Fraser, it is shown that exact upper intervals

satisfying mild conditions do not exist.




CHAPTER 1. IMNTRODUCTIOM

1.2. OQUTLINE OF THE THESIS

In Section 1.1, we have given an overview of the problem considered
below and of the results obtained, and in Section 1.3 we make specific
definition of the problem considered and introduce various notations.

In the present section we outline briefly the contents of the various
chapters.

Chapter 2. The problem of point estimation is considered for a
location parameter family, and the bias of certain natural estimators is
studied; a minimax estimator is found for certain cases. These general
results are examined in the normal density case, for which additional
results are obtained.

Chapter 3. The problem of strong consistency is considered for a
location parameter family, and applications to value-estimation and
Bayesian statistics are noted.

Chapter 4. For a location parameter family, bounds are obtained on
the mean squared error of certain natural estimators. These results are
examined in the normal density case, and additional bounds on the
infimum and supremum of the mean squared error lead to intervals on
these two quantities.

Chapter 5. l!aximum likelihood estimators are studied for the normal
density case. A concept of iterated maximum likelihood estimators is
introduced and discussed. Generalized maximum likelihood estimators and

maximum probability estimators are fomnd.



Chapter 6. The problem of interval estimation is formulated. For
s location parameter family upper and lower intervals are found, and it

is shown that exact upper intervals satisfying mild conditions do not

exist.




CHAPTER 1, INTRODUCTION

1.3. PROBLEM DEFINITION AND MNOTATIONM

Consider the set-up
Given k(>2) populations Myseees Ty such that observations from
(1.3.1) population m; are normally distributed with unknown mean . and

. 2 2 ..
common (known or unknown) variance o =0 (i=1,...,k),

and the following rule.

RULE: Take n independent vectors Zj = (le,...,ij),
j=1,...,n, where Xij denotes the jth observation from the
ith population m . For each population form the sample mean
(1.3.2) a
(1.3.3) Xi = jgl Xij/n i=1,...,k),
and base the terminal decision solely on the statistics

Xl""’xk'

(This rule has been utilized under set-up (1.3.1) in many instances of
statistical decision problems.) Make the

DEFINITION: Let u{l]j,..fp{k} denote the ranked values of

(1.3.4)
H

ERRETLE

We assume throughout that both the numerical values of Hyseeosby and the
pairings of the “[1}""’“[k] with the populations TyseessTy are com-
pletely unknown (although we vary the distributional requirements from
those of set-up (1.3.1)) and consider the problem: estimate some (o
all) of U[l]""’ u{k] based on the statistics provided by the single-

stage Rule (1.3.2).




Consideration has been devoted in the literature to what are called
“ranking and selection” problems. Since several of the proposed pro-
cedures in that type of statistical decision problem use Rule (1.3.2)
(e.g., those of Bechhofer (1954), Gupta (1956), (1965), and others), and
since one will often wish to estimate as well as select, we will briefly
describe such problems and will refer below to uses of our results in
such problems.

A simple example of such a problem is that of selecting the popula-
tion (or, one of the populations) associated with the ith smallest mean
(1 <i<¥kx); this is called one's goal. (Much more general goals have

also been considered.) Typically, a probability requirement is made and

a procedure is given (which tells how to sample, when to stop sampling,
and what terminal decision to make). The probability requirement affects
one's sample sizes, since the more stringent one's probability require-
ment vis-a-vis achieving the goal, the more sampling one must perform.
In Rule (1.3.2), only the fixed number n of independent vectors required
depends on the particular {goal, probability requirement, procedure}
structure on hand. (We note that Rule (1.3.2) has some optimal proper-
ties. See Hall (1958), (1952): Bahadur and Goodman (1952); Lehmann |
(1966) ; and Eaton (1967).) Of course the various structures use the
statistics in quite different manners, and not all structures use
Rule (1.3.2); e.g., the nonparametric procedure of Bechhofer and Sobel
(1958), the closed sequential procedure of Paulson (1964), and the open
sequential procedure of Bechhofer, Kiefer, and Sobel (1968) do not.
We will make use of the following definitions and notation.
DEFINITION: For any set S, let v(S8) = cardinal number of S.

(1.3.5)
(If S is a finite set, then v(S) is the number of elements in S.)



(1.3.6) DEFINITICH: Let R = {x: -w<x<=} and let R = {x: x>0},

DEFINITION: For § ¢ R¥, let Qé(a,b,c,...) = {(ul,...,pk):
Mreg T Hrk-1] > 8 yy € nG=1,...,%X), a,b,c,... are held

(1.3.7)
fixed}. (In general a,b,c,... will be several of

U[1]9'~-2U[k]°)

1.5.8) DEFINITION: Let w p-(8) = (“{k}"s"'"“[1‘:]‘5’“[1‘:]) and
wEM(u[k]) = (u{k},...,u[k}) be vectors of k components.

DEFINITION: Let 3('[1]5_. denote the ordered X,

..<X
= Tk]
(1.3.9) (1 =1,...,k). (Ve disregard the possibility of ties,

which occur w.p. 0 in the cases considered below.)

DEFINITION: If a random variable (r.v.) X is normally
distributed with mean u and variance 02, we shall say
X is N{u 902) .

Denote the N(0,1) distribution function (d.f.) and

(1.3.10) density function (fr.f£.) by &(°) and ¢(-), respectively;

i.e., let
o(x) = _zd>(y)dy (x e R),
12
¢(y)=iez (y e R).
V2n

DEFINITION: Let F and f be the respective d.f. and fr.f. of

observations from an arbitrary univariate location parameter



(1.3.11)

(1.3.12)

(1.3.13)

(1.3.14)

(1.3.15)

DEFINITION: Let S

family; i.e.,
F(x) = £(y-8)dy (x ¢ R), and
f has the form f(y-9) (y e R),

where § is fixed, 8 ¢ 0 = R.
DEFINITION: Q(#) = {w: upy # vy Ao #Foupgh

DEFINITION: If ueQ(#), let X denote the sample mean

1)
produced by the population associated with M[i] (i=1,...,k).

DEFINITION: If there is at least one break in the string of
inequalities M1 oo # MiK] then the situation is that we

have 2(1<g<k) groups of equal parameters

U[l] e u[ll} # u[11+1} = ,,. = p!-izl

-

AR N

with 1 integers

preeoig g
(o

i

1o<l§}1<12<...<12_1§k—1<12 = k),

and we let

Va6, 0 6,

j+1 j+1

be the ranked values of the sample means from the population(s)

associated with parameter ur. (j =0,...,2-1).
P [i.,,]
i+l

X be the symmetric group on k elements, i.e.,

{o: a = (a(l),...,a(k)) is a permutation of (1,...,K) 1.




CHAPTER 2. POINT ESTIMATION: BIAS
2.1. BIAS OF A NATURAL ESTIMATOR OF HIi] (1<i<k)

FOR A LOCATION PAPAMETER FAMILY

Consider the set-up
Given k(>2) populations my,...,T, such that observations from
(2.1.1) population TS have fr.f. f(x-ei), x ¢ R, where the location

parameter ei is unknown (i = 1,...,k).

We make the

(2.1.2)  ASSUMPTION: The fr.f. f is such that Ef = _éxf(x)dx<m,

k ven £ ees . D

so that we may talk of My > Vg (or of u[ll, ,u{k]) enote the
% ;

ranked values of the location parameters 61""’ek by 6{1}<...<e[k}.

Then since

oo

“fo(x-a)dx _Z(x+a—b)f(x~b)dx = _éxf(x-b)dx—(b-a)

LI}

(2.1.3)
_xE(x-b)dx (a<b; a,b € ),

A

the population associated with Hri] is precisely the population associ-
ated with e[i] (i=1,...,k). Also,
(2.1.4) _éxf(x—e)dx = _gxf(x)dx + 6 = Ef + 0

where Ef is the mean of f when 6 = 0,

We will now study estimation of u{i} (1<i<k) when set-up (2.1.1)

obtains, Rule (1.3.2) is used, and the pairing of TysesesTy with

p{ll,...,u[k] is completely unknown (see Chapter 1). TDenote the

densities of Xij“ei and Xij by fxij"ei and fxij, respectively. Since

10




11

(2.1.5) £, o ) = £y (r#0;) = £ ((y+0)-0) = £,
ij i ij

1,...,k).

H

it follows that Xij'ei does not depend on 0. (i

DEFINITION: Gn(ylf) p[{(xil-ei)+...+(xin-ei)}/niy},

(2.1.6)

g, &9 wg.?{;n(y!f).

P{Xiﬁx}

i

P{Xil+...+xin§px] = P[(Xil—ei)+...+(Xin-ei)§p(x-ei)]
(2.1.7)

1]

G, (x-6,]€).

We now determine several d.f.'s and fr.f.'s which we will use in later

sections.
k
THEOREM: Fy (x) = T G (x-9, | £) xe R),
ekt e . .n i
k] . i=1
(2.1.8) k X ,
f£= (X)) =) TG (x-6.|f)] g (x-6.|8} (x e R).
N R R nd
1#3
Proof:
Fi[k}(x) = P[max(xl,...,xk) <x] = P[Xl < X, .,Xk < x]
— - k
= P[X, < x]...P[X, <x] = @I G (x-8 | £)
1 - k —
i=1
The expression for fY' () follows upon differentiation of Fi (<),
[k] (k]

utilizing the chain rule (see, e.g., Kaplan (1952), p. 86, (2-26)) and

- = d = 5
the fact that Gn(y{f) & Gn(ylf) = gn(y{f) (see, e.g., Fisz (1963),

p. 35; or Parzen (1960), p. 169).




(2.1.9)

A possible estimator of “[i] when set-up (2.1.1) obtains and
Rule (1.3.2) is used is Xti] (i =1,...,k); we now study its expectation
and bias. (Although quantities such as Euﬁtk} depend on the unknown
u € o, this dependence will sometimes be suppressed; e.g., we will

write Eitk] for Euitk}.)

LEMMA: If X and Y are independent r.v.'s with

(2.1.10) Fx(x) = P[X<x] < P[Y¥<x] = FY(x) (x e R),
then EX > EY.

Proof: A geometrical proof of this lemma can easily be given using,

e.g., Exercise 2.5 of Parzen (1960), pp. 211-212, "A geometrical inter-

pretation of the mean of a probability law."

THEOREM: For i = 1,....k and x ¢ R, Fs (x)+ as u,t
i

(2.1.11) [i]

(L =1,...,k).
Proof: Fix 2(1 <% <Kk). Fori=1,...,k and x € R,

Evd = X = H iti X ...~ i
Fx[i}(X) puLx{i]fﬁ] Pu[The ith smallest of Xl, ’Xk is <x]

Pu{At least i of fi,...,ﬁ' are < x]

i

Pu[Xziz and at least i-1 of Xisenns g_l,x2+1,...,xk are < x]

t

+ PU[X£>x and at least i of Xl""’xﬁ—l’xz+1""’xk are < x]

i

Puiiiig]Pp[At least i-1 of Xi""’ii—l’iﬁ+1""’ik are < x]

+ {1—Pu[§£§;}}Pu[At least i of ii,...,xz_l,x£+1,...,§£ are <x]



1%
= G (x- -1 SN SR 4 co,X, @
Cn(x sﬁ]f)Pu{At least i-1 of Yy ’Xz-ls 417 »Xy are <x]
-G (x-8_ |F)IP 2 i of X XX LY
+[1 Cn{x ezlh)],uLAt least i of xl,...,.g_l,x£+1,. ,Y, are <x]
Therefore,
d ;
dr =m0 do
du,  “ril dae, “Ti] duy
= - - p i-1 of X ¥ X X
gn(x ez‘f)’p{At least i-1 of X;,...,%, 1% 5 ;X are <x1
- A i 0f Y. ,...,X .,X X,
g (x egif)Pu{Ft least 1 of ¥ ,...,X 45X 45 ,X, are <x],

which is <0 iff

.2§£_1,§;+1,...,§? are <x1

qu[At least i-1 of ii"";§ﬂ1’2i+1""’i? are <x1.

Pu{At least i of X,,.

For & = 1,2,3%,..

DEFIMITION:
of the maximum
, hi(s
and let Z(QH)

(2.1.12)
pendent r.v.'s

. let hg(gn) he the expectation

of % independent r.v.'s each having fr.f. gn(x);
be the expectation of the minimum of £ inde-
each having fr.f.

g (x), i.e.,

.7 2-1 :
= _[ytI6 (N1 g My,

_ = 2-1
= _Iyal1-C (N1 Te (19y.

The followins is well-known:

LEMA:  If gn(x) is symmetric about x =

(2.1.13)

0 then

ha(8) = -hy (7).

(2.1.13a) THEOPFM: If G (x) < 1 for all x, then limh (g ) = +o.
e n Jowe £ °M

proof: By (2.1.12),



{5

14

o -1 o 2-1
fy[6, (N1 g Ay >0y (g) = L 61 e, (dy

o 2-1 ° 2-1
oly[6. N1 e (Ndy + Myl6 (N1 e, (dy

i

% -1 . 2-1 9
> ofy[6, (N1 "2 (Ndy + &[G ()17~ _[re, ()dy.
Thus, since ?ygn(y]dy < o and %im ﬁax = 0 (0<a<l), by taking the limit
- OO oo
as -~ we obtain
. o 2-1
in b (z) = lin 2ly[G (0] "g, )y
However, for any 1 > 0,
0 < ahyic. 1% e ay < ahvis (017 e )y
— 0" n n — Bt nt n
= o6 on1* " yg ()dys0 as e
n 0’ °n °
Choosing M > 1, and since GH(M) < 1 for any M, we find that
. . «© 2-1 & 2-1
b = 3 s 220 f T
lim h (2) = lim 4y[G ()17 "2, (dy > 1in MzéiGn(y)} e, (Y)dy
. 2 s ~1%
= mn MG = n {1~ B = VM
Lin M[6, (N1 ]y = 1im 1{1-16, €I17) = .

Since M > 1 was arbitrary, the theorem follows.

LEMMA : IfY ..,YQ are independent r.v.'s each having d.f.

1
Gn(x—e), then

#

(2.1.14) B max{Yl,...,Y }

. o + hﬁ(gn),

E min{Yl,...,Yz} & + hjig ).

fl

Proof: Since Yihas d.f. Gn(x-e), Yi - g has 4.f. Gn(x) i1=1,...,8)
by (2.1.7). Thus,
E K (Y,,...,Y) = BERIA (Y -e)*e, ..., (Y, -0)+0)

=0+ E % {y,-6,...,Y,-8} = 0 + fhyle)
hyley) -
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THEOPEM: For any i (1 < i < k)

sup{EuX[i}: u e Qo(“{i])}

3

< E Xe.
- (“[1}""’u[i-l]’”{gilu[i+l]"'"“{k})
{(2.1.16)
= (%li}’i'.’u{i}’u[i},+w’°."+®)
i times
= e{i] + hi(gn) = U[i] - Ef * hi(gn)’

and
inf{Euﬁtilz U e Qo(u[i])}
(2.1.15) B X3
= by Y Y] 0 P

(2.1.17)
= ("ao, + 0= ,'oo,u[i] ,u;’i] g0 o ’Ufi})
\‘”“M\’M

k-i+1 times

! = -
= S[i] + hk~i+1(gn) = u[i] | E

£ % Proqen(8n)s
where the configurations of the vector (“{1}""’U[k]) which
involve values +w are viewed as a situation eliminating the
populations with mean values +» from contention for ith
hichest sample mean. (The case i = k in (2.1.16) and the
case i = 1 in (2.1.17) involve no such eliminations.)

Proof: By Lemma (2.1.19) and Theorem (2.1.11), we increase Eﬁiii} by

raising uj (i,j = 1,...,k). Now,

+

1
83 * Prosan(8p)

- {Smallest of (i(i)~e{i})+e[i}""’(ikk)—e[i})+6[i]}

u= (U[l}a-"9U{i_1},ﬂ{i]:U[i}s~--;U[i})



5o
18

{ith smallest of X(l)”"’A(i—l)’X(i)""’X(k)}

< B
H =(u{1},-..,u{iﬁl},u{i],u[i],e--gu[i})

i_Eu{lgg_smallest of X(l)"'"x(i—l)’x(i)""’x(k)}= EuX{i}

= Ep{igg_smallest of X(l)"'"X(i)’x(i+1)”"’x(k)}

< E {ith smallest of x(l),...,x(i),x(i+1),...,x(k)}

u =(u[i},-~-su{i},u{i},u[i+1],'-.,u[kl)

< E

{largest of (X(l)’e[il)+e[i]”'"(Xti)-eli})+eii}}

H =(u[i]’.."u{i},u[i}’u[i'*l},'. 0’3«!{}(})

= e[i}+hi(gn)'
(Note that for our purposes here, the ties in Definition (1.3.14) should
be broken in an arbitrary manner.) Upon taking the desired supremum and

infimun, the theorem follows.

COROLLARY: For any i (1 < i < k)
. —
- -E
(2.1.19) Mri t (hk,i+1(gn) Eg) g_EuX[i] <upsy (hi(gn) Eg).
Thus, (1) i&i} is asymptotically unbiased (as n»w) as an
estimator of u{il if

gh.{g }*E,. as mw , and
2.1.18 iTivent Tf
( ) (2.1.20)

{hp-ie1(E)7Bg 88 W=

(2) if the left and right members of (2.1.19) are the
infimum and supremum of Euiti} (respectively) then
iti] is asymptotically unbiased (as m») iff

{2.1.20) holds.
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With Corollary (2.1.18) as motivation, we will now study the questions
of (i) when (2.1.20) holds and (ii) when the inf and sup above achieve
the bounds of (2.1.19).

THEOREM:

(2.1.21) Pkl = E Xppqp < s9PlE Xppqt we 9lup)} = upy * (hy (g,)-Eg)

Myt (h;(gn)-gf) = inf{eu'}?{l}: U e Qo(u[l})} < Eu?c'm <y

. EX X 7

Proof: The lower bound for Gux[k] {(the upper bound for Eux[l]) follows

from the fact that hi(gn) = Ef (that hl(gn) = Ef). The equality for the

sup for E X., ., and for the inf for E X,.,, follow easily from Tﬁeorem
v u k] w1} Y

(2.1.15) and the first sentence of the proof of Theorem (2.1.15). DNote

that they are actually attained at wpw(“[k]) and wEN(“{l])’ respectively.

From Assumption (2.1.2), it follows that independent r.v.'s with
fr.f. £ obey the Law of Large Numbers, so that (cf. (2.1.7)) as N,
for any i (1 < i < k)

6 (r|f) g,
(2.1.22) [6 (y|)1 +G (y|f) = %
L

oy qK-141
1-[1-6_ (|91

0,y < Ef

1,y Z.Ef

since (2.1.4) is true. Each of the convergences indicated in (2.1.22)
is weak convergence; i.e., Fn converges weakly to F iff FneF on the
continuity set of F. It is not obvious that it is then the case that
(2.1.20) holds, i.e., that for any i(1<ic<k,
a i
hy (g,) = £y, {[C,7[D]]

(2.1.23) l » E,. as n-e .

v @ k-i-1 { £
h e = b -6 91 )
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If we make the following definition (cf. Lodve (1963), p. 182)

DEFINITION: If g(-) is a continuous function and Fn(o) is a

d.f. (n > 1), we say |g] is uniformly integrable in Fn if

I Ig}d?n¢0 uniformly in n as ¢ »eowith moe; i.e., if (for
(2.1.24) ix;icm m

any € >0) there is an m, such that for m > m, we have

‘X‘£Fég{an< ¢ for all n (where c > as M) »

then we may use the following theorem (cf. Lodve (1963), p. 183,

Theorem A.(ii))
THEOREM: If Fn converges weakly to F (a d.£f.) and [g] is

(2.1.25) uniformly integrable in Fn’ then

4 -
ngFn + [gdF

to immediately state the

THEOREM: For any i (1 < i < k), (2.1.20) holds if !y! is

(2.1.26) k-i+1

uniformly integrable in [Gn(y]f)]l and 1~[1-Gn(yif)]

Proof: This follows from {2.1.22), (2.1.23), and Theorem (2.1.25).

THEOREM: If (2.1.20) holds, then _éydy{[Gn(ytf)]l}+Ef, and
[++] . [s) .
then éydy{ [en(ysf)} b, [ ly!dy{ [Gn(y!f)] }+E; with

o] »
. _mt _ S . i,, + .
Eo = Ep - Bp. (B¢ %iﬂ _é{y!dy{[Gn(y!f)] }; Ef similarly.)

For any 1 (1 <1 < k), (2.1.20) holds only if (as ->00)
(2.1.27)
s lyla g6, 1617 1

y 25E, M <

ly|>M S £
Note that |y| is uniformly integrable in {Gn(y}f)]l means



e
e

E. = 0 if I, is non-negative (B} = 0 if F. is non-positive).

A similar result holds with respect to {1'{1'Gn(yif)]k_l+1}.

Mote that E} and E;'may depend on i.

Proof: Suppose 0 < Ef < M. By the Helly-Bray Lemma (see, e.g., Loeve

(1963), p. 180),

M .
3
éydyf{sn(ylf)] B,

as ne .

¢} .
1
-éydy{[Gn(ylf)] }+0

Now, letting n»e in
(o8] . - b‘ - o .
Tyd (16_oy|D11) = fyd (16, |17} + ryd (16 y|911) + Jyd 116, |91}
@l Tyttt T &7 Ty tn oy "' n My n'Y
we obtain
.9 i
£ g+ Be + lim éydy{[Gn(y}f)} ¥,
so that fydy{{Gn(ylf)]i}+E;'as noo, and thus
M -

-M . - .
_ q i (1G i
Ly {16, 0[017 éydyk{ 15173

il

rlyld tie o1t
lyl>u 7 7

+(Eg-0) + Eg = 2E, as me .
The case -M < Ef < 0 follows in a similar manner. The result for Ef = 0
follows from the equation Ef = E} - E;'and the Helly-Bray Lemma.

We have thus seen that although a certain uniform integrability
condition is sufficient for (2.1.20) to hold (Theorem (2.1.26)), it is
not clear that it is necessary for (2.1.29) to hold (Theorem (2.1.27)).

We will now exhibit a condition (simpler than that of

Theorem (2.1.26)) under which (2.1.20) holds. Fix i 1<i < k), let

23 be the mean of n independent r.v.'s Zjl""’zjn each with fr.£f. £{°)
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(j =1,...,i), and suppose E§52 = y (say) exists. UWe wish to know when

(as n-)
max 5 5
B min (Zl,...,Zi)+u .
THEOREM: If El?}—u]+ﬁ (as n»>) (j = 1,...,i), then (as n->=)
(2.1.28) _ —
E fin (ZyseerZg)ou .
Proof: 5 5 T
max (7.,7.) = 71473 , 1la-%2]
mmn 1°72 2 ) 3
so that
. WmaX 5 Ty = los =
E mon (ZysZ5) = v ¥ 5E1Z,-Z, 1.

However (since |a|-|b| < |a-b]| for a,b ¢ )
Z,-Z, 1 < 1Z-ul + |Z,-ul,
and thus (as n>) by the hypotheses of the theorem E}E&—§é§+0. The

result for k > 2 follows by induction.

Although it can be proven (see, e.g., Lodve (1963), p. 157, d.)
that E(fi—ui*ﬂ implies that Elfi!+}ulgit is not clear when the converse
is true. In our situation, we would like to know when E2i=u implies
E{?&—ui+ﬂ (i.e., for which £(°)'s this is the case).

(2.1.29) THEOREM: If var(fi)eﬂ (as n»>=) then E17i~uleﬂ.
Proof: This follows directly from the fact that (E}X\r)l/r is a non-
decreasing function of r > 0 for any r.v. X (see, e.g., Lodve (1963),

p. 156, c.).

(2.1.30) LEMMA: Var(Z;)~0iff _Fx2£(x)dx <o,
Proof:

Var(Z) = L var(z)) = & K00 - ([E(0II2),
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These results on the satisfaction of (2.1.20) of Corollary (2.1.18)
may be summarized as follows.
SUMMARY: For any i (1 <i <KkJ, ﬁti] is asymptotically
unbiased (as n-») as an estimator of Mrig if
(1) |y| is uniformly integrable in [Gn{y}f)]i

and 1-[1-Gn(y1f)}k"“1,

(2.1.31)
or if
(2) _éxzf(x)dx<m.
(Note that (1) holds if, as is often the case, f(.) is

concentrated on a bounded set in R.)

For reasons noted above Lemma (2.1.10) it was reasonable to
study the expectation and bias of Eti] as an estimator of “[i]
(i =1,...,k) in our context.. with Corollary (2.1.18) as motivation,
we note that estimators
o [ . _ .
(2.1.32) X{i] + a (hk—i+1(gn) - Bg < a f-hi(gn) Ef)

(correction of iti} by adding a constant) may be preferable to‘fri} in
certain contexts. If positive (negative) bias is very undesirable,
- Bt ~ - .

one may use a = hi(gn) - Ef {a nk—i+1(gn) Ef) and obviate its
possibility. If one's preferences on bias are more complicated, one

. T . . ¥ - _
might even remove the restriction hk—i+1(gn) Ef f-a'f-hi(gn) Ef.
(Note that this restriction'makes sense" since (see (2.1.14) for

notation)

[ . =
hy (8) = F Pl Yy ) S B < B max(¥ e es¥y ) = By (850
Note that, for certain £(-)°'s, information about the distribution

- » . . . ¢
Gn(o f) will be available for use in determining hi(gn) and hk—i+l(gn)
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(1 <i<k). For information and references see Reitsma (1963).
THEOPEM: Fix i (1 < i <Xk). Suppose that the sup and inf

of (2.1.19) achieve the bounnds of (2.1.19). Then we minimize

w | BTy ey

(2.1.33) h.(g.) - E
by choosing a = , and we minimize

| PN -
by 118 - B
max ]E‘“

@ woesolugp) wEl T T

by choosing a = [hi(gn) + hk-i+l(gn)}/2 - Eg.

Proof:
min g?ﬁ (Eu?:[i! -a- U[i]) l
aa('miw) uE Qo(],l[i]) : -
r
h. (g - E - h.(g.} - E

= min (s (en) 2 =0 ata-= i o f

a 5(“0:),00) (h}’i—i-t-l(gn) - Ef) - a hf{_i.{.l (gn) - Pf’
For (2),

min max EX,.n -2 - Up.
2 e (o) 1 e Qo(“[i}) wlil [i1|

. ¥
min  max (‘hi(gn) - B - al, ihk-i+1(gn) - Ep - al)
ag(—-oo,oo)
T ¥
hi(gn) - hk—i+1(gn) hi(gn) * hk—i+1(gn)
2 2 £

]

since (for ¢ > d) min max (}c—a],}d~a1) = (c-d)/2, as illustrated
a

below.
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B

SN .

cxd

It is of practical interest to know how any statistical procedure
performs when the (distributional and other) assumptions under which it
was derived are not met. We then say that (for deviations of a specified
sort) the procedure is "robust" or 'not robust," according to whether
the goal(s) of the procedure are or are not met "well® under the
deviations.

The question of how our procedure for estimating u{i} (1 <i <k)
performs when specific distributional assumptions are used to set n,
but do not hold, is answered in part by our treatment of the estimation
problem for a location parameter family in this section. (The question
of robustness of Rule (1.3.2) is not our concern here; for some results
on this see Dudewicz (1968).)

The robustness interpretation of these results is large-sample.
Small-sample robustness can be studied numerically for the £(-)'s

important in any particular problem, utilizing n. If one is considering
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a location parameter family other than the normal, results related to
robustness can be used to help design ''good" procedures, and to help
compute the loss that would result from using sample means instead of
the appropriate sufficient statistic. If this loss (measured perhaps
in increments in n) were small enough, one might wish to use sample
means since they might be more robust. (In any particular case this
could be checked numerically.)

Examples of location parameter families where Assumption (2.1.2)
holds but iti} is not an asymptotically unbiased estimator of u[il
(1 <i <Xk) are presumed to exist. The case of Cauchy populations
(excluded by (2.1.2)) may yield some insight. Here, Gn{y]fc) is
independent of n (by a property of means of independent observations
from fc). (If Cauchy populations were being dealt with, Pule (1.3.2)
would not be used. See Dudewicz (1966), »p. 30-45,)

The relationship between the uniform inteprability condition of
Theorem (2.1.26) and the condition of Theorem (2.1.28) (each of which
is sufficient) is of interest. We first clarify the role of 1 (1 <1 < k)
in Theoren (2.1.26).

THEOREM: Bix i (1 <i <Kk). If {y} is uniformly integrable
(2.1.34) in Gn(y}f), then it is uniformly integrable in [Gn(yjﬁ)]i and
1-[1-c_ (v D)1
Proof: For -« <a < b < +o,

b
i
Ilyld (16, & [£173

i

b . b
iy |1, 0101 a5 010 < iflylas 19,

and (for j > 1)

& (-[1-6, 019171 = #3116, 0 101 46,019 < 54,6,01).
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THEOREM: Elii—u!»O iff lii} is uniformly integrable (i.e.,

(2.1.35)
ly| is uniformly integrable in Gn(ylf)).
Proof: Since E|Z[<= (because EZ, = u exists) and since Z, converges

stochastically to u, the result follows from the 1T~convergence theorem

(see, e.g., Lodve (1963), p. 163, c.).




CHAPTER 2. POINT ESTIMATION: BIAS

2.2. THE NORMAL CASE

In this section we consider set-up (1.3.1), for which Rule (1.3.2)
was originally suggested. The form of the location parameter family
results of Section 2.1 is shown, and further results are provided for
normal populations.

Denote (1/0) ¢(y/ o) by ¢U(y). Then the quantities defined in
Section 2.1 for a location parameter family are (for i = 1,...,k) as
follows in the case of normality.

£(x-y;) = (1/0) <$>((X'ui)/0) = ¢G(X-ui);

E¢0 = _£V¢G(Y)dy = 0; -
G_(yle) = P[X,-u, <y]=P{Xi-Ui< Y = 0 fy :
L S /R~ oA of
o1 (v . .,
(2.2.1) g, log) = of i ¢ to//ﬁ} oy
ho(g) = E[max of & r.v.'s with fr.f. gn(yi¢c)]

= E[max of & N(0,0%/n) r.v.'s]
= (o//n)E[max of 2 N(0,1) r.v.'s] = (c/JE)h£(¢);

h;(gn) = -hg(gn) = —(o/¢53h£(¢) by Lemma (2.1.13).

Note that in the normal case, since hg(gn) = -h;{gn) = (o/¢53!32(¢)
(2 = 1,2,...), only h2(¢) need be tabulated. (hz(é) >0 for & > 2 since

-1 assigns

_£x¢(x)dx = 0 and the positive weighting function [&(x)]
greater weight to +x than to -x for all x > 0.) Tables of quantities
more general than h£(¢) have been computed by (e.g.) Teichroew {1956)

where h£(¢) = E(xl;z), and by Harter (1961) where h£(¢) = E(lez)'

26
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Tables of hg(¢) have been computed by Tippett (1925). We now present
some values of h2(¢) obtained from Harter (1961) for g = 2(1)10(5)
25(25)50(50)400, and from Tippett (1925) for g = 500,1000. (For

further references, see Kendall and Stuart (1963), pp. 329, 336.)

Table (2.2.2). Values of hz(¢)

2 h, (4 z h, (@)
2 .56419 50 2.24907
3 .84628 100 2.50759
4 1.02938 150 2.64925
5 1.16296 200 2.74604
6 1.26721 250 2.81918
7 1.35218 300 2.87777
8 1.42360 350 2.92651
9 1.48501 400 2.96818
10 1.53875 500 3.03670
15 1.73591 1000 3.24144
20 1.86748
25 1.96531

From Corollary (2.1.18), (2.1.31)(2), and (2.2.1), the following
theorem emerges for the normal case.
THEOREM: For any i (1 < i< Kk},

urgy - (O 5 (0 B Xy Sy (o/ /m)h, (4
(2.2.3) _
and X[i] is asymptotically unbiased (as n»«) as an estimator

of u{i].
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The following theorem shows that the bounds of Theorem (2.2.3) are
actually the sup and inf. (For the location parameter case, the inf
for i = 1 and the sup for i = k were proven as Theorem (2.1.21).)

THEOREM: For any i (1 < i <XkJj,
1nf{EpX{i]: u e QO(U[i])} = U{i] - (G/‘/ﬁ)hk—i'f'l(d))
(2.2.4)
and
SUP{E}JA[i]: ue QO(u[i})\} = U[l} * (U/’/ﬁ)hl(¢3'
Proof: By Theorem (2.1.15), the infimum is iy[i}—(c/ﬁﬁ)hk_i+l(¢) and

the supremum is gp[i}+(o/#§)hi(¢). We will now show that

inf{EuS\’—[l]i U € QO(u[i})} < U[l} - (O/E)hk-—i-fl(d))
sup{Euf[i]i (SR QO(U[i])} > U{i} + (0//5)hi(¢)'

Now, since we are taking the inf and sup over more restricted sets,

inf{EuX{i}: L e Qo(“{i])} f_inf{EUYti]:

i-1 terms k-i+1 terms
U=(U{1]s-"sU{l})U[i}1'°':U[i]) € QO(u[i])}

sup{EuX[i]: U e Qo(“{i])} i‘sup{Euiti]:

1 terms k-i germs
U=(U{i}:--~9U[i] ;u{k}s--vsU[k]) € QO(u[i})}'

Case 1. The infimum.. By Lemma (2.1.10) and Theorem {(2.1.11),

X gith p= (- “MoUsgseeeslps .
Eux[i]’ with u={-M,..., ,,u[l], ’“{1])’ decreases as M4 If we let

For gith p=(-M,...,=-M cqsece . i i
Hﬁ(x) denote -X{i}(x) with u=(-M, s %,uil}g ,u[ll), the desired

inf{EpX[i]: u=(—M,...,—M,u[i],...,u[i}) 13 Qo(”[i])} = éiz —£XdHM(X)'

However, the following weak convergence holds as Msw:
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i-1 terms k-~ 1+1 terms

H;,XE(X)'}HCO(X) = F'}'{j{‘} (X} with U=(~ @5 PRt U[l] goee g 11{1])
1

Thus, by Thecrem (2.1.25), if |x| is uniformly integrable in H,, then

. - . ) —
ii? fXdi {X) ?%dy (X) “[ } (U/Vh)hk_i+1(¢)s
where the last equality uses Lemma (2.1.14) and (2.2.1). Since ixl is

uniformly integrable in HM by Lemma (2.2.6), this part of the theorem

is proven.
Case 2. The supremum. By Lemma (2.1.10) and Theorem (2.1.11),
If we let

Eﬁitij’ with “z(”[il""’“{i}’ s 1), increases as M4,
= ith u=s 4 M i

JH(X) denote Fx{i](X) with u (“{i]""’“{i]’t M), the desired
M) e 0 (u[l})} = 11m fdefiix).

sup{EuX[i] HER LS (\J[i} se s ,u[i} s

However, the following weak convergence holds as Mow

i terrs k-1 terms
P r-.-...w‘ e
ve st

ith ={y,. 50803 .y s Foo,
R i Y e

The theorem follows 2as in Case 1, now using the fact that [x} is

JM(X)+Jw(X) = Fﬁ

J by Lerma (2.2.7).

uniformly integrable in

MMA 2 .
LEMMA: For any u ¢ r(gum),

(2.2.5) k F& (x}...B~ (x)
dpiti](X) i‘liiié%‘ses gtjlfgs(‘)(X) XB(l%i' . (X)B(z) &dx'
kf ) 8(3)
Fi[i}(x) P[At least i of X X, .,i& are <x]

ié are <x]

it

k —
) P[Exactly g of X senes
=i

k
1 - .

Z-Wﬁ!{k~2)! ) P[Xgqy s "‘s(z)ix & X {£+1)>X""’Xe(k)
=i BsSk

i

>x]
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:_g_kzlzp

- (x)...Fy (x)[1-Fs (x31...[1-F x)1.
p=i Kl ges, B(D) 0 Xg(2+1) Xa 1)
Thus ,
k Fer (x)...Fe {(x)
S : :
dFr  (X) = ) f('; ) RIS 8 (1) B8(L)
[i] g=1 77 BeSy j=1 "8(3) B (x)
g(3)
. k
S SN Ol PP o5 SN €3] IR LS NGO
B(2+1) B (k) j=2+1 “B(3)
[1—F§ (x)1...[1-F¢ (x)] |
g(2+1) B (k)
- F”)( (x)...F—i (x) dx
B(1) B(2) [1-Fx (0]
8(3)
k Fer x)...Fy (x)
<] 4l jZ g (o 20 8(2) ax.
g=i  BeSy }g::l B(3) Fy (x)
8(3)
LEMMA: |x| is uniformly integrable in Hy(x) = Fg  (x) with
[i]
(2.2.6) i-1 terms  k-i+l terms
u ={—Z‘~§,...,-M,U{i],...,u[i}).
Proof: Let L be positive. Then, by Lemma (2.2.5),
0< [ |xl, )= [ |x|dFg (X
|x|>L | M |x §3Ll | X{i]
k ﬂ g 9 F’i (X)...FY (X) l
< Lo L {21 1% ) @ - (f(‘” ax} .
=i " Be j=1 |x|>] B8(3 = X
k s () ,!

Fix any e€>0. We will now show that there is an L = L(g) such that the

upper bound on { |x|dH, (x) is <e regardless of the value of M. By
x|>L
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Definition (2.1.24), this will prove |x] is uniformly integrable in

}g&(x).
k, and.since i-1 populations have means -M

Since & = i,i+l,...,
while k-i+1 have means IR for any fixed 2 and B at least one of
X ceesX is associated with a population with mean Hrsq.
B(1)* """ 8(0) pop "1l
Let us consider the terms which are summed in the upper bound on

, { leéHM(x), a typical one of which is
xi>L
F-:—(* (1) (X)...F—X ( )(X}
[ Ixlfy 02 B8 gx.
! 5 X_ /s F (x)
|x|>L B(3) Xa 05

Wil &

T(%,B,3) =

Case 1. ié( ) comes from a population with mean “{i}' Then

k

. e
T(2,8,j) < - [ Ixlfg  (x)ax
Kigbse Ystd

is N{u{i},czfn), it is clear that for L 3_L1(£,8,j,s)
3]

and, since XB(J)

we have T{2,B8,3) < mi:
Case 2. Xé(j) comes from a population with mean - Then one of

) comes from a population with mean u{i];

SIS § [ t X ..
XB(l) 8(2) {(but no Xg(;)
call it Xé . Then
o}
B
T(2,8,5) < o [ Ixlfg  ()ax # ] Ixlgg  oFg Godx
"x>L B(3) "x<-L B (1) 8,

Since ié(j) is N(-!1,02/n), it is clear that for L 3.L2(£,8,j,e) the
1 e . .
uniformly in M.

—

first term is < = FTIIIIRIK

Now, since Yéo is N(u{i},czln), for x < —]u{i]! (so that
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-X +p [i] > 0)
RIS [1] 4]
Fx (x)-—'P{YB__x}:P ° < = 3 ]
8 o o/vn o/ Vi \ o/vn

GJI; V/E’I? - X4 [i]
s/vn

by the result (see, e.g., Feller (1957), p. 179) that, for y > 0,

1o
1-e(y) < —L—e”iy L Thus, for L > 2] }
Yyl =< 5 y- s z U{i} s
[ Ixlfy  (OFg ()dx
x<-L o T8 T8
(—x4 .
v}_{xm 2 -%z [
< J x| . e 7\0’“/5 G’”/ge \ o/ / ! dx
x<-L  ¥2m o//n VZn Eattry
—?:!”X'l'u {i] 2
< o/Vn f x ! ? G/‘/ﬁ dx
= /Im x<-LTXM 4] VZmo/vm

1
ol g 1 2{ o//n
/21 x<-L V2w o//n 0

. S 2 i s .
Since XB is N(u [i},c/?l), it is clear that for L > L3(5L,B,3,u{i],e)

0
€

the second term of T{%,8,j) is < -lz-m , so that for
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. = . £
L z_Lh(Z,B,J,u{i],e) max(L,,L,) we have T(%,8,j) < ~E§t§2§§i?§?

uniformly in M.

Using Case 1 and Case 2, since the bound on i !x{dﬁw(x}
x|>L )

involves < (k-i+1)k!k terms, we have (uniformly in M) f lx}dﬁw(x)gg.
lx|>L 7

(x) with
(il

LEMMA: |x| is uniformly integrable in J,(x) = Fy

(2.2.73
i terms k-i terms

n=(u [119-0',}-1 [i} ,}43:..,}4).

Proof: Let L be positive. Now,

0 < / |x{ag,,(x) = / x|dre ().
x> x]>L T

Fix e>0. By Definition (2.1.24), to prove that lxl is uniformly
integrable in JM(X), it is sufficient to show that there exists an

L = L(g) such that i ]x}dJM(x)gp for all M.
|x|>L

For M > i“{i]}’ by Theorem (2.1.11),

i times k-i, times
= Pz vi (T M, . 5 Y
Jy(x) = Fg () with w=(lpy .. oouyyqai »M)
[il
i-1 times k-i+l times
< Fg x) with p=(-M,...,-M sysees I~
= X{l}() H (-M, sH [1}3 ’M[I])
= }%4(X}°
Define two d.f.'s
(1 ifx>-L 1 if x> -L
= < s G(x) =

F(x)
XJM(X) if x < -L H, () if x < L.

Then by Lemma (2.1.10),
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IxdF(x) > _fxdG(x)

-L ~-L .
_QJ;XdJm(X}"L(l'JMc"L)) 3__ _O-{;KdHM(x) - I(l”EM{'L)}

-L -L
1 - - -1 1
0> _éngM(x) ngdﬁm(x) + L{HM( L) JM( Ly:.

{v

-L
Now, since HM(—L) Z.JM('L) and since _4gdHM(x)40 uniformly in M by

Lemma (2.2.6), we find that

-1, -L
0 > fxdJ,(x) > /xdH,(x)+0 uniformly in M.

Thus, there is (for any fixed ”{i]} an Ll(e) such that for L > Ll(e)

~-L
we have _élx!dJM(x)<e/2 uniformly in M.

Take L > Ll(e). By Theorem (2.2.3) and Theorem (2.2.4), we have
Mgt (o/ /)b, (9) > sup{BuX[i]: U TRERRLI S P AR 9 (up3p)

L @
y(x) + *{deM(x) + {deM(x)}

o -1
= 1im fde”(x) = 1im { [xdJ
Moo T F Moo

L ©
> -gf2 + lim fdeM(x) + 1im fxdJ,, (%)
s A ; M

Visoo L

L o
= -gf/2 + JxdJ _(x) + lim [xdJ,, (x).
1 LX) ey ey

The last step follows from the Helly-Bray Lemma (as in (2.1.273)).

Since (as shown in Theorem (2.2.4))

i
L g
for L > Lp(e) we have J/xdJ_ (x) within e/2 of M) + (o//h)hi(¢).
-L

Thus, if L > max(Ll,Lz) then

Mrip * (o/vn)h, (9) > —fZ- “Z‘ eyt (G/"’gjhi("’)) ¥ 1%;5.3 szJM(X)
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g > 1im ?deu(x).
T LT

Thus, there is an L = L.(e) such that [ }xidJM(x)<e regardless of
x|>L T

the value of M.

Among the results of Section 2.1 for a location parameter family
which ergo hold for the normal family of the present sectionm, the linear
corrections for (e.g.) minimax§bias} at equation (2.1.32)ff are worthy
of special note. We may then (in the normal case) readily determine
the sample size n needed to satisfy several criteria (ranking and
selection, estimation, or both). (1) Set n as dictated by the ranking
and selection use of Rule (1.3.2), say . (2) Set n to make certain

minimax}bias}‘s suitably "'small,' say n,. (3) Set n=max(n1,n2}.

Table (2.2.2) of values of h£(¢) indicates that for k in the
range in which Rule (1.3.2) would usually be used (k j_lO) the factor
h£(¢) in the bias is not seriously detrimental, being only 1.5 for
9 = 10. FEven if % were of the size associated with large screening
experiments, the factor h£(¢) would still be only 3.0 for g = 500.
As an example, if one were setting n large enough to make the minimax
{bias{ in itk] - a, as an estimator Oflj{k], <e (e >0), he would find
approximately that if n, sufficed for k = 2, 4n0 would suffice for
k = 5; and that if n sufficed for k = 9, 4n0 would suffice for k = 500,

since by Theorem (2.1.33) the minimax|bias| is

> - - = = (o//Mhy (4).

hi(gn)‘hi-i+1(gn) hk(gn)'hi{c )

Note that if there are restrictions on the My i=1,...,k) in a

practical case, then the inf and sup of Theorem (2.2.4) can be improved.
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For example, if A S My <B (@ =1,...,k), then A" will replace ''-=%
and "B" will replace "+»" in that work. (A common case is A = 0,
B = +»,) Such a process will result in a smaller ny being needed
for estimation as in the previous paragraph.

If the sup and inf were desired over a more restricted set than
T Qoﬁj[i])’ sayyu € Qéﬁxii]), that sup and inf would also be attained
by raising {(lowering) the components of u to the highest (lowest)
possible values. DMNoting that this is somewhat analogous to the set
over which a Probability Requirement is made in the "indifference
zone' formulation of ranking and selection problems, one might at
first think we would be interested in the sup (inf) over p e Qéﬁi[i}).
However, since our aim is good estimation of u[i} regardless of u,
the set used above (u € Roﬁi{i})) will usually be the proper one.
(For special uses of the estimate of “{i} one may only ‘'care' when,

{1
for some §, u € 96\4{113,)



CHAPTSR 3%. POINT ESTLVATION: STROMG CONSISTENCY
2.1. STRONG (W.P. 1) CONSISTENCY OF A NATURAL ESTIMATOR OF u{i] {1<i<k)

FOR A LOCATION PARAMETER FAMILY

Consider iti} as an estimator of upy; (1 < i < k) when Set-up
(2.1.1) and Assumption (2.1.2) hold, i.e., when observations from pop-
ulation T have fr.f. f(x—ei), XeR, i = 1,...,k,and the mean of f exists.
If 7 is a constant (say 8) with prébability one (w.p. 1), a sequence of

estimators {Zn; n > 1} is said to be: strongly consistent (for 8) if Zn

converges to 8 w.p. 1; consistent (for 8) if Zn converges to 6 in prob-
ability. Since convergence w.p. 1 implies convergence in probability,
strong consistency implies consistency.

LEMMA:  Let Tl(n),...,Tk(n) (n >1) be r.v.'s which converge

w.p. 1 to r.v.'s Tl,...,Tk (respectively). Suppose that

g(tl,...,t() is a continuous function of k real variables.
(3.1.1)

Then

g(T, (), ..., Ty ()

converges w.p. 1 to g(Tl,...,Tk).
Proof: Suppose that all r.v.'s involved are defined on a probability
space (2,B,P). Then by a characterization of convergence w.p. 1
(see, e.g., Parzen (1960), p. 415), it suffices to prove that for every

e >0, § > 0 there exists an integer No > 0 such that

P{sup {g(Tl(n),...,Tk(n))—g(Tl,...,Tk)1 > e] < 8.
“iNO

However, by the continuity of g(+,...,°) and the convergence of Ti(n) to

Ti w.p. 1 (1 <1 <Kk), this is clear.

37
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THEOREM: X‘{i] is strongly consistent as an estimator of
{(3.1.2)
Proof: Since _zxf(x)dx is assumed to be a finite number, it follows
by Kolmogorov's Strong Law of Large Numbers (see, e.g., Loave [1963),

p. 239)that 5’\-] se e ’Xk conversge w.p. 1 tou 170 My (respectively).

Thus by Lemma (3.1.1) Yfi} converges w.p. b to uﬁ] (i=1,...,k).

The stronger theorem, that g(—)f{i]) converges w.p. 1l to g(u{i}) for
any continuous real-valued function g(-) (1 < i < k) is obvious. It
can be used as follows: g(}f{k]} may be used to yield an estimate of
glu {k])’ where g(:) is a continuous function such that if we knew the
mean of the selected population to be u, then we would know the
expected worth to us (e.g., in dollars) of the selected population to
be g(u). Other applications might occur for a Bayesian taking u [l to
bear.wv. (1 <ic<Kk).

Note that strong consistency of X‘{i] as an estimator of “[i]

implies strong consistency of Y[i] + aty1 where lim g = 6 (i=1,...,K.
>0

(This, of course, was also the case for asymptotic unbiasedness.)



CHAPTER 4. POINT ESTINMATION: SQUARED ERROR
4.1. SQUARED ERPOR OF A NATURAL ESTIMATOR OF p[i}‘(lfjfg) o

FOR A LOCATION PARAMETER FAMILY

In this section we consider the squared error of i}i} as an estima-
L
tor of u[i] (1 < i < k) when Set-up (2.1.1) and Assumption (2.1.2) hold,

i.e., when observations from population " have fr.f. f(x—ei), xe R,

i=1,...,k, and the mean of f exists. The expectation of this quantity,
i.e.

4.1.1 E (X,.1-Ur.q)2,

( ) U{ {l] U{l])

will be of special interest.
LEMMA: If F(+) and G(+) are d.f.'s with F(x) < G(x) (x & R),

then for ¥(x) any monotcne non-decreasing function of x we

have

(4.1.2) i
Tuxde(x) < _Jv(x)dF(x),

with the inequality reversed if y(x) is monotone non-

increasing.

This lerma, which is a generalization of Lemma (2.1.10), has been essen- .
tially stated by Alam (1967), p. 283, who refers to Lehmann (1955) for the
proof. That reference is concerned with more general questions (which
makes it difficult to extract the needed proof). A simple proof (for
the strictly monotone y(-) case) is possible using the inverse func-
tion. We omit this since Mahamunulu (1967), p. 1082, has.recently pub-

1ished a reference on this result.
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DEFINITION: For our location parameter family, let

% P . . g

i-1 te ~-i+ i
i-1 terms k-i+l terms

..

Hm(x) = F— {(x) withu I N (D TR |
(4.1.3) Xri3 [i] [i]
i terms k-i terms

J(x) = Py (x) withy = (u"{wi},;.““”'.,u‘g} I, T TR

[i]

Although H_(-) and Jm(-) depend on 1 (1 <1 < k), this dependence will
be suppressed. (We used this notation for the normal case in Theorem

(2.2.4).)

LEMMA: For any monotone non-decreasing function of x ¢¥(x) and

u e Qo(u{i})’

4.1.4) Dreod, (0 < Dreadiy 09 < Tres, ()

(i =1,...,k),with both inequalities reversed if Y{(x) is mono-

tone non-increasing.

Proof: This follows from Theorem (2.1.11) and Lemma (4.1.2}.

THEOPEM: For any i (1 < i <k) and anyu € Qo(u[i])’

Y.
% : [i]
: . ) SRR )
4.1.5) ﬁ[j{3 (g2 [ GonppPPai 00 < B Kpgyigy)

Hrid \ . ® ,

-0

Proof: Define
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jf(x~p[i}}2 if x-u [i] > 0

LQ if x-u[i}'i 0

b 00

0 if x~u{11 >0

¥, (x) .
‘(Xﬂl[i])z if x-upsq <0,

Then by Lemma (4.1.4), since wl(x) is monotone non-decreasing in x

and wz(x) is monotone non-increasing in x,

0< f (w20 < () %Py () < [ (o243,
Tepp W Tepp B X gy

H1il Mlil M[il
[ a0 2 cx-u[i])zdFk-m(xa > ] eewpy)?3,00 20,

from which the theorem follows easily.

Note that since (for any r.v. Z) EZ2-(EZ)2 = Var(Z) and since
Corollary (2.1.18) gives us bounds on Euyti]ﬂi{i]’ Theorem (4.1.5) can

be used to obtain bounds on

Ve Xpgp = Vor, Bpgg s = By ¥ap” - BF ™



CHAPTER 4. POINT ESTIMATION: SQUARED ERROR

4.2, THE MORMAL CASE

In this section we first find the form of the results of Section

4.1 in the case of normelity. Under normality,

H_(x) = P[Minimum of k-i+l N(u{i},c‘?/n) r.v.'s is <x]
T
= P|Min of k-i+l N(0,1) r.v.'s is < -
o/ v/
k-i+l
)
= 1-11-9 " 2
of ¥
Jm(x) = P[Maximum of i N(u{i],d??'n) r.v.'s is <x]

]

X-Ureq 7T XU s i
P|Max of i N(0,1) r.v.'s is < [i] = 19 -—~—-¥[-1—l
o/V/n o/vn .

Thus,

: - 3
T ! [ X1 .4} | k-i+l
[ w2 () = ] (x=upgq)2d < 1- 1—@( —il .;
SO g Oy i_ \ o/

. N

«® B Iy O .
- (o2/m) [x2d]-[1-00 1 1Y = 2/m) [x2a{le(0 1T
o] -0

1 Yra g i .

{1] [i] »X"U[i] N o it
-o{ (X3 PAL ) = cjo (m{i})zd{[@[ T | = (o /n)’o{xzd [@(x)] 5
and

Ure Hyea .
[i} il X~f s k-i+1
_e{ (x-u {i])zd}lw(x) = ’i (x-u[i})zd{l—[1—®{~—~—£—lg/‘/g ﬂ }

, 0 : b 3
= (o%/n) fxzé{-[l-®(x)}k~l+l} - (cZ/n)fod{[®(x>}k'1*l}z
- 00 G

42
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o o -U g 3 o0 .
(xn )24 () = [ (xewps )-’—d{ @{,ﬂ} }= (o2/m) [x2d4[e 1}.
e =, Lo fEH] ] - cmpeafol

Thus, by specializing Theorem (4.1.5) to the case of normality and using
the above results, we obtain the following theorem.

THEOREM: For any i (1 <1 <k) and any p € Qo(u[i})’

0 i . o . _
(¢2/n) fxzd{i@(x)]k‘l*l} + (c?/n) jx-?d«{[@(x)}*} < E, (x{ﬂ-u{i])z

(4.2.1)

< (o%/7n) fxzd{ {@(x)}k'i*l} + (02/n) fxzdp[@(x)]i}.
o - o] \

In the case of normality, it is possible to further bound the
supremum and infimum, thus obtaining an interval in which each must lie.

THEOREM: For any i (1 <i <Xk), taking the inf and sup ovey

v € Qo(u[i}}s

nf BT o 2
inf B (s epgp)
(4.2.2) ) ) e k—i+i 2 < 2 r i
< min|(c?/n) [x?d4|9(x) (02/n) [x du‘é(x)

-0

¥ 2
sup Eu{.}‘{ll M [1})

> mex| 2/ fa{ foca |41} co2/m) fxzd{[@(ﬁ]i}].

Proof: Since (see Theorem (2.2.4)) HM(X) and JM(X} converge weakly to
H_(x) and J_(x) (respectively), by Theoren (2.1.25) it follows that, if

x? is uniformly integrable in H, and J,,, then
1 a4
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lin [, G0 = [RAL 00 = @2/m) [ale 1M
Moo -o —® . )
Lin [x2a5,00 = [¥2d7,(x) = (o2/m) [xatle(0l'),
Msoo - . -0 —o

In this case it must be the case that the inf (sup) is less (greater)
than or equal to each of these quantities.

The fact that x2 is uniformly integrable inl%@follows from a modifi-
cation of the proof of Lemma (2.2.6).

The fact that x? is uniformly integrahle in.%grequires major modifi-
cation of the proof of Lemma (2.2.7), as will now be noted. Using

Lemma (4.1.4) with the non-increasing function

r

sz, x < -L
P(x) =4
LQ , X > -L

(instead of Lemma (2.1.10)) we find

fox)a6(x) > [u(x)dF(x)

-1 -L
,£x2d}zM(x) + LZ(I—HM(—L)) > fxsz%,:(x) + LZ(I-JM(—L))
-L -L
fxzdﬁm(x) __>.. fxszq(X) * LZ {H}\a('L)'JM{’L) }'
- -~ GO _,,L
Now, since Hy(-L) > Jy(-1) and since fxzdﬁm(x)+0 uniformly in M, we
find that
~-L -L
0 < [x2dJ,(x) < [x%aH, (x)»0 uniformly in M.

Thus, there is (for any fixed ”{i]) an Ll(s) such that for L > Igl(é)

~-L
we have fodJM(x) < ¢/2 uniformly in M.
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By Theorem (2.1.11), Jm(x) 3'Jw(x). If we define

JM(X), Xx>1L
F(x) = B
0 , X < L
[ J (x), x> L
G(x) =
0 , X < L
x2  ,x>1L
v(x) =
0 , X < L

then by Lemma (4.1.2),

o (P () = p(x)d6(x)

[x?d3 (x) + 12, (L) < [x2dT_(x) + L2J (L)

0 < [x2a3,(x) < L2{I (L)-J, (L)} + [x?dJ_(x) < [x2d3_(x) .
L ’ o L L

-

o] o
Now since'fxszm(x) exists, for L > L,(e) we have fxszH(x) < g/2
. ,

-0

uniformly in M., The result then follows as in Lemma (2.2.7).

We mnow find the min and max needed in Theorem (4.2.2). This will

allow us to specify intervals in which the inf and sup must lie, and to

study the lengths of these intervals.

(4.2.3)

LEMMA:  Let Z ..,Zn be independent r.v.'s, each with d.f. F

17
such that F(z-) + F(-z) = 1 for all z (e.g., this occurs if
F has a fr.f. which is symmetric about 0). Let Gn(z) be the

d.f. of

Fh

max Z.|. Let h{u) be any non-decreasing function
I<i<n
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o0

of uv>0 such that h(0)>-=. Then fh(u)de(u) is non-decreasing
. )

in n.

Proof: For u > 0, Gn+1(u) f_Gn(u) (n=1,2,...) since

L}
o
i

G, (u) i £

= P[-u < max X, < tﬂ
1<i<n

n

= P[ max X, j,u] - Pl max X; < - UW = F(u)-[1-F(u)]
1<iz<n i h<izn

implies that
le) ifn=1
G (u) -G, (u) = > 0.
n n+l | P [1-F) 1 P L) P (-us)T if > 0

Hence the desired result follows from Lemma (4.1.2).

COROLLARY: [xzd{[é(x)]n} =1 forn = 1,2 and is a strictly
(4.2.4) ~o

increasing function of n thereafter.

x2 and F = &, by Lemma (4.2.3)

Proof: Choosing h{x)

i

{xszn(x)

[x2a{[e (1™} - [x2d{[1-0(x) 1™}
o} 0

it

o0 3 <«
[x2a{{e(x)1™} + [x24{To()17} = [x2a{[e(x)]™}
o]

-0 - OO

is non-decreasing in n,

THEOREM: For any i (1 < i < k), inf{E (X;.q-M;:q)%:
AREVRE Yy ( =~ = J {U( {1] ﬂ[l})

T Qoﬁl[i])} is in the closed interval
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° k-i+1 e i
[(oZ/n) [xzd{{@(x)} } + (02/n) fxzd{[@(x); },

@ Jeaftoeor ] ae s 2 KL

- 00

o] . .
{(oz/n)fxzd{{é(x)]kdﬂ} + (o?/n) ?de{[é(ﬁf} 5

2 wvz i ir s < k+1
(4.2.5) (o /n)_ia d{[ﬂx}] H if i >

and sup{En(?ti}~u{ij)2: U o€ Qoﬁl[i})} is in the closed interval

{(GZ/n)ﬂzfzd{{@cx)lj},

k+1

(62/n) fx2d{[¢(x)]k‘i“}+ (02/m) fgzd{{@(x)ji}) if 1>
Q o]

[ccz/n) fxzd{[@(x)lk'i*l},

(02/n) 28l e 1N 4 (o2/m) fx2a et ie 1 < XL
o o 2

Proof: See Theorem (4.2.1) for the lower (upper) end points on the inf
(sup), and Theorem (4.2.2) with Corollary (4.2.4) for the other end

points.



(4.2.6)
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COROLLARY: The inf and sup of Theorem (4.2.5) each lie in an

interval of length

(o2/m) (fr2al 600 1* 1) - Px2atracor'y) £ 1> K5
(o2/m) (B2 (301 Y - _Ftatreea1 1y 1 1 < K

By Corollary (4.2.4), the intervals of these lengths for the
inf and sup fail to be disjointiff (i = 3—(—'é—zn,cxr (i,k-i+1) is a
permutation of (1,2)). In that case they have exactly one

common point.



CHAPTER 5. POINT ESTIMATION: MAXIMUM LIKELTHOOD (L)
AND RELATED ESTIMATORS

5.1. MLE's FOR Hripee oMk

Consider first maximum likelihood estimation of Hyseeoaliys i.e.,

we seek the maximum likelihood estimators (MLE's), those functions

ﬁl,...,ﬁk (if such exist) such that the density of the observed

statistics (whatever they may be) is maximized by setting

Y.
L

Our observed statistics under Rule (1.3.2) are Xij i=1,...,

j=1,...,n), but since ‘1"°"Xk are sufficient statistics we may take
them as fundamental. Then
. Xy U X "1

(5.1.1) fg( b (Xlg..ogx?() = (‘/5—/0')}\(13( L ce [ k

1°°°°2%% . LG/&ZE \g//!;
and (if My # uj; i#3j;i,3=1,...,k) the MLE's of Hyse ool based on
i&,...,ﬁk exist and are uniguely
(5.1.2) {;f1 = X oo iy, = X

(The restriction to MLE's based on iig...,ﬁk is a consequence of the
general result that MLE's are functions only of sufficient statistics
for a problem; see, e.g., Hogg and Craig (1965), pp. 245-246.) The
problem of possible equalities among CE RS ERRRRL R is discussed below;

similar results hold for the case of egualities among Myoeessliye

For the problem of finding an MLE of a 1-1 function u(ul,...,ub),
(AN
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it is well-known that (assuming the MLE of Hyseeeoly exists)
U(ﬁl"“’ﬁk) = {0 (say) furnishes a solution, essentially because forcing
u=0l implies uy o= ﬁl’ S T ﬁk’ (See, e.g., Hoso and Craig (1965),
p. 247.) If u(ul”"’uk} is not 1-1, i.e. if it is many-to-one, points
other than My = ﬁl’ e My S ﬁk may also be implied hy u = 4. In this
case Zehna (1966) was the first to state explicitly a reason for
picking only the "right" point u; = ﬁl’ P T ﬁk for attention
(and thus for calling u an MLE). Berk (1967) gives a different justi-
fication for calling §i an MLE.

From the above it is clear that, based on ?1,...5X?,

(5.1.3) ﬁii] = {ith smallest of ii,..,,ié} = ?ti} (i=1,...,k)
is the Berk-Zehna-MLE of U{II""’U{k}' Below we discuss the problem
of MLE-tyve estimators of (ufll"°"u[k]) from another point of view.
This method, Iterated-MLE'’s, is discussed in Section 5.2.

Blumenthal and Cohen (1968a), (1968h) (who provided the author
with preliminaries of their papers) studied, for a translation param-
gter family, (1) estimation of the pair (pil}ﬁp[ZE) for the sum of
squared errors as loss function and (2) estimation of 123 for a
squared error loss function.

Other work on the case k = 2, in another formulation, was done by
Katz (1963), who proposed to estimate (uill’u[z}) when one knows that
(e.g.) ™ is associasted with u{l} and Ty is associated with U{Z}‘ This
work was done for binomial probabilities and also for normal means, with
(e.g.) sum of squared error losses. (The fact that (?&,?é) is not a
totally desirable estimator may be seen intuitively from the fact that,

although M) SHo in general {ii > ﬁé} can occur with positive
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probability.) In our work one does not know the association of the Wi
with the “j (i,j = 1,...,k); see Nobertson and Waltman (1968) for the
case where one does.

Blumenthal and Cchen (1568}, who utilize the MLE Qf]J{Zl found
below, desired their estimate to be symmetric in fl,\qs in order to
force this they based their estimate on the maximal invariant iﬁl}’

iﬁz}‘ Note, however, that in order to obtain symmetry in X (and

'191\
certain cother invariance conditions) in one's estimator, one need not
go to Xfl} i' (at least for the normal case; see (5.1.3)). Note that

(although the ILE of u{?

based on ﬁl'? is ¥ he MLE of based
j based on X3 ) © Hr2]
on Xil},itz] is not. In Section 5.2 we give additional justification
for basing the MLE on X;iq,Lrmq-
e will now consider the general case in vhich it is desired to
~e 1 Tt £ 1 1 '{7 T;’ thalik i
find the MLE's of ugljg...,u{kg based on e g The likelitood
function is given in (B.1.1), and (due to its symmetry in u,11,...,u,,])
if ﬁ{l},.,.gﬁgyl is an MLE then so is any permutation of it (so that it
L Ll
is not necessarily the case that ﬂ{1§ff"fﬁfk})° In order to eliminate

such undesirable cccurrences, we require a consistency condition.

CONSISTENCY CRITERICN: Arong the (at most k!) permutation

(5.1.4) MLEfs vwhich any ﬁ[lﬁ,...ﬁﬁ[k} which maximizes (B.1.1) pro-

vides, only the one with ﬁ[1}53‘°fﬁ{k! will be called an MLE.

From (B.1.1) and the form of ¢(-), it is clear that we may restrict our
a 1 v 1 mn ekt .\
search for the maximum to “{1}""’“[k] such that Xy 5‘{p§1},..,,g{k}}
By (5.1.4) we need only consider the case “Il}ff"prk}’ and not

all k! (fewer if there are any equalities) orderings. It is well-known
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(see, e.g., Hancock (1960), p. 80) that in such a case the maximum must
cccur at ”{1]9°’°’“{%] such that

af = {XLse..5%))
X . 1’ Tk
(1’

(5.1.5)

= 0 i=1,...,k);
Ml

any point p[l]y,,,su{k] (which depends on the values of xl,...,x%) where

(5.1.5) holds is called a critical point.

In taking the derivatives (5.1.5), the results depend on how many
of the k-1 inequalities u[l}:f°°fyfk} are egualities. There are thus

k-1 . .
2 mutually exclusive and exhaustive cases, say

(5.1.6) g =0 + 9 oL+ k-1

27

where the Q(i) are disjoint, Q(l} = 0(#) is definsd in (1.3.12), and the

1 - 3( -
Q(i) i=2,...,2" l) are the other 2" 1

- 1 cases in some order. Fix
. R k-1 .
any 1 (2 <i <2 7) and suppose that some p* ¢ Q(i) sclves the systerm
(5.1.5) (i.e., is a critical point when the derivatives are taken Ffor
€ Q(i))' Then it is easy to verify (using (B.1.1)) that p* is a
critical point of system (5.1.5) when derivatives are taken for
ue ... Ye thus have the
(1)
THEOREM: Any critical point for our problem is a solution of
system (5.1.5) with derivatives taken for y e Q(#), nrovided

(5.1.7)
only that we allow boundary points (i.e., points of

9] ... 0 zk-l } to be considered solutions.

(2} CA |

To completely justify calling the boundary points included in Theorem
{5.1.7) critical points, one should show that any such point is a

sclution of system (5.1.5) when devrivatives are taken for y in its
Y u
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Q(i); this is clear from the proof of Theorem (5.1.7).

Mow (taking derivatives when ur1]<...<u[k]) system {5.1.5) is

X ~U X -1 X P S
(5.1.8) ¥ (%Eya)k¢{w§£ll~—lii}...¢( £ (X {kg} BG) "Il /5/6y = o

BESk o/vn o/vn s/Vn
i=1,...,k),
or
T x4 stljﬂ‘fi}} BRGNS
BECk B(1) o/van ! o/Vn
(5.1.9) Hrsng = : - (i=}->-'°,k)
fi] ( erq) ( ST
RIS A IO ik
BeS, { o/ /n a//n
ot
r . 3 ,v 3
Tx .ol Bl 1Tee0™ (K]
ReS 8(3) o//n | \ o//m

T
(5.1.10) 31 . 7k (i,=1,...,k;i<j).

US.. r . \ (. _ 3
4] Iy cleb al o3 | NP i e lual 13
BeS, B(1) \ o/ | L o/

THECPEM: 63{1}5...3ﬁ{k}) = (%...,x) with X =
(5.1.11)

is a critical point,

Proof: It is clear that this is so from system (5.1.9).

We will now investigate the nature of this critical point. For

i,j=1,...,k, for Xy<e 2%y,

82
Tl o — (X, ,000:%)
Mrir*r fppeeefpg l k




54

KZ (.qk""’q) P e M
BeS, © a/vn l o/¥n |
(5.1.12) STED Il ENRNN TE) ol 1 PR
=¥ U//?; G/‘/g{
k+2 - X -y
(¢”} *8(1) [l { B (k) _iﬁl),
BESk ) o/vn 1 o/vn
X, covmtipsq)2 \
3{ oM} } J ,i= 3.
e i. O'/\/;: J
Thus, for the matrix Q = (dij) of evaluations of (5.1.12) at (X,...,%)
we find
r - -
k+df k X, - Be; (XBC 1) )CXB(J) R
n
N O @{:Fj )
2=1 62 L
: Bsg [ﬁxﬁil) %) "7?} S
k
L
. Z (x; %) (x5-%) A
k &,3 =1
= (k—z)zfii]k+4 K §§~f~} (7
k o 4= g/f‘. k _ g2
A=l (k-1) ) (x.-x%)2-k(k-1)—, i = j
T "
(5.1.13)

~

lcov(R,8)k(k-1) s 1 # ]
= (x-2)1 (o)™t 2

k(k-1var(R) - k(k-1)(c2/n),

L 1=




}\,(‘/‘7 )“+4§ “ @3

3/
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(XQ-EWV FOV(R,S
/4] er®) - o?/m :

where R and S are numbers selected at random (without replacement) from

k+d
c(xy,s..x,) = k!(/n/0) L

{xl, '9Xk}’ 1f we let
1
o=
(5.1.14) 4
dl = Cov{R,S)-c
= g 2} -
do {(var(®)
= d i # 3 =
then dij 61 (i # 3) and dij do
eicenvalues

mine the nature of the critical point (X,...

(5.1.15)

where we have subtracted the

to the last row,

(5.1.16)

g?/n) °Cs

(i

).

of Q we can utilize Theorems (A.2

Now, if we

I
IRN

I ¢
L=1

o/Vn

find the

.1) and (A.2.2) to deter-

,X). How
! do -\ ) 1 a 1 a 1 d 1
: Ly 4 a
dl dO { % él 4
= det! ° ..
1 2 a1 -
4 4 0% do-r 4y
d a -
_dl 71 dl 1 dO %w
= (@ A=) Arr-1)dl)
T Yo 1 "o - 1

and taken minors.

Thus,

d
0

H

last column from all others, added all rows

the k eigenvalues of Q are

A
G

1

+ (kwl)dl




56

and Theorems (A.2.1) and (A.2.2) give us the

THEOREM: The nature of the critical point (X,...,X) is:

d

. . - . )
(i) relative minimum if - %

{ii) relative maximum if

<d <4
S

¢]

d
PR . . . . ..-_.9... = . [s] =
(iii) undecided if either:(a) | f—dl do or - =7 dl 5-do
-4 4y
or:(t) dy =dy fgpord, = T g
do
(iv) saddle point if dl < min (do, - Eii°
do
(5.1.17) or if dl > max (dc’ - E:iac
Graphically, 4
) 1
d =d
/ o 1
(1)
4 1
i
T do
;\7 \ ="do
1 k-1

(iii) (a)
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The method of Theorem (£.2.3) can alsoc be used to prove Theoren (5.1.17)
(since the required determinants can be evaluated as in (5.1.15)), but
is cumbersome.

We now wish to investigate the nature (asymptotic as n»e as well as
small sample) of the critical poirt (X,...,%). Let xza(b) denote a
non-central chi-square r.v. with "a' decrees of freedom and
noncentrality "b".

THEORE!M:

I. py{(?}.g.,ij is a relative minimum, or undecided] = O.

TI. P [(Y,...,%) is a saddle point]l="P Ix? (E-EEVar(ﬁﬂ) >k-1];
U : H k-1%2 o2
otherwise (¥,...,%X) is a relative maximum. This
(5.1.18) probability does not depend on n if Mryse g
T1II. As no, Pu[(i;...,i) is a saddle point]»1 unless

(in which case it is constant as given in

FriyTee T

proof: I. Case (i) or case (iii)(a) of Theorem (5.1.17) holds iff

d
0 , p . .
(see (5.1.13)) - Eti'j»dl < lo’ i.e. iff

- (Var(®) - ¢2/n) < cov(?,8) < Var(®) - o%/n,

1.
-

i.e. iff (since Var(R) > 0 w.p. 1)

1 o2 /n o2 /n
(5.1.19) ST Y GeDVarm S PRS2 vy
Since (w.p. 1) p(R,8) = ;%13 w.p. 1 equation (5.1.19) fails to hold.

W.p. 1 case (iii)(b) £ails to hold since (for it to hold) at least one
of the inequalities in (5.1.19) must be an equality; this occurs w.p. 0.

II. As in I, it can be seen that case (ii) holds iff
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02/’1'3 : -1 2/1’1
(5.1.20) - wry < P8 <3 m D Varey

Since the r.h.s. of (5.1.20) holds w.p. 1, case (ii) holds iff

2

c¢/n -1

(5.1.21) V- varpy CRT

i.e. iff Var(?)--< 02/n; otherwise (by I) case (iv) must hold. Now

from Graybill (1961), p. 88 (Theorem 4.20), p. 91 (Problem 4.24),

k
Var(R) = (1/k) ) (ﬁ&-i)z is (02/(nk))xzk_1(h) with

i=1
2 2
YEI AT O
(5.1.22)
=§k’WWL
g2

where M is a number selected at random from {u,,...n,}. Thus,
1 k

- . 2
PU{(X,..w,X) is a relative rmaximum] = P [Var(r) > ~§l-9¥4

(5.1.23)

2
- [ : Lg = 2 1 kn
- Pu[ﬁkx k-l(x) > Tvw ) p Ix k- 1( 52 Jer(w))> k-1i}.

I11. This follows from 11,

Note that even when (¥,...,X) is a relative maximum it is not
necessarily an absolute one (which it would be if, e.gz., the system had

no other solution). Below we will find reason to believe that the max-
s o 3 53 g2 ~ - (Y ¥
imum is ‘near (u{l}g...,u{k}) (“{1}’°'°3X{k})'

For the case k = 2, Theorem (5.1.17) shows (after some reduction)
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that (x,x) is
Ja relative maximum iff (xi-xq)2 < 202 /n

(5.1.24) undecided (negative semi-definite) iff (xl—xz)z = 202/n

a saddle point iff (xl—x?)z > 202 /n.

Obtaining this result from Theorem (A.1.1) is interesting. The limiting
results of Theorem (5.1.18) can, for the case k = 2, be obtained using
(5.1.24).

We will now seek the MLE (for k > 2): UWe may (without loss) choose

N

pur estimator to be of the form

Xy * altxl"°"xk}

1)
(5.1.25) é o

ufk] %, + ak(xl,...,xk).

%
£s noted following (5.1.4), we may restrict ourselves without loss to

} <z fyrom which it follows that we have

Xl < {U{1]5°'°9U {},} I P

Y
Y

(5.1.26) ¢ —(xi-x

Let (for 1 <4 <k;i-= 1,...,kK)

(A, = T ¢ fﬁi}l:fl:ﬁl_a"¢{:§i¥)'xk'ak]
: BeSy o/Vn o/V/n
B(i)=%
(5.1.27)
5 ) [Xs(l) 'Xl‘al} rs(k) 'Xk‘ak}
= ¢ . .
BESk o/‘/;-; G//Z‘{

Y



60

Then (note that, for any 1 <1 <k A= Al(i} ... F A?(i}) from systen

(5.1.9) we find that a sesdy must satisfy the systenm

177
= 3 A 3 i = %
(5.1.28) (xi + ai)A xlﬁl(l) .. * Xkﬂk(l) (i=1,...,k).

If we add the terms of (5.1.28) over i 1,...,k, we obtain (since

A= Ag(l} . Asz) for £ =1,...,k)
A(Xl+”’+xk) + (a1+,.,+ak)A.= A(x1+...+xk),
or (since A > 0) aqt..vay = 0. Thus, we have the
THEOREM: For k > 2, the MLE is given by ﬁ[l] = EEI]

+ al(x{l}’°"’xik})’ . ’ﬁ[k] = X{k] + ak(x[l],...,x{k}),

where al,.,.sa? are some solution of system (5.1.28) and must
{(5.1.29}

satisfy
—(xi—xl} <2y 5_(xk—xi) i=1,...,k)
and
a1+ -+ = i
THEOREM: For i,j = 1,...,k, if aj # 0 then
(5.1.30) digf (B + e v A ()

o+

i ajdlel(j) AN NG))

1,...,%)
yeea k).

]
i

where d. . %, - %x. = ~-d..{i,j
i3 J 1

1

Proof: System (5.1.28) is equivalent to the systen

X -X, =2 X -X, -2
o 3 ¢{ (1) X1 1}=‘.¢{ 8 (k) Xk k}

* pes, o/Vn o//a
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Theoren (5.1.29), the MLE must be of the

rcot of the system (5.1.28):

Xs(l}'xl"31} 800y %%
Z (Xﬁ(i)-xi)cb I TR Ol " (i-= 1, -5k),
BeS, o/Vn } a/Vn
or (substituting the dij”s)
. . - A (3 s s o . %
ai(A1(1)+"‘+Ak(l)) dli”l(l) ...+ dkiAk(k) (i 1,...,%).
Thus, the theorem follows. (Note that the denominator
3 L (3) 3 i £F =
dlel(J} .. dijk(J) is zero iff a 0.)
(5.1.31) LEMMA: For the case k = 2 a; = -a,. Also, 0 Sap 2% - %,
Proof: From Theorem (5.1.30),
R T ?1 n,) 21 IO
= Ty = .

17 R R )+ K T a5, T TRy T
The theorem follows from Theorem (5.1.22),

LEMMA: Let d = x, - Xy 2 0. Then the I'LE for ¥ = 2 is given

T = Ypg + 2 (Rpe1sXeoids flens = Yomn - 8. (T .. 7

A SV e I A e S R P L P IR PY ISR S T PO

where 2 is some root of
(5.1.32) “

d2- ~2a,d
2
d=all+eC /m
1

and 0 <a; <4

Proof: By Lemma (5.1.31) we must have 0 5.31 = -2, < d. Then by

form given where a, is some

1
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(xl + al)ﬁs = }{11&.1(1} + XZAZ(l)

i

‘ {x2 - al)A XlAl(Z) + XZAZCZ)

t

xlAZ(l) + alA = szz(l)

xzﬁl(zj - alA = xlﬁl(2)

a A = dA(1) = dA, (2)
a,h = dA (2)
Alfz)
8y = égl(zj SN
L.
1 A (2)
1+ )

How

_ X X, -a Xo oy X2 d-a a,-d
A@ = T e 8(1) "1 1}¢ 8(2) 2 z]? { 1]¢ "1
8382 o/v/n J o/Vn J O/V%j o/V/n
8(2)=1
- (d‘.al)z.,
_ 1 . o2/n .
2n0%/n
X -X. -2 % -X.-a -a a
hy(2) = ] ¢{ FOLL 1]¢{ B2) 2 2} - ¢{~«£~}¢{ : l
6852 o/v/n ( o/V/n o/Vn| {o/vn
B8(2)=2
el
1 02/n
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Thus,

2 _ . o%/n o¢/n  _ o%/n
Ay ¢ =

1

Mo

and the lemma follows.

LEMMA: For fixed d and 0 < a, < d, the roots of

1
%24, 4)
T2
{(5.1.34) a a, 1+6eF0 /n
(5.1.33) 4 %
are (1) a, = d/2, and (2) a; =5+ 53«32/n if d > Y20/Vn.

Here €, is either of the two solutions of

(5.1.35) d°n/o? = ¢ coth(e/2).

Proof: First, a; = d/2 is seen to satisfy (5.1.34). MNow, suprose there

is another solution of (5.1.34), say (without loss of generality)

a, = 4/2 + o2/n

£
1 24

. 2 2 . . . .
with -4 n/o2 < fﬁdzn/o? {since 0 <a <2}, €# 0, Substituting in

1

(5.1.34), we find ¢ must satisfy

_{d, e o2 o2/n J d e 62’( -€
d-—(é*'l":a-;{-—-) '= 5"*5&';)1’?8}

1 -e e 02 g o2 -¢

ole et g areh

or
- 2 2 .
dz =d% ™%+ 2+ e E,
£

or (since € # 0 => 1 - ¢

#0)
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€ 2 €f2 e~€/2 2

2 - 2
dz o Eg_.._l;._i....e__._ - EE—» € * = Sg.__.. cch(g/Z).
n - n n
1-e e€/2 _ e-e/Z

(See, e.g., Hodgman (1959), pp. 281, 427, 431, 432.) Since coth(-z)
= -coth(z), e coth(e/2) is zn even function. Mow,

lim e coth(e/2) = lim (1 + & %) « lim —& = 2 1im -1 = 2,
€0 £0 €20 1 . g”F €20 57¢

(See, e.z., Anostol (1957), p. 102.) Since

il

g;{e coth(e/2)] = coth(e/2) - (e/2) csch2(€/2)

_ cosh(e/2)

1
= TETT RS O (e/2)
sinh(e/7) sinh?(e/2)

i

1 e/2
simh(erzy 1605h(e/2) - iyt

the facts sinh(e/2) > 0 if ¢ > 0 and

e/2

cosh(e/2) - sy = Sinhte/z){sinh(e/Z) cosk(e/2) - e/2]

1 sinh(e) ]
sinh(e/Z}[ 7 T ¢/2)

-m.]_'__.____.s.;.si.p?j_q- -
2 sinh(e/2) 31 51 Tt

H]

1 e3 g3 e”
7 sinh(e/2) [‘3‘7 fErtart .} >0

it

imply that gg{e coth(e/2)] > 0. Combining the above information, we may

plot Figure (5.1.36).
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AN / e coth(e/2) ¢

Figure (5.1.36).

Since coth(x) > 1 for x > 0, the range of ¢ coth(e/2) will be
{Zsézﬁ "1 when ¢ is in [-d2n/02, d2n/02]1. Thus, there will be two

additional solutions if d?n/c? > 2 and none if A42n/0? < 2.

ote that a; = 0 corresponds to the estimator (x,,X,); a, = d/2

corresponds to (x,x); and 2. = d corresponds to (x?,xl), Consistency

j

Criterion (5.1.4) rules out valuves a, > d/2; thus, in seeking the MLE we

1
only consider £, which is the negative solution of (5.1.35) in Theoren
(5.1.33) {or, what is the same, -€, where €, is the positive solution).
THEOREM: If 0 < d < V2 ¢//n, (x,x) is the omnly critical point
and is the MLE.
If d > V26/ /7 there are two critical points. One

(5.1.37) yields (x,x) and is a saddle point. The other yields the MLE



66

(5.1.38) (X - 5= 0%/=, ¥ + .5 o2/r),
where £, is the positive solution of .

R
(5.1.39) 3" /02 = & cotl (e/2).

Theorem (5.1.37) follows from rrevious results, notably Lemma
(5.1.32) for the form of the MLE, Lemma (5.1.33) for the solutions of a
certain equation, and (5.1.24) for the nature of (x,x). In obtaining

the form of (5.1.38), relations such as

Do = - .9 42
L s s W T M B /m
=x—-,2€c/n

are used. UWote that, for d?n/c? "large,” eozézn/oz, so that (5.1.32) is

iclose’ to (xl,xz). The following lemma studies the anproach of e  to

d2._}l.
02
LEMMA: If €, is the positive solution of (5.1.39), then (with
(5.1.40) °®) 20)
_ d2n
€, = = - o(n).
o

Proof: 1If we write a = d2/02, then we are interested in the positive
solution of ¢ coth(e/2) = a-n. Let us set this solution as

= a°n - ¢_ and investigate the order of ¢_. Substituting in the

0 C n n

[y

egquation,

(a«»n - C
aepl - oth | ———| = o1
(a-s cn) c k 5 aen
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or

CY} an - Cn
(5.1.41) (z . ;E)com(\_« i } -1

From Figure (5.1.36) we see that €7 as m, and since e, > 0 we have

c
<, < a.n or HE—< a. Since coth(x) > 1 if x > 0, and since (5.1.41)

c
must be satisfied, EE'> 0. Mow, taking the limit of (5.1.41) as n»>x,

we find that
(1 -b/a)-1=1

c
where 0 < b = %ig 55~< a. This is a contradiction unless %im

so that c, = o{n).




(o)
(@]

It is of interest to compare (for the case k = 2) the likelihoods of

the three estimators (X,Y), (Eil}gfiz}), and the MLE. With d = x,-X,,

we find (see (B.1.1))

2
o
n——f

n X[l]’X{ZE{Xl’XZ)

X, - TR > -
] m{ 1 “m}qb[ 2 “m} . mrz‘“ mhrl ”m}

o/vn ] o//n o/v/n o/vn
;o2
402 , B
e ° /n 1f @{1}7“!‘2}) = (X;X)g the
MLE for 0 < d2 < 2¢%/n
(5.1.42)
dZ
1.1 o?/n .. _ .
) —23'+'2_e 1x (U{l}yu{')"!) - (Xls’bz}
= 4
2 2
€ 2 € 2
. L‘O" o . a} 1 {_9. il é]
1 4g2/nl® 1 40?%/n n
“2"‘9 4'—2-‘ £
€ 2 € 2
; Y e w800 T, 0 0%
1f (31{1}>!1[2}; {X 2 n 9X+2 rn]s
\\ the MLE for 42 > 202/n.

If 0 < d&/nfo < V2, (I,X) is the MLE, and the curve of (¥,¥) has ordinate

1/2 when &vn/o = 2V/in2 = 1.67. The curves of (L,¥) and (i}l}ﬁ?}q})
t 3 L

cross at dv/nfo = 1.54. At d/nfo = 2, for (?}1},§E7}) we find

i L&
1.1 -y2 1 1 09 ile Lom tle M .
T+ 50 =5+ 5{.01831) = 5022, while for the MLE, a solution of
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4 = ¢ coth(e/2) is approximately €, = 3.8 (thus 50/4 = ,95) and
1 - 80/4 = ,05. (See Abramowitz and Stegun (1964), p. 216.) Thus,

for the MLE we find

_ Y2 (%o )2 _ ¥, )2
1 4 ly? 1 4 ly2
7 ®© -ty

> 107005 e~3,u1671> = Lt1.019) = .5005.

1 fu.eozs -3.802§>
=72 € e :

Hote that Theorem (2.1.33) indicates the reasonableness of an
estimator which compensates, as does the MLE = (Xl +a, X, - b), for
under and over estimation with regard to expectation; the likelihood
approach bears this out.

The above results indicate a weakness of takins a function of
MLE's to estimate that function of the parameters for a probler (as
discussed at (5.1.3)): namely, other methods yield §i§ferent estimators
with higher likelihoods. (In fact, with the other method the likelihood
could never exceed %%ﬂ/UZ; with our method it can never be less than

1 2
/o)



CHAPTER 5. POINT ESTIMATION: MAXIMUM LIKELIHOOD (ML)
AND RELATED ESTIMATORS

5.2. MLE's FOR NON-1-1 FUNCTIONS: ITERATED MLE's (IMLE's)

At (5.1.3), we discussed the problenm of providing maximum likeli-
hood estimators (MLE's) for “[1]""’u{k}’ and noted the Berk-Zehna-
MLE: most of the rerainder of Section 5.1 was devoted to a study of
another method of providing MLE's for “Ell"'°’“[KI' e now formulate
this latter method as a general inference principle and study it in
sorme specific cases,

Suppose that o (a parameter of interest) is in some space @ and
that we have a likelihood function L(6) (from o to R). Assume that a
unique MLE 8 of o exists, i.e. 8 £ 0 such that L(8) > L{p) for =all
O e 6. Let g(-) be some transformation of 0, and suppose that g{g) = A.
Then if g(-) is 1-1, p(8) is clearly the MLE of g. If g(-) is not 1-1,
Zehna (1566) and Berk (1967) both propose to emrloy the estimator g(8),
which we will call the Berk-Zehna-MLE.

Zehna proposes to use ¢(6) since, if with 2(08) one associates the
largest of the likelihoods of those e‘ such that ¢(e') = g(9), this
“induced likelihood function” is maximized at 2(8). However, as
Dr. Joseph Putter has pointed out in a personal communication, ¢(§) may
also be a minimum likelikodd estimator. E.e., if (for some ohserva-
tions) we have the possibilities as given in Table (5.2.1),

Table (5.2.1)

%
6 S | 1] 2

L{e) .8 .7 .7 0
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then §=-2 is the MLE of 6, but if g(g) = ez, then g(@} = 4 corresponds
to both a minimum likelihood estimator of ¢ and a maximum likelihood
estimator of 6,

Berk proposes to use g(g) since, if one simply adjoins to g(®)
another function h(®) so that the mapping 6-(g(0),h(9)) is 1-1, then
(g(g),h(§)) is the MLE of (g(0),h(8)). Berk states his belief that it
is important that one's estimate maximize the likelihood function asso-
ciated with some r.v.; and since it is not clear that Zehna's method
does this, Zehna "misses the point." (Mote that the Iterated MLE pro-
posed below satisfies this criterion.) Rerk's reasoning seems faulty
in that, if one desires to estimate g(8), there seems to be no reason
to be concerned with any 1l-1-izing function h(®). Rather, h(9) is

P
added to preserve the status of g(8) as an "MLE." (E.g., in Putter's

example of Table (5.2.1), h(6) sgn(6) will work but is irrelevant to

the problem of estimating £(8) 62.}

Let 9, §, ©, A, L(8), and ¢(8) be as defined above. (In partic-

ular, we suppose that 6 exists and is unique.) "e then propose the
DEFINITIOM: Consider the likelihood function of the statistic
g(é), say Lg° If there is a g ¢ A such that L?(éj E_Lg(gq)

(5.2.2)
for all g’ ¢ A, then ¢ is called an Iterated MLE (IMLE) of

g(6).

Thus, the IMLE of g(8) is the MLE of g(6) based on g(g) (if it exists
and is unique).
Example 1. For the problem of estimating g(ul"'°’“k)

= ﬁj{l]""’“[k})’ the Berk-Zehna MLE is x{l],..,,x{k}, and in Section



5.1 we studied the IMLE (i.e., the MLE of “fl]”"’“{b} based on

X, Y = {7 3 : o= R Y h
g(Xl,...sxk) (A{I},,..,“{k])). For the case k = 2, Blumenthal and
Cohen (1968) have compared the Berk-Zehna MLE of ”{2] with our IMLE of
“[2]’ with regard to mean squared error and hias. Let y = (“[21 - “[1})
/2. They find that, for both mean squared error and for bias, the IMLE
is better for w srmall, and Xt?] is hetter for o moderate.

Example 2. Let Yl,...gYn be 1.i.d. N(u,cz) r.v.'s with p and 02

both unknown (-o < u < +«, 02 > 0}. The MLE of (p,GZ) is well-known:

n
(Y, Z (Yi-Y)/n). Then for estimation of g(u,gz) = y, the Berk-Zehna
i=1

MLE (which is Y) and the IMLE (which is the MLE of u based on Y) coin-
cide. Such coincidence occurs in many other cases, for example when
our r.v.'s are uniform on (0,9).

., 2 .
Example 3. Let Y .QYn be i.i.d, N{u,0”) r.v.'s with y unknown

10
(- < py < +=) and 52 known (52 > 0). The MLD of y is well-known: Y.
Then for estimation of g(y) = uzﬂ the Berk-7ehna MLE is ?Q. Ve will
now study the IMLE (which is the MLE of uz based on ?2).

Since (Va/o)T is N((Va/odu,1), ((Fa/OT)’ is (see, e.7., Fisz
(1963), p. 343) a non-central chi-square r.v. with 1 ¢.£f. and non-

&

2
centrality A = »E;uz say x" (1), and has density (for x > 0)

20 i
Ao X Lo x
£, (x) = X Ze 2 ? (ZAx)m X 2e 2 Z (VZAx)ﬂ
= - 3T - i
1 Y21 m=0 (Zm) ! V2T m=0,2,4,... m
1 x
b.¢ ze 2 -A
= = e cosh{vV2r x).
V2

Vi) 2 .
~Y| has density (for y > 0)

|
=
n
=
3]
i
N
e ———
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n
1 "%"?giy "nf‘z S
7 " 2
f?g(y) = fl Y| -Y_¢ e 20 cosh(k~guyu“].
o2/n “{o?/n Y21 of/V/n ¢

Hence {when ?2 =y > 0) the IMLE of uz is the uz which maximizes

n
e ]

262 2
e cosh| ¥ —y?|,
GL!-

FAN
or u? = a2(¥2)Y2 where a2 is the 22 which maximizes

(5.2.3) g(a2) = e coshgégy?azJ.
Differentiating g(az) with respect to a2, we find

n
_.n yag ~_____?yaz
o%

2g(a%) = ye 20% cos%{2~y i
3(a?) 202 o2

kN

n 1
sinh{*§y¥;§}£~

o4 5
Y g2 2%a2

. . . I .
which is <0 iff a > tanh{-ya}. Since tanh(z) < 1 for all z (-» < z < =},
2
o
the derivative is nepative for all a > 1, so we may seek the maximum of

n -1 n
(5.2.3) for 0 < a <1, Then, a > tanh (—ya) iff tanh “(a) > ~Zya,
- 2
o i

which is so {see, e.g., Hodgman (1959), p. 431) iff

3 5
R S

3 5 o2
i.e, iff

2 4

211 a a n

5 BT S 2.
(5.2.4) a {3 tEm et ...} > Gzy 1.

n 2
Since (5.2.4) holds for all & (0 < a < 1) if —y - 1 < 0, i.e. ify < §~3
0 b r— b

2

the IMLE of u° is 0 if ¥ :_czln. Ify > Uz/n, it is clear that there

will be one critical point (corresponding to ecuality in (5.2.4)) and
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5 . . . 2,
that it will be a maximum. Thus, the IMLE of v~ is

~ (o if ¥2 < 0%/n
(5.2.5) W2 ,

az(?Q)YQ if YO > Uz/n,

where a is the root of

N

1 a a
(5.2.6) allgt v ot

4 n o2
3 -



CHAPTER 5. POINT ESTIMATICN: MAXIMUM LIKELIHOOD (ML)
AND RELATED ESTIMATORS

5.3. GENERALIZED MLE's (GMLE's)

Generalized maximum likelihood estimators, introduced by Weiss and
Wolfowitz (1966), provide (where available) asymptotically efficient
estimators, whereas this is not always true for MLE's even if the latter

can be found. As noted above, for the case of estimating u[l],...,u[?j,
4

what is meant by '"the MLE" is not clear. One possibility, the IMLE, is
difficult to compute and may or may not nossess desirable properties.
lost classical MLE theory assumes i.i.d. observations and is therefore
not applicable in our case, since the IMLE is in this case the MLE
based on non-i.i.d. observations: the ranked data. The theory of VWeiss
and Wolfowitz (1966) allows for more general situations, althourh most
of their applications are to i.i.d. "non-regular' cases. (Corrections
to Veiss and Yolfowitz (1966) are contained in Weiss and Yolfowitz
(1967a), in Yeiss and Wolfowitz (1967b), and below, An additional
example is given in Veiss and Wolfowitz (1967¢).)

We first summarize the results of Veiss and Wolfowitz (1966} for
the case k = 2.

DEFINITION: Let © be a clesed region in RZ, © 5;§.with 0 a

(5.3.1) closed region such that every finite boundary point of 0 is an

inner point of 0.

DEFINITION: For each n let X(n) denote the (finite) vector
(5.3.2)
of r.v.'s of which the estimator is to be a function.

75
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DEFINITION: Let Kn{xge) be the density, with respect to a
o-finite measure u_, of Z(n) at the point x (of the
n I
(5.3.%)
appropriate space) when 8 is the ‘'true’ value of the unknown

parameter.,

DEFINITIOM: Let v = (rl,rz) be fixed and positive.

(5.3.4) {an(X(n),r)anz(X(n),r)} is a sequence of GMLE's if, for each

8 = (61,62) € @, (A') and (B') below are satisfied.

CONDITION (A*): There is a sequence of positive constants

{kl(n),kz(n)} such that kl(n)+w, %z{n)+m, and a function

L{y

le) such that L(-[8) is a continuous 4&.f., and, for

1292

any y = (Ylsyz) and any integers h,; and h,
(5.3.5)
. hlrl
BB P hyry |1 P By <
R et et |

hor '
. 2°2 -
kz(“){znz’ez“ kz(ﬂj) <Yyl = Llyysy,leg505).

COMDITION (Bf): For any integers h15h2 there exists 2 set

Sn(eshl,hz} in the space of X(n) such that

{(5.2.7) lim Pu..{X(n) € Sn(e,hl,hz)} = 1 (i,i=0.1),
1)
where



(5.3.6)
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(ho+i)r (h,+j)r
1 1 2 2
(5.3.8) Ay, = |8, + T, B, F
ij \ H kl(n) 2 nz(n)
and there exist sequences
(5.3.9) {anij(X(n),e,hl,az)} (i,j = 0,1)

of (two-dimensional) r.v.'s such that, as now,

= (

. s N - 1 i n
an13 anljl’qnljz) converges stochastically to zero whe

aij is the parameter of the density of Y(n), and such that,

whenever X(n) ¢ Sn(e,hl,hz), we have the following: Let

(5.3.10) M= max{xp(X(n)iaij), (i,j = 9,11,
(h1+1/2)r1 (h2+1/2)r2
(5.3.11) m = (mlmz) = el + »~§1T57-~3 92 + M—T;?gymm- .

Then, where "(a<b, ¢ < d)" means "(a <F, c< d) or

(a <t c<d),"

m, + Manﬂﬂl 7 <Im
§ T i s L B s
nl 1 Al(n) n? 2 kz(n)J

(5.3.122) M = X_(X(m) o

a a2
. n11 n12
= X == r
(5.3.12b) M Kn(h(n)!agl)*> Zq<m ot K G 75> Ty * kz(n)),
( a a )
n101 1102

(5.3.12¢) M

i

£
i

2 I piR T : e
(5.3.12d) ! Kn(Y(n)}all)“> Zg 7™t R
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THEQPEM: (Weiss and "Yolfowitz) Let{an(X(n),r),ZﬁE(X{n),r)}

be a sequence of GMLE'’s. Let {Tn} be any seguence of
estimators of 6 such that, for fixed r = (rl,rz) >0 and all

integers hl,hz

B T T3
lim Pel,ez{} 7 < k(T 3-0)) <57 - 5= < Ky () (T 5-0,) f—é;ﬂ

T h,r T
- 11 1 ). 4
5.3. 1L
(5.3.13) R S - ELP A oy
1 2
. -

h,r r
, i 272 2
- 5 < Lz(ﬂ){ing'ez- ?;Tﬁj] =2

for any 6 ¢ ©. Then

1 1 2

T T T T,
iim PS-_ 5 < kl(n)(zal—el) < - < kz(n)(znznez) <5

I’l rl
> lim sup Pe -5 < kl(n)(Tnlﬂel) <35,

T, ré-
-5 < k()T -0,) < 5.

Note that on p. 78 of Yeiss and Wolfowitz (1946), condition (B') is
nis-stated: therein, in (3.13) through (3.16) {corresnondine to our
(5.3.12a) throush (5.3.12d) above)

{20017 2no11 *n101° 2n111° #n002, 20127 Zn102° 21121

should be

Y

“n001 %n011 ®n101 %n111 %n002 %no1z P10z Pni1)
k) 3 - 2 2 L’ & 3{ 5 5 T s 3 i‘ R

™
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Examination of the modification of the proof of pp. 73-74 of Weiss and
Wolfowitz (1966) used for the proof of their Theorem 3.2 (Theorenm
(5.3.13) above) shows that without this change the aguantities anijﬁ
multiplied by the normalizing factors kl(n) and k2(n) would occur, and
would not necessarily converge stochastically to zero (under the appro-
priate parameters). In their multi-parameter examples VI, VII, and VIII
Weiss and Wolfowitz (1966) seem to satisfy the corrected (B'). (In
example VIII this is not as clear as in examples VI and VII.,)

We now investigate the application of these results to the estima-

tion of “{1]"'°’U[k]‘ For k > 2 we now choose

X(n) = (?:'[1},...,??[}(])
Kﬁ(xfe) =K (xju) = f;f,«’f‘) v (Xeex)
(5.3.14) ¢ 13700t
z £ v (KiseoesX, )
k[l}”"’x[k] i k
u_ = Lebesgus measure on Rk.
\n

k

W 1k 1 = M = 8 =
We would also like to choose @ {furu ¢ Qg,plqgglls...,uk u{k}}, o R

(which would satisfy (5.3.1)), but by Theoren (B.2.18) this would not
allow satisfaction of condition (A') (essentially because u ¢ Gﬂ{Q(%)}C
would not uniquely specify the limiting distribution). Thus, we fix

n* > 0 and choose

-~
'@(n*) 2{'“: u € @9 ukwnk"l i n*a }Jk_l"uk_z i n*s o0 e 9“2—u1 _>__ n*}

(3
)
H
{

(5.3.15)

0 = 6(n*/2).
(Although our results below would hold if we simply excluded the bound-

aries of our desired ©, that set would not be closed.) Since our results
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lack real dependence on n*, we have essentially only eliminated the
boundary (where equalities exist).
For k > 2, consider the sequence

(5.3.18) {znl(X(n),r),...,zﬁk(X(n)sr)}='{3’<‘{1],.,.,E{k]}

with v = (rl,o..,rk) fixed and positive.
THEQREM: For k > 2, condition (A') (or, more properly, its

(5.3.17) generalization to k > 2) holds for the sequence (5.3.16) for
arbitrary r> 0, with k;(n) = k,(n) = /n/o.

Proof: This follows from Theorem (B.2.8).

LEMMA: Let h., and hz be any integers. Choose Sn(“’hl’hZ)

e 1

- pk ¥ ¥

=R Brpgymey Xpy Syt Y21 £ K21 S¥ a1t
(5.3.18) 5

where e, = o/n (0 < 8 < 1/2 fixed). Then (for i,j = 0,1)

lim ?a..[X{n) £ Snﬁg,hl,hz)] = 1.
iJ
. T = ] i j 2J s

Proof: Ry (5.3.8), here aij GJ{I]+(FI+1)TIG/¢541{2}+(h2+3)r26/¢§j

. _ . o s
and (setting a; = (h1+l)r19 a, = (32+3)r2)

) —
P“ij [X(n) e S_6i,h),h)] = Pu+ac/£[u m-o/n < Xpy7
8 il
j_u[i}+c/n (1—1,21]
a 1 - e 1

(5.3.19) §~~6 X{l]—u[ll'alq/ n 3—~6

= -1 -8, < s <n -a.,

u+ac//n 1 - o/ - 1
1 ¥ 1
5 -8 XrorHpo-2,0/Vn 5 =8
—n2 ~a, < f2] 121 2 < n2 -a,

2 - o//n -



(e

&1

However, by Theorem (B.2.2) the random guantities of (5.3.19) approach
a joint limiting distribution, vhile the respective upper and lower
limits on those quantities tend to +=. (In fact, the result is proven

for any fixed a = (algaz) and not just for ((h1+i)rl,(h2+j)r2).)

As noted in the proof of Lemma (5.7.18), for our case we have
(for i,j = 0,1)

(5.3.20) o5 = (u{”a-(hl-s-i)rlo/@, u{2]+(h2+j)rzc//§).

LEMMA: If k = 2, then (for i,j = 7,1)

, L1, T2
o] 2 2
Kn(xlaij)ZW o °
X, -l X
1M 1, F2 ™M) 1
pir— - iyt 5 D]+ ) ZL - 50y 3 9973
= a'e U/VIE N CY/»G‘:
(5.3.21) X, -U X |
: S 2] ) JoMny . 1.,
3 &, - + ol - okt
r53 = jlhy + 53015 + 14d i(hy+ 3i)7]
+ bie o//n o/vn
where
” ) 2 ) 2
1SN e8] I a3 | I Bl €5 IO el 1
- 2
a"’:ezkg/‘[ﬂwJ Zug/‘/g J 115/‘/5 ‘20/‘/5—
3 , 2 .2
1 R v At 5] G el ¢ IO el )
2 2 272 T
N Lo/ o/l o/

.

?roof: (Note that a'> 0 and B> 0 involve only o, n, Xq5 X5s “{11’

h and not i and j.) From (5.3.14), (5.3.20),

Al.! s

u{z}s rls 3'325 and hzs
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and (B.1.1), ) )
ML {1}-(3}1-»1)1'10//5 li‘x2~u{2}~(h2+j)rzo/@ }
'z o/ln 2 o/

24 = L
Kn(x‘aij)Zwo/n e

) 2 2
L[R2y (rg#idT0/ /0 } 1 sz’“ (17" (hyridTyo//n )
+ 2{ o/V/n 2 o/Vn
(53
) 2 2
) ;_i"z_‘i__[.z;}
A VI 2 o/
- - h+1 /j ]
1 2(x, u{l})(hl i)ryo/v/n +(h1+i)2r%
2 o2/n 1.,
ae b
o . - ;
_% Z(Xz U {2]) (hz J)TZG/ n +(h?+j)2r§
o?/n -
oe . e

2

BUERArI S adet]
2L o1 2 oph

+e

-2 (x, U 17) (hy*3)T,0//n 1
S M et £ S A +(hy+3) %13

2
ge/n
= - / Y

-

ZZ(XZ—U[l})(h1+i)rlc//£

233242
+(k1+1) Ty

2
as/n
o b / e
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r2h?2  r2h?
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1"1 T2
2 2.
2
RSN T
® 'Z’ll“—‘“ - 1 ;Z*
‘e o/vn
. 2
KMo L,
T,] -j%s— -
2R 3
+ bt o/V1

Ky g i
T (h +1)———————a~”1l 2= -ih.r
2 1
a/v/n
> e
2
XA -U T
277121 2
it w2 g i (2] 522 s 42
ih ] r,] 3% i? 2r2
o/vn
e
2
XU T
jhf% . i2 (1] 125—1— —ihlr%
o/vVn

X3H 1] 1 Xo"H 2] r?,
Ly #i)ry - (hy i) 2 ¢ =i, () +) 5
e s/vn o/vn
2 2
JLfaften 127
o 2\ o/vm J 2\ o
2 2
"U T X ~u T
el R T e
.o o/vVn o/v/n
2 2
r2h2  rZn2l LM 112 12
- H ok 2V ot
1% 111 3 *aTH21 3
ry (hy+i)—=——" - 12?_- -ih r 1, (hy4)—— -j2:5 -3h r§
o/Vn - o/vn
°e e
2 rz
X, bR H 'u .
171 721 ...é. 211} rz(hz“J) [2} -j2"2- jhz’%
- s/v/n o/Vn o//n .
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LEMMA: There exist a_.., and a_.., (which may depend on
ni nij?2 :

Prbusdionibudil J 1

i), u, hl, and h,) which converge stochastically to zero

2)
when aij is the parameter of the density of X(n) (i,j=0,1)

such that, if X(n)e S_(u,h;,h,) and M = Kn(X(n)}aij), then

(i) for i,j = 0,0

,

Yoo

MEIREEY 1
o/ < (hy+ T+ ahan

(5.3.23) 4and

Xy aq-H
[21 7121 < 1

it < (ht )T, t 2
o/%ﬁ 22772 n2

(ii) for i,j = 0,1

[ Ty 1
i b2 < (h,+ )T, + a
Y= 17 2771 7 Gnon
(5.3.24) <{and
(5.3.22) B Mol I S
: 2
L c//ﬁv 2 272 n012
(iii) for i,j = 1,0
r ?j -
r117v 1 :
i tns s (hy+ 3T, + o2
s 172701 7 faaon
(5.3.25) {and
¥ el
{21 " 12] 1
—tde—ata < (h+ F)T, +oa .,
= 7752 7 Fa1nz




85

(iv) for i,j = 1,1

,

oy

I

it g
of Ve 1 2

)Ty YA

(5.3.26) Asand

X127 12]
o/Vn

1
> (hyr Ty + Ay,

\

Proof: (i) Case i,j = 0,0. For simplicity, write x for X{n}, Xy for

X for X . an rnq. Si
X[l]’ x, for X{Z]’ My for “[1]’ and My, for “a2] Since

Kn(xlago) 3~Kn(x]a10), by Lemma (5.3.21),

X, ~u X~
1M1 1 271 1
1= - (hy* 7] == - (hy+ 37
a'* + b' > a'e o//n + b o//n
(5.3.27) -
X, U X, -
1 1 1
Ty -1 - (hy+ Pr] 1 - (ry+ Pl
> ate “af /n + ble o//n
Hy=U
r At - (hyr D2
*o/Vn

since x; < x,. and (taking logarithms)

1

1M1 1
0 > 1 - (h1+ 3Jrl 50 that [since Ty > 0)
o/vn -

*17M1 1
(5.3.28) — < (ho+ )T, .
6/1/; 1 2771
We may (for example) take a = l~and, thereby satisfy the first part
P n001 ~ 1

of (5.3.23).

Since Kn(xlaoo) 3‘hn(x[a01), by Lerma (5.3.21),
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K-l X, U
r 2i~(h?+;)r§ rzl/i-(h + )12
a’ +b* > a'e o/¥n + b o/Vn
(5.3.29) X
T, 2 2 (312 + é‘)r%
> a'e o//.
or
T2 1
r,|—= - (h, + )T
(5.3.30) 1+’23.>e?[0//5 2 T3
a?
Now, by the definitions of a' and b’,
(v o 2 » 2 » o
(¥ (%) X)Wy Xy7Hq
) 3 oMy 1M
B e lo/Vn o/V/n o/Vn /Vn
0<ov= : 7 N7 - -
al X171 11X N e XyHy
T3 Ty
o “lo/vn “lo/vn | o o 10/ ? 7(::/1/—~
, 2 2
T e S o] I e e A
e o/Vn c/f_J z o/vn o/Vn
= 2 X -‘ } °
Y N Y e
o/V/n 2o/ /m
(5.3.31) (. )Xg‘xl
1117T2M) Y-~
o e
E_l..,. - -3 - 'b @__ -
- by Hp) (xpmxq) (rqhy-Toh)) 0 (Xy=%y)
= e o e
r n o
- “Z(xz"xl){(u 2"“ 1)" F(r h “rz 2)}
g n lfU >u
€ 2 1
= Xy-Xyg
{r.h h,)
1717T2"2
c//“ . _
e if My = My
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Since u, > My from (5.3.30) and (5.3.31) we find (taking logarithms and
simplifying) that

X4~U
272 . 1 bt
(5-3.32) —— < ( 7)1‘7 + .i‘.... Q/n(l.’. _éT) .

o//r 2

§
e now wish to show that the choice 2 002 = l——-!Ln(l-* %TJ is effective.

2 T,
(Here we use the fact that 3,002 may depend on u, as well as on X(n),

hl’ and hz.) Since

! (5{_{?}‘?{1])‘(&‘ [2} -u Zl]) l = ! (;/(‘{2]‘11 {2})“(?{{1}‘11 {1'!) l

< Ryl s Pl

for any & > 0, Kyl <5 Fppwpl <2 =
{](itz}-itll)_aigzl-u[l])g < e}, so that

P {‘(ygz}—%l})*(uiz}—u rll)! < el

o

(5.3.33) 60
-

> POLIQ{}H {2-]4 [2}“ < 8/49!32{1}-“ {H’ < e/2].

By Theoren (B.2.8), as 1>

P [% o l < gf2] =P [-e/2 < Yo -u < /2]
%50 (1] " 11} %4 [11 =111
(5.3.34) = /ﬂ =
- e EYn e e/,
P ne[ M1 25 1" r0//n) < 5 =5 - hyry il

a similar result holding for itzl' Ry Lemma (R.2.1), the r.h.s. of

(5.3.33) »1 as n»», so that the 2.h.s. must also »1 as n»e, Taking

£ = 89@‘[2]'“{133 with 0 < ¢! < 1, this means that as (n>=)

(5.3.35) pao(}{(l—s')@ {Zl—u !.1}} < ?{2}—3‘?{1] < {1+ ) {21-—1,1 rl}}“ >
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-T h ) a2

-a
°5/ﬁ12-u1)2s it follows that the exponent a_ (say) of b'/a' = e T in

Using (5.3.35), noting that Xy-Xq > 0, and taking n > (r 1

(5.3.31) is such that for all finite x we have Pa {an < x}+0 as new,

00
Then it can be shown (successively) that
-2 - 1, x>0
(5.3.36) P [e “5_xj-—> ;
“00 N, x <0
-8 1, x> 0
(5.3.37) P enllve < x|-
%00l ) 0, x <0

From (5.3.37) it follows that our g converees stochastically to zero

n002

under %0

(ii) Case i,j = 0,1. Since Kn(xlmoo) f'Kn(X’aﬁl)’ by Lemma

- (5.3.21),
Xl 1M
272 2 1

Ty = (hy %}T;Zz rz = - (hy* )T

a' + b' < a'e o/ + b a/Vn

(5.3.38) Xo-u X

2
22 (h,+ lng r 2 2 ~-(h,+ EJTZ
Vg 2 2772 2 S 2 2772

< at a/vn + B a/v/n

x -
272
2[ = - 2)1”1
. o/Vn . .
since x; < x,. Thus e < >1 and (taking logarithms)
[-2 2 %Drs > 0 so that (since T, > 0
o/ n -
XHU
272
z T 3
(5.3.39) > (hy+ 3T,
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We may (for example) take 2012 =~ %—and thereby satisfy the second

part of (5.3.24).

Since Kn(x[agl) 3_Kn(x§all)9 by Lemma (5.3.21) we have

1 L1
- (b, T3 r, -(,t HTS

- (h,* 2)r2

S L) M,
20//5

T

+ ble

This can be reduced as follows:

y 2 : 1
S (hprzlry ¥ '}E"’m 1+ %e o/Va o o/Vn

%
i

XH=U :

2 2771 1,01
[} T --—~-(h1+ §9r1
1-




o0
- El—--< . { - - g._ - h
Z{AZ Kl)‘ﬁiz Ul] J_{rlhl ryw?}}
< (?,3 + .1‘.) + }._Qn 1+e g n °
2T h e
V X
(5.3.40) rzﬁ(xl—x:,) r1~g—~~l~ -(hy+ %)r‘%
g “ o/v/n
°e 1 4
= (h,+ lir + Landise o n o
12771 rl )
X,-u
r, 2t s 2r2
1 S 1 2771
1-e 9/¥m .
In order to show that the choice of a as the second term on the

n011
r.h.s. of (5.3.40) is effective, we will show that

1, x>0

(5.3.41) POc {anQII < x}-

01 K 0, x <0,
This implies that a_nyy converges stochastically to zero under IR
{(To show the inequality of (5.3.24), 2,011 should actually be taken as

1 . .
(e.g.) the above plus ;u) Mow, if a,. is replaced by a,, and h2+1

00 01

replaces hz, then the same proof that yielded (5.3.35) yields (with
0 <e' < 1)

01
as n»o, Using (5.3.42), noting that Xy~¥g > 0, and taking

n > (x;hy-r,(h, +1))2026/61 ﬂll)z with 6§ > 1, the exponent of



- g T o
(5.3.43) ';"E(Xz'x1){ﬁ*2‘u 1)" 75(1‘121 TE(h2+1)}}

is such that (as n-w)

1, x> 0
(5.3.44) P [a_ < x]~»
%01 " 0, x< 0,
In
Xl
271 1, ) 1, 5 /’
rlg/Jﬁ' (h1+ Z)rl (h1+ z)r1 (7 X +X ‘ul)

B = - A = -g e A

n b n
(5.3.45)

~(hyr D12 - X g7 p)= 20 (w1

= -8 e °
/n
T )
° & s

the middle exponential term tends stochastically to zero (under Gnq BS
n>e) as did A_, since it is An with hl replaced by h1+l, and the first
il

exponential term is a constant, By Theorer (B.2.8),

eXp{rngtitl]ﬂi[l})/c} has a non-degenerate limiting distribution since

(for any x > 0)

fgig‘ )
a1 e
(5.3.46)

/n < o I/TT
=P (X g M pqq-hyT,—) < &n x 7 - h.r.|.
u{)l[ o**f1] "111 1 YE 11
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It then follows that, as n-w,

1, x>0
(5.3.47) P [B

<
¢4 X1+

01 7 ( 0, x <0 .

By (5.3.44) and (5.3.47), 1 + An + B'l converges stochastically to 1 under
i

. 1 .
a., as n»e, and since 3011 © ;—&n{l+An+Bn} it follows that a 011

01 1

converges stochastically to zero under S

... — Cinen
(iii) Cese i,j = 1,0. Since Kn(x}ulg} z_Kn(x)all), by Lemma

(5.3.21),
X, =H X,=H
1M L 2 M1 1o
1 (hy+ 5Ty = (hy+ 3Ty
al ' + hle
X, ~u LR VN
S TP NN 22 1, ,
= (hy+ 3Ty *+ Ty ; (hy+ )75
> ale ) o/vn
X~ W=l
172 1, 0 271 1
= (hyr H)r5 + 7y (hy+ 5Ty
s b o/vn g/vn
X, U X4-H
g P Oy 7S
> ar o/vn o 6//n :
=X Ko~
2
T “¢~} Tt -yt 7
L+ Blg 0/Vn > a//n :
RS
X1 Ty =
}a
2 2 < (%2 2)r + —u&n 1+ 576 a/vn
o/vVn T
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We will now show that the choice 2102 = §~£n 1+ age

is effective. Sinceu. > u,, by (5.3.31)
2 1

! n o

- — - f - - h -
. rig/yﬁ‘ Gz(xz x ), ) /;ﬁrl(”1+1) r2h2)}
(5.3.48) Ze = e '

and the argument of (5.3.42) through (5.3.44) can be modified to show
that this converges stochastically to zero under @yq @5 M. The

E
result for anlOZ then follows.

3 v v T n L
Since Kn(x]alo) i_aa(xlggﬂ)ﬁ by Lerma (5.3.21)

X, - X, -
r1—3;-1 -(hy+ %Qri r L L2
o/vn

a'e >a’ + b

X, -u . S | ’
171 > (h1+ lﬁr 1 b i > U/Jg .

o/Vn 2 T a 1

<
!
L
oo
s
.«!.
{
wal
[¢]

, x?‘xl}
1 1 TR YN~

?
The efficacy of a_,., = —An(l+ 973 - —gnil+ qu
nlol rl a’ rl a

is shown by a modification (allowing for alo) of the proof for 2,102

above.
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(iv) Case i,j = 1,1. Since Kn{x}usl) i_Kn(x!all), by Lemma

(5.3.21) and the fact that x, <X

i Z
Xy
272 . 2
T2 - (hyr T3
at o/vn
X,-U Xq U
ro2 2 -(h,+ lﬂrz 2 -(h,+ l&rz
2 S 2 2772 2 S 2 2772
< a'e o/¥n + b o//n
X, - XH-U
1 272
rptt (g )T+ Ty (gt TS
< g o/vn o//n -
(5.3.49) hl
X, - XU
2 i 271 1
ry—L - (hyr T3+ 7 -(hy* T
+ bie o/vn ’ ’ o/Vn '
X, U X\
171 272
ry-== - (hyt %Jri + T - (h,+ §Dr§
< ar o/Vn o/vn T
XU XAl
27 1 271 i
Tyt sy g e T (e T
+ bie o//n o/vn
so that (utilizins the first and last lines above)
X, - X5-H
1™ 1 271 1,
r = (h,+ F)r2 T, -(h,+ )T
2
1<€10/@ 1t 7N Eelc’/‘g{ 1" 271
(5.3.50) - a'
XU X, -X
r 1 (} (hy+ %)r% e 271
= e o/¥/n 1+ ?; c//ﬁhf :
L2
Xq -l , 1
(5.3.51) 171, s %)rl %__m 1+ Ble a/Vn




0
[y ]

XHy=X

2 71
Ty =
b
= - %~£n i+ E7e o/ /n is shown by a modifica-
1

The efficacy of 2111

tion (allowinp for ull) of the proof for 2 102"
8i ! . i im ERS Kk .49
Since K_(x]a;g) < K (x|a;;), we obtain (as with (5.3.49))

X

~U
r1“}:"’“}'“(}’1+ %‘ri
. al//n
a'e
X, - X,
11 1y, 271 e B2
= (hy* 37 R= (hy* 573
< a'e + ble
¥, -1 XU,
) - - (hy %Jri ¢ ry i - (o %)rg
., To/Vn “ “o/V/n ‘
X, - K=l
172 1 271 1
R L s+ 1 -y i)r%
+ble “ofvn - o/vn
X, XU X=X
171 ~(h,+ £)r2 . 22 -(h+ EJTZ T 1
1 Yo 12771 72 7/ 2 2772 1G/J§
<e MM a'+ble T,
and (as with (5.3.59))
Xl Xo-X
r, ZJP?~‘(52+ %Jré T 2/~£
- - 7
1 <e o/vm 1+ 2?6 o/vn

The rest of the proof is similar to that of the first part of case (iv)

after (5.3.51).

THEOREM: For k > 2, condition {B') (or, more properly, its
(5.3.52) generalization to k > 2) holds for the sequence (5.3.16) for

arbitrary r > 0.
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Proof: Condition (B') is given at (5.3.6). Its first requirement,
(5.3.7), is satisfied by (the generalization to k > 2 of) Lemma (5.3.18).
The remainder of its requirements are satisfied (for the case k = 2) by
Lemma (5.3.22). We will now show that these remaining requirements
are satisfied when k > 2,

As at (5.3.21) and (5.3.20), for il""’ik = 0,1

(v
K = fx 7 gesesX
(5.3.53)
ISRV N Tchhdeil BENWICRd LI
BeSy | o//n o/ /a
(5.3.54) @il...ik = GJ£1]+(h1+iﬂr10//5;°;"u{k}+{hk+ik)rk0//5)-
Thus,
21
rih% 3 -+ i}i.qézs_
) 2

Kn'xlu. i i (Ji%b/Jﬁbke 2
iy iy

r%h% rﬁhﬁ
TR TR k
- (/Ime ? 2 /vy
2
k o p.a=(h.+i)r.0/ Y
. _3;.2 s M 131 ( j ]J)rJ ’
. Z e "‘"j=1 0//5
8sSk
212 21,2
G O
o 2 ) )
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2 w

A,

k[ {x, oatps
1 8(i) " L3l _, . /n . N22
-5 ot HEE A 6 GRPUNL S | SN h.+i ).~ +(h.+i, ©
zjzlﬂ o/ Ve (g yyyyy) By*iydTymg * (yrdy) )
e
(5.3.55) 24,2 21,2 k - SNPUNE TR 2 (X o Hrsn)
Py e ) { 165 el 51} RN 163 Miatl b
L.z Tt ;i1 2\ orm R .
BESk
k (%, oy -Hrsq) B} r2h2
Y dr.i. 83 D17 5 (h.+ 13 )22- %3
REEERET SR M R
k (X R TR |
Z{riij 8D D17 5 .+ %—i.]r%}
. JameTT T R SR
BeS;
where
2
k . . N TR
) {.%{i‘_@g)"*‘ m} e )™ m?}
(5.3.56) ar(e) = 71 o/Vn I e/t
while for the case k = 2 there were 2! = 2 terms in the final sumpration,

there are now k! terms.

As there were 22 = 4 parts to Lemma (5.3.22), there are 2k parts

We will give the proof for the part corresponding to (5.3.23),

=0,...,0,

here.

since it is indicative. I.e., in the case il,...gik

[ T, q-0
[ 1
JOE Shual® SR ot 1N (h + ._.)r + a
o/ 1 2771 n0...01

K e U
217 2} 1
(5.3.57) ~l--*—~‘< {h7+ =)r, + 2
G/l/;‘l‘ 2 2 nO...OZ

s
»




T .
TN L g, L
= < (hyt 3T * 840, .0k

(Whete 8_. .oes 150005 & «os: 3 CONVETPE stochastically to zero when
ni, i1 ni, "tk

Uy eaey is the parameter of the demsity of X(n) (il,...,ik = 0,1)) when
1 k )

k¥ \ o 3 - ¥ 1 .
Z{(ﬂ) € Sn(U 9h13--09hk) Gﬂd b’l I\n(x(n)!ao...o)' Tﬂe anil"'ikj

(G =1,...,k) may depend on K(n),u,hl,...,hy.
For, €.g., the first comparison of (5.3.57), Kn(xlaeo o)

> Kn(xlalﬂ...ﬂ}’ so by (5.3.55) and the fact that x, < x; (1 = 2,. ..5k),

x -
r1{—§£31—~£}l-~(h1+ %Qr%
0/\/_’; - &
Jar(g)> ) a'(Ble
BeS, BeSy

Xy=Up
_,}; ;_l} -(h,+ };)I.Z
1 0//5 1 2771
> ) a'(B)e ;
BSSk
X, ~H
U//ﬁ- 1 2771
1>e

From here the proof is essentially that which follows (5.3.27).

Pule for making comparisons. For each of the k! vectors il" "’ik’

one rust nrove k relations similar to (5.3.57), with appropnriate

modifications of ' to '>". For these, compare the given oy 5
1:0:; k

with the k others which have ii,...,ié’s which differ from the given

i °"ik in only one place. (This rule, suggested by the k = 2 results,

177

works when k > 2.)



To illustrate our method, we will now study, e.g., the second

. . I
comparison of (5.3.57). Since Kn(x‘agﬂo...ﬁ) 1*Kn(xl&010...03’

2_,_.(_Q,LLL - (hy
Z a'(R) > Z a'{B)e o/Vn
BsSk Besk
XU
rz“z““[ﬂ‘ -(yr P73
/=
> ] arge %M ;
BeS?
B(2)=2
Y a'(e)- ) a'(e) —
BeSk Sgsk r2w-~$21- {h2 % r%
1+ B(2)=2 > o o//n
) al(®)
BSSR '
8(2)=2

Now the proof proceeds as at (5.3.30), and a relation like (5.3.31) holds

because what is left in Z a'(B) after Z a'{g) is removed, makes the
Sesk BeSk
B(2)=2

"wrong'' associations and thus tends to zero, while the denominator does

not.

THECREM: For ©(n*) and any fixed r = (rl,...srk) > 0,
(X&l]g.a.,f}k]) is a sequence of GMLE's for estimation of
5.3.58 seeusllriq) based on X(n) = (Xiiqyse.-5Xpeq). It thus
( ) [1] U{ﬁj) as (™) ( {l} {,})

possesses, for all r = (rl,...,rk) > 0, the propnerty of

Theorerm (5.3.13).
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Proof: Theorems (5.3.17) and (5.%.52) establish conditions (A') and

(B"), respectively, for all r> 3. e therefore have 2 sequence of
GMLE's possessing the property of Theorem (5.3.13), or more properly its

extension to k> 2, for all v > O.

I1f T and U are estimators of 8, then U is said to be more

concentrated (about 8) than T if

(5.3.59) P [-r < U-6 < 1] > P l-r < T-0 < r]

for all 6 € 0 and ali r> 0. (This definition, which appears for perhaps
the first time in print in Lawton (1968), is known to the present author
to have been stated by Professor Lionel "eiss as early as March 1965 in

lectures at Cornell University.) If Tp and Un estimate 9, then Un is

said to be of higher large sample concentration (about 8) than T if

n
n

(5.3.60) %gg Pe[—r f_k(n}(Un~e) < r] z.%gg De[—r ﬁ,k(n)(Tn'e),i rl,
where k(n) is such that k(n)(Un—e) approaches a limiting distribution, for

all 6 ¢ 0 and all r> 0. The GMLE (X ..,X&k}) has, using a k-

S

dimensional seneralization of (5.3.60), desirable large sample concen-

tration in comparison to the class of estimators of Theorer (5.3.13).
We will now show (for k = 2, the k > 2 extension beino similar)

that, by finding one GMLE, we find a class of GMLE's.

83

LOMMA:  Suppose %gm ?e [z <yl =L({y), with L(-) a continuous

85
:30
i
S

d.f.. Then, if lir

(5.3.61) n¥

Hn P [z <y+c 1= L).
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Proof: If all but a finite number of the c, are positive, then

L{v) 5_%}@ Pen{zn < y+cn] and (since eventually all ¢ are less than Cho

m fixed)
(5.3.62) %ig Pen[zn < y+cn] 5_L(y+cn).
Taking the limit on m in (5.3.62) and using the continuity of L(°)
the desired result follows. (If all but a finite number of the c, are
negative, the proof is similar.)
If infinitely many c, are positive and infinitely wrany c are

negative, suppose ¢ < 0,c > 0. Then
‘I‘ Y
{(5.3.63) L(y+cr) < Lm Pen{zn < y+cn] 5_L(;+cs)

since eventually c, < ¢ < ¢.. Taeking limits in (5.3.63) over

r: ¢ <0
{ <, }

o9

nd {s: ¢ > 1} on the 2.h.s. and r.h.s. (respectively) the
desired result follows. MNote that this is a special case of, with an

even simpler proof than, Cramér's Theorem (see, e.g., Fisz (1963},

P.236)
THEOREM: If {Zﬂl(x(n)ir},an(x(n),r)} is a sequence of GMLE's
then so is
(5.3.65) 17, *+ 0 (1/k (M), 7oy + 0,(1/ky ()},
(5.3.64)

where oi(l/ki(n}} (i = 1,2) is a quantity such that

Oi(l/ki(n))

Proof: We will show that, for the new sequence, conditions (A') and
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(B') (see (5.3.5) and {5.3.6)) hold.

Since (A') holds for the original sequence {Z ,,7 ,} with L(-]8) a

continuous d.f., it will also hold for (5.3.65), by Lemma (5.3.61) (more
properly, by its multi-dimensional analog, which is proven similarly).
Since (B') holds for the original sequence {an’zn7} with constants

a = 0,1), it will hold for sequence (5.3.65)

nij = (niji122nij2) 33
with aé.‘ given by

§ - 3 1 =
2001 = 2n001 ﬁl(n)ol(lfnl(n)), 2 002 = 2n002° 2(n)o (1/k, (n))

ata11 T no11 Ky Mo (/K ()], 8115 = 85957k, ()0, (/K (n))

aﬂl@l = anlol_klcn)olcl/kl(n))’ aﬁlGZ = 3102 2(“)0 (I/k (n])

al = 3 —kl(n)ol(l/kl(n)), al

- - 1. (n)
0111 i1l a112 = 31127k (Mo (1K, ()

(Whenever the anij converge in probability to zero the aéij do also.)

A typical o, (1/k, (n)) might be 1/{ki(n)n5i} with 6, > 0 fixed

(i = 1,2). In comparing any two members of this class of GMLE's with
each other, we find by Theorem (5.3.13) that they have the same
asymptotic efficiency (in the sense of Theorer (5.3.13)).

After results (5.3.61) and (5.3.64) were obtained, the author's
attention was called to the latter part of section 3 of a preliminary
version of Yeiss and Wolfowitz (1967b), where a generalization of
Theoren (5.3.64) was stated without proof. Mamely, if {an(x(n),r},

; MLE's th is {7 4Tt ¢ \
an(x(n),r)} is a sequence of CGMLE's then so is {un1+in1, Zn2+TﬁZ} where

(T

1’ n2) is such that, uniformly in 8,
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(5.3.66) lin ?e[fkl(n)Tgll < 8, !kz(n)’?gz} <8} =1

for any given § > 0. Our proof can be ceneralized to this case. (lote
that in the published version of Weiss and Wolfowitz (1967b) condition
(5.3.66) has apparently been weakened.) These results will now be used

to compare the MLE and the GMLE with repard to asymntotic efficiency

when k = 2.

LEMMA: For a > 0, P [Y . ,-Xy,q > & o//n] is minimized

(over u € €(n*) i.e. over u such that Hr21 = “Tl] + n for some

(5.3.67)
* = * 1
n> n*> 0) at o M1 + n*, Also

p Yo -X > a ¢/V/nb 1 as o,
e m*”*{“ [2] /'nb

(1]

Proof: By Theorem (B.3.2),

o {WYI ;_(z._,”
5 R = n 4 Ja 4 s
PU[A{Z} X{l} > ag/V/n] "= } o o/ o/Vn dy
ac/vVn
¥ - lyz T - L2
1 2 1 2
= e dy + —— e dy
a— -7 a%: +n
(5.3.68) = .
Y25/Vn V25V
f...ap_‘..... n 3
NG
V2o//n © 1
1 - ?
= ——] e a d}’
e
o
P ] a_—--.- -n
/n
V20/Vn)
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By the formula for differentiation with respect to a parameter {(e.g.,

Wadsworth and Bryan (1960), ». 2) or by the Chain Pule, since

(a2 +m)2 > (a2 -n)2,

n n
o 32 o 2 l
a— +n a— -1
1| /n ! 1 1} v/n ] 1
2 — = 3~
d s 7 21 V20/vn) V20/Vn /éc/Jh} V20/V/n
&P Ko1K gy > 0//n] = ¢ J - > 0

Hence Pu[i}7lnxt1} > aoc/V/n] is an increasing function of n > n* > 0, and
is therefore rinimized when n = n* > 0 (i.e. when U[Z] = u[1]+n*). That
this minimal probability »1 as n>e follows fronm (5.3.68).

d2n

e g

o2

LEMMA :

< 2, where € is the vositive solution of

(5.3.69)
(5.1.39).

Proof: From (5.1.39) and the fact that coth(x) > 1 for x> 0,

d?n

— -t

02 °

= iao~socoth(a0/2)‘ = eo(coth(so/2}~1).

Using an expression for coth(eo/Z) which was found in the proof of

Lerma (5.1.33), this becores

50/2 -50/2 —50/2

e +e Sl = e 2e - 5.0 <2

ol € /2 -e /2 oe /2 - /2 € -2
6 O e © e ® -e © e -1

= £

. X ¥
since (for x> 0) x/(ex-l) <1, or x < e -1, because x+l <e =

2
T+x+ 25v—~+....

2!
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Tn the notation at (5.3.66), we wish to show that the MLE

2} is such that (5.3.66) holds, with kl(n) = kz(n) =

i1

{X[1]+T}'§_19X{2] +T‘:

/n/o. By Theorer (5.1.37),

1Ta1l = D%y
(¥, ,,+X
Tty s . T ¥ 5,
7l if 0 < Xy Kpyy < V2000
Xy +X Xpaq-X
[117°f21  “f21 "[1] ¥ . T Y
7 " Feothle /%) Xqq] X217 111> 20/
(5.3.70)
[ ¥, ,-%
ot m I
Xpay-X
237711 1 . v ¥ -~
7| cot‘n(so/z)l £ Vpy¥yy > Y2/
and l'!‘};zi = I‘I?Z}"S‘;{Z]! turns out to be the same. Thus, using the

definition d = itzg-x[13 and the fact that e _coth(e /2) = d?n/0?, for

any § > O

Pe{lkl(n)Tgls <8, Ikz(n)T;2{ < 81 = Pu[!Tél! < 8g/v/n]

=P [¥,,,-X < 260//n, 0O 5_55{7}—3{”“} < ¥20/ /]

1
" Toth(e /7

< 8o/Vn, EiZ]'Kkl] > /2o/vn

—nd

> V/20/V/n

< Sa/Vn, x[21-x[l]

1- 1
2 l coth(eO/ZJ

(5.3.71)
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v ¥ 2
_ 1\;-2}—./\{1]{ i (o) 1 9_—“
P 5 !1 o ! < 5/5’ X{Z} iy > Y2¢//n
35 -X 1é2ﬁ~€ o?] b
- (2] “f11 o | ¥ 5
=P 5 o < 80/vn, Xra1-¥111 > /25/vn
1 ;dzn—r002§ _ _
=P |5 - < (}([2}—}([1}]50/1/5, X[Z} xm > v20/Vn
_p I; X 1 o |¢*n Y 5 /3,
Pt = s o Mt ’26”5}

THEOREM: For the MLE when k = 2, uniformly in u, for any

S , T . " 1 =
‘11!,’ P [}kl(n) 91‘ < 6,;}2(1})_?2! < 6~; = 1.

Proof: By Lemma (5.3.69) and equation (5.3.71),

|
P Ik, T, ] < 8, [k, )11, | < 8]

- - 1 o - . -
(5.3.73) > P [¥ “Xil} > ﬁ?z, Xr217%111 > V20/vn]

5 1
= P IY¥ - Y =<
P X£1} > max{Y2,3)o/v/n}l.

By Lemma (5.3.67), the last member of (5.3.73) can be bounded below,

for u e 0(n*), in such a way that the bound +~1 as nre,

By Theorem (5.3.72) it follows, as noted above (5.3.66), that the
MLE and the GMLE have {for k = 2) the same asymptotic efficiency, and
that the MLE is a GMLE. This proves asymntotic efficiency properties

for the MLE which do not follow directly from the standard theory, which

assurmes i.i.d. observations,



CHAPTER 5. POINT ESTIMATION: MAXIMUM LIXELIHOOD (ML)
AND RELATED ESTIMATORS

5.4, MAXIMUM PROPABILITY ESTIMATORS (MPE's)

Maxirum probability estimators were introduced by Weiss and Wolfo-
witz (1967b) for much the same reason as GMLE's were introduced by Veiss
and Wolfowitz (1966), as discussed in Section 5.3 above. Weiss and
Wolfowitz (1967b), mp. 202-203, proved that, for the case of m =1
parameter, every GMLE is an MPE; thus MPE's extend the notion of GMLE's
(and by finding a GMLE we find a fortiori an MPE). Ve now study the
extension of this result to m> 1 parameters, first summarizing Weiss
and Wolfowitz's results.

Let © and © be as in (the m-dimensional analog of) (5.3.1), let

X{n) be as in (5.3.2), and let Kn(xfe} and u_ be as in (5.3.3).

DEFINITICN: Let R be a fixed region of Rm, let k(n) =

(kl(n),...,km(n)) be such that k{np=, let d = (dl,..,,d Y

m

and define

(5.4.1)
- R/f% = see 0 d. -v./k.(n) = z,
d /& (n) {(21, ﬁzm) SIS} dl yllil(n) Zys
i=1,...,m, (yl,...,ym) e R}.
DEFINITION: Zn is a maximum probability estimator with
respect to R and k(n) if (for a.e.ﬁln) value x of X(n))
(5.4.2) Z (x) equals a d e 0 such that

[ oo [ x,(x|e)de,...do = su%f oo [ ¥ (x|e)de, .. de .
a-[k ()] 1R te0 k@) 17R

167



(5.4.3)

(5.4.4)

(5.4.5)

(5.4.7)
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CONDITION: For sach h> 0 and 90 e @

ey Bt
Lin P, [k(n)(Z,-0) € ®] = 8

uniformly for all 6 € H = {0: [k(n)(e—eo)§ < hl.

CONDITION: For each 60 e @

Lin P [lk(m)(z -0)| <M} =1
Mo

uniformly for all 6 in some neighborhood of eo.

CONDITIONM: For each 60 e ®and h> 0

Lim {Py[k@) (T -6) ¢ P~ Peo[k(n) (T-6) € R} =0

uniformly for all 6 ¢ H = {6: lk(n)(e-ec)t < h}.

THEDREM: Let {Zq} he an MPE with respect to R and k(n).
Suppose {Zﬂ} satisfies (5.4.3) and (5.4.4). Let {Tn} be any
estimator which satisfies (5.4.5). Then (for each OG e 0)

8> lin Pe [k(a)(Tn—eo) e R}.

(o]

THEOREM: Let Wq be a GMLE (with respect to v = (rl,...,rﬁg
>0) for the estimation of 8 = (61”"’9m) e 0 (m> 1).

Choose R = {(yl,...,ym): -ri/z <5 5-ri/2’ i=1,...,n}

and k(n) as for the GMLE. If the MPE (w.r.t. this R and

k(n)) satisfies (5.4.3) and (5.4.4), and if the CMLE satisfies

(5.4.5), then the GMLE is (in the equivalence class of) such

an MPE.
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Proof: Let Zn be the MPE w.r.t. this R and k(n). It then satisfies
the condition of Theorem (5.3.13). Thus (for each eo £ 6)

(5.4.8)  lim Peo[k(n) (W,-8,) € R] 1;@%0&@1) (z,-8,) €. R].

The GMLE Wn satisfies (5.4.5) and thus the conclusion of Theorer (5.4.6)

holds: for each 60 € 0

(5.4.9)  lin Peo[k(n) (z,-6) ¢ Rl 1;&‘;51)80[1(@) (W-6) ¢ RI.

Then (see Weiss and Wolfowitz (1967b), p. 198) the GMLE is (in the

equivalence class of such) an MPE.

The result of Weiss and Wolfowitz (1967b) for the case m = 1 is
somewhat stronger than our Theorem (5.4.7) for the case m> 1: they
show that the MPE satisfies (5.4.3) and (5.4.4). (They assume, as we
do, that the GMLE satisfies (5.4.5), which is stronger than (A') of
(5.3.5).) Our result (more precisely, a slight extension of our result)
says that if the MPE for a problem is "good" (i.e., satisfies (5.4.3)
and (5.4.4)), then the GMLE (if it meets (5.4.5)) is equivalent to it.
Note that the analog for m > 1 of Weiss and Wolfowitz's result for m = 1
is false. E.g., Weiss and Wolfowitz (1967h), p. 198, last paragraph;
note an example (with m = 2) where the MPE is not ''good" although the
GMLE is. (Weiss and Wolfowitz give a method for attacking the problem,
in such cases, by modifying it slightly and thereby obtaining {often
Ygood') MPE's.)

We will now study in detail the MPE of the ranked means. Although
we have seen that, in general, for m > 1 parameters even if a GMLE and

an MPE both exist the MPE may not be cood, in our case the MPE is shown
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(for the case m = 2) to have all the pood properties of the GMLE. Thus,
. 1
= ¢ = = - = & 4 Y
let 6 = {u:yp ¢ Qo’ My L@l}""’“k L?k}} and © = R, and let X(n),
Kn(x]u), L be as specified in (5.3.14). Fix T = (rl,...,r&} > 0, and
) _ e _ N e o .
choose kl(n) Foee. = kk(n) = ‘/—;!/0'9 R {(y1)~"a/k)° ri/“ < yi __<_ 1/2’
i=1,...,k}. Then

d - [km1 7 = {(zgs.n00z) € O

- = 5 = 1
d. yi/ki(n) 255 1 1,...,%, (yl,...,yk) e R}

(5.4.10) -
ri T,
= {(Zl,...,zk): éi - "z’mizi < di + ‘QEZ'(-;}T} 1= 13-..,k},
and
sup [... ] Kn(xfu)du[l}.‘.du[k}
te0 ¢ km)17IR
T, r
(5.4.11) ty, * §~o/¢5” ty 5»0//5
= t ’ouU’t f f K (X‘u)duu] du !'1(1
1 k Ty P T g
tk - §~0/ n tl - 5_0/ n

For the case k = 2, (5.4.11) becomes (when E}l] = Xy and §t°1 = x?)

T

T

tz + '*230/‘/;1_ t}. -+ ‘2}0//1—1_ _}.‘(Xl-—u {1}}2_}_{}(?-“ !’2]}2
oo foo e ) e
tgﬂf 2702 r, ) rl _

t7 - '2:0/\/51 tl - TO/\/H

2 2
] .1_{"2‘“ 1 . ;{Xl‘“ [2_1.]
Lo lom | oA

1% r2g
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e, B h
offa 2 ol 71 1,
_ 1 7211 T 2V2
=  sup — — € (3.\)1 dv 2
ttyl, ) e L2 2m i
272 T2 17171
o/fe  ° ot 2
Y27, T2 1% 0T
G/\/g 2 O'/t/;{ 2 1 2 1 2
“3V11 T2
+ —— ——e 7 “dv, dv
(5.4.12) /ow /7 102
T t,-% T t,-Xx T 2m am
271 2 17%2 1
o 2 offn 2 B
t.-X T t,-X T
= sup & 1 ; + 55} - 9% A 1 - 51-1°
tlgtz o/Vn } o/Vn J
X, T ty % "2}
o4 O o .2_._. - @ - .2,..._
o//n o/vn J
I A N ey S 1 1
o/v/n 2 of//n 2
f s
a}@ ty=Xy . fg. ., t,-%, ) 321
z o/vn 2 a/V/n 2 .
/n
}3_-, : d e - = - - .
LEMMA: Let d S (xz xl), t1 X, o+ alc//g; t,=%, a20/¢§f
g i { gith whi ie
Then an MPE is ‘tl’tz} with 252, which achieve
(5.4.13) sup {{@(a1+r1/2) - @(al~r1/2)}{®(a2+r2/2) - @(az~r2/2)}

21:%
+ {®(al—d+r1/2) - @(al~d~r1/2)}{é(az—d+r2/2)

- @(az—d—rg/Z)}}.

Proof: By definition (5.4.2), for our case as specified above (5.4.10),
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the MPE is (tl,tz) which achieves the supremum in (5.4.12). If we use

/n

d = —E{xz—xl) and transform via tl = X, + alG/Vﬁ, t2= X, - 320//5; this

1

(tl’tz) will be specified by the (al,a7) which achieves the

sup [{®(al+r1/2) - ®(a1=r1/2)}{®(-32+r2/2)~ @(—az—rz/Z)}
a.,a
1°72

+ {Q(a1~d+r1/2) - @(a1~d—r1/2)}{®(ra2+d*r2/2) - @(—a2+d-r2/2)}3-

Using the relation @(x) = 1 - &(-x) (x € R), this becomes as specified

in the statement of the lemma.

LEMMA: The supremur of (5.4.13) occurs only at (al,az) with
(5.4.14)

0 < a; < d, 0 < a, < d.

Proof: By reasoning as at (5.1.5), the supremum must occur at a
critical point. However, if we set the partial derivative with respect

to a, equal to zero we obtain

1
¢(a1+rl/2) - ¢(a1—r1/2) @(az—d+r2/2) - @(a2—6~r2/2)

¢(31"d+rl/2) - (b(al‘d"rl/?) ) ®(82+3‘2/?) - ®(a2°r2/?)

Since the r.h.s. is always < 0, the 1l.h.s. must always be < 0. lNow, the
denominator of the 1.h.s. is nositive (negative) iff a, < s (a1> d).

Thus, we must have

T T < 0 if a, <4
1 1 1
¢(31+ 5“3 - ¢(al- 5“3
>0 if a1 > d
i.e al > 0 if al < 4
a4 < 0 if a1> d

This proves the result for P the result for 2, follows similarly.
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LEMMA: By imposing a consistency criterion for estimators

(5.4.15) similar to (5.1.4), we may restrict ourselves to (al,a?) with

< d,

a; +a, <

1

Proof: In order that we have t; < t,, we must have Xy * alo//ﬁ

< %, -a,o//n, i + < v = d
2 %X, ~a,0/vn, i.e., 2y + 2, M_mg{x2~x1) = d,

Note that, in the region of (al,az)—space in which Lemma (5.4.14)

tells us the sunremum of (5.4.13) nust lie, we have syrmmetry (of values

of (5.4.13)) sbout the line a., +

1 a, = d; see Figure (5.4.16). Thus, our

consistency criterion only elirinates an illogical duplicate maximizing

point.

2
d bk

-

N
- \‘

- \\

~
N a, +a, =d
— NN 1 2
B \\ 73 g
- \\ ',/// :/,
T N g
e B
\
N
~

S— e e o e \\V

o ~ A

S 2o

— SN
- . .
=
o] d 1

Figure (5.4.1%8)
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LEMMA: For any fixed 8§ > 0, there is 2 K(rl,rz,é) such that

if d 3‘K(r1,r?35) then (5.4.13) is maximized (in the shaded

(5.4.17)
region I: a; > 3, a, > 0, a, + 2, < & of Figure (5.4.16))

inside the disk D: a] + af < 6.

Proof: Let f1 = {@(a1+r1/2) - @(al-rl/Z)}{®(32+rz/2) - ®(a2~r2/2}}3

f2 = {®(a1-d+r1/2) - @{al—d—rl/Z)}{@(a2~d+r2/2) - @(az—d-rz/Z)}; then

(5.4.13) is sup {f1+f2).
(algaz)in I

How over (al,a?} e I, fl is maximized at (al,az) = (0,0) and

decreases as a; and a, increase. Thus, if we wove (al,aq) outside D,
4

the loss in £, is at least fl((O’O)) minus the lareest value of

1

fl({al’aZ)) cn the boundary of D inside I: there a% + a% = §, SO

.

su f ((a,,a,)) = sup {o(a,+r./2) - o(a,-r./2)}-
a%*ag:s IR R 0<a, <5 171 171

(al’aZ) in 1
-{@(;js-a%+r2/2) - @(/5-a71~r2/2)}

j_{Q(c16+r1/2) - @(clé—rl/Z)}{®(r2/2) - ®(~r2/2)h
where we may sunpose without loss that ¢, = cl(rl,rz,é) > 0. (This can
only fail if the supremum occurs at (al,az) = (0,8), in which case we may

reverse the roles played by 2y and 2, in our inequality and the
argument below will go throurh similarly.) Thus, the loss in fl via

going outside D is at least
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{@(rl/z} - ®(~rl/2)}{®(r2/2) - @(—rz/Z)}

-{é(c16+r1/2) - @(clé—rl/Z)}{®(r2/2) - @(-r2/2)}

#

{@(TZ/Z) - @(-rz/Z)}[{é(rl/Z) - @(-rl/ZB{®5c16+r1/2) - ®(c16—r1/2)}}
= cz(rz)cz(rlsrza's) (sa‘Y)'
The gain in fz (which increases as 2y and a, increase in I) is less than

sup <I’(9—1"5"“1‘1/'2)@(.':1,)—d+r2/2)

< sup @(al-d+max(r1,rQ))é(az—d+max(r1,r?))
(algaz) in I . -

it

sup @(al-d+max(r1,rz))é(az—d+max(r1,rz))
a,+a,=d

172
a,,a,>0

1°72

sup @(al-é+max(r1,r2»®(-a1+max(rl,rz)).
0<a,<d

We will show that

lim  sup ¢{a

-d+max(r,,r,))0(~a, +nax(x,,r,)) = 0.
droo Oﬁﬁlﬁﬁ 1272 1 1°72

(5.4.18) 1

Thus, there will exist a K(rl,rz,é) such that d Z‘K(rl,rz,a) implies the
gain is less than cz(rZ) cs(rl,rz,é), which will prove the lemma.

Let ¥ and Y be i.i.d. N(0,1) r.v.'s. Then (5.4.18) is equal to

i - - y 1
lim sup PI[X <3y d+max(r1,r2), Y < a1+max(r1,r2)j,

(5.4.19) G <<

which involves the probability in a certain rectangle in R?, as

illustrated in Figure (5.4.20).
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(-d+max(r1,r2},max(rl,rz))Y

\\\ /// max(rl,rz)

For al

(max(z,,T,),-d+max(r,,7,)) /

X+ Y= ~d + max(rl,rz)

Figure (5.4.20)



117

Thus, (5.4.19) is less than or equal to the limit of the supremum of

the probability to the left of the line X + ¥ = -d + max(ri,rz),

lim  sup P[X+Y < —d+rax(r 2}] = lim PIX+Y 5_-d+max(r1,r2)} =0
dro 0<a <d droo

THECREM: Forun e 0(n*) (see (5.3.15)), the MPE ft tz) is

(5.4.21) equivalent to the CGMLE (f[I},X[Z]) found in Section 5.3, and

thus has the same optimum proverty as that CMLE.
Proof: We wish to show that, for each u ¢ 0(n*) and for each fixed
§> 0,

1= i:i P [k(n)max(]t “X{l] }t xm{) < 8]

= 1lim P [z:%ax(]allo/ REN lo/v/n) < 61
mm

= lim Pu[max(al,az) < 871,
00

where the last equality uses Lemma (5.4.14). Now by Theorem (B.3.2),

the density of d = (nrz] { ]) for y > 0 is

2 2
=2 NI 7 B G

where n = u[Zl - u[l]. Thus i:i P Id > K(r 2,6)] = 1, so using Lemma

(8.2.1),

5 a = 1 m d r =
iii Pu{max(al,az) < 8] iii P“{Wax(al,a2)< s | a> (r;,r,,8)] = 1,

where the last step uses Lemma (5.4.17).



CHAPTER 6. INTERVAL ESTIMATION
6.1, GENPEPAL FORMILATION
Consider joint confidence interval estimation of u{l},...gu[k}.

Our observed statistics under Tule (1.3.2) are Xij (i=1,...,%:
ji=1,...,n);: we take "},,..,Xg to be fundamental as at (5.1.1) (note,
as has been pointed out by Bechhofer, Kiefer, and Sobel (1968), Part I,
Remark 4.1.2, that ﬁ',...,ﬁgare sufficient and transitive for u,,....u
after n stages; see p. 426 and Theorem 10.1 of RBghadur (1954), as well
as pp. 334ff of Ferguson (1967) for details of these notions), choose

our interval to be of the form

I

1]

I(Xl,...,Xk)
(6.1.1)

o

Py SHyppp £

SRR 5»“{k} <h

= {u[llg...;u{k]i 'k}’

where g.,h .:g, ,h, are functions of ¥.,...,% , and ask two invariance
1’ “k’k 1

:w’ks

1;..

conditions (involving relabeling of populations and shifts of location).

SYMMETRY IMVARIAMCE: For all B e S

x’
(6.1.2) _ . _ .
5, <7 = Y b4
I, I(XB(IJ,...,“B(k)).
LOCATION INVARIANCE: For all c e R,
(6.1.3)

I(X1+c""’xk+c) = I(Xl,...gxk) + C.

Weiss (1963) pointed out, in another context, that (6.1.2) and (6.1.3)
are not necessarily the only or the best ways to compensate for pnermuta-
tions and shifts of location, respectively: there may be othexr ways to

compensate which yield the same interval.

118
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LEMMA: Under condition (6.1.2), I(ii,...,i%) must be of the
6.1.4) ~
form I(X PR 4 .
1 Ik

Proof: Condition (6.1.2) implies that I depends only on the ordered

DEFINITION: Let s eesdy (al >0, ... >3y 1_0531 ety

(6.1.5) = 1), b* (0 < b* < =), and (G,H) (-» < G < H < +=) be con-

stants pre-set by the experimenter.

e now take our loss function to be a weighted sum of the proba-
bility that I(Xkl]”"’xik]) doesn't COVGT}J[i} plus 2 multiple of a

gquantity related to the length of the interval on “{i] i=1,...,k):

0SS FUNCTION: W ;I(Xpqqse.+5X =
LOSS FUNCTIO GI s X))

(6.1.6) %
= mi - -},
izlai{?u{u{i} ¢ (gi,hi)] + b* “1n(hi gi,ﬂ )}

Note that the length hi—gi is the special case of min(hi—gi,H—G) where
the experimenter chooses (G,H) with H-G = +o,

RISK FUNCTICN:

(6.1.7) _ _ - =
r@‘EI(Xfll""’X[k}}) = Euw(u;I(X[lj,...,X[k})).

Thus,
r(u;I) = EUW(U;I)
k

6.1.8) Lo23B P Bysy £ (g0 )] + B minhy-g, H-0))
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k
I fupgqy £ (g5500] + b

ll o~ 5

jﬁhm1n(h.—¢ LH-G)

i=1 * i=]1
k k
=1 - . * : mi .~g, ,H-G),
1 Z {u{ ] £ (gi,hi)] + b izlaiEpmln(hl gl,H )
Our aim now is to find functions glshlg...;gk,hk which are in sorme

sense optimal with respect to (6.1.7), e.g. which achieve the winimum

inf Sup r(u;I(Xgll,...,A{k]))

(6.1.9) ,
h . ’gk’hk UEQO(U {},})

gy0hy5
and provide a minimax invariant confidence interval. (The u in (6.1.9)
will be non-randomized, since y is a fixed unknown and not a random

variable: I(Y{l]""’?tk}) will be considered non-randomized also.)

Although we have been unable to carry out (6.1.9) or other ontimization
in the general case, results for special cases are obtained below. Note,

for use below, that by Lemma (6.1.4) and (6.1.%) with ¢ = —?} ] we have

the

THEOREM: Under conditions (6.1.2) and (6.1.3), I(S{'l,...,??k)

must be of the form I(Xgl},...,ﬁfk}) with (for i = 1,...,%)

(6.1.10) B _
I A A e R R

Frpees X g

=
L]
<4
oy
ol
[t
%
~
4
ey
b
[



CHAPTER 6. INTENVAL ESTIMATION

6.2. INTERVALS OF FIXED "IDTH WITHIN A CERTAIM SUBCLASS

In Theorem (6.1.17) we looked at the form of intervals of type
(6.1.1) under two invariance conditions. We now study the subclass of

joint intervals

IN(X[I]"“’X[}{}) = {u {1],...,11 [k}:
(6.2.1)

)8 <rpy < Xt oYy oA Sepg S Xpgthids

which utilize the "natural® estimators 2}1] of Mri] (i=1,...,k)

strongly by taking gi,hi;,..;gg,hﬁ to be constants., Further, we will

suppose the experimenter has specified positive constants d1»~-"dus and

A~

wishes the interval about u{i} to be of length di (i =1,...,%k). ¥e

then study intervals of fixed width within subclass (6.2.1), i.e. the

subclass of joint intervals

Ip 5 eypse o Xpy)

(6’2'2) = {u {113...5}1{1{}: X{l}'i’(k& -4 ) U {1] }"l"h
Spt 84 S £ g
Then (here it is logical to choose (G,H) = (-»,+x=})
T(u,IF W
X - _ k
(6.2-3) = 1 - izlaipu {u [i] £ (X{i}—!‘(h;-di)’X{j,]+h§}] +b*i‘§1aidi
k k
=1+ b* .d. -~ X -
crrleds o LR Dy < Xy eyl

121
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which is of the form constant (specified by the experimenter) minus a

weighted sum of probabilities of coverage of u [11° T k] To find the

h*, ... ,hi which are optimal in the sense of (6.1.9) (minimax) within

subclass I N of (6.2.2), we must find the h;'s which achieve

F,
k
(6.2.4) su inf a,P Tu,.,-h* < X .4 < pp.q-h*+d.].
h"{,..z.),hi: ue @ [k}) igl SSETRL £ M Sl £ ISR £ I i
For the case ap = ... =Y 4 = 0, a = 1, suppose we set hfé = dk/Z.

Then Lal Saxena and Tong (1968) claim in an abstract that

inf Pu [u {k}-dk/z < ifk] <y {k]+dk/2]

nel (uryy) )
% m ‘
occurs at u [1] = ,,, = p{k], and therefore equals [Q(T -a-”
% /i ) . . X X
- [®[~ 7—»-—(—3—]1{ ; i.e., if one uses the interval (X{k]—dk/Z, X[k]*dk/z)

for p [x] then the probability of converge is a minimum when

by T TR



CHAPTER 6. INTERVAL ESTIMATION

6.3. UPPER AND LOVWER INTERVALS WITHIN A CERTAIN SUBCLASS

The subclass of joint intervals I, of (6.2.1) utilizes Xfi} as an

N
estimator Of‘J{i] strongly (i = 1,...,k). For problems in which we
wish an upper (lower) joint confidence interval on ”{1]""’“{k] we will

set gi = .. = gi = 4o (h; = ,,. = h§ = +») in (6.2.1). Then our

interval is in one of the classes

(6.3.1) IN,U = {u{l],...,u[k} U[l] < X }+hi”"’“{k] V[K]+b*
(6.3.2) IN,L = {u[ll,...,u[k]: X€1]~g§ 5—“[1]""’th]'g§ ghu[k]}
and

2’
(6.3.3) sy ) =1 - ) ap {xm {Th;} + b* (H-G)

» i=1

" B .

(6.3.4) s IN,L) =1- 3 2; {*{ ] S¥n T»g;] + b*(H-G).

i=1 *

For the case of upper intervals we may choose H-G = {0 without loss.

Then

K
(6.3.5) Ty ) = g 1Py [Fpyy Swpgp il

Similarly, for the case of lower intervals we may choose H-C = 0

without loss. Then

(6.3.6) Ty ) = Z 2;% gy zwpyyregl

123
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THEOREM: For any i (1 < i <k), if a; = 1 (thus aj = 0 for

j # i) then the risk (6.3.5) ((6.3.6)) is the probability

that our upper (lower) interval doesn't cover u (i1’ and is

i-1 terms k-i+l terms

imized Q ) (r—-—»f»-——'« ,..«,..._._/&_...w-.‘)
maximized over u ¢ (T at u= {(-o,,..,-® s seeesl s
o [1} 8] > 3 :U[lls 2 {1}

(6.3.7) i terms k-i terms
/\M

(= (U[i],°-':u{i}’+°°s"-s+°°))'

Thus, for any v (0 <y < 1) an upper (lower) confidence

interval of minimal probability of coverage vy is (“w,Yfi]-i-h;)

1 1
(pyp-g5,+=) with hi=@/me (v h ey = (o/me™ ().

“~

it

Proof: Upper Interval. For any i (1 <i <k), if a; 1, ::1j =0 (j # 1)

then
sup T ;IN U)
pe (u {i}) ’
= sup P [X;.q Sup.q-h*] = sup F—  (u;.,-h%)
;J%:Qo(u {1}) wl [i} 1 11290(11 {1}) X[i} (171
= lim P =M {3—({1] f.li{]_]‘h;]

Mee M1]70 1177 T M (K]

since, for i = 1,...,k and x ¢ R, P}f
[i]

Theorem (2.1.11). It follows by a modification of the proof of Case 1

{x)+ as uz'l\ {2 =1,...,k) by

of Theorem (2.2.4) (using 1 for x) that

. = X -n¥*
ueﬂs‘aip ) T(MIN’H) Pu S TR T Lx{i] iu[i} hl}
o" [i] {13 -~ li-11 T[4l [k]
-h¥*
o 1
= P mn(Yl""’Yk-iﬂ) <

0//5:
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where Y are k-i+l independent N(0,1) r.v.'s. To make the

17 Ve

minimal probability of coverage vy {0 < y < 1) we set h* so that

i

-h*

. > 1
1-y=P mln(Yl""’Yk—i+1) K —
o/Vn

~h*
1 - Pimin(Y,,...,Y, .. .) 2_——%:
1 k-i+l o/Yn

e Y[K-it n Y|k-i*1
1- |1-0 2 ]! =1 - |o|—= ;

o//n o/Vn

{ h* k’i+1 1 h* %
thus v = |0 —> A e o L] and ny = (o/me (M.
o//n Ve

Lower Interval. For any i (1 <i < k), if a; = 1, aj =0 (#1)

then by Theorem (2.1.11)

sup @I, ) = sup P [Xc.q > brsqted]
usﬂo(u[i]) N, L ueﬂa(u[i]) W (i1

=lim B . = [ Xpaq > upqtefl.
M 4o U [13-1.-=u {i] U [i+1}°“‘:”[};]’M [1] [1] i

By a modification of the proof of Case 2 of Theorem (2.2.4),

]

sup (il ) —valXi] 2 vpi7*e)

P .s
TE S M1DT T M) T T M

]

g¥
P'max(Yl,...,Yi) > {_
o//n

where Yl"“’Yi are i independent N(0,1) r.v.'s, To make the minimal

probability of coverage vy (0 <y <1) we set g* so that



i
!
2
i
jaw]
fromm—
=}
W
b
pAY
et
ok
yut?
sl
jie]
o2
[l N S

I yee oY) < il i I ;
1 1 c//n

g¥ 1tz g* 3‘»
thus v = [@{ 1 }} ) Yl = @( 1_}, and g* = (of/n)e" (yl)

#
[

H
=J
=
o
"
pas
o

o/'n o/¥n

H
1S

THEOREM: The upper confidence interval of (6.3.7) on;i[i}

which has minimal probability of coverage y has maximal prob-

1 i
ability of coverage 1~[1—yk"1+1] (i=1,...,k; 0 <y <1).
{(6.3.8)
The lower confidence interval of (6.3.7) on u{i} which
has minimal probability of coverage y has maximal probability
1]k-i+l

of coverage lw[l-y;J (i=1,...,k; 0 <y <1).

The proof of Theorem (6.3.8) is similar to that of Theorem (6.3.7)
and will be omitted. Note that (6.3.7) and (6.3.8) also hold when k = 1,
in which case the upper and lower intervals on;J[l] are exact. The fol-

lowing table illustrates the maximal degree of overprotection.
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k 1 2 K

Y i=1 i=1 i=2 i=1 i=2 i=23
.99 .99 .995 1.000 .997 1.000 1.000
.95 .95 .975 .998 .983 .999 1.000
.90 .90 .949 .99 .965 .997 .999
.80 .80 .8%4 .96 .923 .089 .0992
.70 .70 .837 .91 . 888 .973 973
.60 .60 .775 .84 .843 .949 .936
.50 .50 707 .75 .794 .914 .875

For the special case i = k, Fraser (1952), p. 579, gave the upper
interval On}J[k} of Theorem (6.3.7) as one with probability of cover-
age at least y. Fraser proves that under mild conditions an upner
confidence interval fOT}J[k] (k > 2), with probability of coverage

vy (0 <y <1) for allu ¢ Qo’ does not exist.

Our results above extend to certain location parameter families
if, instead of set-up (1.3.1) (normal distributions), we take set-up
(2.1.1) with assumption (2.1.2) (a location parameter family with
finite mean).

THEOREM: Suppose we have location parameter populations

as in (2.1.1) and assumption (2.1.2) holds. For any i

(1 <i <k), if a; = 1 {(thus aj = 0 for j # i) then the risk
(6.3.5) ((6.3.6)) is the probability that our upper (lower)
interval does not cover u{i} and is maximized over

u e QO(U [i]) at
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(6.3.10) i-1 term k-i+l terms i terms k-i terms
N U o \— S LS.
eest®) ).

o y Bt

H = (‘°°;~~-,"'°°,U{i}:-«'ﬂl{i]) v = (u{i}a"'su[i]’*ms'
Thus, for any v (0 <y <1) an upper (lower) confidence
interval of minimal probability of coverage vy is (—w,fti}+h§)
1
1

= . - k-i+1
(&X{i}~g;,+w)) with hz = «Gp (1-v 1 ]f) + Ef

1
(gf = Gnnl(yllf) - Eg). If gn(x]f) is symmetric about x = 0

1 1
. P I S B | P D TP
this becomes h¥ = 6y |£) + Be (87 = G (v | £) EQ).

Proof: Upper Interval. For any i (1 <i <k), if a; = 1, aj =0

(j # 1) then by Theorem (2.1.11)

sup I, ) = sup P [X;.q < upsq-h#]
HEQO(ﬂ[i]) N,U UEQG(L{ [1}) Wl {l] *
=1lim P _ _ _ [X;.q <up.q-h?]
Mo o “{1]“'"““[i—l]‘“M’“{i}""=“{k] [i] fil i
= ;}?m HM(u[i}‘hg)’

where HM(x) = Pu{x{iljﬁj with u = (»M,...,-M,u[i],...,u[i]). Now

HM(X}+Hm(x) for all x by the expression for Fg (x) given in the proof
[i]
of Lemma (2.2.5). Thus

sup I’(U;I\ ) =P _ _ e } = {5(* 1 < ups —h".”]
UEQO@{i]) N,U P[l]----*U[i_ll SH [i] e u{k] {1] [1] i

P[min(Yl,...,Y

wh %
k-i+1) S PP*E

£l

where Y are (see (2.1.7)) k-i+l independent r.v.'s each

1o o Yy i

with d.f, Gn(y{f). It follows that to make the minimal probability
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1
-1 k-i+1
of coverage vy (0 <y < 1) we set h# so that hf = -G "~ (1-y If) + E

£

Lower Interval. This case follows in a similar manner.

THEOREM: The upper confidence interval of (6.3.10) on u[i]

which has minimal probability of coverage y has maximal prob-

1 1
k‘l*l} (i=1,...,k; 0 <y <1).

(6.3.11) @ability of coverage 1-{1*v
The lower confidence interval of (6.3.10) on ks which

has minimal probability of coverage y has maximal probability

11k-i+1
of coverage 1—[;—y1} (i=1,...,k; 0 <y <1).

The proof of Theorem (6.3.11) will be omitted. Note that this
result implies that Table 6.3.9 provides an analysis of maximal over-
protection for our location parameter case as well as for the normal
case. For the special case i = k, Fraser (1952), p. 576, gave the upper
interval on “[k] of Theorem (6.3.10) as one with probability of coverage
at least y. Fraser proves that under mild conditions an upper confi-
dence interval for ”[k] (k> 2), with probability of coverage vy
(0 <y <1) for allyu ¢ 90, does not exist if f(x-u) satisfies a
condition of bounded completeness. We will now extend this result to
u[i] (1 <i <k; k >2); our mild conditions are slightly stronger than
Fraser's.

DEFINITION: For 1 <i <k, let gi(xl,...,xk} be a real-

valued function such that for any j (1 <j <Kk



(6.3.12)

(6.3.13)

(6.3.14)

(6.3.15)
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gi(xl,...,xk) fgi(xl""’xj~1’xj+6’xj+1""’xk)
for all XyseensXy € R and &> 0.

DEFINITION: For 1 <i <k, let

{1 if g.(Xyse..5%) > O
| b T M S
(xl,...,xk) = §

% )
LO if gi(xl,...,xk) <0,

DEFINITION: For any i (1 <i <k) for 2 = 1,2,... let

gthe ith smallest of YyseeesYy if 2> i

7

Ri(Yl)“'ﬁyi) = <x

[+ if 2 <1i.

Let Ro(yl"°"y2) = -0 if 2> 1.

DEFINITION: For 1 <& <k, let

- . 3 D 3L
S, = llxy5..0x ) Ri(xj,J#z) > x> -ki_l(xj,Jrl)}-

Note that ¢8 i(xl""’xk) is a monotone non-decreasing function of
b

X

(6.3.16)

(6.3.17)

100Xy and that S

.. . . k
..»5, are disjoint sets whose union is R,

1°° X
ASSUMPTION: Gn(y-elf) is boundedly comnlete (each-sided),
i.e. Eg(X) = _Zg(x)dGn(x»e§f) = 0 for a dense set of

6(<0 or>0) and lg(x)] <M imply g(x) = 0 (a.e.).

THEOREM: Suppose we have location parameter populations as
in (2.1.1) and assumptions (2.1.2) and (6.3.16) hold. Fix
i (1 <i <k; k >2). Then an upper confidence interval for
u[i]’ with probability of covering y (0 <y < 1) for all

U e Qo, and satisfying (6.3.12}, does not exist.
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Proof: Assume that gi(xl,...,xk) satisfies (6.3.12) and yields an
upper confidence interval for “[i] with probability of covering

y (0 <y <1) for allu ¢ Qo. We have

U _ _
Y = Pu[u[i] igi(xls"' k)} [ ], 1: ":Xk)
= E_i% m,1("1"'"Xz-r"z’xzu“"’Xk)dcn(xz‘“ [i}i-Ef]f) fuy =upgy
_ (%) ¥ ¥ : -
= E{%J[lj’l Al,...,Xz 1° 2+1, "’Xk)] if M, = u[i}
where
e x X X x.) = o (x X )46, (x,u 1 1+E | £).
T R e T [117°¢

We now derive conditions on the function Bg g‘ From the expression
»

above it is seen that (if My = u{i])

W) g - _
E{Bo’i(xl,...,xz 1° £+1,...,Xk) - y] = 0.
Hence, as in Fraser (1952), p. 580,
() -
Bo i(xl""’xz-l’x2+1""’x?) = v {(a.e.).

Using the above condition on 8( 3, we obtain conditions on the function
’

¢o,i(x1""’xk)'
s x,.

Y 1,X2+1,...,xk) (a.e.)

i

f¢o’i(x1,...,xk)dGn(xz*Efif).

Consider fixed x

 ERRRELI IS FEIPEPERRPS Now ¢° i(xl""’xk) is a mono-
3

tone function of X, and since it is a characteristic function it will

have the following form:
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value of x, at which

%
u(xl,...,x£~1,xz+1,...,xk} = max ¢o,i(xl""’xk) jumps , Ri_l(xj,J#Q)
from 0 to 1
.
(b if Ri_l(xj,J,z) < x, < u(xl,...,xz_l,x£+1,‘..,xk}

¢ (X 50..,% ] =
0,i'1 k i1 s o
gl if u(xl,... ,xk) <X, <o,

sXg q9Xg qseee

Using the function u(xl,...,xk) we obtain

8

Ri_l(xj,J#z)
(6.3.18) vy = ¢0,i(x1,...,xk)dGn(x2+Ef{f) * dGn(x2+Ef{f).
-0 u(xl,...,xl_l,x£+1,...,xk)

However, since
3 oL
Rl"l (Xj er'Q')
0 < J ¢o’i(x1,...,xk)dGn(x£+Ef]f)

= Y 1
< f dGn(x£+Efff) PIX, 5,Ri_1(xj,3¢x) + E.]

-0

then

-1
G, (1-y|£) - Ee f-u(xl""’xg—l’xg+1""’xk)

-1 o .
iGn (1"\(+P[Xz < Ri-l(xj’3#2}+ﬁf}) - Ef-

. . . . Ch e
The inequality on u(xl,...,xk) implies that ¢o,i(xl""’xk) = 0 for

» ..1 - 3
[ - Y - = oy K3
(Xl,...,xk) € Sz with Xl < G (1 Y!f, Ef‘ This is true for 2 1,.. ,k

hence ¢ (xp,...0x) = 0 i Ry(x;) < G;l(l-y!f) - E;. Consider now



133

. . -1 .
(XpseeosXy 15%guq0e0 %) having Ry, (5,540 < 6 (1-v|£); in (6.3.18),

the first integral vanishes leaving
o

= G .

Y u(£ X X X | n(x2+Ef!f)

100Xy 10Xy 0%y

EAN

-1 . .
Therefore u(xl,.. ,xk) = G (1-v|£) - Ef, if R, 1(xj,3#2)

SaXg _10Xgapree

-1 R .
< G (1-v|£). From this equality on u(xl,...,xg_l,x£+l,...,xk), we

obtain the following conditions on ¢O i(xl,...,xk):

. -1 ”
(0 if Ri(xj) <G, (1-v[£) - E,
. ~1 )
éO,i(Xl,.'.’xk) - ‘-1 if Ri(xj) > Gn (1‘Y]f} - Ef
-1
Ry 1 (x5) <6 a-vi6.

But since ¢0 i(x1+6,...,xk+6) is monotone in &, we have
3

. -1
0 if Ri(xj) < G (-v[£) - Eg

d L (Xise..5X ) =
0,i"1° k . -1 :
1 if Ri(xj) > G (-vy|f) - Eg-

Therefore
. -1 -
<0 if Ri(xj) <G (i-y|£) - Eg
g; (xps- 0oy e n S P
>0 if hi(xj) > G " ( -y|£) - £
Similarly
. -1
< U[i] if Ri(xj) < Gn (I“Ylf) + U[l} - Ff
g; (xg5--05% ) N
Z M if Ri(xj} > G_ (1-y|£) + Mpig - Ege.
This completely determines gi(xl"°"xk): gi(xl,...,xk) = Ri(xj)

- G;l(l~y|f) + Ef. But we know that a constant added to this yields
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1
K-1+1

Xti} - G;l(l-y [£) + Eg, which doesn't always yield y; therefore

this can't.

Note that the argument of Fraser (1952}, p. 580 (top) showing that

the interval for “{k] generated by his proof has coverage at least vy

doesn't extend to our case, since although

- J . * i »
{Rk»l(xj’Jrl) < Al = {Rk(xj) > A iff x> A},

2

. ., .
{Ri_l{xj,Jrz) <A} # {Ri(xj) > A iff x> A}.

Note that (if we wish to consider location parameters and not
means) restriction (2.1.2) can be dropped throughout this section and

the results stated in terms of 6[1],...,6[k].



APPENDIX A. MAXIMA AND MINIMA OF REAL-VALUED FUNCTIONS

OF n REAL VARIABLES

A-1. n=2

Although the case n = 2 is included in the case n > 2 of Section

A-2, it will be convenient to have stated separately the results and

notations of this special case. (Note that some authors, e.g.

Kaplan (1952), p. 126, state these results in a somewhat more cumbersone

manner. )

(A.1.1)

THEOREM: Let f have continuous second-order partial

derivatives on an open set S in P2, Let (x?,xg) € S be such

that
Bf(xl,xz) ) 8f(x1,x2) - o
Bxl o o ) sz o _o S
(xy5%,) (x45%,)
and let
2
A - 3 f(xl,xz)
ax% o .0
(x15%5)
\ 2
o - 3 f(xl,xz)
9X,3X
1772 o o
(x75%5)
2
c - 3 f(xl,xz)‘
3x2
2 o _0
(xl,xz).

135
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&) o] o
Then (xl,xz) is
(i) a relative minimum if B2-AC <0, A > 0;

(ii) a relative maximum if B2-AC < 0, A < 0;

il

(iii) of undecided nature if B2-AC = 0; and

\'

(iv)  a saddle point if B2-AC > 0.



APPENDIX A. WMAXIMA AND MINIMA OF REAL-VALUED FUNCTIONS

OF n REAL VARIABLES

A-2, n > 2

Even in Hancock (1960) and Apostol (1957) the presentation of the

theory of maxima and minima is not as complete as we need (e.g., in

order to show in total the asymptotic nature of (X,...,X) in Section

5.1).

(A.2.1)

We therefore present a summary gathered from several sources.

THEOREM: Let £ have continuous second-order partial
derivatives on an open set S in 27 Let (x?,...,x;) e S be
such that

Bf(xl,...,xn)

3 X.
i

=0 @

L
[
w

..},

(o]
(xl,...,x 3

and let Q = (dij) where

2
3 f(xl,...,xn)

ij BXBX;

[o]

o]
(xl,...,xn)

Then the real symmetric matrix Q is either
(1) positive definite, in which case (x;,...,x;) is
a relative minimum;
(ii) negative definite, in which case (xg,...,xg) is
a relative maximum;
(iii) semi-definite, in which case the nature of

o] o . .
(xl,...,xn) is undecided; or

(iv) indefinite, in which case (x;,...,x;) is a saddle

point.
137
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Proof: In addition to previously-cited references, see Courant (1966),

pp. 204-208,

THEOPEM: A real symmetric matrix O, having eigenvalues

Al""’kn (say) is

(1) positive definite iff xi >0 {i=1,...,n);
(ii) negative definite iff Ai <0 {i=1,...,n);
(iii) (a) positive semi-definite iff A.> 0 (1=1,...,n)
(A.2.2) 1
and at least one Aj = 0;
(b) negative semi-definite iff Ai <0 (@{HE=1,...,n)

and at least one Aj = 0; and
(iv) indefinite iff at least one Ai is positive and at

least one kj is negative.

Proof: Recall that the eigenvalues of a matrix Q are the n roots of the

equation {Q~AI! = 0, and see Wedderburn (1964), p. 92.

THEOPE!M: For the real symmetric matrix Q, let A = det(Q)

and AO =1, Let An-t be the determinant of Q with its last
t rows and columns deleted. (Note that An = A,) Then Q is

(i) positive definite iff Ao’Al""’An are positive;
(i1} negative definite iff Ao’Al"”’An are alternately
positive and negative;
(A.2.3)

(iii) (a) positive semi-definite iff all »nrincipal minors

of Q are >0 and A = O;

>
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(b) negative semi-definite iff all principal minors
of Q are >0(<0) if their order is even (odd), and
A= 0; or
(iv) indefinite, otherwise.

Proof: For (i) and (ii), see (e.g.) Narayan (1962), pp. 165, 167. (Note
that the reference cited by Apostol (1957) is inadequate; it proves a
weaker theorem which utilizes more than the leading principal minors of
0.)

For (iii)(a), from Browne (1958), we know O is positive semi-
definite iff all principal minors of Q are >7 (see pn. 120-121, Theorem
46.5). If 0 is to be positive semi-definite but not definite, then
the condition should also specify A = 0. (This modification holds for
the => implication by the well-known result A = Xl...An, e.o, Faddeeva
(1959), p. 14. The <= implication is clear.) We use, of course,
Theorem (A.2.2).

For (iii)(b), note that for any matrix A of order i, det(-A)
= (-l)idet(A), and that 0 is negative semi-definite iff -0 is positive

semi-definite.

Note. A condition such as "AOSAl,...,An > 0 and A = 0" will not
suffice for (iii)(a) of Theorem (A.2.3). For examnle, consider
0 0

0 -1).

=A A, = A and O is

B
£ = = = -B2
Note, If n 2, 0 &36}’ A = AC-B ,A1 2
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(i) positive definite iff B2-AC <0, A > 0;
(ii) negative definite iff B2-AC <0, A < 0;
(iii)(a) positive semi-definite iff B2-AC =0, A> 0, C > 0;
(b) negative semi-definite iff B2-AC = 0, A <0, C< 0; and
(iv) indefinite iff {B2-AC = 0, A> 0, C < 0} or
{B2-AC = 0, A < 0, C> 0} or {B2-AC> 0}.
Here, we have reduced the number of undecided cases ((iii) cases)
"beyond" those, namely B2-AC = 0, named in virtually all texts. (The
cases separated out belong to (iv) and are therefore saddle points.)
However, by a consideration of signs it is easy to see that the sets
{B2-AC = 0, A> 0, C <0} and {B2-AC = 0, A <0, C> O} are empty. (The
reason for this is the need to have at least one positive and one
negative eigenvalue, thus exhausting the supply of eigenvalues when

ns=2.)



APPENDIX B, DISTRIBUTIONS OF VARIOUS FUNCTIONS OF
CERTAIN PANDOM VAPTIABLES
- STRIBUTION OF X cees X
B-1. JOINT DISTRIBUTION O X[I]’ ’\({k]

Y, is

The joint density of 100 %

fil’.‘"S{T‘k(yls--*:yk)=f’)‘{‘1(y1)~“fyk(yk) (Yl € RE is= 1:---sk)

where f§~(o) is the N(ui,cz/n) density function (i = 1,...,k)
i

(see (5.1.1)). It is well-known that then the joint density of the

kv . 1 i X X i
ordered X, (i = 1,...,K), i.e. of k[l]ff"iﬁ[k}’ e

£ = (X ,...,%)
X s5eeesk 1° >k
[1]

ESS ,...,,ka(xe (1) Xg ) s ¥ 25X

- BeSk 1
0 , Ootherwise
X U X - :
oan [ ] cmeh[RRl) _8@_:_%} s cx,
= {BeS, a/Vn a/n )
. 0 , otherwise
¢ X A [x ST
) (/gyg)k¢ _§ill_:£ll.,.,¢ "B " (k] ) Xy Soe <Xy
= 48€Sk a/Vn o/Vn -
4] , otherwise,

\
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APPENDIX B, DISTRIBUTIONS OF VARIOUS FUNCTIONS OF
CERTAIN RANMDOM VARIABLES

B-2. LIMIT DISTRIBUTION OF 3(“{1],. ..,‘X"{k}

The limiting distribution of R‘[l]" "’T{[k] (under certain
parameter configurations) is of interest to us. Let {An, n > 1}
and {Bn, n > 1} be sequences of events on some probability space
(which may depend on n). Let a = (al,...,ak) £ Rk be fixed, and denote
the vector (ul+alo//§,...,uk+akc//ﬁ) by u + ao/¥/n.
LEMMA: If Il};}g Pn(Bn) = 1, then (if either of the following

(B.2.1)

limits exists) %}g} Pn(Aan) = %;g Pn(An).

Proof: Suppese lin P (B ) =1. Then by taking limits in P (B)
Pn(AI‘;' B) < 1we find lim Pn(Ag B ) =1, and hence
lim @ (8) - P (AYB )} = 0. Taking limits in P (A B ) = Pn(Anj
+ {Pn(Bn) - Pn(AnUBr?}yields our result.
DEFINITION: For u e Q_, let p(nju) = P, [5{(1) < ... <':=E(k}},
(8.2.2) where f(l)""’i(k) are as in definitions (1.3.13) and

(1.3.14).
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LEMMA: Let 0 = {u:yp ¢ 909 u1=u{1},...,uk=u[k}}. For all

(8.2.3) ¥ & 20,

Lim p(n|u+ac/vn) = Lim pu+a0//ﬁ{if1) <. < ?kk)] =1,

Proof: 1. Suppose thatu ¢ 2(#)n0. Then for all n large enough,

u+ao/Vn e 2(#),0. Then the Ytj) are independent and ij) is
the sample mean of n i.i.d. N(u[j}+ajc//ﬁ;02) r.v.'s. The

characteristic function of a N(m,o02) r.v. is (see, e.g., Parzen (1960),

. 221) f(t) = exp {itm- %tzcz}. Thus,

. .t - 1t2,]"
itX,. i=(u . +a.0//n)- = —02
F’i‘ (t) = Ee (J)=Ln 31773 2 n?
(i
. . o 1t22
tur., ita,>— - 2 =g
B 61 Bk V=i
= e e R

ity .
so that %;gfaf- (t) = e {J]. It is then well-known (see, e.g., Wilks

(3)
(1962), p. 124, 5.4.1a) that ikj) converges in probability to M5
(G =1,...,k). Thus,since the ikj) are independent, it is clear that

the probability that {ikj] converges to “{j] (i = 1,...,k)} approaches

1 as m~. However, by Lemma (B.2.1)

Ho P aovnlfay <0 <Xl
(B.2.4) = lin py+a0/,-5{3<”(1) <... < ‘im,

Xeywpplee s oKyl <ol
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for any € > 0. 1If we choose 2¢ < min (u{j]’“[i})’ then the r.h.s.

1<i<j <k
of (B.2.4) equals
B8 o/l Ryl <o oo Rag gl <0

which is 1 since P{ikj) converges to;:{j] (j =1,...,k)] approaches 1 as

e,
2. Suppose that p e[2(#)15 0. (Eventually u+ac/Vn e 0,0(#), or

0,[2(#)1¢.) Then there are ¢ distinct values in ﬁ1[1]+a10//ﬁ;...,

u{k]+ak0/J5} (1 <% < k-1) and (see (1.3.14))

Poraopal®e1y < o0 < Xl

" Faopalay) < Xapn Fap Yapnr o Xa, p e, et

However, the result will not follow as before since min ﬁx,.}ﬁi{i})

= 0 here. It can be seen (e.g., consider the case k = 2) that the limit

- 1 as wo, (In fact, it depends on a.)

LEMMA: Foru e O,0(#), as m

(u+ao/Vn)

= = (X eee5%)
.2.5) e fpg L k

- pu+ac//§{iki) f_xi i=1,...,k})1+ 0.

Proof:
(u+20//)
}gg F.f v (xl"..,x}()

{1]""’X[k]
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= %&oig{p (n|u+ac//n) -

PusaopalX ) <X g £l Ky < < T

+ (1-p(n|u+ac//n))-

°Pu+ao//§[g{l] < Xpsoeen ’i{k] <X | not (}—((1) < .. < Y(k))]}

=n1_;)1§ Pu+a0//ﬁ_{5([1} S Xpsoees ’X[k} < X X(U < .. < x(k)]

Lim Pu-kac//ﬁ-{.f(l) < Xps e ’X(k) <X S(—(l) < see < Y(k)}

[}

lim P

n+e U +a0//H{X

(1) <X e ’X(k) ixk}'
Here the second equality follows from Lemma (B.2.3), while the last

equality follows from Lemmas (B.2.3) and (B.2.1).

LEMMA: As n>o, if p+ach/n ¢ 0.Q(#) then
(8.2.6)  Pusao/al¥(1) T X0 oo Xy £]
- Pu {5{'(1) < Xpsoeen ’—X—(k) ixk}.
Proof: As e,
Puraop/il¥(1y S % -0 Xy £%]
= Pu-e—ac//ﬁﬁ(—(l)'alg/y/gi xl*alo/v’z—{, ,Y(k)—akc//i‘i xk—akc/r/-ﬂ}
= Pu {Y(l) < xl-aio/v’i{, ,f(k) < xk~akc//ﬁ]
- P {3?.(1) S XKy, e ’Y(k) < xl.

The second equality follows because, when u+ac//m & Op0(#), Y(i] is

N{u {i]-raio//ﬁ_, o2/n) iff Y(i)-aia//ﬁ— is N{u [i] ,02/n)  (i=1,...,k).
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DEFINITION: Let @(zl,...,zs) denote the d.f. of the 1,...,s

(8.2.7)
order statistics in a sample of size s from a N(0,1) population.
THEOREM: As mn>w, if u e 0p0(#) then
(u+ac//n)
(B.2.8) /n ey _xeenx)
{1] M1y a af/n), "’"E{X[k}'“[k]'akc//n) 1 k
Xk
~ ] elx).
i=1 7

Proof: This follows from Lemmas (B.2.5) and (B.2.6}.

COROLLARY: As n»ro, if u e 040(#) then

(B.2.9) k
F (Xy500.5%) -»}{ @(x Y.
‘/l:l——: l/.“ 1 K
Sy g ) i=1

THEOREM: If n e 0,[a(#)]C then

(B.2.10) 1lim F‘/a__ RN COPRRRPEN

depends on a.
Proof: (A hint of this dependence was given in part 2 of the proof of

Lemma (B.2.3).) Suppose k =2, a = (al,az) with a; £ 3,, and let

YI’YZ denote i.i.d. N(0,1) r.v.'s. Then u[l} = “[2} and
(u+a0//ﬁ‘)

/_ S (xy,%,)

(X{I] U{l}"a U/i/n)s '—"" [2}‘11{2}“3- 0/ n)
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n, . = =
= P oo/ 5N (KX [y-ag0A) < xy,
/n

D (e (T, K, -2, 00/ < %, |

]

P{mln(Yl,Y2+(a2-al)) <X, max(Yl-(az—al),Y2) < xz}.

For a, - a3y = 0, this is @(xl,xz). However, for a, > a, it is approx-

1 2 1

imately @(xl)é(xz), and therefore depends on a.



APPENDIX B. DISTRIBUTIONS OF VARINUS FUNCTIONS OF
CERTAIN RANDOM VARIABLES

B-3. JOINT DISTRIBUTION OF Xy -XraqseeesXrq=X
[k] "[1] [kl “[k-1]

From the joint demsity of 3{"[1],...,')-("[1(] given at (B.1.1), we find

that (for Xy g*xz)

f'— v (X 2 X, }
X{l]’X[ZJ 1’72

_ }_Hxl"ﬂ {1}}2+ix2‘“ {2}]2} ) ;_sz‘u[lﬂi(xl““ {2]}2]
J Lo J

sin | | omm | oa | | owm

2n6?

so that (for y > 0), setting n = Hr21 T My

1| [¥Y7H 1}}2 xH 2}?'2
@3 S (e
+ e
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Since, via completing the squave,

o (@)’
o - sloea)2eep)2] - 3 Jf_ ~(a-b)2/4 - Ha-b)?
e dx = fe 1//2 e dx = Yme R

it follows from (B.3.1) that

THEQREM: With n = U!Z} - u{ll’ fory >0

(8.3.2) '%Fi42 '%Fﬁﬁ
3. e o () - /n_ . o/V/n) + e Lo/ n

X1217%113 20/ 7
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