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Statistical analyses are discussed for the pth experiment 

of p successive experiments conducted on the same set of 

experimental units. Response model equations for individual 

curvatures for the previous set of treatments and for addi-

tional nonadditivity parameters are presented. Then, statis-

tical analyses are presented for p experiments conducted 

simultaneously on the same set of experimental units. Uni-

variate and multivariate analyses are discussed. Examples 

for this latter situation in marketing and in intercropping 

investigations are presented. 
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Experiment designs for con~ucting successive or simultaneous experi­
ments on the same set of experimental units have been available since L. 
Euler constructed sets of orthogonal Latin squares in the eighteenth cen­
tury. Statistical analyses for successively conducted experiments other 
than rotation experiments considered in the writings of F. Yates and W. G. 
Cochran, began to appear in the mid-twentieth century in the writings of 
S. C. Pearce and G. H. Freeman. The latter works were concerned with the 
effects of a previous set of treatments on the treatments in the present 
experiment for the same set of experimental units. Most of the interest in 
this class of experiment designs appears to have been centered on const~uc­
tion of designs suitable for this type of experimentation. Examples of this 
may be found in, e.g., Afsarinejad and Hedayat {1975), Anderson (1972), 
Anderson and Federer (1976), Bose and Srivastava '(1964), Federer (1972), 
Freeman (1958), Hedayat et al. (1972), Hedayat and Raghavarao (1975), Hoblyn 
et al. (1954), Potthoff Tl9b2a, 1962b), Preece (1966), Singh et al. (1981), 
and-srivastava and Anderson (1970, 1971). ------

Statistical analyses for successively conducted experiments have been 
considered by some authors, e.g., Bose and Srivastava (1964), Freeman and 
Jeffers (1962), Preece (1966), and Singh et al. (1981). Basically, all 
analyses are an extension of the general linear model of the form E(!) = x~ 
Additional parameters are included in the parameter vector to take into -­
account stratification of treatments in the present experiment due to the 
previous set of treatments. Whenever the treatments in the previous experi­
ment are in a balanced or orthogonal arrangement to the treatments and strati­
fication variables of the present experiment, relatively simpl~ statistical 
analyses are possible. 

Tb illustrate consider a Latin square design for both a past and the 
present experiment and consider that the two Latin squares are orthogonal. 
A response model equation of the following form is postulated for each of 
the Latin square experiments: 

(1) 

where ~, Ph, Yi, ~j, and Ehij are a common mean, a row h effect, a column i 
effect, a treatment j effect, and an identically and independently normally 
distributed random error effect, respect~vely. For treatments of the pre­
sent experiment taking into account stratification by treatments in the pre­
vious experiment on these same experimental units, the response model equa­
tion is extended to be: 

(2) 

where ~ is the stratification effect of the previous treatment k and Ehijk 
has the same definition as Ehij in Equation (1). For a Latin square of 
order r, the normal equations 1n vector form are: 



!! = rj..l! + re 

£ = rll! + ry 

T = rll! + r-r 

J (3) 

where R, c, T, and ~ represent totals for rows, columns, treatments in the 
presen~ eiperiment, and treatment arrangement for the previous experiment, 
respectively, 1 is an n X 1 vector of ones, p is a vector of Ph, y is a 
vector of Yi, ~ is a vector of -rj, and TI is a vector of "k, under-the usual 
constrmnts 1'p = 1'y = 1'-r = 1'n = o. !f the experiment design were of the 
O:OT:OTT type-[see Preece\1966)1, the normal equations would take the form: 

!! = c(ll! + e> 
C = rll! + ry + N1' -r + N2' n - - c- c-

! = rll! + N2cY + N21~ + r1 

!I> ,;, rll! + N2cY + r~ ~ N21:!: 

Grand total = rcj..l , for r rows and c columns 

(4) 

where N1c is the past-treatment-column design matrix composed of zeros and 
ones, N2c is the present treatment-column design matrix, and N21 is the pre­
sent treatment-past treatment design matrix. It is a straightforward exten­
sion to add terms to Equation (2) to consider p successive experiments in row 
by column designs on the same set of experimental units. 

Many other response model equations are possible for the many types of 
experiments that are conducted. One such equation that would have application 
in certain types of experiments would be to include differential regressions 
for treatments in the past experiment. Equation (2) could be altered in the 
same manner that Cox (1958) altered the classical Latin square response model, 
Equation (1), to include differential regressions within columns in place of 
row effects. Still another set of response model_equations would be to add 
terms for non-additivity similar to those discussed by J. W. Tukey and others. 

So far, discussion has been confined to consideration of successive ex­
periments with only responses on the last experiment in the sequence. Con­
sider now the situation wherein the p experiments are conducted simultaneously, 
e.g., each experiment is a Latin square design and the p designs are mutually 
orthogonal Latin squares. In place of one response equation as, for example, 
an extension of Equation (3) for (p-1) previous experiments, there are now p 
responses for each experimental unit. To illustrate, suppose that one has r 
grocery stores and r time periods in which to conduct r marketing procedures 
on each of p vegetables such as carrots , celery, potatoes, etc., and that 
the p experiments are to be carried out simultaneously in the stores and time 
periods; pr2 responses are obtained. If'possible, one would select p Latin 
square designs of order r which are mutually pairwise orthogonal. Note that 
if p = r - 1, then no degrees of freedom would be left for the error mean 
square for responses from each experiment. Also, note that if the design is 
not a Latin square, then one of the Potthoff (1962b), Hedayat et al. (1972), 
etc., designs may be suitable. ----

Instead of considering univariate analyses for each experiment, it is 
recommended that a p variate multivariate analysis of variance be performed 
on the pre responses from the r-row by c-column design. Also, it is recom­
mended that univariate analyses of variance using equations similar to Equa-



tion (3) also be performed. 
combination of products sold 
duct separately. 

A store manager could be interested in a linear 
in addition ,to considering sales for each pro-

A similar situation arises in intercropping experiments as one obtains 
p responses for the p intercrops in a mixture. A grower is not solely in­
terested in what each crop does individually, but is additionally interested 

_in what the combination of p crops yields in terms of profit, protein, calo­
ries; or other combination oi' responses. Some form of analysis utilizing 
all pre responses is- required. · 

To further illustrate the need for new statistic.a1_tf1eo'ry and methods, 
consider the following situation l-iherein i3:'plafft~~eed.'e:lw'fsiles ,·to·'screen 
maize lines and bean lines and to select lines which generally perform well 
in a mixtur_e. A large number of lines of each .crop, say m maize lines and 
b bean lines, are generally available and seed, space, and personnel may be 
linuting such that even if it is possible to use all mb mixtures, it is im­
possible to replicate the experiment at a single location. If mb experi­
mental units can be handled at a given location, then the experimenter ri:tay 
use an m-row by b-column design. Further, if m = b~ then the m maize lines 
may be arranged in a Latin square and the m bean lines arranged in a Latin 
square orthogonal to the first. To illustrate, let m = b = 5, then the 25 
intercrops may be arranged as: 

columns 

rows 1 2 3 4 5 

1 la 2b 3c 4d 5e 
2 2c 3d 4e 5a lb 
3 3e 4a 5b . lc 2d 
4 4b 5c ld' 2e 3a 
5 5d le 2a 3b 4c 

where the maize lines are numbered 1, 2, 3, 4, and 5, and the bean lines are 
numbered a, b, c, d, and e. Equation (2) could be used for maize yields and 
for bean yields separately, and one could also perform a bivariate analysis 
on the bean and maize yields simultaneously using Equation (1). If, in addi­
tion, the five maize lines were g~own without beans (sole crop) and likewise 
for the five bean lines, then there would be· 35 combinations which one could 
design in a 7-row by 5-column design if there were two-way variation in the 
experimental material that needed to be controlled. Multivariate analyses 
would need to be altered to take into account the sole crop responses. Ad­
ditional problems are encountered in multivariate analyses for intercropping 
experiments. 
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SUMMARY 

Statistical analyses and response model equations are discussed for 
the pth of p successive experiments and'for p simultaneous experiments 
carried out on the same experimental units. 

Analyses statistiques et equations models des responses sont discute 
pour le pth des p experiences successives et pour p experiences simultanes 
qui sont conduiu sur les memes unites experimentales. 


