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The use of natural variation is a powerful tool to study the evolution of plant resistance 

genes and pathogen effectors. In tomato, the Pto protein kinase interacts directly with two 

Pseudomonas syringae pv. tomato (Pst) effectors, AvrPto and AvrPtoB. This direct 

interaction is mediated by the binding of each effector through both a shared and a unique 

interface with Pto. The presence of two unique interfaces suggested that the recognition 

of these two effectors by Pto might have evolved independently. We conducted a screen 

of wild tomato accessions for their ability to mount effector-triggered immunity upon 

recognition of AvrPto or AvrPtoB to seek evidence of natural variation that would shed 

further light on how Pto-like kinases recognize and respond to two structurally different 

effectors. Our screen of wild relatives of tomatoes uncovered 22 accessions of Solanum 

chmielewskii (Schm) that recognize only AvrPtoB. Through further molecular 

characterization we found that a single histidine-to-aspartate substitution at position 193 

in the activation domain of Schm Pto-2677 was sufficient to confer recognition of AvrPto 

in plant cells. The reciprocal substitution of aspartate-to-histidine-193 in Pto abolished 

AvrPto recognition, confirming the importance of this residue for signaling in response to 

AvrPto. Our results reveal that there are not only distinct binding interfaces involved in 

the Pto response to these effectors, but that there is also a difference in downstream 

signaling. 

Based on recent worldwide collections of Pst isolates it is known that race 1 strains have 
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displaced race 0 strains and are now the most common strains found in the field. Race 0 

strains express AvrPto or AvrPtoB and elicit resistance in Pto-expressing tomato lines, 

whereas race 1 strains lack these effectors and do not elicit resistance. We screened Pst 

isolates from infected field tomato plants across New York (NY) in 2015 and 

characterized them for their virulence and for the presence of specific effectors. We 

found that all isolates encode a functional AvrPto, which can be recognized by Pto. 

However, this recognition is 'masked' during later stages of infection, allowing 

development of mild bacterial speck symptoms in Pto-expressing tomatoes when vacuum 

infiltrated with high bacterial populations and under laboratory conditions. Our study 

demonstrates that introgression of Pto is still a viable strategy to manage bacterial speck 

of tomatoes in NY.   
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CHAPTER 1 

INVESTIGATING PLANT IMMUNITY AND BACTERIAL 

PATHOGENICITY USING THE  

TOMATO-PSEUDOMONAS SYRINGAE PATHOSYSTEM 

  

1.1 INTRODUCTION 

Pathogens are defined as microorganisms that can be detrimental to the fitness of their 

host causing serious epidemics in humans, animal or plant populations. The human 

immune response to pathogens is relatively well characterized and understood. While our 

knowledge of the interplay between the plant immune system and its perception of 

pathogens still falls short of that of its human counterpart, major advances in our 

understanding of the perception of plant pathogens and the following immune response in 

plants have been made during the past decade. One of the biggest differences between 

human and plant immune systems is that plants do not have an adaptive immune system 

based on specialized, motile cells. Instead, plants rely on pre-existing and inducible 

defense mechanisms, forming an elaborate multilayer surveillance system that is present 

in each single cell (Maekawa et al., 2011). 

The constitutive or “integral” defenses that constitute the first level of protection are 

physical barriers such as a thick cell wall, waxy epidermal cuticles and bark which makes 

it difficult for microbes to access the intracellular compartments where nutrients are 

stored (Agrios, 1997). Additionally, plants also produce a large and diverse number of 

antifungal or antimicrobial compounds. These form chemical barriers that can be deadly 

to microbes when they come in contact with these compounds (Agrios, 1997). In contrast 

to the integral defense, which is to a certain extent always present as part of the normal 

plant body plan, inducible defenses require a stimulus to be activated and are divided into 
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two layers of immune response referred as to as pattern-triggered immunity (PTI) or 

effector-triggered immunity (ETI) (Chisholm et al., 2006; Dangl and Jones, 2001).  

The immune system of plants can be divided into two layers of defense responses 

PTI relies on recognition of conserved molecules of essential microbial structures known 

as microbe-associated molecular patterns (MAMPS) by cell membrane localized immune 

receptors (Altenbach and Robatzek, 2007). These pattern recognition receptors (PRRs) 

can specifically recognize one of these molecules and trigger a PTI response, either 

autonomously or with the help of an accessory cytoplasmic regulatory protein 

(Nurnberger and Kemmerling, 2009). The best-studied MAMPs are bacterial flagellin 

(Felix et al., 1999), elongation factor Tu (EF-Tu) (Kunze et al., 2004), and the fungal cell 

wall molecule chitin (Baureithel et al., 1994; Ito et al., 1997). All these molecules are 

parts of structures essential for the survival of members of their specific microbial 

kingdoms, leading to their conservation among members of this clade. This conservation 

makes them excellent microbial recognition targets for the plant using PRRs such as 

FLS2, EFR and CERK1 respectively (Altenbach and Robatzek, 2007; Boller and Felix, 

2009; Miya et al., 2007; Zipfel et al., 2006; Zipfel et al., 2004). MAMPS can also be 

present in non-pathogenic microbes that do not pose a threat to the plant host. 

Consequently, the response is relatively mild and consists mostly in cell wall fortification 

at the site of MAMP detection and release of reactive oxygen species (ROS) to the 

outside of the cell. Nonetheless, these measures are sufficient to inhibit infections by 

potentially virulent but non-adapted pathogens.  

PTI is viewed as a general host resistance response recognizing widely conserved 

MAMPS; however, several studies have shown that some recognized MAMPs can be 

present only in a somewhat narrow group of pathogens (Bittel and Robatzek, 2007). The 

rice Xa21 PRR confers immunity against Xanthomonas oryzae pv. oryzae (Xoo) strains 

by recognizing a 17 base pair sulfonated epitope of the Xoo protein Ax21. Although 
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Ax21 is present in other Xanthomonas species, it is not sulfonated and thus not 

recognized by Xa21 (Lee et al., 2006; Pruitt et al., 2015). Pep-13 is a MAMP derived 

from a calcium-dependent cell transglutaminase (TGase) protein that is conserved in 

Phytophthora species, but not in other oomycetes (Brunner et al., 2002). There are also 

plant PRRs that are restricted to a very narrow group of hosts. For example the PRR 

involved in detecting cold shock protein in Solanum, and FLS3, the receptor responsible 

for detecting flg28 epitope from flagellin, is only present even in the smaller subgroup 

Solanoideae (Hind et al., 2016; Wang et al., 2016)  

A conceptual hallmark of MAMPs is strong structural conservation necessitated by the 

fitness penalty that alteration would incur. Nevertheless, it has been observed that the 

recognition of a MAMP by a PRR exerts selective pressure to alter the recognized 

epitopes. The bacterial flagellum epitope flg22 can be recognized by FLS2 (Gomez-

Gomez and Boller, 2000; Zipfel et al., 2004). This system is well studied because FLS2 is 

widely conserved across both monocotyledonous and dicotyledonous plant species, 

including the model systems tomato and Arabidopsis. It has been shown that significant 

variation exists between wild tomato accessions and heirloom tomatoes in their ability to 

recognize flg22 from Pseudomonas syringae pv. tomato (Pst) (Veluchamy et al., 2014). 

Likewise, when flg22 epitopes of diverse bacteria were compared, they elicited different 

degrees of ROS production in tomatoes. A closer look at the epitope peptide sequences 

revealed amino acid variability (Felix et al., 1999; Pfund et al., 2004). These examples 

point to a flexible immune response by PTI, molded by continuous host-pathogen co-

evolution.  

The last line of defense is known as effector-triggered immunity or ETI. Successful 

pathogens express virulence proteins known as effectors that are translocated into the 

plant cell to suppress PTI and to manipulate host cellular pathways to their advantage. 

Resistance (R) proteins monitor the cell for direct or indirect evidence of an invasive 
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pathogen by detecting effectors either directly or by the biochemical activities that 

underlie their function inside the host cells. Recognition of effectors by R proteins 

triggers a strong response, often involving programmed cell death (PCD) as part of a 

process called hypersensitive response (HR) to limit pathogen spread (Dodds and 

Rathjen, 2010; Greenberg and Yao, 2004; Lam et al., 2001). In essence plant cells 

detecting the presence of effectors commit suicide to inhibit or halt microbial 

proliferation.  

ETI is thought to be a pathosystem-specific immune response eliciting strong selective 

pressure on both pathogens and hosts to co-evolve. However, there is evidence of R genes 

that can recognize effectors from diverse microbes, even across kingdoms. For example, 

maize Rxo1 triggers an HR response after recognition of the bacterial X. oryzae pv. 

oryzicola AvrRxo1 effectors, as well as an unrelated and unknown Burkholderia 

andropogonis effector (Zhao et al., 2005; Zhao et al., 2004); the Arabidopsis R protein 

duo RRS1 and RPS4 confers resistance not only against the fungal pathogen 

Colletotrichum higgindisnum, but also against Ralstonia solanacearum, a bacterial wilt 

pathogen (Narusaka et al., 2009).  

Host-pathogen coevolution 

Plants are constantly exposed to many pathogens including viruses, bacteria, fungi and 

nematodes. While they developed defense mechanisms to keep infectious agents at bay, 

the pathogens are also under a selective pressure to overcome these defenses and re-gain 

the ability to infect the host to get access to nutrients. This constant “back and forth” co-

evolution has been represented nicely by the zigzag model proposed by Jones and Dangl 

in 2006 (Jones and Dangl, 2006).  
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Figure 1.1. Zig-Zag model proposed by Dangl and Jones for ETI and PTI (Jones and Dangl, 2006). 

This model formalized the delivery of virulence effectors into the host cell as a measure 

to suppress the activation of PTI after its activation in response to the detection of 

pathogen MAMPS by plant cells PRRs (Guo et al., 2009). Plants were then proposed to 

have evolved dedicated detector R proteins in response, to perceive secreted effectors and 

thus trigger a strong, secondary ETI response. Some pathogens have evolved a novel set 

of effectors that can interfere with and prevent ETI signaling, reestablishing the chances 

for infection (Abramovitch et al., 2003; Abramovitch and Martin, 2004; Jamir et al., 

2004; Rosebrock et al., 2007). This new set of effectors could again be recognized by a 

new set of R proteins and so forth. This constant battle puts evolutionary pressure on both 

the host and the pathogen to counter each other. The formalization of these evolutionary 

processes in the zigzag model has helped the plant pathology community to represent 

these dynamics in an accessible visual form. However, the hierarchical representation of 

the different levels of the plant immune system can lead to the misconception that PTI 
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and ETI are separate events both mechanistically and in their evolutionary emergence, 

with PTI representing the more ‘basal’ and evolutionary ‘older’ immune system layer, 

and ETI coming into play later and having evolved more recently.  

In reality, the plant immune system can be viewed as a continuum. Nep1-like proteins in 

bacteria, oomycetes and fungi, and cerato-platanin protein from Botrytis cinerea are great 

examples of secreted proteins contributing to the virulence of the pathogen and therefore 

satisfy the criteria to be classified as effectors, but that additionally contain epitopes 

recognized by plant PRRs (Böhm et al., 2014; Oome et al., 2014). Other examples are the 

MAMP CBEL, a cell wall glycoprotein present in Phytophthora parasitica var. 

nicotianae (Khatib et al., 2004), ethylene-inducing xylanase (EIX) from Trichoderma 

viride (Brunner et al., 2002; Nurnberger et al., 1994) and the harpin protein HopZ from 

Pst (Engelhardt et al., 2008; Kvitko et al., 2009; Kvitko et al., 2007; Lee et al., 2001), all 

of which cause a strong HR-like response in tobacco and Arabidopsis, a response usually 

associated with PCD after effector recognition. All these examples highlight pathogen 

molecules with dual function in PTI and ETI, blurring the separation between these two 

immunity levels in their conservation as well as the strength of the response (Thomma et 

al., 2011).  

Another problem with the simplicity of the zigzag model is that it does not apply to host 

interactions with non-biotrophic pathogens. To address these shortcomings, Cook and 

colleagues recently proposed a more relaxed model called the invasion model. Host 

extracellular or intracellular receptors termed invasion pattern receptors (IPR) detect 

either host- or microbial derived ligands that indicate a potential infection, called 

invasion pattern (IP). This model represents the plant immune system as a continuum, as 

opposed to the two separate immune responses of the zigzag model. In the invasion 

model, any molecule could serve as an IP that can be recognized by an IPR. The chances 

of a ligand becoming an IP increase with the importance of that molecule for the 
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pathogen (physiology, virulence, etc.). The model states that all IPRs can be 

subcategorized depending on their immune response (weak to strong) and conservation 

(specific to common), but that ultimately all receptors are there to detect the presence of 

pathogens and stop invasion (Cook et al., 2015). The zigzag model is a great model to 

test single interactions, but for further development of the area of plant-microbe 

interactions, new models that take into consideration quantitative and qualitative data are 

needed (Cook et al., 2015; Pritchard and Birch, 2014).  

The advent of novel experimental approaches on whole genome, transcriptome and 

proteome level, combined with refined computational techniques to efficiently manage 

and analyze the resultant amounts of data, has the potential to allow us to compare plant 

immune reactions to different pathogens or even to multiple pathogens at the same time, 

a situation closer to what is happening in the field under normal conditions. With the 

decreasing cost of high-throughput “omics” technologies, scientists are now able to ask 

these big questions. A good example is the attempt to compare ETI to PTI responses after 

Pst infection in tomato. The data showed that there is indeed overlap between the ETI- 

and PTI transcriptomes, but that there are also unique gene expression changes associated 

with each of these immune responses (Pombo et al., 2014; Rosli et al., 2013). In 

conclusion, there is sufficient evidence demonstrating that ETI and PTI responses cannot 

always be distinguished. Both responses can be weak or strong, depending on the 

molecule recognized, the receptor and possibly also environmental conditions. 

Two modes of plant recognition 

Many R proteins conferring resistance to viral, bacterial and fungal pathogens in addition 

to nematodes and insect pests have been identified in plants. R genes mostly encode 

intracellular proteins belonging to the nucleotide binding site-leucine rich repeat (NB-

LRR) group or less commonly, the leucine rich repeat receptor like kinases (LRR-RLKs). 

Both groups share the leucine rich repeat domain, which is frequently involved in the 
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formation of protein–protein interactions. However, R genes that do not encode an LRR 

domain have also been described (Caplan et al., 2008; Eitas and Dangl, 2010). For 

example, the tomato R genes Pto and Fen encode kinases that can confer resistance to 

certain Pseudomonas syringae strains (Martin et al., 1993; Rosebrock et al., 2007). Both 

Pto and Fen interact with the NB-LRR protein Prf to trigger an ETI response (Gutierrez 

et al., 2010; Salmeron et al., 1996). Recognition of effectors by R proteins can occur 

either through direct physical interaction or indirectly by the detection of the target (plant 

protein) modification induced by the effector (Jones and Dangl, 2006). In each case, 

perception of pathogen attack is followed by an immune response to combat disease.  

Some examples of resistance proteins that directly interact with their cognate effector are 

L and M in flax and N in tobacco (Catanzariti et al., 2010; Dodds et al., 2006; Krasileva 

et al., 2010; Ueda et al., 2006). Another group of proteins that directly interacts with 

effectors act as decoys to detect pathogen invasion; these are proteins that mimic the 

effector target to “lure” the effector into interacting with them. A very well studied 

example supporting the decoy model is the interaction between Pto and Fen and their 

corresponding effector(s) AvrPto and AvrPtoB in tomato (Kim et al., 2002). Pto and Fen 

appear to mimic the kinase domain of PRRs, the real target of these Pst effectors (He et 

al., 2006; Martin, 2012; Shan et al., 2008; Xiang et al., 2008). The Arabidopsis-

interacting NB-LRR pair, RRS1-R/ RPS4, confers resistance to both effectors AvrRPS4 

from Pst and PopP2 from Ralstonia solanacearum. In this case, RRS1-R directly 

interacts with the effectors through a C-terminal WRKY domain (Le Roux et al., 2015).  

In many cases R proteins do not interact directly with the effector(s), but instead detect 

the presence of the virulence proteins by monitoring modifications of the actual plant 

target(s). This has been formalized as of the “guard hypothesis” (Chisholm et al., 2006; 

Jones and Dangl, 2006). One example for indirect recognition of effectors is the detection 

of RIN4 modification by the Pseudomonas effectors AvrRpt2, AvrB and AvrRpm1 by 
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two different R proteins, RPT2 and RPS2, in Arabidopsis (Axtell and Staskawicz, 2003; 

Kim et al., 2005; Mackey et al., 2002). These two effectors and the modification of RIN4 

are also monitored in soybean by the R proteins Rpg1b and Rpg1r, suggesting guarding 

of RIN4 as a common theme for the detection of these effectors (Ashfield et al., 1995; 

Ashfield et al., 2014). A second example is the R-protein SUMM2 that guards the 

modification of MPK4 (Zhang et al., 2012). The advantage of this indirect mechanism is 

that plants had to evolve a smaller set of R genes to only monitor key host targets that 

many diverse effectors act upon as opposed to a distinct R gene for each effector. 

Pseudomonas syringae – tomato pathosystem as model system to study ETI 

The interaction between Pseudomonas syringae pv. tomato and tomato plants has long 

been an active area of research. The presence of virulent and avirulent bacterial strains on 

one side and resistant and susceptible tomato species on the other side made it a perfect 

model for the investigation of plant pathogen interactions. Tomato has been coevolving 

with the pathogen for a long time, producing resistant tomato species that allow the 

investigation of PTI and ETI and provide insights into the evolutionary arms’ race that 

unfolded in between the pathogen and its host. 

Over the past three decades, the resistance gene Pto has been widely used to control Pst 

infections, especially in processing tomatoes (Pedley and Martin, 2003). Pto encodes a 

cytoplasmic serine/threonine kinase that confers resistance against strains of 

Pseudomonas that express the effector genes AvrPto and / or AvrPtoB. It was originally 

discovered in Solanum pimpinellifolium, one of 12 wild related species of tomato, and 

was isolated by map-based cloning (Martin et al., 1993). It is a member of small gene 

family containing up to 6 genes that likely evolved through sequential duplication, 

followed by sequence divergence in this region (Martin et al., 1993). Prf, a NB-LRR, is 

embedded in the Pto region and is essential for Pto-triggered immunity after detection of 

AvrPto or AvrPtoB (Salmeron et al., 1996). Pto interaction with these two effectors has 
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been extensively studied. Pto and Prf are suggested to be in a stable complex, with 

conformational changes of Pto induced by AvrPto or AvrPtoB acting as a signal for Prf to 

activate the hypersensitive response (Dong et al., 2009; Mucyn et al., 2006; Xing et al., 

2007).  

Figure 1.2. Cartoon representing the stages of Pst infection of plant leaves expressing the Pto resistance 

gene. 

Fen, also called PtoB, is another family member of the Pto locus. Fen shares 80% amino 

acid identity with Pto, but cannot recognize AvrPto or full-length AvrPtoB (Kim et al., 

2002). Further analysis demonstrated that Fen could trigger an HR response to AvrPtoB 

lacking its C-terminal E3-ligase domain (Rosebrock et al., 2007). This Pto-independent 

detection is referred to as Rsb (Resistance suppressed by AvrPtoB C terminus) and is 

highly conserved in wild tomato accessions and tobacco (Abramovitch et al., 2003; Kraus 

et al., 2016; Rosebrock et al., 2007). The wide occurrence of Rsb might indicate that the 

Fen gene arose before the Pto gene in the Solanum species (Riely and Martin, 2001). 
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AvrPtoB can target Fen and Pto for proteasomal degradation by ubiquitination. The Fen-

interacting domain of AvrPtoB, a domain that can also be recognized by Pto, is proximal 

to the C-terminal E3 ubiquitin ligase domain. However, Pto can also detect AvrPtoB 

through a specific Pto-interacting domain, more distal to the C-terminus, and thus evade 

degradation (Mathieu et al., 2014). No role in host immunity or any other host process 

has been ascribed to any other member of the Pto gene family to date. 

The co-crystal structure of Pto interacting with AvrPto and AvrPtoB revealed that the 

interaction between Pto and the two effectors is mediated by two interfaces (Dong et al., 

2009). The P+1 loop acts as a shared binding site and mutations in this domain of Pto 

suggest that it is important for the negative regulation of immune signaling; many 

mutations in this region cause a gain of function and induce a constitutive HR (Bernal et 

al., 2005; Dong et al., 2009; Rathjen et al., 1999; Wu et al., 2004; Xing et al., 2007). The 

second interface is specific for each recognized effector. Particular mutations in the 

specific interfaces only abolish the interaction of the specific effector, whereas 

substitutions on the shared interface abolish recognition of both effectors in a yeast two-

hybrid system (Dong et al., 2009). However, the mutants could never be tested in plants, 

because these substitutions cause Pto auto-activation as demonstrated in N. benthamiana. 

While differences in the interaction of Pto with the two effectors are well established, so 

far no difference in downstream signaling following detection has been found. As of 

now, the consensus is that Pto has a negative effect on Prf signaling. Upon interaction 

with the effectors, Prf “senses” the disturbance of Pto, which activates a downstream 

signaling. 

Solanum lycopersicum (tomato)  

Tomato (Solanum lycopersicum) is a versatile model crop to study plant immune 

responses; it has a relatively small diploid genome (Arumuganathan et al., 1991) and is 

easy to grow in greenhouses without the need for too much space. Tomato plants are self-
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pollinating, but it is still possible to produce crosses between wild and cultivated species. 

They are easily propagated by seed or clonally and have a relatively short generation time 

compared to many other crop plants (Pedley and Martin, 2003). In recent years several 

tomato genome sequences have become publicly available, facilitating genetic and 

molecular analyses (http://www.tomatogenome.net).  

Tomato plants are amenable to molecular work, as they are easily transformable, and 

many of the immunity related assays established for Arabidopsis also work in tomatoes. 

In contrast to Arabidopsis, tomato is highly susceptible to a wide variety of pathogens. 

Major diseases of tomatoes can be caused by at least 24 fungi, 7 bacteria, 10 viruses, 3 

viroids, and multiple nematodes, making it possible to study all aspects of plant immune 

responses and plant-microbe interactions (Arie et al., 2007). In fact, many of the major 

breakthrough identifications of proteins involved in plant immunity have been described 

first in tomato (Jones et al., 1994; Martin et al., 1993; Salmeron et al., 1996).  

The germplasm of cultivated tomato varieties shows relatively little genetic variation - 

the result of its inbreeding mating system and severe genetic bottlenecks that are 

hypothesized to have occurred before, during and after tomato domestication (Bai and 

Lindhout, 2007; Grandillo et al., 2011). This is an important impediment for tomato 

improvement, since breeding for enhanced traits relies on sufficient genetic variation to 

find new genes. In contrast to their domesticated counterparts, wild tomatoes are a rich 

source of genetic variation. There are 12 described wild tomato species. These species, 

native to South America, are adapted to a wide variety of environmental regions such 

temperate dessert, Andean highlands, tropical forest and arid rocky outcrops of lava close 

to the ocean shoreline. Each species has a distinct geographic distribution, reflecting a 

wide adaptation to diverse habitats differing in temperature range, altitude, annual 

precipitation and soil composition. They also contain important genes involved in fruit 

size and yield and resistance against biotic and abiotic stresses. Wild tomato accessions 
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have been used in tomato breeding programs since the 1940s and, except for a few cases, 

all R genes were derived from this wild tomato ancestry (Bai and Lindhout, 2007; 

Grandillo et al., 2011; Peralta et al., 2008). Furthermore, tomato belongs to the 

Solanaceae family, a large and diverse family including other economically important 

crops like potato, pepper and eggplant. Tomato researchers have access to a large 

collection of cultivated and wild tomatoes that can be ordered at the C. M. Rick Tomato 

Genetics Resource Center (TGRC), UC Davis (http://tgrc.ucdavis.edu).  

Figure 1.3. Wild relatives of tomato. 

The cultivated tomato is the second most important vegetable crop worldwide after 

potatoes, with a total world production of more than 160 million tons (FAOSTAT 2012; 

http://faostat.fao.org). The USA is the second biggest tomato producer after China, 

accounting for 14.1 million tons with a value of $10.86 billion dollars (USDA; 

https://www.ers.usda.gov/topics/crops/vegetables-pulses/tomatoes.aspx). This popular 

fruit is rich in vitamins and antioxidants and an important source of β-carotene 

(provitamin A) and vitamin C. Tomato production is divided into two main markets, 
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processing and fresh market. Fresh market tomato varieties are grown in most US states 

for the local markets, with California and Florida being the biggest producers of fresh 

market tomatoes at commercial scale, followed by Ohio, Virginia, Georgia, and 

Tennessee. Processing tomatoes, on the other hand, are mostly grown on commercial 

acreage in California, which accounts for more than 90% of harvested processing 

tomatoes (USDA; https://www.ers.usda.gov/topics/crops/vegetables-

pulses/tomatoes.aspx). 

Pseudomonas syringae pv. tomato the casual agent of bacterial speck in tomato 

Pst is the causal agent of bacterial speck in tomato. Symptoms appear as small necrotic 

lesions on leaves, stem, and green tomato fruits and can have a great impact on crop 

marketability and yield (Jones, 1991; Pedley and Martin, 2003). The ability of Pst and 

other bacterial pathogens to infect and multiply in plant leaves depends on the secretion 

of virulence proteins through a type III secretion system (T3SS) directly into the plant 

cells to suppress host cellular pathways (Alfano and Collmer, 2004; Chang et al., 2005; 

Dean, 2011). To date, 94 different Pseudomonas virulence effectors have been described, 

with each bacterial strain harboring a subset of about 30 of them (Baltrus et al., 2011; 

Buell et al., 2003; Lindeberg et al., 2012).  
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Figure 1.4. Bacterial speck on tomato caused by Pseudomonas syringae pv. tomato. 

Pst with a mutated T3SS grows poorly in plants and cannot cause disease symptoms, 

indicating the importance of the effector repertoire for virulence (Roine et al., 1997). 

While we do not yet understand the function of all effectors, several are delivered into the 

cell to suppress plant defense responses activated during PTI (Chisholm et al., 2006; 

Cunnac et al., 2009; Guo et al., 2009). Although deletion of most individual Pst effectors 

typically does not have an effect on bacterial virulence and the ability to grow and 

produce symptoms, combined ΔavrPtoΔavrPtoB mutations significantly reduce the 

ability of Pst to grow in tomato (Badel et al., 2006; Chang et al., 2005; Kvitko et al., 

2009; Lin and Martin, 2005; Mudgett, 2005; Petnicki-Ocwieja et al., 2002; Schechter et 

al., 2004). 

AvrPto is a small (18 kDa) hydrophilic protein first identified in 1992 based on its 

avirulence function in tomato plants expressing Pto and Prf (Ronald et al., 1992). Once 

delivered into the plant cell cytoplasm, it appears to be targeted to the membrane (Boyle 

et al., 2016; Shan et al., 2000), where it binds to the kinase domains of PRRs and inhibits 

their kinase activity (Xiang et al., 2008). The AvrPto knockout strain remained avirulent 
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in Pto carrying tomato lines, suggesting the presence of a second Pto-specific avirulence 

gene. It was not until 2002 that a second Pst effector, now referred to as AvrPtoB, was 

identified (Kim et al., 2002).  

AvrPtoB is much larger (59 kDa) and interacts with PRRs through two structurally 

distinct virulence domains, a N-terminal region that inhibits kinase activity of PRRs 

much like AvrPto (Cheng et al., 2011; Shan et al., 2008) and a C-terminal E3 ubiquitin 

ligase domain (Abramovitch et al., 2006; Janjusevic et al., 2006) that has been reported to 

mark FLS2, CERK1 and probably other PRRs for degradation by the proteasome; 

however this has been only demonstrated with overexpression experiments in N. 

benthamiana (Gimenez-Ibanez et al., 2009; Gohre et al., 2008). In contrast, the E3 ligase 

function has been shown to be dispensable for the interaction with and the inhibition of 

PRRs and other co-receptors under natural expression levels, questioning whether 

ubiquitination and degradation are indeed necessary for the inhibition of the recognition 

complex by AvrPtoB (Cheng et al., 2011; Shan et al., 2008). 

Pto was initially reported in the late 1970s and was quickly introgressed into several 

tomato cultivars (Pedley and Martin, 2003). While Pto-resistance is effective against race 

0 Pst strains such as DC3000 and JL1065, it is ineffective in triggering an immune 

response against the more virulent race 1 strains (Lin et al., 2006). Races in Pst are 

defined by the ability of Pto to mount an effective immune response (Arredondo and 

Davis, 2000). Race 1 strains evade this recognition by suppressing AvrPto and AvrPtoB 

recognition (Kunkeaw et al., 2010; Lin et al., 2006). In the case of T1, the best studied 

Pst race 1 strain, avrPto is absent, and AvrPtoB protein expression is post-

transcriptionally suppressed by an unknown mechanism (Almeida et al., 2009; Lin et al., 

2006). A study comparing Pst isolates worldwide demonstrated that the population has 

shifted towards the more virulent race 1 strains, a situation that is affecting tomato 

growers (Cai et al., 2011). Since Pto is not a viable solution to stop infection with race 1 
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strains, researchers are employing wild tomato accessions in an attempt to discover new 

resistance loci against race 1 strains. Solanum habrochaites accessions have promising 

Quantitative Resistance Loci (QRL) that confer partial resistance to race 0 strains (Bao et 

al., 2015; Thapa et al., 2015). Even though each of these QRL by itself might not provide 

the same level of resistance as the single dominant gene does for race 0 strains, their 

combined effect plays a quantitative role in the ability of tomatoes to withstand infection 

by race 1 strains, and in combination with the use of proper plant management practices 

can be useful against the new hyper-virulent Pst strains. 

Aims of this thesis 

Tomato-Pst is one of the best-studied pathosystem for several reasons: The genomes of 

several representatives of both organisms have been sequenced, and a large collection of 

tomato cultivars and wild species, as well as a massive collection of Pst isolates, are 

available to researchers. Due to these advantages as well as others mentioned earlier, the 

Pst – tomato model is a great system to study basic plant immunity and bacterial 

pathogenicity. At the same time, bacterial speck of tomato constitutes an economically 

important disease that is important to study and monitor.  

Bacterial speck is a common disease of tomato in the northern states of the USA and in 

Canada, most likely due to the often mild and rainy summers generating suitable 

conditions for its multiplication and spread. Although almost no commercial processing 

tomatoes are grown in New York (NY), significant amounts of fresh market tomatoes are 

grown for local markets. Most of these cultivars do not carry Pto and in recent years 

tomato growers experienced substantial losses due to bacterial speck. The year 2015 had 

a very cool and rainy summer which presented the perfect environmental conditions for a 

bacterial speck outbreak in NY in several tomato fields, demonstrating that if the 

environmental conditions are conducive to disease Pst causes severe economic damage. 

The lack of Pto resistance, the continuing presence of bacterial speck in NY tomato field 
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and the knowledge of the emergence of highly virulent race 1 strains worldwide 

presented a strong case for the proper study of the Pst population present in this area. 

The work presented in chapter 2 of this dissertation provides evidence that natural 

variation can be used to detect and study co-evolution between a host R gene and its 

pathogen effectors. Specifically, a screen of wild tomato accessions for their ability to 

recognize Pst delivering AvrPto or AvrPtoB discovered variation between wild tomato 

species in their capability to detect these effectors. Further molecular characterization 

demonstrated that a region of Pto distinct from the effector interfaces, referred to as the 

activation loop, plays an important role in the response to AvrPto, but not to AvrPtoB. 

This led to the discovery that a single amino acid in the activation loop region, D193, is 

essential for downstream signaling in response to AvrPto recognition.  

In chapter 3, I describe an evaluation of several Pst isolates present in NY in 2015 for 

their molecular virulence. Using diagnostic oligonucleotides and PCR, I demonstrate that 

these isolates are more closely related to race 1 strains, but that their virulence is 

attenuated because of a functional AvrPto protein recognized by Pto, as is typical in race 

0 strains. Importantly, delayed speck symptoms do appear in vacuum infiltrated plants, 

indicating a possible new effector that is able to suppress downstream Pto signaling after 

AvrPto recognition. The data indicate that, at least in NY, the introgression of Pto into 

fresh market tomato cultivars might provide a viable strategy for resistance against the 

current outbreaks of bacterial speck. 
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CHAPTER 2 

NATURAL VARIATION IN TOMATO REVEALS DIFFERENCES IN 

THE RECOGNITION OF AVRPTO AND AVRPTOB EFFECTORS 

FROM PSEUDOMONAS SYRINGAE1 

 

2.1 Abstract  

The Pto protein kinase from Solanum pimpinellifolium interacts with Pseudomonas 

syringae effectors AvrPto or AvrPtoB to activate effector-triggered immunity. The 

previously solved crystal structures of the AvrPto-Pto and AvrPtoB-Pto complexes 

revealed that Pto binds each effector through both a shared and a unique interface. Here 

we use natural variation in wild species of tomato to further investigate Pto recognition of 

these two effectors. One species, Solanum chmielewskii, was found to have many 

accessions that recognize only AvrPtoB. The Pto ortholog from one of these accessions 

was responsible for recognition of AvrPtoB and it differed from Solanum 

pimpinellifolium Pto by just 14 amino acids, including two in the AvrPto-specific 

interface, glutamate-49/glycine-51. Converting these two residues to those in Pto 

(histidine-49/valine-51) did not restore recognition of AvrPto. Subsequent experiments 

revealed that a single substitution of a histidine-to-aspartate at position 193 in Pto, which 

is not near the AvrPto-specific interface, was sufficient for conferring recognition of 

AvrPto in plant cells. The reciprocal substitution of aspartate-to-histidine-193 in Pto 

abolished AvrPto recognition, confirming the importance of this residue. Our results 

reveal new aspects about effector recognition by Pto and demonstrate the value of using 

natural variation to understand the interaction between resistance proteins and pathogen 

effectors.  

																																																								
1		 This chapter was published in modified form in Molecular Plant (2016, 9:5) and was 
written by Christine M. Kraus, Kathy R. Munkvold and Gregory B. Martin.  
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2.2 Introduction 

The interaction of tomato with Pseudomonas syringae pv. tomato (Pst), which can result 

in bacterial speck disease, is an established model system for investigating the molecular 

basis of bacterial pathogenesis and the plant immune system. In this interaction, microbe-

associated molecular patterns from Pst are bound by host pattern recognition receptors 

(PRRs) triggering a signaling pathway leading to pattern-triggered immunity (PTI), 

which effectively suppresses growth of the pathogen (Chinchilla et al., 2007; Gomez-

Gomez and Boller, 2000; Mueller et al., 2012; Robatzek et al., 2007; Shan et al., 2008; 

Zipfel et al., 2004). Two sequence-divergent effector proteins, AvrPto and AvrPtoB, are 

translocated by Pst into the host cell where they interfere with the kinase domains of PRR 

complexes, resulting in enhanced growth of the pathogen (Cheng et al., 2011; He et al., 

2006; Shan et al., 2008; Xiang et al., 2008). Both of these effectors are modular, with 

each having two discrete domains with distinct virulence activities; AvrPtoB also has a 

C-terminal E3 ligase domain that suppresses effector-triggered immunity (ETI) (Chang et 

al., 2001; Cheng et al., 2011; Mathieu et al., 2014; Shan et al., 2000a; Shan et al., 2000b; 

Wulf et al., 2004).  

Tomato has evolved mechanisms to recognize one virulence domain of AvrPto and both 

virulence domains of AvrPtoB, leading in each case to activation of ETI (Abramovitch et 

al., 2003; Mathieu et al., 2014; Rosebrock et al., 2007; Shan et al., 2000b). These 

recognition events involve an NB-LRR protein Prf and members of the clustered Pto 

gene family that encodes host cytoplasmic protein kinases, some of which appear to have 

evolved to mimic (i.e., act as a decoy of) the kinase domains of PRRs and BAK1 (Cheng 

et al., 2011; Lin and Martin, 2007; Martin, 2012; Salmeron et al., 1996). One member of 

this family, Fen, binds variants of AvrPtoB that lack the E3 ligase domain that normally 

targets this kinase for degradation and acts with Prf to induce ETI. This recognition event 

is referred to as Rsb (Recognition suppressed by AvrPtoB C-terminus (Abramovitch et 
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al., 2003; Rosebrock et al., 2007). Another member of the kinase family, Pto, binds either 

the 'CD loop' in the core domain of AvrPto or the Fen- or Pto-interaction domain (PID 

and FID) of AvrPtoB, each of which target PRR kinase domains (Cheng et al., 2011; 

Gimenez-Ibanez et al., 2009; Gohre et al., 2008; Mathieu et al., 2014; Shan et al., 2008; 

Xiang et al., 2008; Xiao et al., 2007; Zeng et al., 2012). The Pto family has three other 

members (PtoA, PtoC, PtoD), but a role for these in immunity or any other host process 

is unknown (Chang et al., 2002; Pedley and Martin, 2003; Riely and Martin, 2001). 

Pto was originally discovered in a wild relative of tomato, Solanum pimpinellifolium, one 

of 12 species of wild relatives of tomato native to western South America (Martin et al., 

1993; Peralta et al., 2008). Accessions belonging to each of these species have the Pto 

gene family and Pto family orthologs between species are more similar in sequence than 

are paralogs within the species (Chang et al., 2002; Riely and Martin, 2001; Rose et al., 

2005). Clustered gene families with members highly similar to Pto are present in other 

Solanaceous species including Nicotiana benthamiana, tobacco, pepper and potato 

suggesting that the Pto family arose prior to Solanum speciation (Bombarely et al., 2012; 

Grube et al., 2000; Vleeshouwers et al., 2001). 

Solution of the crystal structures of the AvrPto-Pto and AvrPtoB-Pto complexes revealed 

that each pathogen-host protein interaction involves both a common and an effector-

specific interface (Dong et al., 2009; Xing et al., 2007). Substitutions in amino acids of 

Pto at the shared interface abolish the interaction with both effectors in a yeast two-

hybrid system, whereas substitutions in each unique interface abolish interaction only 

with the cognate individual effector (Dong et al., 2009). The expectation that such 

substitutions would abolish effector recognition in plant cells could not be tested because 

the substitutions caused Pto auto-activation (constitutive cell death) in N. benthamiana 

(Dong et al., 2009; Xing et al., 2007). The discovery of effector-specific interfaces 

suggested that natural variation might exist in the Pto family in wild relatives of tomato 
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that would shed further light on how Pto-like kinases recognize and respond to AvrPto 

and AvrPtoB. We therefore screened wild relatives of tomato for their response 

specifically to these effectors and found Solanum chmielewskii (Schm) accessions that are 

susceptible to Pst expressing AvrPto but resistant to those expressing AvrPtoB. 

Molecular characterization of this phenotype revealed that a region of Pto distinct from 

the effector-interfaces plays an important role in the response to AvrPto.  

 

2.3 Results 

Solanum chmielewskii accessions are resistant to Pst delivering AvrPtoB, but 

susceptible to Pst delivering AvrPto 

To investigate ETI-mediated natural variation for Pst resistance in tomato, we screened 

accessions of wild tomato species by syringe infiltrating different leaflets in the same leaf 

with the following Pst strains: 1) DC3000 wild type (having both avrPto and avrPtoB); 

2) DC3000ΔavrPto; 3) DC3000ΔavrPtoB; or 4) DC3000ΔavrPtoΔavrPtoB. Plants were 

scored for symptoms of speck disease 3-4 days later. All six of the Schm accessions 

tested initially were resistant to DC3000 wild type and to the Pst strain with AvrPtoB 

only (strain DC3000ΔavrPto), but were susceptible to the strain with AvrPto only 

(DC3000ΔavrPtoB) and to the Pst strain DC3000ΔavrPtoΔavrPtoB lacking both 

effectors. A subsequent targeted screen of other Schm accessions identified an additional 

16 that recognized only AvrPtoB (3 Schm accessions recognized neither effector). Schm 

only occurs in Andean Valleys in the Apurimac, Ayacucho and Cuzco regions within a 

geographically restricted area in southern Peru, and the accessions we tested derived from 

all three of these regions (Peralta et al., 2008) (Figure 2.1A).  

We focused on one Schm accession, LA2677, as representative of the AvrPtoB-specific 

phenotype, to investigate the molecular basis of AvrPtoB-specific recognition. Whole 

plants of LA2677 were vacuum-infiltrated with Pst strains DC3000ΔavrPto or 
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DC3000ΔavrPtoB and scored for disease 3-4 days later. Bacterial speck disease 

developed only in LA2677 plants that were infiltrated with DC3000 lacking avrPtoB  

(Figure 2.1B). As expected, the tomato variety Rio Grande-PtoR (RG-PtoR), which 

expresses Pto from Solanum pimpinellifolium, showed no disease symptoms upon 

infiltration with either of the DC3000 strains and RG-prf3 (RG-PtoR with a deletion in 

the Prf gene) developed disease upon infiltration with both DC3000 strains. To examine 

whether these results reflected Pst growth in leaves, tissue samples were taken 

immediately (day 0) and at day 3 after infiltration to measure bacterial populations 

(Figure 2.1C). As expected, both bacterial strains grew poorly in RG-PtoR, but 

multiplied to high levels in RG-prf3. In the case of LA2677, DC3000ΔavrPtoB reached a 

population size comparable to that in RG-prf3. DC3000ΔavrPto reached a population 

size four orders of magnitude lower and below even that observed in RG-PtoR (Figure 

2.1C). These experiments therefore confirmed that LA2677 is able to recognize AvrPtoB, 

but not AvrPto, to effectively activate ETI and suppress bacterial speck disease.  

Bacterial speck resistance elicited by AvrPtoB in LA2677 requires Prf 

To examine whether AvrPtoB-specific recognition in LA2677 involves the Pto/Prf 

pathway, as expected, we used virus-induced gene silencing (VIGS). Due to their 

sequence similarity it was not possible to silence individual Pto family members, so 

instead a Tobacco Rattle Virus (TRV) vector containing a fragment of Prf that was 

developed and verified previously was used to infect LA2677 seedlings; a TRV construct 

carrying a fragment of E. coli (EC1) served as a control (Ekengren et al., 2003; Rosli et 

al., 2013).  
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Figure 2.1. S. chmielewskii accessions are resistant to P. s. pv. syringae (Pst) strains that translocate 

AvrPtoB but not AvrPto into the plant cell. (A) Map showing the geographical locations in three regions of 

southern Peru where the S. chmielewskii accessions (red squares) were originally collected that recognize 

only AvrPtoB (information from TGRC: tgrc.ucdavis.edu). (B) Plants were vacuum infiltrated with 5 x 104 

CFU/mL Pst DC3000∆avrPto (expresses AvrPtoB) or DC3000∆avrPtoB (expresses AvrPto) strains and 

photographed four days after inoculation. Red arrows point to disease symptoms. (C) Bacterial populations 

were measured in plants inoculated as in part B three hours (day 0) and three days after inoculation. The 

experiments were repeated 4 times and panels B and C depict results from a representative experiment 

using three biological replicates per strain. Data are presented as mean ± SD. The asterisk denotes a 

statistically significant difference (p value < 0.05). 
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Four weeks after TRV infection the plants were vacuum-infiltrated with DC3000ΔavrPto 

and four days later were scored for symptoms of speck disease. LA2677 plants silenced 

for Prf developed typical symptoms of speck disease, whereas the EC1 control plants 

showed no disease (Figure 2.2A). These results indicate that the recognition of full-

length AvrPtoB in LA2677 requires Prf and therefore likely involves a member of the 

Pto gene family.  

Three Pto gene family members are expressed in LA2677 leaves  

Using two sets of primers designed to amplify all five of the Pto family members, we 

succeeded in cloning and sequencing genes of four different Pto family members from 

LA2677 genomic DNA. A maximum likelihood tree placed each LA2677 Pto gene with 

its ortholog in the tomato variety Rio Grande-PtoR (RG-PtoR; these orthologs are from 

the S. pimpinellifolium chromosomal segment present in this variety and are referred to 

hereafter as Pto, Fen and PtoC and PtoD) (Chang et al., 2002; Riely and Martin, 2001). 

The Schm genes are referred to as Pto-2677, Fen-2677, PtoC-2677, and PtoD-2677 

(Figure 2.2B). To determine whether these genes are expressed, primers specific for each 

LA2677 gene were designed and tested first to verify that they amplified the expected 

product from genomic DNA, which they did (Figure 2.2C). RNA was then extracted 

from LA2677 leaves, cDNA was synthesized and used in an RT-PCR reaction with the 

gene-specific primers. Transcripts of only Pto-2677, Fen-2677, and PtoD-2677 were 

detected indicating that these genes, but not PtoC-2677, are expressed in leaves of 

LA2677 (Figure 2.2C).  

Pto-2677 physically interacts with AvrPtoB in a yeast two-hybrid system 

To gain further insight into which of the three Pto family members expressed in LA2677 

might be involved in the AvrPtoB-specific resistance, we performed a pairwise yeast 

two-hybrid analysis. The Pto-2677, Fen-2677, and PtoD-2677 genes, as well as their 

orthologs from the tomato variety RG-PtoR (Pto, Fen, PtoD), were cloned into a bait 
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vector and tested against full-length and truncated versions of AvrPtoB (Figure 2.3A). 

As previously reported, Fen interacts with the Fen-interaction domain (FID) of AvrPtoB 

only when the E3 ubiquitin ligase has either been mutated, as in the case of an E3 ligase 

loss-of-function (E3-LOF) protein, or deleted, as in the case of the E3 ubiquitin ligase 

truncated variant, AvrPtoB1-387 (Abramovitch et al., 2003; Mathieu et al., 2014). Pto 

interacts with two domains of AvrPtoB, the FID as well as a unique domain for Pto, 

within amino acids 1-307, referred to as the Pto-interaction domain (PID) (Abramovitch 

et al., 2003). PtoD does not interact with any of the AvrPtoB variants (Rosebrock et al., 

2007). We observed that the LA2677 Pto family members interacted with AvrPtoB in an 

identical manner as their orthologs in RG-PtoR (Figure 2.3A). Although Fen-2677 had 

some auto-activation background, the darker blue patches indicated this protein interacted 

with E3-LOF and AvrPtoB1-387, but not with full-length AvrPtoB that has an active E3 

ubiquitin ligase, nor with AvrPtoB1-307, which lacks the FID (Figure 2.3A). Pto-2677 

interacted with all of the AvrPtoB variants and, notably, was the only one of the three 

LA2677 Pto proteins that interacted with full-length AvrPtoB. PtoD-2677 did not interact 

with any of the variants (Figure 2.3A). Proteins of all the Pto family members were 

expressed well in yeast (Figure 2.4A).  
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Figure 2.2. LA2677 recognition of AvrPtoB is dependent on Prf. (A) Leaves silenced for Prf or with the 

control EC1 were vacuum infiltrated with 105 CFU/mL Pst DC3000∆avrPto (expresses AvrPtoB) and 

symptoms of bacterial speck disease (appearing only on the TRV:Prf plants) were photographed 4 days 

later. (B) A maximum likelihood tree comparing the aligned nucleotide sequences of the Pto family 

members present in LA2677 and their homologs in RG-PtoR. The tree is unrooted and the number of 

supporting bootstrap values for 100 replications is shown. (C) Reverse transcriptase-PCR using primers 

specific for each Pto member. +, with reverse transcriptase (RT); -, no RT control. cDNA, complementary 

DNA; gDNA, genomic DNA.  
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Pto-2677 triggers AvrPtoB-specific cell death in Nicotiana benthamiana leaves 

We next examined whether any of the LA2677 Pto proteins would cause AvrPtoB-

specific immunity-associated cell death in leaves of Nicotiana benthamiana, a model 

species for plant-pathogen studies (Bombarely et al., 2012). For these experiments, we 

utilized Agrobacterium-mediated transient expression (‘agroinfiltration’), which is a 

robust method to study Pto-mediated recognition of both Pst effectors as long as the 

tomato Prf protein is also co-expressed in the system (Mucyn et al., 2006). Expression of 

the Fen protein alone in this system can trigger cell death so each LA2677 Pto family 

member was first tested for this possibility. Although each of the LA2677 Pto proteins 

was expressed well in N. benthamiana leaves, none of the proteins triggered cell death on 

their own, even seven days after agroinfiltration (Figure 2.4B,C). Consistent with the 

results from the yeast two-hybrid analysis, expression of either Pto or Pto-2677, together 

with AvrPtoB and Prf, caused cell death in N. benthamiana leaves (Figure 2.3B). 

AvrPto interacts in yeast with Pto-2677 but the expression of the effector in LA2677 

leaves does not trigger cell death 

Our results at this stage indicated that Pto-2677 is responsible for the AvrPtoB-mediated 

resistance observed in LA2677, but they left unanswered the question of why this protein 

is unable to activate ETI in response to AvrPto. A comparison of the amino acid sequence 

of Pto with Pto-2677 revealed that they differ by just 14 residues (4% of the 320 residues) 

(Figure 2.5A). All amino acids known to be important for the physical interaction with 

AvrPtoB are conserved (Dong et al., 2009). However, two amino acids known to be 

involved in the Pto interaction with AvrPto, histidine (H)-49 and valine (V)-51, have 

substitutions in Pto-2677 (glutamic acid (E)-49 and glycine (G)-51) (Figure 2.5A) (Dong 

et al., 2009; Xing et al., 2007). These same substitutions occur in Fen, which is also 

unable to interact with AvrPto. Nevertheless, we found that Pto-2677 was able to interact 

with AvrPto in the yeast-two hybrid system. The interaction was abolished by the I96A 
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substitution in AvrPto, an amino acid that is essential for interaction with Pto (Figure 

2.5B) (Devarenne et al., 2006).  

The interaction of AvrPto with Pto-2677 was unexpected based on the inability of 

LA2677 to recognize AvrPto when it is translocated from Pst. To test whether Pto-2677 

might respond to AvrPto when the effector is overexpressed, we syringe-infiltrated leaves 

of LA2677 or RG-PtoR with Agrobacterium carrying constructs for the overexpression of 

AvrPto, AvrPtoB or yellow fluorescent protein (YFP) and monitored for immunity-

associated cell death. Consistent with the phenotypes we observed in the natural Pst – 

LA2677 interaction (Figure 2.1B), AvrPto did not elicit immunity-associated cell death, 

whereas, as expected, AvrPtoB did (Figure 2.5C). Also as expected, both effectors 

elicited cell death in leaves of RG-PtoR. These results therefore indicate that although 

Pto-2677 might interact with AvrPto in plant cells, the interaction does not activate an 

effective immune response in LA2677. 
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Figure 2.3. Pto-2677 interacts with AvrPtoB in yeast and activates AvrPtoB-specific cell death in leaves. 

(A) Pairwise yeast two-hybrid analyses testing interaction of Pto family members (bait vector) with full-

length AvrPtoB and truncated forms of AvrPtoB (prey vector). Blue patches indicate a positive interaction. 

Photographs were taken 26 hours after patching, except for Fen-2677, which was photographed after 16 

hours due to strong auto-activation. EV, empty vector; FL, full-length; E3-LOF, E3 ubiquitin ligase loss-of-

function; 1-387 and 1-307, AvrPtoB1-387 and AvrPtoB1-307  truncations, respectively (Table S1). (B) Pto and 

Fen from LA2677 or RG-PtoR were co-expressed with Prf and either AvrPtoB or yellow fluorescent 

protein (YFP) in N. benthamiana leaves using Agrobacterium-mediated transient transformation. 

Photographs were taken 5 days later.  
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Figure 2.4 (previous page). Expression of LA2677 Pto family members in yeast and N. benthamiana. (A) 

Expression of Pto proteins fused to LexA in yeast (related to Figure 3A). The mass of the empty vector 

(EV) construct (i.e., LexA) is 26 kDa and for the different Pto:LexA proteins is 59 kDa. 1.5 mL yeast at an 

OD600 = 0.6 was boiled in Laemmli sample buffer and proteins were detected using an anti-LexA antibody. 

Western blot gels show samples taken from two biological replicates for each protein expressed. Staining 

with Coomassie brilliant blue (CBB) is shown as a loading control. (B) The three Pto proteins that are 

expressed in LA2677 (see Figure 2B), as well as Pto and Fen from RG-PtoR were expressed in N. 

benthamiana leaves using Agrobacterium-mediated transient transformation. Photographs were taken 5 

days after infiltration. Leaf samples were taken 48 hours after infiltration and proteins were isolated for 

Western blot analysis. All proteins are fused to a Myc epitope and proteins were detected using an anti-c-

Myc-HRP rabbit polyclonal antibody. Predicted size for all proteins is approximately 45 kDa. Western blot 

shows samples taken from two biological replicates. Ponceau staining was performed to demonstrate equal 

loading. 

Substitutions in residue 49 and 51 in Pto-2677 are not sufficient to activate an 

AvrPto-mediated immune response 

We next tested whether simply changing the E49 and G51 residues in Pto-2677 to the 

H49 and V51 of Pto was sufficient to confer recognition of AvrPto in N. benthamiana 

(Figure 2.6A). These substitutions in Pto-2677, however, were not sufficient to allow for 

recognition of AvrPto as no cell death was observed (Figure 2.6B). We proceeded to use 

this Pto-2677(E49H/G51V) construct to make additional substitutions in some of the 

other 12 residues that differ between Pto and Pto-2677. These new variants of Pto-2677 

were then tested for their ability to cause immunity-associated cell death after co-

expression with Prf and either AvrPtoB or AvrPto. We used the co-crystal structure of the 

Pto-AvrPto complex (PDB# 2QKW) as well as a previous paper on the DNA shuffling of 

Pto family members to aid in determining which Pto-2677 amino acids to alter (Bernal et 

al., 2005; Xing et al., 2007) (Figure 2.6A). Of six constructs tested, only one, in which 

the Pto-2677 histidine residue (H) at position 193 was changed to aspartic acid (D) (Pto-

2677[E49H/G51V/H193D]), caused cell death in N. benthamiana leaves upon co-

expression with AvrPto and Prf (Figure 2.6B, Figure 2.7A). All of the Pto-2677 variant 

proteins were expressed as shown by Western blot and were functional based on their 
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ability to trigger cell death in leaves when co-expressed with AvrPtoB and Prf (Figure 

2.6B, Figure 2.7B). 

 

 

 

 

 

 
Figure 2.5. Pto proteins from LA2677 and RG-PtoR differ in amino acid sequence and in their ability to 

recognize AvrPto in leaves. (A) Representation of the 14 amino acid differences between Pto-2677 and Pto. 

Marked in bold are the two residues, H49 and V51, known to be important for AvrPto recognition and 

signaling. (B) Pairwise yeast-two hybrid analyses testing the interaction of Pto and Fen from LA2677 and 

RG-PtoR (bait vector) with AvrPto and a known AvrPto mutant (AvrPto (I96A)) that does not interact with 

Pto in yeast as a control. Blue patches indicate a positive interaction. Photographs were taken 18 hours after 

patching, except for Fen-2677, which was photographed 16 hours after patching because of auto-activation 

at later time points. EV, empty vector. (C) AvrPto, AvrPtoB or YFP were expressed in leaves of RG-PtoR 

or LA2677 using Agrobacterium-mediated transient expression and photographs were taken 3 days later. 

Cell death indicates effective recognition of the effector and subsequent activation of the immune signaling 

pathway. 
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Aspartic acid-193 plays an essential role in recognition of AvrPto  

To gain further insight into the importance of the aspartic acid-193 residue in Pto for 

AvrPto recognition, we generated a Pto-2677(H193D) construct and tested it transiently 

in N. benthamiana for its ability to cause immunity-associated cell death. In N. 

benthamiana leaf areas co-expressing Pto-2677(H193D), Prf and AvrPto, we observed 

cell death in ~60% of our experiments (11/18 infiltrations from 6 independent 

experiments; Figure 2.6B), and its appearance was often delayed by two days as 

compared to cell death triggered by AvrPto-Pto-2677(E49H/G51V/H193D) or AvrPto-

Pto, in which we observed cell death in 100% of the infiltrated areas. These observations 

suggest that H193 plays an important role in AvrPto recognition and, consistent with 

previous reports, H49/V51 are also needed for the robust response to AvrPto (Dong et al., 

2009; Xing et al., 2007).  

We next tested whether D193 in Pto also plays a role in responding to AvrPto in N. 

benthamiana leaves. We observed that while co-expression of Pto(D193H) with AvrPtoB 

and Prf triggered cell death as expected, the D193H substitution completely abolished its 

ability to cause AvrPto-specific cell death (Figure 2.6C). D193 residue is therefore 

required for Pto to signal an immune response upon recognition of AvrPto. Importantly, 

AvrPtoB is still recognized by all of the Pto-2677 and Pto mutants (Figure 2.6B, Figure 

2.6C), demonstrating that Pto either recognizes AvrPto and AvrPtoB differently, or that 

there are differences in the downstream signaling pathway subsequent to effector 

recognition.  
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Figure 2.6 (Previous page). Aspartic acid-193 in Pto is required for AvrPto-specific cell death in N. 

benthamiana. (A) Predicted crystal structure of Pto-2677 (cyan) interacting with AvrPto (gold) based on 

the co-crystal structure of the Pto-AvrPto complex (PDB# 2QKW). Highlighted in orange are the residues 

that were changed in Pto-2677 and which were not involved in AvrPto-specific responses. Highlighted in 

red are the two residues at the AvrPto-specific interface (E49/G51 as well as the third amino acid (H193), a 

substitution at which was required to allow Pto-2677 recognition of and signaling in response to AvrPto. 

All residues were changed in Pto-2677 to the amino acid present in Pto at the same position (see Figure 

4A). The open-source molecular visualization system PyMOL was used to generate the image based on 

coordinates in PDB # 2QKW. (B) Pto-2677 variants were co-expressed with one of the effectors or YFP 

and tomato Prf in N. benthamiana leaves using A. tumefaciens-mediated transient expression. Photographs 

were taken 5 days after infiltration. This experiment was repeated several times with identical results and 

representative results are shown. The Pto-2677(H193D) experiment was performed separately multiple 

times, as indicated by the dashed line; cell death was visible in 60% of our infiltrations; photographs in 

these cases were taken 7 days after infiltration. (C) Pto and Pto(D193H) and tomato Prf were co-expressed 

with AvrPto or AvrPtoB in N. benthamiana leaves by Agrobacterium-mediated transient transformation. 

Pto(D193H) was unable to trigger immunity-associated cell death in areas co-infiltrated with AvrPto.   
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Figure 2.7. Substitutions of eight amino acid residues that differ between Pto-2677 and Pto did not confer 

the ability to recognize AvrPto. (A) Pto-2677 variants (already carrying the E49H/G51V substitutions) 

were co-expressed with Prf and AvrPto, AvrPtoB or YFP using Agrobacterium-mediated transient 

expression in N. benthamiana leaves. Photographs were taken 5 days after infiltration. This experiment was 

repeated several times with identical results. (B) Protein expression and accumulation for all the mutants 

used in Figure 5AB and S2A were confirmed by Western blot. Samples were taken 48 hours after 

infiltration and proteins were detected as in Figure S1B. 
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2.4 Discussion  

When the crystal structures of the AvrPto-Pto and AvrPtoB complexes were solved they 

revealed both a shared and a unique interface for each effector interaction (Dong et al., 

2009; Xing et al., 2007). This raised the possibility that natural variants of Pto might exist 

that interact with one effector and not the other. In fact, our screen of wild relatives of 

tomatoes uncovered examples of this in 22 accessions of Schm which recognize only 

AvrPtoB. Our screen also identified three accessions that were susceptible to wild type 

DC3000, revealing there is some natural variation for Pst recognition in this species. 

Schm occurs in a geographically restricted area in southern Peru and its ability to 

recognize only AvrPtoB might suggest that Pst strains it has been exposed to over its 

evolutionary history have this effector and not AvrPto. Unfortunately, nothing has been 

reported of the effector repertoires of Pst strains that are endemic to Peru and a fuller 

understanding of the Pst selection pressures that might have been or are still exerted on 

the wild relatives of tomato will require collection and characterization of Pst strains 

from this region. 

By a series of experiments, we determined that the ability of LA2677 to recognize 

AvrPtoB is due to its Pto ortholog acting with Prf. The Pto-2677 protein has all of the 

residues known from studies with Pto to be required for interaction with AvrPtoB. 

Interestingly, a Pst strain expressing AvrPtoB reached lower population levels in LA2677 

that it does in RG-PtoR which expressed Pto/Prf from Solanum pimpinellifolium. The 

reason for this is unknown and could be due to several, not mutually exclusive, 

possibilities including the presence of non-Pto-related resistance factors in LA2677, 

higher expression of Pto-2677, stronger binding of AvrPtoB by Pto-2677, or a more 

robust downstream response perhaps due to an enhanced interaction of Pto-2677 with Prf 

from LA2677.  
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Our experiments with the various LA2677 Pto gene family members also revealed that 

Fen-2677, in contrast to Fen, does not cause cell death by itself when expressed in leaves 

of N. benthamiana. It has been proposed that this Fen constitutive signaling in N. 

benthamiana requires an active kinase activity, and that Fen auto-activation might be 

inhibited by physical interaction with the tomato Prf protein (Mucyn et al., 2009). As is 

the case with Fen, Fen-2677 interacted only with AvrPtoB variants that have the FID but 

which lack E3 ligase activity, suggesting Fen-2677 is also degraded by AvrPtoB-

mediated ubiquitination (Rosebrock et al., 2007). Fen-2677 differs from Fen by just 8 

amino acids and in the future it will be interesting to determine if one or more of these 

differences renders the Fen-2677 kinase inactive or if they allow N. benthamiana Prf or 

another repressor protein in this species to bind more strongly to Fen-2677 and hence 

control Fen activity.  

We found that LA2677 is not resistant to Pst expressing AvrPto and that Agrobacterium-

mediated overexpression of AvrPto in leaves of LA2677 did not cause immunity-

associated cell death. It was therefore unexpected that Pto-2677 interacted with AvrPto in 

our yeast-two hybrid experiments. It is possible this is an artifact of the yeast two-hybrid 

system which involves overexpression of proteins and localization to the yeast nucleus. 

However, the fact that AvrPto(I96A) does not interact with Pto-2677 indicates the 

interaction relies on the well-characterized CD loop of the effector (Martin, 2012). If 

AvrPto and Pto-2677 also physically interact in plant cells then it raises the intriguing 

question as to why the interaction does not trigger an effective immune response. One 

possibility is that there are not only distinct binding interfaces involved in the Pto 

response to these effectors (Dong et al., 2009), but that Pto also undergoes different 

structural changes depending on the recognized effector that affect its subsequent 

signaling properties. There is currently no evidence that AvrPto and AvrPtoB affect Pto 

signaling abilities differently, nor is it known which residues of Pto are involved in the 
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interaction with Prf. X-ray crystallography of the complex between Pto and Prf together 

with each effector will ultimately be needed to understand the structural aspects of this 

multiple-protein interaction.  

It has been reported previously that the Pto gene from Schm accessions LA1306, 

LA2695, and LA3653 was able to cause immunity-associated cell death when 

agroinfiltrated into transgenic N. benthamiana highly expressing AvrPto (Rose et al., 

2005). The same report also presented evidence that Schm accessions LA1306 and 

LA2695 are resistant to Pst strain T1 delivering AvrPto. However, we found that 

LA1306, LA2695, and LA3653 were susceptible to DC3000ΔavrPtoB, which delivers 

AvrPto. Further, in our hands, LA2695 had moderate resistance to T1, but this resistance 

was independent of the presence of AvrPto. It is possible that LA1306 is also resistant to 

T1 independently of AvrPto, but this remains to be tested. The use of different vectors, 

which express the proteins at different levels in N. benthamiana, as well as differences in 

Pst strains and possibly disease assay conditions in tomato are the most likely 

explanation for these discrepancies. 

The fact that Pto-2677 differs by just 14 amino acids from Pto made it potentially 

straightforward to investigate why Pto-2677 is unable to confer resistance to Pst 

expressing AvrPto, although our experiments led to a surprising result. We initially 

focused on the two residues H49/V51, which in Pto are known to be required for the 

interaction with AvrPto, and which are not conserved in Pto-2677. Previous work 

demonstrated that the variant Pto(H49E/V51D) does not interact with AvrPto in vitro and 

in yeast, however, transient expression of either Pto(H49E/V51D) or Pto(H49E/V51G) 

without a corresponding effector protein caused cell death in leaves of N. benthamiana 

and prevented characterization of these variants in plant cells (Dong et al., 2009; Xing et 

al., 2007). In contrast, Pto-2677, which has E49/G51, did not cause cell death by itself 

and it should be possible in the future to determine which of the remaining 12 non-
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conserved residues in Pto-2677 might inhibit the constitutive cell death that is observed 

with Pto(H49E/V51D) and Pto(H49E/V51G). Such information could shed light on how 

Pto activity is negatively regulated. Conversion of E49/G51 in Pto-2677 to those residues 

present in Pto (i.e., Pto-2677[E49H/G51V]) was insufficient to elicit immunity-associated 

cell death in leaves co-expressing AvrPto. This observation, along with the interaction of 

Pto-2677 with AvrPto in yeast, potentially suggested that H49/V51 are not as important 

as thought for interaction with Pto. The findings also indicated that one or more other 

residues in Pto, which differ in Pto-2677, are needed for AvrPto triggered immunity.  

Subsequent experiments involving individual replacement of 9 additional residues in Pto-

2677 with the cognate residue in Pto identified aspartic acid-(D)193 as being essential to 

allowing Pto-2677 to respond to AvrPto. The Pto-2677(H193D) substitution alone 

conferred the ability to respond to AvrPto with immunity-associated cell death in N. 

benthamiana although this response was less robust and delayed as compared with the 

AvrPto-Pto-2677(E49H/G51V/H193D)-mediated cell death which interestingly restored 

robust AvrPto-mediated cell death. This observation indicates that the H49/V51 residues 

do, in fact, contribute to the AvrPto-specific response. Supporting the importance of 

D193, a substitution changing only this residue in Pto (D193H) was sufficient to severely 

compromise its ability to recognize AvrPto. Importantly, Pto(D193H) and Pto-

2677(H193D) were still able to interact with AvrPtoB and cause AvrPtoB-specific 

immunity-associated cell death, thus demonstrating that histidine-193 residue does not 

interfere with Pto function in general, but instead has a specific effect on its activity in 

response to AvrPto.  

The discovery that D193 plays such an important role in the response of Pto to AvrPto 

was surprising because, based on the crystal structure of the AvrPto-Pto complex, this 

residue is not located within or near the AvrPto-specific interface or the shared interface 

involving the P+1 loop, the two domains of Pto that have been shown to be involved in 
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interaction with AvrPto and regulation of the immune response that follows (Dong et al., 

2009; Wu et al., 2004; Xing et al., 2007). However, it is noteworthy that D193 lies inside 

the activation loop of Pto, a domain known to be important for Pto downstream signaling. 

According to one model, homodimerization of Prf brings at least two Pto molecules in 

close proximity, but keeps them in an inactive conformation complex (Ntoukakis et al., 

2013). AvrPto or AvrPtoB, upon binding to a monophosphorylated Pto molecule 

(sensor), triggers a de-repression of the P+1 loop. This change activates through Prf the 

second Pto molecule (helper) in the complex, which then transphosphorylates the 

activation loop of the first Pto at a second position, thereby activating the Pto/Prf 

complex for downstream immune signaling (Ntoukakis et al., 2013). Aspartic acid is not 

phosphorylated, but under neutral pH contributes a negative charge to the domain. It is 

conceivable that it is not the individual phosphorylation events at specific residues, but 

rather the sum of negative charges in this domain (which can be increased by 

phosphorylation) that is the determining factor in the activation of Pto by AvrPto, a 

hypothesis that needs to be tested.  

An earlier analysis of 16 Pto orthologs from accessions belonging to five Solanum 

species found that all have an aspartic acid (D) at position 193 (Rose et al., 2005) and 

therefore the non-conservative change from the charged aspartic acid to the polar 

histidine residue observed in Pto-2677 does not appear to be a common occurrence. In 

the future, as more Pto sequences become available from genome sequencing projects, it 

will be interesting to determine the most plausible ancestral sequence for the Pto gene. 

Much additional work is needed to understand the structural and functional contribution 

of D193 to the AvrPto-specific response, but we hypothesize that this residue might play 

a role in the protein-protein interaction interface in Pto that is required for downstream 

signaling via Prf in response to AvrPto, but not AvrPtoB.  
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There is a previous report that the recognition of an effector protein can be altered by 

specific substitutions in a host protein on a site distant from the effector target interaction 

surface (Qi et al., 2014). The Pseudomonas syringae pv. phaseolicola effector AvrPphB 

targets and cleaves host receptor-like cytoplasmic kinases including AVRPPHB 

Suceptible1 (PBS1). Upon cleavage of PBS1 at the apex of its activation loop, another 

protein RESISTANCE TO PSEUDOMONAS SYRINGAES 5 (RPS5) is activated 

initiating a strong ETI response. Amino acid substitutions in a specific loop of PBS1 

located on the opposite side of the cleavage site abolished PBS1-mediated activation of 

by RPS5. Further, analogous changes in the most similar PBS1-like protein PBL27, 

which normally cannot trigger an ETI response by RPS5 after cleavage by AvrPphB, to 

the amino acid sequence present in the PBS1 loop was sufficient to confer RPS5 

recognition (Qi et al., 2014). 

In summary, we relied on natural variation in wild relatives of tomato to identify and 

characterize an ortholog of Pto that recognizes AvrPtoB but not AvrPto. This led to the 

discovery that D193 in Pto plays a previously unknown but critical role in the recognition 

of AvrPto but not AvrPtoB. Our results demonstrate the utility of using natural variation 

in tomato wild relatives to study pathogen recognition mechanisms and they lay the 

foundation for investigating the molecular basis for how D193 plays an effector-specific 

role in ETI. 

 

2.5 Materials and Methods 

Plant material 

Solanum and Nicotiana benthamiana plants were grown in a greenhouse with 16 h light / 

8 h dark at a temperature of 24°C during daylight / 22°C at night and 65% humidity. 

Seeds of cultivated tomatoes and N. benthamiana were germinated in trays and seedlings 

transplanted two to three weeks later, respectively, into larger pots containing Cornell 
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Plus Mix soil (0.16 m3 peat moss, 0.34m3 vermiculite, 2.27 kg lime, 2.27 kg Osmocote 

Plus15-9-12 and 0.54 kg Uni-Mix 11-5-11; Everris, Israeli Chemicals Ltd). Wild 

Solanum species were treated with half-strength bleach and germinated on 3M Whatman 

filter paper. Soon after germination, plants were transferred to small trays and three 

weeks later into larger pots with Sunshine MVP soil mix (Sun Gro Horticulture). Seeds 

of all wild tomato accessions were obtained from the Tomato Genetic Resource Center at 

the University of California, Davis (http://tgrc.ucdavis.edu/). Tomato variety Rio Grande-

PtoR (RG-PtoR; Pto/Pto, Prf/Prf), which has the Pto haplotype from S. pimpinellifolium 

was used as a resistant control and Rio Grande-prf3 (RG-prf3; Pto/Pto, prf3/prf3), a 

mutant of RG-PtoR with a non-functional Prf gene due to an 1.1 kb deletion (Salmeron et 

al., 1994; Salmeron et al., 1996), was used as a susceptible line for all tomato 

experiments. 

Pst DC3000 strains and the wild tomato species screen 

Accessions of wild tomato were screened for their ability to recognize the Pst effectors 

AvrPto and AvrPtoB using the following Pst DC3000 strains: 1) wild type DC3000 

which has AvrPto and AvrPtoB; 2) DC3000ΔavrPto (lacking AvrPto, but having 

AvrPtoB) (Ronald et al., 1992); 3) DC3000ΔavrPtoB (lacking AvrPtoB, but having 

AvrPto) (Lin and Martin, 2005); and 4) DC3000ΔavrPtoΔavrPtoB (lacking both 

effectors) (Lin and Martin, 2005). Strains were grown on King’s B agar plates containing 

the appropriate antibiotics for two days at 30°C. The bacterial lawn was scraped from the 

plates and suspended in 10 mM MgCl2 buffer. Tubes were centrifuged for 10 min and 

pellets were resuspended in fresh buffer. The OD600 was initially adjusted to 0.5 (~ 5 x 

108 colony-forming units (CFU) per mL). Subsequent bacterial suspensions were 

prepared at a final concentration of 5 x 104 CFU/mL and the different bacterial 

suspensions were syringe-infiltrated into separate leaflets of the same leaf for each plant. 
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The development of disease symptoms was monitored for up to one week after 

infiltrations. 

Virulence assay in tomato 

Pst DC3000ΔavrPto and DC3000ΔavrPtoB mutants were prepared as described above 

for screening wild tomato species. Whole plants were vacuum-infiltrated as described 

previously (Mathieu et al., 2014). Plants used in the VIGS experiments were vacuum-

infiltrated using a bacterial suspension of 5 x 105 CFU/mL. Bacterial population assays 

were carried out as described previously (Cheng et al., 2011). Infiltrated plants were kept 

in a climate controlled growth chamber (24°C day and 20°C night temperature) and 

scored for disease symptoms 3-4 days later. 

Virus-induced gene silencing (VIGS) of Prf 

The Prf gene in tomato was silenced using a Tobacco Rattle Virus (TRV)-based VIGS 

system (Burch-Smith et al., 2004; Nguyen et al., 2010). PDS (phytoene desaturase) was 

silenced as a positive control for the efficiency of the VIGS and EC1, which carries a 

fragment of E. coli DNA, was used as a negative control for the experiments (Rosli et al., 

2013). The construction of the plasmids was carried out as described previously 

(Ekengren et al., 2003). Agrobacterium tumefaciens cultures containing the TRV 

constructs were prepared as described earlier (Velasquez et al., 2009). Cotyledons of 9-

day-old Rio Grande-PtoR and 14-day-old LA2677 plants were syringe infiltrated with a 

1:1 mixture of Agrobacterium strains carrying pTRV1 or pTRV2 containing the gene 

fragment of interest. Plants were kept in a growth chamber with 20°C day and 18°C night 

temperatures at 50% relative humidity with a 16-h light / 8-h dark photoperiod until the 

PDS control plant leaves showed signs of photobleaching. Plants were transferred to 

24°C day and 20°C night temperatures until they reached the right size, around 30 cm, to 

be vacuum-infiltrated. 
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Preparation of genomic DNA and sequencing of Pto genes 

DNA was isolated from two of the smallest leaves using the CTAB method (Doyle and 

Doyle, 1987). The DNA pellets were air dried and resuspended in 25-100 µl TE. Samples 

were left at 4°C overnight to allow the pellet to dissolve completely. 1 µl of 10 mg/mL 

RNaseA was added to the samples, followed by a 37°C incubation period for 1 hr. 

Samples were stored at -20°C until further use. Two sets of primers were used to clone 

the different Pto genes from LA2677: Primers F: 5’-ATGGGAAGCAAGTATTCTAA-3’ 

and R: 5’-AAATAACAGACTCTTGGAGA-3’ match the 3’ and 5’ end of the Pto gene 

in RG-PtoR and also PtoC and PtoF due to their similarity at the beginning and end of 

their sequence. For amplification of Fen and PtoD, also very similar in their 3’ and 5’ 

prime ends, primers F: 5’-ATGGGAAGCAAGTATTCCAA-3’ and R: 5’-

ATTCAGGATCATCTTGAAT-3’ were used. The PCR protocol used was as described 

previously (Rose et al., 2005). Products were resolved on agarose gels and purified using 

Wizard® SV Gel and PCR Clean-Up System and cloned into the pGEM®-T easy vector 

system following the manufacturer’s instructions (Promega). The LA2677 Pto sequences 

have been deposited in Genbank (Pto-2677: accession no. KT225557; Fen-2677: 

KT225558; PtoC-2677: KT225559; PtoD-2677: KT225560). 

cDNA synthesis and RT-PCR 

RNA was extracted using the Plant RNA Purification Reagent (Invitrogen) according to 

the manufacturer’s instructions. Isolated RNA was treated with RQ1 DNase (Promega) 

for 1 h at 37°C. To ensure high quality of the RNA, samples were additionally purified 

using an RNeasy ® Mini column (Qiagen) following the manufacturer’s protocol. cDNA 

was synthesized using the SuperScript® III First-Strand Synthesis System (Invitrogen) 

according to manufacturer’s instructions. Transcripts of Pto family members were RT-

PCR amplified using Phusion HF (Fisher). Primers used for each gene analyzed were: 

Fen2677: 5’-GAAACAGAAATTGAGATTCTCTCATTTTGC-3’ and  
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3’-CATAGCCTGCGTCTCATCATC-5’,  

PtoC: 5’-GAAAAGGCATAATTGTGACTCCCA-3’ and  

3’-TTC CTTTCACGTCTGTGCTTAC-5’,  

PtoD: 5’-CGAACAGAAATTGAGATACTCTCACAC-3’ and  

3’-CAGCTAAACTGATCATATGTGAACGAC-5’,  

Pto: 5’-CATAAATGATGCTTTAAGCTCGAGTTATCT-3’ and  

3’-TTGATGGAGCTCAGTCCCTT-5’. The PCR protocol used was as described 

previously (Rose et al., 2005). 

Phylogenetic analysis 

A phylogenetic analysis of the Pto genes from tomato RG-PtoR and S. chm LA2677 was 

performed by generating an unrooted maximum likelihood tree with Mega v. 6.06-mac 

using a Tamura 3-parameter substitution model and gamma-rate distribution (Hall, 2013; 

Tamura, 1992; Tamura et al., 2013). Nearest-Neighbor-Interchange was used as the 

heuristic tree search method with 100 bootstrap samples. 

Yeast-two hybrid assay 

The LexA yeast-two hybrid (Y2H) system was employed to study the interactions of the 

different LA2677 Pto proteins with AvrPto and AvrPtoB. pEG202 was used as the bait 

vector and pEG4-5 as the prey vector (Golemis et al., 2008). Y2H was performed using 

the protocol described previously (Mathieu et al., 2014). Development of blue patches 

was monitored for 12 to 42 h. 

Agrobacterium-mediated transient protein expression 

For infiltrations of N. benthamiana leaves, Agrobacterium tumefaciens strain GV3101 

with helper plasmid pMP90 was used. For tomato leaf infiltrations, Agrobacterium strain 

1D1249 was used, because GV3101 causes necrosis when infiltrated into tomato leaves 

(Wroblewski et al., 2005). Agrobacterium competent cells were transformed by 
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electroporation. Single colonies were tested for the presence of the construct by colony 

PCR. For the assay, Agrobacterium strains were grown on Luria Broth agar plates 

containing antibiotics in a 30°C incubator for 48 h. The bacteria were scraped from the 

plate and dissolved in infiltration buffer (10 mM MgCl2, 10 mM MES pH5.6 and 200 µM 

acetosyringone). Cells were pelleted by centrifugation for 10 min and resuspended in 

fresh buffer. For GV3101, the bacterial suspension was diluted to a final OD600 of 0.3 and 

for 1D4912 to OD600 of 0.15. Tubes were set to tumble on a nutator for 4-6 h in the dark 

before infiltration. After syringe infiltration of plants using a needle-less syringe, they 

were moved to a growth chamber (24°C day and 20°C night temperature). Plants were 

kept on a dark shelf and surrounded by shade cloth to minimize light exposure. For 

analysis of protein expression, samples were taken 48 h later. In tomato, cell death was 

fully developed by day 3 and in N. benthamiana cell death started to appear 72 h after 

infiltration and was complete by day 5.  

Cloning 

All enzymes and reagents were acquired from New England Biolabs. The Pto genes from 

LA2677 were cloned into the entry vector pJLSmart (Mathieu et al., 2014; Mathieu et al., 

2007) followed by LR recombination into pGWB417 (Nakagawa et al., 2007). The 

corresponding yeast-two hybrid constructs were generated by restriction cloning. Details 

of the cloning protocols used were as described previously (Mathieu et al., 2014). Details 

of vectors and constructs used in this work are provided in the supplemental information 

(Table S2). 
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CHAPTER 3 

MOLECULAR CHARACTERIZATION OF NEW YORK 

PSEUDOMONAS SYRINGAE PV. TOMATO ISOLATES REVEALS 

FEATURES INTERMEDIATE BETWEEN RACE 0 AND RACE 1 

STRAINS2 

 

3.1 Abstract  

Bacterial speck, a disease caused by Pseudomonas syringae pv. tomato (Pst), is a severe 

problem for fresh market tomato growers in New York (NY) and elsewhere. Race 1 

strains are the most common Pst strains worldwide; they are highly virulent even on 

tomatoes carrying the Pto resistance gene and have displaced race 0 strains, which are 

avirulent on tomatoes with a functional Pto pathway. Pto is able to recognize AvrPto and 

AvrPtoB, two virulence factors (effectors) expressed by race 0, but absent in race 1 

strains.  

We collected Pst isolates from infected tomato plants across NY in 2015 and 

characterized them for their virulence on tomatoes, as well as for the presence of specific 

effectors. These new isolates have avrPtoB but, as reported for several race 1 strains, 

protein expression for this effector was not detectable. In contrast to race 1 strains, the 

NY isolates have a functional avrPto gene which is transcribed and translated. Virulence 

assays revealed that inside leaves the strains reached population sizes intermediate 

between typical race 0 and race 1 strains, suggesting that AvrPto is being recognized, but 

its recognition is masked during later stages of infection. Collectively, our data suggest 

that Pto confers at least partial resistance against current NY isolates, indicating that 

																																																								
2	This chapter will be submitted in modified form to Molecular Plant Pathology and was 
written by Christine M. Kraus, Carolina Mazo, Christine D. Smart and Gregory B. 
Martin.	
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introgression of this resistance gene into fresh market tomato varieties will be of benefit 

to fresh market tomato growers. 

 

3.2 Introduction 

Bacterial speck caused by Pseudomonas syringae pv. tomato (Pst) is a serious disease of 

commercial field-grown tomatoes throughout the tomato-growing regions of North 

America. The symptoms appear as small necrotic lesions on leaflets, stems and fruits and 

can greatly impact both the yield and marketability of the crop. Disease can spread 

quickly, especially when aided by cool and wet summers that can occur in New York 

(NY) (Jones, 1991; Pedley and Martin, 2003). Bacterial speck is the most common 

bacterial disease of tomatoes in NY next to bacterial canker, caused by Clavibacter 

michiganensis subsp. michiganensis (Smart et al., 2015). In NY, large-scale processing 

tomato production is no longer practiced, but a significant amount of tomatoes are still 

grown locally for fresh consumption. Several resistant varieties of processing tomatoes 

are available, but few resistant fresh-market cultivars exist.  Examples of Pst resistant 

fresh-market tomato cultivars, which express Pto, include ONT 7710, Rotam-4, in 

addition to fresh-market plums such as Peto 882 (Bosch et al., 1990; Buonaurio et al., 

1996; Pitblado and MacNeill, 1983). 

Pto-mediated resistance in tomato involves the cytoplasmic kinase Pto (for resistance 

against P. syringae pv. tomato) and the nucleotide binding leucine rich repeat (NB-LRR) 

protein Prf (Lin and Martin, 2007; Martin, 2012; Salmeron et al., 1996). Pto can 

recognize two unrelated Pst virulence effectors, AvrPto and AvrPtoB, leading in each 

case to the activation of effector triggered immunity (ETI) (Abramovitch et al., 2003; 

Kim et al., 2002; Martin, 2012; Mathieu et al., 2014; Rosebrock et al., 2007; Shan et al., 

2000b). This recognition event culminates in a form of programmed cell death at the site 

of infection and suppression of pathogen growth. Pto-mediated resistance provided 
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effective disease control against bacterial speck for several decades, but more recent 

studies have shown that Pst populations worldwide have shifted towards virulent race 1 

strains, which are able to evade Pto-mediated immunity (Cai et al., 2011).  

Pst race 1 was first detected in 1986 in Canada and in 1993 in the USA and has since 

become the predominant race found in field grown tomatoes (Arredondo and Davis, 

2000; Lawton and MacNeill, 1986). Race 1 strains can evade Pto recognition in three 

ways: absence of AvrPto and AvrPtoB, expression of protein variants that cannot be 

recognized by Pto, or loss of effector protein expression (Kunkeaw et al., 2010; Lin et al., 

2006). In all cases, race 1 strains cause disease symptoms and grow to high population 

levels in tomato cultivars carrying Pto resistance. Pathogens exposed to resistant cultivars 

are under strong selective pressure to modify the recognized effectors and evade ETI. 

Boom and bust cycles usually occur when a resistant cultivar with single, major R gene is 

introduced into an agroecosystem to control a plant disease, such as in the primary 

tomato production states like California. Conceivably, the pathogen population exposed 

to this single R gene is under tremendous selective pressure to evolve. This constant 

pressure imposed by large swathes of a resistant cultivar quickly fixes a new allele in the 

population, shifting the population towards the new more virulent strain (McDonald and 

Linde, 2002). However, in predominantly fresh market producing states like NY, this 

pressure should be very low due to the absence of the R gene in significant portions of the 

tomato population. 

The objectives of this study were to characterize Pst strains isolated throughout NY and 

assess whether Pto-mediated resistance would still be effective, even in the context of the 

recent humid and cool summers favorable to the disease. Our data will be useful to 

tomato breeders deciding whether an introgression of Pto into fresh market tomato 

varieties would benefit tomato growers in NY and beyond. Here we report that Pto, even 

under lab conditions favoring the pathogen, still confers at least partial resistance against 
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Pst isolates collected during a severe outbreak of bacterial speck in NY in 2015, most 

likely due to the presence of AvrPto in these isolates. 

 

3.3 Results 

Analysis of diagnostic effector genes indicates the 2015 NY isolates are race 1 Pst 

strains 

Leaves infected with Pst were collected from infested tomato fields in six different NY 

counties (Figure 3.1A). Pst isolates were single-colony purified and checked for 

fluorescence under ultraviolet light as a first classification step (data not shown). Isolates 

that were fluorescent were further examined by PCR using primers designed to 

specifically amplify sequences from effectors that can discriminate between group I  

(associated with tomato) and other Pst groups (avirulent on tomato), as well as other 

tomato bacterial pathogens such as Xanthomonas perforans and Clavibacter 

michiganensis subsp michiganensis. We also employed primers to amplify effector 

sequences that allow the distinction between race 0 and race 1 strains. All primers used 

were previously described by Jones et al. (Jones et al., 2015). Results indicate that all 

2015 isolates belong to the group I Pst, as demonstrated by the presence of hopR. 

Furthermore, we were able to detect avrA and hopW1, which are present in other race 1 

strains such as T1 and NY-T1 (Figure 3.1B and Table 3.1). HopN1 was amplified 

exclusively in the race 0 control DC3000 (Figure 3.1B and Table 3.1). These results 

indicate that, based on PCR diagnostic tests, all 2015 isolates group with the more 

virulent race 1 strains. From the six strains, NY-15114 isolated in Essex County and NY-

15125 isolated in Tompkins County were chosen as representative isolates for further 

molecular characterization. NY-15125 was selected because it was isolated in a field that 

is only 20 min away from Cornell campus, representing the local Pst population. 

Working with this strain allowed us to also conduct field experiments in 2016 without 
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introducing a new Pst population into the area. NY-15114 was chosen because it was 

collected far away from NY-15125 and might show the biggest differences in 

pathogenicity as well as at the genomic and proteomic levels. 

 

Pst strains isolated in NY are non-pathogenic on Arabidopsis, similar to other known 

race 1 Pst strains 

To date, only Pst DC3000 and Pseudomonas syringae pv. maculicula strains are known 

to be capable of infecting Arabidopsis thaliana accession Columbia (Col-0) (Almeida et 

al., 2009; Yan et al., 2008). We tested NY-15114 and NY-15125 strains for their ability 

to infect, proliferate in, and cause symptoms on Arabidopsis Col-0 plants. Arabidopsis 

leaves were syringe infiltrated with a bacterial suspension of 4 x 105 cfu/ml and symptom 

development was monitored for up to one-week post infiltration. We found that both 

strains were similar to T1 in being unable to cause disease on Arabidopsis leaves (Figure 

3.2A).  

To confirm our visual evaluation, tissue was sampled at day 0 (two hours after 

infiltration) and day 3 to measure the size of the bacterial populations. As expected, the 

NY isolates and T1 grew poorly in Arabidopsis. In contrast, DC3000 caused severe 

symptoms and had multiplied significantly by day 3 (Figure 3.2B), confirming that most 

P. s. pv. tomato strains are non-pathogenic in Arabidopsis. 
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Figure 3.1. Diagnostic PCR analysis to detect effectors specific for race 0 or race 1 strains group the 2015 

NY isolates with race 1 strains. (A) Map depicting the counties in which Pst samples were isolated from 

infected tomato plants. (B) Table summarizing the results of genotyping PCRs using specific primers 

against predicted virulence effectors that allow discrimination between race 0 and race 1 isolates of Pst. 
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Figure 3.2. The 2015 NY isolates do not cause disease on Arabidopsis thaliana Col-0. (A) Arabidopsis 

Col-0 leaves were syringe infiltrated with 5 x 104 CFU/ml per strain. All photographs were taken 7 days 

after inoculation. (B) Leaf samples were taken at day 0 and day 3 after inoculation and bacterial 

populations were determined. Data is presented as mean ± SD. The asterisk indicates a significant 

difference (P <0.05) between day 0 and day 3 based on a Welch's test (unequal variance t-test) for normal 

distributed data or the Wilcoxon test for nonparametric data. These experiments were performed three 

times, and similar results were obtained. 
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Pst strains collected in NY can partially overcome Pto-mediated resistance 

To test whether the Pto-mediated resistance pathway would be effective in inhibiting the 

growth of the NY isolates, we vacuum-infiltrated four week old Rio Grande-PtoR plants 

(RG-PtoR) expressing Pto/Prf from Solanum pimpinellifolium (Spim) and RG-prf3 plants 

(RG-PtoR null for Prf) with the different 2015 NY strains. Strains DC3000 (race 0), 

DC3000∆avrPto∆avrPtoB, T1 and NY-T1 (race 1) were used as controls. To monitor for 

the ability of the new isolates to grow in the different tomato genotypes, leaf tissue 

samples were taken immediately (day 0) and at day two after infiltration to determine the 

size of the bacterial populations. Our results show that all NY isolates grew by day two to 

populations intermediate between DC3000, a strain that cannot infect tomatoes with a 

functional Pto pathway, and the very virulent Pst strains such as T1, NY-T1 and 

DC3000∆avrPto∆avrPtoB (Figure 3.3A). Due to this novel intermediate phenotype, we 

decided to include an additional data point three days later (day 5). To our surprise, all 

2015 NY Pst strains were able to continue growing to population levels high enough that 

by day 6, bacterial speck symptoms were visible throughout the plant leaves and stem 

(Figure 3.3A and 3.3B). In contrast, no additional growth or symptom development was 

detected in plants infiltrated with DC3000 (Figure 3A). No samples were collected at day 

5 for the race 1 strains, as the tissue was already too necrotic. As expected, bacterial titers 

for all strains reached high levels in RG-prf3 tomato plants, causing disease symptoms as 

early as three days post inoculation (Figure 3.3C). The results described above 

demonstrate that all six 2015 NY isolates show identical virulence profiles on RG-PtoR 

and RG-PtoR prf-3 plants. Under lab conditions they appear to partially suppress Pto-

mediated recognition and their populations reach sufficient numbers to cause speck 

symptoms, even on a resistant Pto-expressing tomato variety. However, in comparison to 

race 1 strains, the infection is milder and does not kill the plant. 
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2015 NY strains have both avrPto and avrPtoB, but only AvrPto protein is detectable 

Since the virulence of NY strains on RG-PtoR tomato plants was less than that of other 

race 1 strains, we decided to test them for the presence of avrPto and avrPtoB. These two 

Pst effectors are recognized by Pto, triggering a hypersensitive response. Using sets of 

specific primers to amplify avrPto and a fragment of avrPtoB that can differentiate 

between DC3000 and T1 avrPtoB, we were able to demonstrate that the NY-15114 and 

NY-15125 genomes contain the genes for both effectors (Figure 3.4A and Table 3.1). 

The avrPto sequence of both strains is identical to avrPto in JL1065, and this allele 

differs in just four amino acids from the avrPtoDC3000 allele (Figure 3.5). We only 

obtained an amplicon for avrPtoB from the NY strains when using the T1 specific 

avrPtoB primers. We additionally amplified and sequenced the complete avrPtoB gene 

from both strains, and the results show that the NY avrPtoB allele is 100% identical to 

the avrPtoBT1 allele (data not shown).  

To determine whether these two effector genes are transcribed, we grew the Pst strains in 

hrp-inducing minimal medium (HrpMM) to mimic plant infection, thereby inducing 

effector gene expression. RNA was then extracted and subjected to cDNA synthesis 

using random hexamer primers. The primers previously tested on DNA were used for a 

reverse transcriptase polymerase chain reaction (RT-PCR). Both genes are highly 

expressed under inducing conditions in NY-15114 and NY-15125, to levels comparable 

to other tested strains (Figure 3.4B and Table 3.1). For all PCRs, primers amplifying the 

16S RNA were used as positive controls (Figure 3.4A, 3.4B and Table 3.1). 
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Figure 3.3 (Previous page). Pst strains isolated in NY grow to intermediate population levels on tomato 

plants with a functional Pto pathway, as compared to race 0 and the more virulent race 1 strains. (A) RG-

PtoR or (C) RG-prf3 plants were vacuum infiltrated with the indicated Pst strains at a final concentration of 

5 x 104 CFU/ml and bacterial populations were measured at day 0, 2 and when possible at day 5 post 

inoculation. Results are shown as the mean of 3 samples including standard deviation. Different letters 

indicate significant differences (p value <0.05). In cases of equal variance a one-way ANOVA followed by 

Tukey’s HSD post hoc test was performed; in cases of unequal variance, the Brown-Forsythe test followed 

by a Games-Howell post hoc test was used. For pairwise comparison data, the asterisk indicates a 

significant difference (P <0.05) between day 0 and day 2 based on a Wilcoxon test (unequal variance t-

test). (B) Photographs were taken 7 days after infiltration of representative leaves of vacuum infiltrated 

RG-PtoR plants showing symptoms.  

It has been previously shown that Pst strain T1 and other race 1 Pst isolates collected in 

California such as A9, 19, 838-8, 838-16, 22 and 23 post-transcriptionally suppress 

accumulation of AvrPtoB protein by an unknown mechanism, thereby evading Pto 

mediated recognition of this effector by the host (Kunkeaw et al., 2010; Lin et al., 2006). 

Since the avrPtoB sequences in the 2015 NY Pst strains are identical to those of T1 and 

NY-T1 strains, we tested whether this is also the case in NY-15114 and NY-15125. 

Additionally, we hypothesized that AvrPto protein is expressed, identical to JL1065 and 

DC3000, since all four strains share an almost identical gene sequence. To test for protein 

expression, we grew the Pst strains in HrpMM and protein accumulation was detected 

using antibodies raised specifically against AvrPtoB or AvrPto. We were able to detect 

AvrPtoB protein with our anti-AvrPtoB antibody in the DC3000 samples only. However, 

endogenous AvrPto protein was detected in the two 2015 NY Pst samples, similar to 

completely avirulent DC3000. Thus we conclude that NY-15114 and NY-15125 strains 

suppress AvrPtoB protein accumulation, identical to T1 and NY-T1. However, race 1 

strains usually lack or have a mutated allele of avrPto, but the NY strains not only 

transcribe, but also translate avrPto to a functional protein during infection (Figure 

3.4C). 
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Figure 3.4. 2015 NY isolates induce avrPto and avrPtoB gene expression in an hrp-dependent manner, but 

only AvrPto protein accumulates in the cell. (A) Colony PCR shows the presence of avrPto and avrPtoB 

genes in all tested strains. (B) RT-PCR analysis to detect effectors transcripts. cDNA was synthesized from 

RNA isolated from bacteria grown in HrpMM. Primers amplifying 16S rRNA were used as an internal 

control for (A) and (B). (C) Detection of AvrPto and AvrPtoB protein accumulation by Western blotting 

using endogenous antibody raised against each protein. Bacterial cells were grown in HrpMM overnight and 

lysed in Laemmli Sample Buffer for protein extraction. A red asterix indicates the protein with the correct 

molecular weight for AvrPto and AvrPtoB. A non-specific band with a higher molecular weight shows 

equal loading in each lane. 
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Figure 3.5. Amino acid sequence alignment comparing AvrPto from NY-isolates to DC3000 and JL1065 

with the four amino acid differences highlighted in red. 

Pst strain K40 shows the same phenotype on RG-PtoR plants as the NY isolates  

Since 2003, when the first Pseudomonas syringae pv. tomato genome, DC3000, was 

published, several other strains have been sequenced and their genomes are publicly 

available (Buell et al., 2003) (http://www.pseudomonas-syringae.org). Using this 

resource, we looked for Pst strains that have a functional avrPto gene, but do not express 

AvrPtoB protein (speculating that if the sequence is identical to the T1 avrPtoB allele, it 

would not be expressed). JL1065 and PT23 were ruled out because Lin and colleagues 

have shown that these two strains express and secrete AvrPtoB (Lin et al., 2006). Max13, 

K40 and NCPPB1108 Pst strains were tested for their ability to grow on RG-PtoR and 

RG-prf3 tomato plants and compared to NY-15125 and DC3000. Samples were taken 

immediately (day 0) and at day 5 after infiltration of RG-PtoR plants and at day 2 for 

RG-prf3 plants. Max13 and NCPPB1108 grew to the same low titers as DC3000 on 

tomato plants with a functional Pto pathway (Figure 3.6A), demonstrating that the Pto 

pathway can fully recognize these strains and inhibit Pst growth. However, K40, a strain 

that was isolated in Virginia in 2005, showed the same intermediate growth phenotype 
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and late symptom development by day 5 as the 2015 NY isolates (Figure 3.6A). All 

tested strains grew to high levels on susceptible RG-prf3 plants, confirming their ability 

to infect tomato plants and grow to high titers when not recognized by Pto (Figure 3.6B). 
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Figure 3.6 (Previous page). The K40 strain shows the same intermediate growth phenotype as the 2015 

NY Pst isolates. Different sequenced strains with a functional AvrPto, but lacking AvrPtoB expression, 

were vacuum infiltrated into (A) RG-PtoR or (B) RG-prf3 plants at 5 x 104 CFU/ml. Bacterial populations 

were measured at 0 and 5 days for RG-PtoR and at 0 and 2 days for RG-prf3 plants after infiltration. The 

error bars indicate standard deviations for three replicates. Different letters indicate significant differences 

(p value <0.05). The experiments were performed twice with similar results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer name Gene Sequence (5' → 3')
oTK187 hopR1 GAGATGGAACATGGCATCAG 
oTK189 hopR1 AGGTGAACAGTGTCGTCTC 
oTK183 hopN1 AATGGAAGCGAGTGTCTGC 
oTK186 hopN1 GATTCTGGTCTTGATGTATTGCG 
oTK175 avrA CGATCTCTGTCGAACAATGC
oTK177 avrA GAAGACCTTGGTTCTTTCGG 
oTK180 hopW1 GAACAGCAGACACTCAAAGG 
oTK181 hopW1 CCTGTGTCCAATTTGTCCTC 
oPB01 avrPto ATGGGAAATATATGTGTCGG
oPB02 avrPto TCATTGCCAGTTACGGTACG
oTK212 avrPtoBDC3000 TATCGTTCAGCAATTGGTCAGTG
oTK213 avrPtoBDC3000 CCCCGGGTTCAGGTTAA
oTK214 avrPtoBT1 GCCACGCGATAGCTCTTCCTTCTC
oTK215 avrPtoBT1 AACAACCGCCTGCCGCTCGTAAC
oTK216 16S rRNA GCGGCAGGCCTAACACAT
oTK127 16S rRNA GTTCCCCTACGGCTACCTT 

Table 3.1. Primers used in this study
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3.4 Discussion 

The aim of this work was to characterize the molecular basis of Pst virulence within a 

sampling of isolates from 2015, a period of widespread bacterial speck disease outbreaks 

in NY. The observation that the global Pst population has shifted towards the more 

virulent race 1 group serves to highlight the importance of knowing the exact identity of 

the dominant bacterial population (Cai et al., 2011). Our second goal was to generate 

information to allow us to give a recommendation on whether introgression of Pto into 

the fresh market tomato cultivars grown in this area would be worthwhile.  

Using primers designed to amplify effector sequences that can differentiate between race 

0 and race 1 strains, our data suggest that all NY isolates belong to the virulent race 1 

group (Jones et al., 2015). This shows the necessity of deeper molecular analysis even for 

well-studied host-pathogen systems. Solely relying on effector profiling to differentiate 

between race 0 and 1, we would have over-estimated the virulence potential of these 

isolates. By investigating the RNA and protein level of AvrPto and AvrPtoB, we were 

able to reveal that, contrary to what would have been predicted based on this race 1 

classification, both effectors were present as functional genes at the transcriptional level, 

and AvrPto protein was expressed at levels sufficient to activate resistance in Pto-

expressing tomatoes. The combination of DNA sequences, virulence and Western blot 

assays enabled us to identify the actual virulence potential of these isolates. This reliable 

identification of the virulence of strains present in the field is of crucial importance to 

breeders and growers in order to make the appropriate disease management decisions. 

The NY isolates reached intermediate population levels in RG-PtoR plants in 

environmentally-controlled growth chambers as compared to typical race 0 and 1 control 

strains. Importantly, the bacterial populations reached levels sufficiently high to cause 

symptoms on leaves and stems by day 6, but not so high as to kill the plant, as seen with 
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T1 or NY-T1. This uniformity in genetic features and virulence is quite interesting 

considering that samples were collected from distinct geographic areas in NY, from the 

Canadian border to Long Island. A possible explanation for this uniformity could be a 

single pathogen source, derived from infected seeds or seedlings. Examples for such 

occurrences have been documented in the past (McCarter et al., 1983). To confirm this 

hypothesis, a survey to determine the sources of affected growers would be required. 

Long distance movement of Pst in the environment is also a possibility; it has been 

demonstrated that these bacteria can be isolated from the environment, for example from 

the rain and snow, indicating that they spread readily (Monteil et al., 2013; Morris et al., 

2008). NY-15114 isolated in Tompkins county did not originate in a tomato grower field, 

but was instead isolated from a Cornell University research plot, and the seeds used had 

been collected from tomato lineages grown in a research greenhouse over many 

generations and not sourced from an outside supplier. As no outbreak had occurred in the 

greenhouse, an infection of plants in situ is the most likely explanation for this infection, 

indicating that pathogen spread through the environment is at the very least partially 

responsible for this recent outbreak, potentially exacerbated by mild, rainy summers like 

the one in 2015. 

We further looked for the presence, as well as transcription and translation, of avrPto and 

avrPtoB. DNA sequencing of these genes revealed that avrPtoB in the NY isolates is 

identical to the avrPtoBT1 allele. We were able to detect RNA using qRT-PCR, but no 

protein accumulation using endogenous AvrPtoB antibodies. avrPtoBJL1065 and 

avrPtoBPT23 differ in only 3 amino acids from the avrPtoBT1 allele and in those strains 

AvrPtoB is expressed, secreted and also recognized by Pto. This indicates that the 

absence of AvrPtoB protein in T1-like strains is not due to intrinsic protein instability of 

the T1 allele, but more likely active repression/inhibition of translation of AvrPtoB by T1 

and NY-T1. Suppression of AvrPtoB protein translation appears to be a strategy widely 
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shared by Pst strains, but the mechanism underlying this phenomenon is still unknown 

(Kunkeaw et al., 2010; Lin et al., 2006). In contrast to T1 and NY-T1, all NY-isolates 

possess a functional avrPto identical to the JL1065 allele that can be recognized by Pto 

(Ronald et al., 1992). The recognition of either AvrPto or AvrPtoB by Pto is sufficient to 

trigger an ETI response and halt infection (Kim et al., 2002). Why these strains modulate 

AvrPtoB expression while having AvrPto which can still be recognized by the host is a 

conundrum that we cannot explain. Nonetheless, AvrPto expression enhances Pst 

pathogenicity in tomato plants lacking the Pto gene boosting bacterial growth (Nguyen et 

al., 2010; Shan et al., 2000a) and most tomato cultivars grown in NY do not have the Pto 

resistance gene.  

Growth of NY isolates is delayed in RG-PtoR plants, although these strains are fully 

virulent RG-prf3 plants. This observation suggests that Pto or a Pto family member is 

recognizing an effector in the NY isolates, and AvrPto is the obvious candidate. One way 

to confirm that recognition of AvrPto is the underlying mechanism of RG-PtoR resistance 

against NY isolates would be the generation of a NY strain with a deletion of the avrPto 

gene. However, despite much effort, we have been unable to delete the avrPto gene from 

these strains. We employed variations of several different transformation protocols 

(electroporation and biparental mating, with variations of OD600 and washing buffers) 

without any success. The poor transformability is an issue that we are continuing to try to 

resolve. The NY strains are able to reach high population levels in RG-prf3 plants, and 

the only difference between this cultivar and RG-PtoR is a mutation in a gene important 

for the Pto pathway (Salmeron et al., 1994), indicating that recognition of either AvrPtoB 

or AvrPto is the most likely reason for the observed resistance. Combined with the 

absence of detectable AvrPtoB protein in these strains, AvrPto is the most likely 

avirulence factor in these strains. 
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We took advantage of the large number of publicly available Pst genome sequences, as 

well as previous papers, to mine for strains that do not express AvrPtoB, but have a 

functional avrPto gene. Out of the three other strains that we tested for virulence on RG-

PtoR and RG-prf3 plants, only K40 behaved similar to NY-15114 and NY-15125. Max13 

and NCPPB1108 grew poorly on RG-PtoR, but to high levels on RG-prf3 plants. K40 

was isolated in 2005 in Virginia, the third biggest fresh market tomato producer in the US 

with a minimal processing tomato market (Cai et al., 2011) (USDA; 

https://www.ers.usda.gov/topics/crops/vegetables-pulses/tomatoes.aspx). As a result 

Virginia most likely has a low prevalence of Pto in their tomato populations. It is 

conceivable that the presence of AvrPto in K40 confers a fitness advantage. 

The early suppression of Pto-mediated resistance during infection with NY strains in the 

presence of AvrPto is quite interesting. We did not detect a quantitative difference in 

AvrPto protein expression between DC3000 and the two NY isolates. This leads us to 

hypothesize the existence of another potentially novel effector in these strains and K40, 

that has the more general function of suppressing ETI later in the pathway. Other Pst 

effectors, in addition to known effectors from Xanthomonas, can interact with and 

suppress MAP kinase proteins (MPK), Mitogen-activated protein kinase kinase proteins 

(MKK), plant promoters and transcription factors (TF) involved in downstream signaling 

(Büttner, 2016). For example, HopF2 from Pst DC3000 targets MKK5 in vitro and 

inhibits the PTI response (Wang et al., 2010). Pst HopAI1 phosphorylates MPK3, MPK4 

and MPK6 in a way that prevents re-phosphorylation (Zhang et al., 2007; Zhang et al., 

2012). AvrRps4 from Pseudomonas syringae pv. pisi interacts with WRKY domain-

containing proteins and thus interferes with WRKY transcription factor-dependent 

defenses (Sarris et al., 2015). Other effectors such as XopD from Xanthomonas 

campestris are delivered to the nucleus and interact with TF such as AtMYB30 in 

Arabidopsis to repress transcription of defense- and senescence-related plant genes 
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(Canonne et al., 2011; Raffaele and Rivas, 2013). Furthermore, it has been shown that 

many effectors suppress ETI triggered responses by masking the avirulence activity of 

another effector (Guo et al., 2009; Jackson et al., 1999; Wei et al., 2015). 

Overall, our data suggest that introgression of Pto into NY-grown tomato cultivars is still 

a viable strategy to manage bacterial speck in NY. Under lab conditions Pto suppresses 

bacterial growth of the NY isolates to a level that the plant, while showing some bacterial 

speck symptoms, does not succumb to the disease. In 2016, we conducted a field trial 

with resistant and susceptible tomatoes that we spray-inoculated with NY-15125. While 

2016 was a very dry summer in NY, rains towards the end of the summer spread the 

pathogen, and we were able to observe bacterial speck on leaves, stems and fruit only on 

the susceptible varieties, while Pto-expressing plants remained disease-free (data not 

shown). We will continue testing Pto resistance in the field, but our preliminary data 

indicate that under natural conditions Pto recognizes NY Pst strains and that introducing 

this R gene into fresh market varieties will be beneficial to tomato growers in the state.  

 

3.5 Materials and Methods 

Isolation of Pst strains from the field 

The Pst isolates utilized in the present study were isolated from diseased tissue collected 

in NY during the 2015 outbreaks using KBM semi-selective media. All Pst isolates were 

stored in 20% glycerol + 60 mM sucrose at –80°C. 

Plant material 

Tomatoes were grown in a greenhouse with 16 h light and a temperature of 24ºC / 8 h 

dark and a temperature of 22ºC and 65% humidity. Sowing and transplanting were 

performed as described previously (Kraus et al., 2016). Arabidopsis thaliana plants were 
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grown in soil in an environmentally controlled chamber under fluorescent lighting (150 

µmol m−2 s−1) with a 16 h light / 8 h dark cycle at 25°C. 

Virulence assays in tomato  

All strains used were grown in KB medium and prepared for vacuum infiltration using a 

protocol described previously (Kraus et al., 2016). Plants were vacuum infiltrated at a 

final concentration of 5 x 104 CFU/ml. Samples for day 0 were taken 2 hpost infiltration 

and scored again for disease symptoms and bacterial growth at day 2, 5. Pictures were 

taken 7 days after infiltration. Three discs were taken per plant per time point. Samples 

for the different time points were taken from the same plants, but different leaflets. 

Results are shown as the mean of four biological replicates, including standard deviation.  

Virulence Assay in Arabidopsis thaliana 

Pst strains grown on KB medium were diluted in 10 mM MgCl2 to a final concentration 

of 5 x 104 CFU/ml. Several leaves per plant were pressure-infiltrated with a needleless 

syringe. The development of disease symptoms was monitored for up to 1 week after 

infiltrations. Leaf tissue samples were taken 2 h after infiltration (day 0) and 3 days later 

to measure bacterial proliferation. Three discs were taken per plant for three biological 

replicates per time point. Samples for day 0 and 3 were taken from different plants. 

Results are shown as the mean of three biological replicates, including standard 

deviation.  

Effector genotyping by liquid colony PCR 

Pst strains were grown in liquid KB medium overnight. The next day 100 µl aliquots 

were lysed for 10 min at 90ºC followed by a 5 min full speed centrifugation. One to two 

µl of the supernatant were used as template to perform a standard GoTaq PCR protocol. 

Primers used in this study are listed in Table 3.1. 
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RNA extraction and cDNA Synthesis for Reverse transcriptase PCR (RT–PCR) 

Bacterial cultures were grown in hrp-inducing minimal medium (50 mM phosphate 

buffer, pH 5.7, 7.6 mM (NH4)2SO4, 1.7 mM MgCl2, 1.7 mM NaCl, 10 mM fructose) to 

an final concentration of 2 x 108 CFU/ml. RNA was extracted following the 

RNAprotect® Bacteria Reagent Handbook (Qiagen) protocol. Isolated RNA was treated 

with Turbo DNase from Ambion according to manufacturer’s instructions. 600 ng of 

RNA were used for cDNA synthesis with random hexamer primers with a Thermo 

Scientific RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). The same 

primers were used as previously for the colony PCR (Table S1). 

Pst protein expression 

Pst strains at an OD600 = 0.4 were grown overnight in 5 ml hrp-inducing liquid minimal 

or KB media containing appropriate antibiotics at room temperature at 220 rpm. The next 

day, the OD600 was set to a final concentration of 0.5. One ml of each bacterial pellet was 

centrifuged, resuspended in water and centrifuged again. Washed bacterial pellets were 

boiled for 10 min 100 µl of Laemmli buffer and 5 µl were used for immunoblot analysis. 

Immunoblot assay 

SDS-PAGE and subsequent transfer to PVDF membranes for western blotting was 

performed according to standard procedures (Harlow and Lane 1988). AvrPtoB antibody 

was affinity purified from antiserum by PVDF transfer before use for detection. 

Specifically, AvrPtoB protein was expressed in E. coli and resolved on 8% SDS-PAGE. 

After transfer, the PVDF membrane was stained with Ponceau S and the strip containing 

the antigen protein was cut out and rinsed with TBS-T until the membrane was no longer 

pink. After blocking the membrane with 5% milk/TBS-T for 1 h at room temperature 

with gentle rocking the membrane was cut into small pieces and inserted into a 15ml 

centrifuge tube containing 2 ml of diluted serum with 8 ml of TBS. The centrifuge tube 

was incubated overnight at 4ºC. The next day the blot was washed three times with TBS-
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T and bound antibody was eluted with 2 ml of 0.1 M Acidic Glycine pH 2.4 by vortexing 

for 1 min, incubation for 2 min on a rotator and vortexing again for 1 min. After 

transferring the Acidic Glycine Buffer to a tube, 200 µl of 1M Tris pH 8.0 was added for 

neutralization. Elution and neutralization steps were repeated a total of three times. 

AvrPtoB antibody was concentrated using Centrifugal Filter Units (Millipore) following 

manufacturer’s instructions. For the immunoblot assay, purified AvrPtoB antibody was 

used at a concentration of 1:1,000. For AvrPto recognition, the antisera containing the 

polyclonal AvrPto antibody was directly used at a concentration of 1:20,000. Secondary 

goat anti-rabbit IgG HRP conjugate at a dilution of 1:20,000 was used for detection 

(Promega).  
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CHAPTER 4 

PERSPECTIVES AND FUTURE DIRECTIONS 

 
4.1 Future directions 

Despite having been studied intensively, the Pseudomonas syringae pv. tomato (Pst) - 

tomato pathosystem continues to reveal new information about plant immunity responses 

and bacterial pathogenicity. Throughout my dissertation research, I focused on further 

characterizing this pathosystem by using natural variation present in wild tomato 

accessions and Pst field isolates. 

The importance of a negatively charged Pto activation domain for response to 

AvrPto  

In chapter 2, I demonstrated that the natural variation present in wild tomato accessions 

can be used to investigate the molecular mechanisms involved in host recognition of 

pathogens. As demonstrated before, our screen of over 100 wild tomato accessions for 

their ability to recognize Pst delivering AvrPto or AvrPtoB confirmed that most tomato 

accessions are susceptible to Pst (Rosebrock et al., 2007). Solanum chmielewskii (Schm) 

accessions are confined to a small geographical area in the Peruvian Andes. Interestingly, 

most of the Schm accessions tested (16 out of 19) were resistant to DC3000 only when 

AvrPtoB was present. Subsequent experiments involving the individual replacement of 

specific residues in Pto from Schm LA2677 or S. pimpinellifoium identified a single 

residue at position 193 as essential for Pto to respond to AvrPto. The discovery that D193 

plays an central role in the response of Pto to AvrPto was surprising because, based on 

the crystal structure of the AvrPto-Pto complex, this residue is not located within or near 

the AvrPto-specific interface or the shared interface involving the P + 1 loop, the two 

domains of Pto that have been shown to be involved in interaction with AvrPto and 
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regulation of the immune response that follows (Dong et al., 2009; Wu et al., 2004; Xing 

et al., 2007). 

These data provide the first evidence for a difference in downstream signaling after 

recognition of AvrPto and AvrPtoB; previously known differences in the interaction 

between Pto and the two effectors were limited to differences in the physical interaction 

through the interaction loops between the effectors and the kinase.  

However, our current results do not shed light on the molecular mechanism underlying 

this differential signaling. Amino acid D193 is part of the activation domain of Pto, a 

domain known to be important for Pto downstream signaling (Ntoukakis et al., 2013). 

Substitutions of the phosphorylated amino acids S198 or T199 to alanine have been 

shown to inhibit the elicitation of the AvrPto–Pto-mediated hypersensitive response 

(Sessa et al., 2000). However, these two individual substitutions did not interfere with 

ability of the plant to trigger a response to AvrPtoB (Kraus, C.M. and Martin, G.B., 

unpublished data). D193 is not phosphorylated, but under neutral pH contributes a 

negative charge to the domain, similar to phosphorylated S198 and T199. We are in the 

process of individually substituting the remaining negatively charged amino acids in the 

activation loop of Pto and testing the effects on the plant response to AvrPto and 

AvrPtoB. To date, I have found three independent negatively charged amino acids 

present in the activation domain that, if substituted, limit Pto to eliciting an HR only in 

response to AvrPtoB recognition. Although preliminary, my hypothesis is that the sum of 

negative charges in this domain, rather than a specific amino acid residue, is the factor 

responsible for the activation of Pto by AvrPto.  

The Myristoylated Alanine-Rich C Kinase Substrates (MARCKS) are proteins implicated 

in cell motility, phagocytosis, membrane traffic and mitogenesis. MARCKS have the 

ability to cycle between the membrane and the cytosol, depending on their 
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phosphorylation status. The non-phosphorylated proteins are attached to the cell 

membrane through a myristoylation motif and electrostatic interactions with 

phospholipids. However, phosphorylation of MARCKS introduces negative charges, 

which neutralize this electrostatic interaction, culminating in the displacement of 

MARCKS from the membrane. The mechanism by which this protein cycles on and off 

the membrane has been termed the myristoyl-electrostatic switch (Seykora et al., 1996). 

Pto also has a myristoylation motif; however its importance for Pto defense function is 

still unclear (Balmuth and Rathjen, 2007; de Vries et al., 2006; Loh et al., 1998). In vivo 

localization of 35S:Pto-GFP transformed with Agrobacterium into N. benthamiana cell-

suspension cultures, as well as subcellular fractionation of N. benthamiana leaf tissue 

transiently expressing wild-type Pto-3HA show accumulation of Pto in the cytoplasm (de 

Vries et al., 2006). Pto localization was tested without the presence of an effector, which 

could impact its localization. The Pst effectors AvrPto and AvrPtoB localize differently 

in the plant cell after infection; AvrPto is plasma-membrane bound through its 

myristoylation motif (Shan et al., 2000), whereas AvrPtoB is suggested to be a soluble 

protein present in the plant cell cytoplasm after infection (de Vries et al., 2006; Kim et 

al., 2002). This hypothesis still needs to be tested, but it is intriguing to think that Pto 

could change its localization depending on its phosphorylation status to detect the 

presence of AvrPto or AvrPtoB.  

There is also always the possibility that AvrPto and AvrPtoB modify Pto differently and 

Prf or other co-proteins recognize this modification in different ways. We do not have 

any evidence of this since Pto and Prf have been shown to always be in a complex even 

after effector recognition (Mucyn et al., 2006) and to address this possibility we would 

need a co-crystal structure of Pto, Prf and the effectors.  
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The use of natural variation to study the ancestral Pto gene 

The natural variation present in wild tomato accessions has been intensively used to 

breed specific new qualities into commercial tomato varieties (Grandillo et al., 2011). 

This variation can also be used to reconstruct ancestral genes and use them as the 

appropriate background to study functional diversification. To identify key amino acid 

changes that can explain differential function of different family members can be 

difficult, since many amino acid changes can be detrimental, rendering the protein 

nonfunctional, or because the new function can be due to the change of several amino 

acids in the protein instead of being attributable to one specific substitution. Furthermore, 

functionally irrelevant sequence differences might additionally have accumulated over 

time, and specific mutations might have epistatic effects causing a single change to have 

different effects in different protein family members (Harms and Thornton, 2010). In 

conclusion, characterization of protein family members by single amino acid swapping 

can be tedious, time consuming and will not always provide informative results. 

To overcome these limitations, one potential solution is to determine the ancestral gene 

from which all different family members diversified and use this new background, in 

which the sequence changes actually occurred, to study the importance of specific 

residues for their different functions (Harms and Thornton, 2010). It has been proposed 

that Pto functions as a PRR kinase decoy to trap AvrPto and AvrPtoB to activate ETI 

(Martin, 2012; van der Hoorn and Kamoun, 2008; Zipfel, 2014). However, Pto and the 

PRRs kinase sequences are very diverse at the amino acid level (with only 30-40% 

identity), making it unlikely that Pto evolved from any AvrPto- and AvrPtoB-targeted 

well-characterized PRR. (Schwizer, S. and Martin, G.B., unpublished data; (Gimenez-

Ibanez et al., 2009; Gohre et al., 2008; Shan et al., 2008; Xiang et al., 2008)).  

Mal1 and Mal2 were identified as highly expressed membrane bound receptor-like 

kinases that show high similarity to Pto. Silencing of the N. benthamiana orthologs 
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resulted in compromised induction of immune response and enhanced susceptibility to 

Pst. The Mal1 and Mal 2 kinase domains interact with AvrPtoB lacking the E3 ligase 

domain in a yeast two-hybrid system. (Schwizer, S. and Martin, G.B., unpublished data). 

A phylogenetic tree including the Pto orthologs of several wild tomato accessions, 

tomato cultivar Heinz, Solanum lycopersicoides, Potato, Eggplant, Iochroma and pepper 

showed that Mal1 is present in all tested Solanum species and situated Mal1 as the closest 

ancestral gene to the Pto orthologs, making this gene the most likely candidate from 

which Pto might have evolved (Kraus, C.M., Strickler, S., Martin G.B., unpublished 

data). Further bioinformatical and biological analysis needs to be performed to further 

support the hypothesis that Mal1 is the ancestral progenitor of the Pto family.  

Molecular characterization of Pst isolates present in New York State 

In chapter 3, I characterize Pst isolates collected from infected field tomatoes throughout 

New York (NY) in 2015 and demonstrate that they all have similar virulence activity. 

Under laboratory conditions favoring the pathogen, all NY strains grew to bacterial 

population levels intermediate between the avirulent strain DC3000 and the aggressive 

Pst strains T1 and NY-T1 by day 2, and continued growing to levels that cause bacterial 

speck symptoms on Pto-expressing tomato variety RG-PtoR by day 6. We hypothesize 

this intermediate growth is due to Pto recognition of AvrPto from the 2015 NY strains, 

but that this recognition is later suppressed, potentially by another effector. Nonetheless, 

to be certain that AvrPto is the effector recognized thus slowing down bacterial growth 

during the first days of infection, we still need to create an avrPto knockout in at least 

one 2015 NY strain. Although I tried different variations of mating and electroporation 

methods, I have not yet succeeded. All 2015 NY isolates, as well as T1 and NY-T1 

grown on KB or LB media accumulate an excess amount of exopolysaccharide, which 

might be detrimental for bacterial transformation via transconjugation or electroporation. 

Further electroporation attempts trying to transform NY-15114 and  
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NY-15125 with overexpression plasmids were also unsuccessful, demonstrating that 

probably the transfer of the vector into the cell and not the homologous recombination is 

failing. Transformation by mating/electroporation to delete (Kvitko and Collmer, 2011) 

or to overexpress genes has been used in DC3000 for a long time with high rates of 

success. Further attempts to improve the Pst transformation protocol by growing the Pst 

KB plates supplemented with glutamine to reduce the accumulation of exopolysaccharide 

are being tested (Martin et al., 1988). If successful, growth curves will be used to test 

whether a 2015 NY isolate avrPto mutant can now grow to population levels as high as 

T1 or NY-T1. 

Primers designed to detect effectors that differentiate race 0 from race 1 Pst strains (Jones 

et al., 2015) did not reveal any genetic differences between the 2015 isolates. However, 

further sequencing by Pacbio and Illumina of two isolates, NY-14115 and NY-15125, has 

revealed genomic differences even at the effector repertoire level between the isolates 

and also differences with respect to DC3000, T1 and NY-T1 (Kraus, C.M., Saha, S., 

Lindeberg, M., Martin G.B., unpublished data). We are in the process of assembling the 

genome sequences and determining putative effectors that could be suppressing the 

recognition of AvrPto by Pto. Effectors that can interfere with the activity of other 

effectors have been shown in the past to be a way of suppressing ETI (Guo et al., 2009; 

Jackson et al., 1999; Wei et al., 2015). Furthermore, with the improvement of the Pst 

transformation protocol we will be able to delete specific candidate effectors to study the 

resultant increase or decrease in virulence in tomatoes expressing Pto. At the same time, 

we will be able to transform DC3000 with the candidates (or DC3000∆avrPtoB since we 

do not know if the novel effector will also suppress ETI activation by AvrPtoB) and test 

their ability to overcome Pto recognition partially or completely. It will be interesting to 

learn more about the new effector targets in the plant. Of course there is always the 

possibility that the partial inhibition of AvrPto recognition is not due to a novel effector. 
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Western blot analysis using antibodies raised against AvrPto did not show a difference in 

total AvrPto protein amounts between DC3000, NY-25114 and NY-15125. This result 

does not rule out differences in the amounts of AvrPto protein that get translocated into 

the plant cell. Future quantitative translocation experiments should answer this specific 

question. Another explanation could be that AvrPto from the NY fields cannot be 

recognized as well by Pto due to amino acid sequence differences. Although the AvrPto 

sequence of the NY strains is identical to AvrPtoJL1065 (and only differs in 4 amino acids 

from DC3000), JL1065 also has a functional avrPtoB gene, with protein being secreted 

and recognized by Pto (Kim et al., 2002; Ronald et al., 1992). Complementation of a NY 

isolate carrying an avrPto deletion with either its endogenous avrPto or avrPto from 

DC3000 will give us a decisive answer to this question. Recognition of AvrPtoDC3000 

delivered by a NY strain would demonstrate that indeed the four amino acid differences 

are the reason for the partial subversion of Pto recognition. A fourth explanation, which 

would be as interesting as finding a new effector, would be that there is a 

posttranslational modification of AvrPto that is interfering with the full recognition of 

this effector by Pto. If we continue seeing the same intermediate growth phenotype in the 

line complemented with AvrPtoDC3000 we should be able to pinpoint it to either a new 

effector which suppresses ETI activation downstream of Pto or a novel posttranslational 

modification of the effector. Hopefully, our future gain- and loss-of-function experiments 

will shed light on possible mechanisms of this intermediate phenotype.  

As mentioned before, the 2015 isolates are able to overcome Pto recognition under 

laboratory conditions favoring the pathogens. Although 2016 was an unusually dry 

summer in Ithaca, we did not observe any bacterial speck on Pto-expressing tomato 

plants grown in field plots inoculated with NY-15125. By the end of the summer, 

tomatoes lacking Pto exhibited speck symptoms on leaves, stems and fruits. We will 

continue with the screening; however, preliminary data indicate that, under field 
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conditions, the introgression of Pto might be sufficient to protect tomatoes from the Pst 

populations currently present in NY. A continued survey of the Pst population will be 

needed to assess any genetic changes that might occur. This would be of particular 

interest if more tomato varieties carrying the Pto locus will be grown in the area, because 

that would increase the pressure on the Pst population to overcome this recognition 

(McDonald and Linde, 2002).  
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