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Abstract 

In this paper we outline the second generation operator approach developed by Diek­

mann and collaborators for the computation of the basic reproductive number, R 0 . The 

use of this method is illustrated on epidemic models, mostly developed by the authors, that 

incorporate various degree of host and pathogen heterogeneity. Finally, conditions that 

clarify the connections between Ro and its relationship to the global asymptotic stability 

of the disease-free equilibrium are discussed. 
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0. Introduction 

Threshold phenomena is prevalent in the study of scientific phenomena. The com­

putation of nondimensional quantities that determine the nature of dynamic transitions, 

"tipping" or bifurcation points, have a long tradition in epidemiology. Sir Ronald Ross, 

who received the Nobel Prize for his work on malaria (1902), founded the field of mathe­

matical epidemiology with his quest for establishing (within the epidemiology community) 

what must have appeared obvious to him, that is, that it is not necessary to drive a vector 

(mosquito) population to extinction to eliminate malaria. He made his point effectively 

only after he introduced a mathematical model for malaria in 1911. He used his model 

to show that bringing a mosquito population below a certain threshold was sufficient to 

eliminate malaria. This threshold naturally depended on biological factors such as the bit­

ing rate and vectorial capacity (ratio of the vector to host population). His mathematical 

work has been used extensively not only in the study malaria (MacDonald 1957) but also 

in the study of other diseases (see Anderson and May 1982; Busenberg and Cooke 1993). 

The importance of contact processes (well recognized by Ross on his work on malaria) 

is at the center of the study of threshold phenomena (see Busenberg and Castilla-Chavez 

1991; Castillo et al. 1994). In their recent book Diekmann and Heesterbeek (2000) present 

an extensive and systematic study of threshold phenomena. The following tutorial notes 

also used the next generation approach for the systematic computation of the basic re­

productive number. The examples used come mostly from our own work. Connections 

between threshold phenomena and stability are also explored. 

The basic reproductive number R 0 is typically defined (see Diekmann and Heestter­

beek, 2000) as: the average number of secondary cases produced by a "typical" infected 

(assumed infectious) individual during his /her entire life as infectious (infectious period) 

when introduced in a population of susceptibles. This nondimensional quantity cannot 

be computed explicitly in most cases because the mathematical description of what is a 

"typical" infectious individual is difficult to quantify in populations with high degree of 

heterogeneity. 

Regardless of whether or not R 0 can be computed explicitly, its role on the study 

of the stability of equilibria can still be determined. Most reasonable epidemic models 

support at least two type of equilibria: a disease-free equilibria and a positive (endemic) 

equilibria. "Typically" one can show that the disease-free equilibrium is locally asymp­

totically stable (l.a.s.) if R 0 < 1 and unstable whenever Ro > 1. Furthermore, in many 
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examples, it has been shown that R 0 > 1 implies the existence of a unique (l.a.s.) endemic 

equilibrium. Many models found in the literature have been used to show that when Ro 

crosses the threshold, R 0 = 1, a transcritical bifurcation takes place. That is, asymptotic 

local stability is transferred from the infectious-free state to the new (emerging) endemic 

(positive) equilibria. In some situations, it can be shown that the transfer of asymptotic 

stability is indepenedent of initial conditions, that is, it is global (Feng et al., 2000; Zhou 

et al. 2001; Song et al. 2001). 

In this article, we revisit several models of infectious diseases involving a discrete and 

continuous stratification of host and pathogen. We compute R 0 for each model using the 

approach developed by Diekmann and his collaborators. Finally, we look at the role of R 0 

on the global stability of the disease-free equilibrium. 

This paper is organized as follows: Section 1 outlines the next generation operator 

approach for the computation of R 0 . Section 2 gives a series of examples with various 

degrees of host and pathogen heterogeneity. The models used come from the study of 

communicable, vector and sexually-transmitted diseases. Examples are drawn from our 

published work, work in progress, or the work of others. These models have been used 

in the study of questions associated with the dynamics of Tuberculosis, HIV, Dengue, 

Gonorrhea and childhood diseases. Our examples include group, gender, host-structure, 

and pathogen heterogeneity. Section 3 states and proves a theorem on the relationship 

between local and global asymptotic stability for the infection free state. The tutorial 

ends with an example where the conditions of the last theorem are not met: a model that 

is capable of supporting multiple endemic equilibria when Ro < 1. 

1. The next generation operator approach 

R 0 is often found through the study and computation of the eigenvalues of the Jaco­

bian at the disease- or infectious-free equilibrium. Diekmann et al. 1990 follow a different 

approach: the next generation operator approach. They define R 0 as the spectral radius 

of the "next generation operator" . The details of this approach are outlined in the rest of 

this section. First, we consider the case where heterogeneity is discrete, that is, the case 

where heterogeneity is defined using groups defined by fixed characteristics, that is, for 
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epidemiological models that can be written in the form: 

dx 
dt = f(x, E, I), 

dE dt = g(x, E, I), (1.1) 

di 
dt = h(x,E,I), 

where x E Rr, E E Rs, I E Rn, r, s, n 2:: 0, and h(x, 0, 0) = 0. The components of x 

denote the number of susceptibles, recovered, and other classes of non-infected individuals. 

The components of E represent the number of infected individuals who do not transmit 

the disease (various latent or non-infectious stages). The components of I represent the 

number of infected individuals capable of transmitting the disease (e.g., infectious and 

non-quarentined individuals). 

Let Uo = (x*, 0, 0) E Rr+s+n denote the disease-free equilibrium, that is, at U 0 = 
(x*, 0, 0), f(x*, 0, 0) = g(x*, 0, 0) = h(x*, 0, 0) = 0. Assume that the equation g(x*, E, I) = 
0 implicitly determines a function E = g(x*, I). Let A = D1h(x*, g(x*, 0), 0) and further 

assume that A can be written in the form A= M-D, with M 2:: 0 (that is, mij ;:::: 0) and 

D > 0, a diagonal matrix. 

The spectral bound of matrix B is denoted by m(B) = sup{~..\ : A. E a-(B)}, where 

~A. means the real part of A., while p(B) = limn_,00 IIBnll,\- denotes the spectral radius of 

B. The proof of the following theorem involving matrix A is found in Diekmann et al., 

(1990): 

Either 

m(A) < o ¢::::? p(M n- 1) < 1 

or 

m(A) > 0 ¢::::? p(M n-1 ) > 1. 

The basic reproductive number is defined as the spectral radius (dominant eigenvalue) of 

the matrix M n-1 , that is, 

(1.2) 

Examples using (1.1) to compute Ro are provided in Section 2. 

An analogous formula for R 0 when a heterogenous population is stratified by con­

tinuous characteristics (see Diekmann et al. 1990) can be similarly computed. In fact, 

let S(~) denote the population density function that describes the (steady) demographic 
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state in the absence of disease where ~ E nh (h stands for heterogeneity). Furthermore, 

let A( T, ~, 77) denote the current (expected) infectivity of an individual who was infected T 

units of time ago while at stage 7], that is, A( T, ~, 77) denotes the average infectivity that 

can be exercised on an uninfected individual at stage ~ (provided the uninfected popula­

tion finds itself at the steady demographic state S ( 0). The function A( T, ~, 77) combines 

information on the probability (per unit of time ) that contacts between certain stages take 

place and the probability that, given a contact, the disease agent is actually transmitted. 

Under the special assumption of proportionate-mixing (see Busenberg and Castilla­

Chavez, 1991), A(T,~,77) can be written in the form A(T,~,77) = f(~)g(T,rJ). R 0 , the 

spectral radius of the "next generation operator", can be computed under proportionate 

mixing. In fact, it is given by the following formula: 

Ro = i fooo g(T, rJ)S(TJ)f(rJ)dTd7]. (1.3) 

The key element, in the computation of R 0 in formula (1.3), is the infectivity function 

A(T,~,TJ). 

2. Examples 

Several models taken from prior work by others or us are used to illustrate the com­

putation of R 0 via Formulas (1.2) and (1.3). 

Example l(a). McKendrick, like Sir Ronald Ross, was a physician commissioned by the 

English Army to India. McKendrick became involved in the study of epidemic diseases 

using mathematical models through the direct encouragement of Ross. His simple epi­

demic model was published in a joint paper with Kermack (Kermack and McKendrick, 

1927). It involved the study of the transmission dynamics of a communicable disease that 

provide permanent immunity after recovery. Their model was used to study single epi­

zootic outbreaks. Their mathematical work led to the first widely recognized threshold 

theorem in epidemiology (the threshold theorem of Ross came from the study of vector­

transmitted diseases sisxteen years earlier). Kermack and Mckendrick's model is an SIR 

(Susceptible-Infected- Recovered) model without vital (births and deaths) dynamics. The 

model equations are: 

dS _ (3S I 
dt-- N' 
di I 
dt = f3 S N - I I' 
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dR 
dt =/I, 

N=S+I+R. 

S denotes the number of susceptibles, I is the number of infected (assumed infectious), 

and R is the number of recovered individuals (assumed to be permanently immune). f3 is 

the average number of susceptibles infected by one infectious individual per unit of time 

while 1 is the per capita recovery rate (at which an infected individual leaves the I class). 

Note that x = (S, R), I= I, Uo = (S*, R*, I*)= (N, 0, 0), A= f3- 1 (there are no latent 

classes, that is, s = 0). Hence, M = /3, D = 1 and 

Ro = MD-1 = !3_ 
I 

The threshold theorem of Kermack and McKendrick says that if R 0 > 1 then an outbreak 

will take place while if R 0 < 1 there will be no outbreaks. 

Example l{b). The addition of vital dynamics to the SIR model of Kermack and 

McKendrick, leads to the follwing system: 

dS I 
dt = A - f3S N - Jl,S, 

di I 
dt = f3S N - (fl + r)I, 

dR 
dt = ri- 11R, 

N=S+I+R. 

A is the birth rate and fl is the per capita natural death rate both assumed constant. 

Note that in this case x = (S, R), I = I, Uo = ( ~' 0, 0), and A = /3- (fl + 1). Hence, 

M = /3, D = fl + 1 and 

The threshold theorem of Kermack and McKendrick in this setting says that if R 0 > 1 

then an outbreak will take place and the disease will persist while if Ro < 1 the disease 

will die out. 

Remark: Note that f3 is the average number of susceptibles infected by one infectious in­

dividual per unit of time and J.L!'Y is the (death-adjusted) mean length of infectious period 

(see Thieme's paper in this volume for extensions and clarifications of this interpretation). 

Therefore R 0 = J.L!'Y gives the number of secondary infectious cases produced by an in­

fectious individual who has been introduced into a population of susceptibles during the 
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individual's period of infectiousness. The expressions for R 0 computed here, agree with 

those found by Brauer in his tutorial epidemiological notes included in this volume. 

Example 2. Many communicable diseases can be modeled using models that include 

compartments for the suceptible, exposed, infected and recovered epidemiological classes. 

An SEI R model for a homogeneously mixing population is given by the following set of 

equations: 
dS I 
dt = A - {3S N - J-1-B, 

dE I 
dt = {38 N - (p, + k)E, 

di 
dt = kE- ('y + p,)I, 

dR 
dt = ry I - p,R, 

where E is the number of latent individuals and k is the rate at which a latent individual 

becomes infectious. Letting x = (S, R), E = E, I= I, Uo = ( ~' 0, 0, 0) and g(x*, I)= ::k 
gives M = J-Lkfk and D = ry + p,. Hence 

-1 kf3 
Ro = MD = (p, + k) (p, + '"'! )" 

Example 3. The following model (see Castilla-Chavez and Feng, 1997) describes the 

disease transmission dynamics of both drug-sensitive and drug-resistant strains of TB. 

The host population is divided into the following epidemiological subgroups: Susceptibles 

(S); Latent with strain i (i = 1 represents the sensitive strain and i = 2 the resistant 

strain) of TB (Ei); Infectious with strain i (Ii); and (effectively) Treated (T) individuals. 

The two-strain model for the dynamics of TB is given by: 

dS It h dt =A- fJ1S N - fJ2S N - p,S, 

d~ It - It h dt = fJ1S N- (p, + k1 + r)E1 + prft + af31T N- fJ2E1 N' 

d~1 = k1E1- (p, + d1 + r)h, 
dT _ it h 
dt = rE1 + (1- p- q)rft- af31T N- fJ2T N- p,T, 

dE2 _ h 
dt = qrft- (p, + k2)E2 + fJ2(S + E1 + T) N' 

di2 
dt = k2E2 - (p, + d2)I2, 

N = S+E1 +It +T+E2 +h, 
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where di (i = 1, 2) denotes the per capita disease induced death rate due to strain i; r, 

r denote the per capita treatment rates; p + q the proportion of treated individuals who 

did not complete the treatment; a ::; 1 the reduction in infection rate due to the immunity 

obtained from treatment. The proportion p modifies the rate of departure from the latent 

class while qr h denotes the rate at which individuals acquire resistant-TB as a result of 

not completing treatment for active TB. 

Letting x = (S, T), E = (E1, E2), I = (h ,!2), Uo = (A/ p,, 0, 0, 0) and g(x*, I) 

(g1 (x*, I), g2(x*, I)) with 

~ ( * I) _ (f31 + pr)h 
91 X ' - {3 /A k ' P, 2!2 + fJ, + 1 + r 
~ ( *I)= qrh +f32h +0(2) 
92 X ' fJ, + k2 ' 

where 0(2) denotes terms of order two and higher in Ii gives 

The two eigenvalues A1 and A2 of M D-1 are: 

A1 = k1 (f31 + pr) 
(p, + k1 + r)(p, + d1 + r) 

It follows that Ro = max{A1, A2}. 

Example 4. In this example, we introduce a minimal degree of host heterogeneity by 

dividing the host population in two groups. Such division could be the result of differences 

in socio economic status or other characteristics that are likely to remain fixed in the time 

scale of the epidemic process. To illustrate the computation of R 0 in this case, we use the 

following SIR model with two groups: 

dRi - = k.J.- 11R· dt t t r t' 
i = 1,2. 

where the subscript i identifies each group (i = 1 or i = 2). In this case, I= (h, h), 
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and 

Since the dominant eigenvalue of M n-1 is 

then Ro =.X. 

Example 5. The following model was developed to study the dynamics of multiple strains 

of a sexually transmitted diseases (like gonorrhea) on a population that included a high 

degree of host heterogeneity (see Castilla-Chavez, Huang & Li 1997). The model included 

populations of males and females as well as a highly active female population (core group) 

since one of our main goals was to study the impact of female prostitution on disease 

persistence. The model equations are: 

dSm 2 
-- =Am- Bm- ,,3m+'"" "'!71 J?'11 dt ,... L I~ ~ ' 

i=l 

dif" Bm ( m)Im - = . - II.+"~· . dt ~ /""' I~ ~ ! 

dSf 2 
- = AI - Bf - ~~.sf + '"",..J I! dt ,... L I~ ~' 

i=l (2.1) 

di{ - Bf ( m)If dt - i - jJ, + '"Yi i ' 

dSc 2 
_ = Ac _Be_ 11csc +'"""''?I~ 
dt ,... L I~ ~' 

i=l 

dif Be ( c)Ic . 1 2 
dt = i - jJ, + '"Yi i ' '[, = ' ' 

where 

B!11 = rm(Tm Tf Tc)sm({3! I{ + (3'? If) 
~ ' ' ~ Tf ~ rc ' 

B! = rf (Tm Tf Tc)Sf[3!11 If" 
~ ' ' ~ rm' 

B '? = rc(rm rt rc)SC{3!11 If" . 1 2 
~ '' ~rm' z=,, 

2 

Bm = LBft, 
i=l i=l i=l 
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with the natural constraint 

Here Ak (k = m (male), f (female), c (core group, females)) denote the input flow or 

(constant) recruitment into the corresponding sexually active sub-population; 1/ f-tc is the 

average sexual life span for group c while 1/ f-t is the average sexual life span for individuals 

not in group c; 'Yf are the per capita rates of recovery; Tk = Sk + Lj Ij are the total 

number of males or females (group f and group c), respectively; rk, as functions of ym, 

T f, yc, denote the numbers of partners per individual per unit of time; and, {3f denote 

the rates of infection. The constraint simply states that the total number of partners per 

unit of time for each gender (this is a purely heterosexual model) must match. 

The dynamics of the above system are equivalent to those of limiting system (see 

Castillo-Chavez and Huang and Li, 1997) below: 

(2.2) 

where 

k=m,f, 

i = 1,2. 

System (2.2) can be rewritten as 

dfm 
_i_ = -a"!!- J"!l- + (pm- "'""'J"!'-)(a"!'-If+ ar:nc Jl?) dt ~ ~ 6 J ~ ~ ~ ~ ' 

j 

dJf 
_i = -af 1t + a!(pf _ ""J!)J:n 
dt ~ ~ ~ L.... J ~ ' 

j 

(2.3) 

dfl? 
-~ = _,.~ fl? + ac(pc - "'""'Ic;)I:n · 1 2 dt v ~ ~ ~ 6 J ~ ' 'l = ' . 

j 
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Linearizing about the infection-free equilibrium of (2.3) gives 

(~) cum pmai Pr;rc) ( W) d~[ = pf~{ -a! i = 1,2. 
t 

dJ'? pcac;. 0 -aC? ]I? 
=.\... t t t 
dt 

In this case 

I= (I1, l2), M= (~1 ~2)' D= (~1 ~2)' 
where Ii = (Ti, I{, Ii), 

M, = (pf~{ 
pmai pmt) (u~ 0 

~). 0 and D, = ~ a! 
t 

pcaf 0 0 ac;. 
t 

Ro = max{R1, R2} where Ri is the dominant eigenvalue of MiDi1 . Since the character­

istic equation of MiDi1 is 

then 

Example 6. Dengue is vector-transmitted disease that exhibits strain heterogeneity. Fur­

thermore, a host's prior immunological history with Dengue strains can have a critical im­

pact on the probability of host survival to infections from other strains. The model below 

was used to study the dynamics of two strains of Dengue (see Feng and Velasco-Hernandez, 

1997) on a human population. Secondary infections were only allowed to be experienced 

by human hosts, that is, It was assumed infected mosquitos never recovered and could not 

be infected by additionals strains. The situation for human hosts was assumed to be differ­

ent. Two scenarios were possible: either an h previously infected individual who became 

now infected with strain 2 (through contact with V2, infected mosquitoes ) became a Y2 

infected host or a previously l2 infected individual who become now infected with strain 

1 (through contact with V1 mosquitoes) became a Y1 infected-host. The rates at which 

these two forms of host infection occur are given by a1B1l2 and a2B2h, respectively. Here 
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O"i is a positive real number used to model either cross-immunity (O"i < 1) or increased 

susceptibility (O"i > 1). The model is given by the following set of equations: 

dS dt =A- (B1 + B2)S- pS, 

dh 
dt = B1S- 0"2B2h- ph, 

dh 
dt = B2S- 0"1B1h- ph, 

dY1 dt = 0"1B112- (el + p + r)Y1, 

dY2 dt = 0"2B2h- (e2 + p + r)Y2, 

dR 
dt = r(Y1 + Y2)- pR, 

and 
dW dt = q- (A1 + A2)W- 8W, 

dV1 - = A1W -8v;l 
dt ' 

dV2 
- = A2W -8v;2 
dt ' 

where 

B. _ /3i Vi A. = ai ( 1i + Yi) . = 1 2 
~ - c + whN' ~ c + WvN . 'l ' . 

N = S + h + 12 + Y1 + Y2 +Rand W is the number of susceptible mosquitoes. If we let 

x = (S, R, W), and I= (h, 12, Y1, Y2, V1, V2) then Uo =(A/ p, 0, q/8, 0, 0, 0, 0, 0, 0), 

0 0 0 0 f3ICh 0 
0 0 0 0 0 f32Ch 

M= 0 0 0 0 0 0 
0 0 0 0 0 0 

a1Cv 0 0 0 0 0 
0 a2Cv 0 0 0 0 

and 
p 0 0 0 0 0 
0 p 0 0 0 0 

D= 0 0 e1 + p + r 0 0 0 
0 0 0 e2 + p + r 0 0 
0 0 0 0 8 0 
0 0 0 0 0 8 
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where Ch = S* /(c + whN*), Cv = S* /(c + whN*) and S* = N* =A/ J.-t. Hence 

0 0 0 0 131 ch 
J.k 

0 

0 0 0 0 0 132 ch 
J.k 

MD-1 = 0 0 0 0 0 0 
0 0 0 0 0 0 

£J..C 8 v 0 0 0 0 0 
0 £l.C 8 v 0 0 0 0 

with eigenvalues: 

and >.5,6 = ± 

Consequently 

Ro =max{ 
Example 7. Huang, Cooke, & Castilla-Chavez (1992) studied the sexual-transmission 

of HIV in a homosexually active population stratified by degree of sexual activity and 

(implicitly) sexual practices. Their model showed that asymmetric transmission rates 

between groups were capable of generating multiple endemic equilibria via a backward 

bifurcation. Their model is given by the following set of equations: 

dSi(t) =A·- B·(t)- 11S·(t) dt t t ,.,.. t ' 

dii (t) 
----;It = Bi(t)- (ai + ~-t)Ii(t), 
dAi(t) 

dt = aiii(t) - (di + ~-t)Ai(t), 
(2.4) 

n Ji(t) 
Bi(t) = Si(t)ci L AiJPiJ(t) T·(t), i = 1, · · ·, n, 

j=l J 

where A denotes number of individuals with AIDS, Tj = Sj + Ij, and ci, Aij, and Pij(t) 

denotes the mixing matrix. Proportionate mixing was assumed, that is they took Pii = 

PJ = CjTJ/N where N = :L~=l ckTk. The constants ai and di denote the per capita 

disease-induced death rates. The notation ()i = fJiAiici, and lij = CiCjAij used in Huang et 

al. (1992) helps rewrite System (2.4) (without the A equation) in the form: 

dS· (()I 1 Ln ) _z =A--S· ~ +- l· .J. - 118· dt t t T N tJ J ,.,.. z, 
t j=l 

dJ. (()I 1 Ln ) _z =8· ~+- l··I· -(a·+11)L dt z T:· N tJ J z ,.,.. z. 
t j=l 

(2.5) 

i = 1, · · · ,n. 
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Note that at the disease-free state of (2.5) s; = Tt = 11- and N* = E~=1 CkTk. Hence, 

under proportionate mixing with I= (h,I2 , · · · Jn) one gets 

() + Silu Silt2 
1 N* N* 

s;z21 () + S2b 
N* 2 N* 

M= 

s;lnl s;zn2 
N* N* 

and 

lX1 + fJ, 0 
0 lX2 + fJ, 0 

D= 

0 

M and D can be rewritten as: 

where K = 2:~= 1 ckAk, L = (Zij )nxn, and O"i =£Xi/ f.-l· 

Clearly 

Silln 
N* 

S2l2n 
N* 

() + s;lnn 
n N* 

0 
0 

M D-1 = .!_diag( ()i 1 ) + .!_diag( K( Ai ) ) L. 
fJ, O"i + fJ, O"i + 1 

If fJ,o (notation used by Huang et al.) denotes the spectral radius of the matrix 

then 

diag ( a-i () ~ 1 ) + diag ( K ( O"~~ 1) ) L, 

Ro = J.-lo. 
fJ, 

Example 8. There is a vaccine for TB that is widely used around the world. A model was 

developed and analyzed by Castilla-Chavez and Feng (1997) to help determine the optimal 

(according to some appropriate set of criteria) vaccination age. The role of Ro was also 

critical in establishing of a useful concept of optimality. Hence, its explicit computation 

was critical to the analysis. Let's introduce this model and compute its Ro. We let s(t,a) 

denote the density function of the susceptible class (S(t) = J0
00 s(t, a)da gives the number 
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of susceptibles at t) and let v(t, a), l(t, a), i(t, a), and j(t, a) denote the density functions 

of the vaccinated, latent, infectious, and treated classes, respectively. The model reads 

a a 
(at+ aa)s = -f3(a)c(a)B(t)s- J.L(a)s- '1/J(a)s, 

a a 
(at+ aa)v = '1/J(a)s- J.L(a)v- 8f3(a)c(a)B(t)v, 

(:t + :a)l = f3(a)c(a)B(t)(s + CJj + 8v)- (k + J.L(a))l, 

(:t + :a)i = kl- (r + J.L(a))i, 

(:t + :a)j = ri- CJ{3(a)c(a)B(t)j- J.L(a)j, 

() 100 i(t,a') ( ') , 
B t = ( ') p t, a da , 

0 n t,a 

( ') c( a')n( t, a') 
p t, a = roo ' 

Jo c(u)n(t, u)du 

s(t, 0) =A, v(t, 0) = l(t, 0) = i(t, 0) = j(t, 0) = 0, 

s(O, a) =so( a), v(O, a) = vo(a), l(O, a) = lo(a), 

i(O, a) = io(a), j(O, a) = io(a), 

where n = s + v + l + i + j; A is the birth rate; J.L( a) is the age specific per capita natural 

death rate; {3(a) is the age specific (average) probability of becoming infected through 

contacts with infectious individuals; c(a) is the age specific per capita contact/activity 

rate; CJ and 8 represent the reduction in risk of infection due to treatment and vaccination, 

respectively, 0 :::; CJ, 8 :::; 1; k is the per capita rate of progression to active TB; r is the 

per capita treatment rate; '1/J(a) is the per capita vaccination rate. In addition, p(t, a, a') 

gives the "probability" that an individual of age a has a contact with an individual of 

age a' given that the individual had a contact with a member of the population. Again, 

we assume proportionate mixing (otherwise the explicit computation of Ro is impossible), 

that is, we take p(t, a, a') = p(t, a') (as already defined above). 

The steady demographic state (that is, the state where the infection is absent) of the 

system is given by the following nonuniform age-distribution: 

where 
'L( ) _ - J:a JJ-(s)ds 'L ( ) _ - J:a 1/J(b)db 
.r a - e o , .r.,p a - e o • 
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The probability that an individual of age n + T, who was infected T units of time ago, is 

still in class i, is given by 

where 

Thus the expected infectivity is given by 

A(r, a, n) = ,B(a)c(a)p(n + r) ~(T, 0!\, 
nn+r 

(2.6) 

where p(a) = c(a)n(a)l f0
00 c(u)n(u)du. Letting A(r, a, n) = f(a)g(r, n) where f(a) = 

,B(a)c(a) and g(r, n) = p(n+rh(r, n)ln(n+r) and Formula {1.3) leads to the computation 

of the reproductive number associated with the vaccination strategy '1/J. Namely, 

R('I/J) = fooo fooo p(n + r),B(n)c(n)K(r)Vw(n)drdn, 

where Vw(a) = :Fw(a) +8(1-:F'I/J(a)) < 1 (JC(r) is given by (2.6)). Hence, in the absence of 

a vaccine, that is, whenever, 'If;( a) = 0, the above formula reduces to the basic reproductive 

number 

Ro = fooo fooo p(n + r),B(n)c(n)K(r)drdn. 

An alternative method for computing Ro can be found in Castilla-Chavez and Feng 

{1997). 

Example 9. The following model was introduced and partially analyzed in Busenberg 

and Castilla-Chavez (1991). The focus of their paper was not the study of the transmission 

dynamics of HIV I AIDS per se but rather the development of general methods for modeling 

the mixing structure of a population. This paper focussed on the modeling of social 

structures since they often play a critical role in the study of the spread of disease. A 

model for the transmission dynamics of HIV I AIDS in a homosexually-active population 

stratified by risk and age was used to illustrate their approach. In order to introduce 

this model, we let S(r, a, t), I(r, a, T, t) and A(r, a, T, t) denote the density functions of 

susceptible, infectious, and AIDS classes, respectively. Here, a denotes chronological age; 

16 



T is the age of infection for the I and A groups; and r denotes the sexual activity level. 

The model reads: 

as as 8t + oa = A(r, a, t, T(r, a, t)) - B(r, a, t) - J-L(a)S, 

[)I [)I [)I 
at + oa + OT = - (J-L(a) + v(a, T) +!(a, T) )I, 

oA oA oA 
Ft + oa + OT =!(a, T)I- (fL(a) + 8(a, T))A, 

where at a= 0, S =I= A= 0, and I(r, a, 0, t) = B(r, a, t), 

1oo 1oo 1oo I( t t t) I I I I T l a l T, I I 
B(r, a, t) =c(r, a) f3(r, a, T, r, a )p(r, a, r, a) T( , , ) dr da dT, 

o o o r,a,t 

T(r, a, t) =S(r, a, t) + 100 I(r, a, T, t)dT. 

At the steady demographic state 

T(r, a)= S(r, a)= loa e- La J.L(y)dy A(r, x)dx. (2.7) 

Under the assumption of proportionate mixing, that is, with the use of 

, c( r', a')T( r', a') 
p(r,a,r ,a')= ~oo ~oo (' ')T(' ')d 'd ,, 

0 0 cr,a r,a r a 

j3(r,a,r',a',T) = f3(r 1,a1,T), 

one finds that the infectivity function is given by 

( , , ) (3( , , ) ( ) ( , ') F( a', T) J( ) ( , , ) A r, a, r, a - T, T = r, a, T c r, a p r, a T(r', a') =: r, a g r, a - T, T , 

0 :S T :S a', 

where 

'L( 1 ) _ - JrT (J.L(a'-r+s)+v(a'-r+s,r)+l(a'-r+s,r))ds 
.r a,T -e o , (2.8) 

and 

f(r, a) = c(r, a), ( , , ) _ (3(r',a',T)c(r',a')F(a',T) 
g r 'a - T, T - roo roo . 

Jo Jo c(r',a')T(r',a')dr'da' 
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We again compute the basic reproductive number using (1.3) 

r)Q r= ra' 
Ro= Jo Jo Jo f(r',a'-T)S(r',a'-T)g(r',a'-T,T)dTdr'da' 

= 100100 t c(r',a' -r)(t-r e- J;'-' ~(y)dyA(r',x)dx) 
{3(r',a',T)c(r',a'):F(a',T) d d 'd 1 

x r= r= T r a 
Jo Jo c(r',a')T(r',a')dr'da' 

= 1,= 1,= ( ~ ( ) r= r= c(r',a'){ ra' {3(r1 ,a1,T)c(r1 ,a1 - T):F(a1 ,T) 
c r' a' T r' a' dr'da' Joo loo loo 

0 0 ' ' 

x ( 1"' -r e- J;' _, ~(y)dy A(r', x )dx) dr} dr' da', 

where T(r, a) and :F(a', T) are given in (2.7), (2.8). 

Example 10. The model of this last example was develop to determine optimal vac­

cination policies for models for infectious diseases (see Hadeler and Muller, 1995). The 

"general" age structure model for communicable diseases is typically given by the following 

system of three partial differential equations: 

v 
Ut + Ua = -J.-L(a)u- '1/J(a)u + "f(a)w- {3(a)u N, 

- v 
Wt + Wa = -J.-L(a)w + '1/J(a)u + a(a)v- "((a)w- {3(a)w N 

- v 
Vt + Va = -jj(a)v- a(a)v + ({3(a)u + {3(a)w) N' 

with boundary conditions 

u(t, 0) = 1L [b(a)( u(t, a)+ w(t, a))+ b(a)v(t, a)]da, w(t, 0) = 0, v(t, 0) = 0. 

Here, N(t) = J0L[(u(t, a) + w(t, a)) + v(t, a)]da denotes the total population size while 

V(t) = J0L k(a)v(t, a)da gives the average number of contacts per unit of time of infectious 

with susceptible individuals. Furthermore, L represents maximum age; '1/J( a) denotes the 

age dependent vaccination rate; k( a) the age specific contact distribution; a( a) denotes 

the age dependent recovery rate; and 'Y( a) is the age specific loss of immunity. 

The steady demographic state, in the presence of an age specific vaccination policy 

'1/J(a), is (u(a), w(a), v(a)) where 

u(a) = P(a)D(a), w(a) = P(a) - u(a), v(a) = 0, 
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and 
P(a) = e- faa J.L(s)ds, 

D( ) -la(T(s)+'l/J(s))ds + 1a -ja(T(r)+'f/;(r))dr ( )d a = e o e s 1 s s. 
0 

If Au ( T, ~, rJ) and Av ( T, ~, rJ) denote the infectivity functions corresponding to susceptibles 

u(~) and vaccinated individuals ii(~), respectively, then 

where 

fu(~) = {3(~), 
- fT[,:L(ry+s)+a(ry+s)]ds - e Jo 

fv(~) = {3(~), g(T, TJ) = k(TJ + T) N 

Using Formula (1.3) again, we compute the basic reproductive number: 

Some changes of variables and exchanges in the order of integrations leads to 

J 0L J~ k(B)P(rJ)e- J:(P,(r)+a(r))dr (f3(rJ)D(rJ) + ,8(TJ)(1- D(TJ))) dr]d() 

R('lj;) = foL P(a)da . (2.9) 

Note that P(rJ)P(T) = P(rJ + T) and 8(a) = jl(a)- Jl(a). It can be checked that (2.9) gives 

the same formula for R( 'ljJ) as that found in the paper by Hadeler and Muller (Formula 

(3.20) ). 

3. Global stability conditions for the disease-free equilibrium when R 0 < 1 

For all the differential equation examples of Section 2, it can be established that the 

disease-free equilibrium is locally asymptotic stable (l.a.s.) whenever R 0 < 1 and unstable 

when Ro > 1. In this section, we list two conditions that if met, also guarantee the global 

asymptotic stability of the disease-free state. First, System (1.1) must be written in the 

form: 
dx dt = F(x,I), 

dl 
dt = G(x, 1), G(x, 0) = 0, 

(3.1) 
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where x E Rm denotes (its components) the number of uninfected individuals and IE Rn 

denotes (its components) the number of infected individuals including latent, infectious, 

etc. Uo = (x*, 0) denotes the disease-free equilibrium of this system. 

The conditions (H1) and (H2) below must be met to guarantee local asymptotic 

stability. 

(H1) For ~~ = F(x, 0), x* is globally asymptotically stable (g.a.s.), 

(H2) G(x, I) = AI - G(x, I), G(x, I) ~ 0 for (x, I) E n, 

where A = D1G(x*, 0) is an M-matrix (the off diagonal elements of A are nonnegative) 

and n is the region where the model makes biological sense. 

If System (3.1) satisfies the above two conditions then the following theorem holds: 

Theorem The fixed point Uo = (x*, 0) is a globally asymptotic stable (g.a.s.) equilibrium 

of (3.1) provided that R 0 < 1 (l.a.s.) and that assumptions (Hl) and (H2) are satisfied 

Proof: Let ! 0 = I(O), observe that I(t) ~ 0 if Io > 0 and that eAt is a positive semigroup 

(since A is an M-matrix). Hence, using the variation-of-constant formula, we have 

0 ~ I(t) =eAt 10 - lot eA(t-s)G(x(s),I(s))ds 

~eAt Io. 

Since A is an M-matrix, A has a dominant eigenvalue m(A) with m(A) < 0 for Ro < 1. 

Thus 

lim lleAtll = 0, ===> lim I(t) = 0. 
t-+oo t-+oo 

Note that x* is a g.a.s. equilibrium of~~ = F(x, 0), a limiting system of~~ = F(x(t), I(t)). 

Thus, 

lim x(t) = x*. 
t-+oo 

Remark: If A is irreducible and some additional conditions on G(x, I), then the theorem 

remains true for Ro ~ 1. 

Rewrite Example 2 in the form of (3.1, then x = (S, R), I = (E, I), F(x, 0) = 

(A -OJ-LS)' and 

A= ( -(J-Lk+ k) f3 ) G(x,I) = (!31(10- ~)). 
-(J-L + 'Y) ' 

Since 0 ~ S ~ N, it is clear that G(x, I) ~ 0. It is also clear that x* = (A/ J-L, 0) is a g.a.s 

equilibrium of ~~ = F(x, 0). Hence, by the above theorem Uo is g.a.s. 
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If the model in Example 3 is re-written in the form of (3.1) then x = (8, T), I = 

(E1, h, E2, h), F(x, 0) = (A -;f-£8 ), 

( 
- (!1 + k1 + r) f3I + pf 

A = k - (!1 + d1 + f) 
0 qf 
0 0 

and 

(
f3Ih(1- S+;!T) + f32E1 ~) 

G(x,I) = (3,I,(l-:S+~+T) · 

Since a ::; 1 and 0 ::; 8 +aT ::; 8 + E 1 + T ::; N then G(x, I) ;:::: 0. The global stability of 

x* = (A/ f-£, 0) of the system ~~ = F(x, 0) is easy to check. Hence, U 0 is g.a.s. 

The next example illustrates a case in which one of the assumptions of the theorem is 

violated. For this model, it was shown that a backward bifurcation occurs at 'Ro = 1, that 

is , it was shown that multiple endemic equilibria can exist even though R 0 < 1. Consider 

the TB model with reinfection studied in Feng, Castilla-Chavez, and Capurro (2000): 

d8 I 
dt = A - (38 N - 118, 

dE I I I 
- = (38-- p(3E-- (!1 + k)E + a(3T-
dt N N N' 
di I 
dt = p(3E N + kE- (!1 + r + d)I, 

dT I - = r I - a(3T- - ,,y 
dt N r ' 

N=8+E+I+T. 

Here, p(3E ~ denotes the reinfection rate, 0 ::; p < 1. Whenever p = 0 the model becomes 

equivalent to the model in Example 2. 

IfO <p < 1 then x = (8,T), I= (E,I), Uo = (8*,T*,E*,I*) = (A/f-£,0,0,0,) and 

G(x,I) = (~I(x,I)) = ((3I(1- S+;T): p(3E ~). 
G2 (x, I) -p(3E N 

Hence G2 (x,I) < 0, that is, (H2) is not satisfied. Consequently, Uo may not be globally 

asymptotic stable. It was proved in Feng, Castillo-Chavez, and Capurro (2000) that a 

backward bifurcation occurs at R 0 = 1 and that two endemic equilibria can be supported 

as long as 'Rc < Ro < 1 (where Rc is an appropriate positive constant). 
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4. Conclusions 

For a long period of time R 0 < 1 was considered the key to understanding the dy­

namics of epidemiological models. This view arose from the work of Lajmanovich and 

Yorke (1976) on gonorrhea transmission (these authors studied what appeared to be quite 

a general epidemiological model) and from relationship of many epidemic models to mono­

tone systems. Recent work (beginning with Castillo-Chavez et al. (1989) and Huang et al. 

(1992)) showed that this was not the case. Their work arose in the context of the study of 

HIV /AIDS dynamics, that is from models that had to incorporate selection (differential 

mortality). The incorporation of differential mortality has had a dramatic impact in the 

field of theoretical and mathematical epidemiology (see Hadeler and Castillo-Chavez (1995) 

and Feng et al. (2000), for applications to HIV and TB, respectively). The theorem in the 

last section not only connects R 0 to the concept of global asymptotic stability but also 

identifies some mathematical conditions that must be met for a transcritical bifurcation 

(with transfer of stability and "boring" (predictable) dynamics) to occur. 
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