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Abstract. We analyze perturbations of the right-hand side and the cost parameters in linear

programming (LP) and semidefinite programming (SDP). We obtain tight bounds on the

perturbations that allow interior-point methods to recover feasible and near-optimal solutions

in a single interior-point iteration. For the unique, nondegenerate solution case in LP, we show

that the bounds obtained using interior-point methods compare nicely with the bounds arising

from using the optimal basis. We also present explicit bounds for SDP using the Monteiro-

Zhang family of search directions and specialize them to the AHO, H..K..M, and NT directions.
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1. Introduction

This paper is concerned with sensitivity analysis for linear programming (LP) and semidefinite

programming (SDP) problems using interior-point methods. Sensitivity analysis (also called

post-optimality analysis) is the study of the behavior of the optimal solution with respect to

changes in the input parameters of the original optimization problem. It is often as important

�
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as solving the original problem itself, partly because in real life applications, the parameters

are not always precise and are subject to some source of error.

For the LP case, sensitivity analysis based on the optimal basis matrix has been well-

studied. Recently, an interior-point method approach using the analytic central optimal solu-

tion as opposed to an optimal basic solution has been analyzed by several researchers. Green-

berg [8], Jansen, de Jong, Roos and Terlaky [12] and S. Zhang [26] discuss the advantages of

the central optimal solution over a basic solution. Adler and Monteiro [2] show that it is pos-

sible to perform parametric analysis using the optimal partition (i.e., for each index, knowing

whether the corresponding component of an optimal primal solution or of an optimal dual

slack vector can be positive). Roos, Terlaky, and Vial [21] develop a parametric analysis of

the optimal value from the central optimal solution perspective. Nunez and Freund [20] and

Holder, Sturm and S. Zhang [11] study the behavior of the central path under perturbations

of the input data.

For the SDP case, Goldfarb and Scheinberg [6] investigate the properties of the optimal

value function under perturbations of the input parameters. Sturm and S. Zhang [23] study

the properties of the central path with respect to perturbations of the right-hand side vector.

Our study in this paper is different from the above studies in the sense that it is motivated

by asking how the interior-point method from a near-optimal pair of strictly feasible solutions

for a problem and its dual compares with the results obtained from a nondegenerate optimal

basic solution under perturbations of the right-hand side and the cost parameters for the LP

case. We focus on obtaining explicit bounds on the perturbations of the input parameters so

that a single iteration of the interior-point method (with very modest cost) regains feasibility

for the perturbed problem and its dual. Further, the new iterates have duality gap smaller

than that of the original iterates. We show that under the unique, nondegenerate solution

assumption, the interior-point approach yields asymptotically exactly the same bounds as

those that keep the current basis optimal (after symmetrization with respect to the origin);

since these are the bounds natural when using the simplex method, we call these the bounds

from the simplex approach. We also extend our analysis to the SDP case and obtain bounds

on perturbations of the right-hand side and the cost parameters using the AHO [3], H..K..M

[9,14,15] and NT [19,18] directions.
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Let us note that the question of using a small number of interior-point iterations to regain

feasibility when the problem data change also arises in cutting-plane methods for convex

feasibility problems (see, e.g., Goffin, Haurie, and Vial [4] and Goffin and S.-Mokhtarian [5]

and the references therein). However, in our case the dimensions of the problems do not change,

we apply the iterations from a near-optimal pair of points rather than an analytic center, and

we explicitly limit ourselves to a single iteration rather than a small number.

We stress that the bounds we obtain are valid in the presence of degeneracy, which appears

in most practical LP models; it is only the comparison with the simplex approach that makes

nondegeneracy assumptions. We give an example to show the difficulties when there is degen-

eracy; however, a follow-up paper will show that even in this case our bounds achieve a certain

fraction of some natural bounds that depend only on the problem, not on an algorithmic

approach.

After this paper was written (and revised), we became aware of a related paper by Kim,

Park, and Park [13], henceforth KPP. The authors also consider changes in the right-hand

side or the cost parameters and investigate when a single interior-point-like step from a near-

optimal pair of strictly feasible solutions for a problem and its dual can regain feasibility and

maintain near-optimality. However, KPP only change either the primal or dual solution: if the

right-hand side (cost vector) changes, they change only the primal (dual) solution. Their step

cannot be motivated by a slight change in the usual Newton step in a primal-dual interior-

point iteration, but their change to the primal (dual) solution coincides with ours. KPP show

that, in the nondegenerate case, the condition on the change in the data that allows feasibility

to be regained is asymptotically exactly that keeping the optimal basis the same. However, to

show that the new pair of solutions remains near-optimal requires another condition, which

they show holds asymptotically; but it may be the case that the duality gap of the new pair

exceeds that of the original pair by a considerable amount. This contrasts with our result,

which requires a more stringent condition (the symmetrization of KPP’s) to assure feasibility,

but which then guarantees a reduction in the duality gap. We also believe that our analysis of

the asymptotic behavior of the projection matrices is more complete than theirs.

Our paper is organized as follows. In the next section, we investigate the LP case. We

present bounds on perturbations of the right-hand side and the cost vectors using the interior-

point approach and the simplex approach and then compare the bounds resulting from the two
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approaches. The analysis of perturbations of the right-hand side vector and the cost matrix for

the SDP case in the general form as well as using the three specific search directions is given

in Section 3. We conclude the paper with a discussion in Section 4.

2. Linear Programming

We consider the LP given in the following standard form:

(LPP ) minx cT x

s.t.

Ax = b,

x ≥ 0,

where c and x ∈ IRn, b ∈ IRm, and A ∈ IRm×n. Throughout this section, the coefficient matrix

A will be fixed; thus we parametrize the above LP by b and c, and we denote it by LPP (b, c).

The associated dual LP is given by the following:

(LPD) maxy,s bT y

s.t.

AT y + s = c,

s ≥ 0,

where y ∈ IRm and s ∈ IRn. Similarly, the dual LP will be denoted by LPD(b, c). Without

loss of generality, we assume that A has full row rank.

We say the triple (x, y, s) is a (strictly) feasible point for LPD(b, c) and LPD(b, c) if x

and (y, s) are (strictly) feasible for these two problems respectively. (Here a feasible solution

is called strictly feasible if all inequalities are satisfied strictly.)

2.1. Interior-Point Approach

We assume that there exists a strictly feasible point (x, y, s) for LPP (b, c) and LPD(b, c). It is

well known that the duality gap corresponding to such a point is given by cT x−bT y = xT s > 0.

X and S will denote the diagonal matrices corresponding to x and s, respectively, and e will

denote the vector of ones in the appropriate dimension.



Sensitivity Analysis in LP and SDP 5

First, we will briefly review the concept of the central path in LP. The central path is

a path of strictly feasible points (x(µ), y(µ), s(µ)) parametrized by a positive scalar µ. Each

point on the central path satisfies the following system for some µ > 0:

AT y + s = c,

Ax = b,

XSe = µe,

(1)

with x > 0 and s > 0. Under the assumption above, such a solution exists for each positive µ.

An interior-point iteration is usually a Newton step for this nonlinear system of equations

for some µ, possibly with different right-hand sides. Suppose (x, y, s) is the current iterate,

and we seek an approximation to the point on the central path corresponding to parameter

µ (say equal to γxT s/n). Then the Newton step (∆x,∆y, ∆s) is given by the solution of the

following system:

AT ∆y + ∆s = rd,

A∆x = rp,

S∆x + X∆s = rxs,

(2)

where rp = b − Ax, rd = c − AT y − s, and rxs = µe − XSe. Here, rp, rd and rxs are simply

the primal, dual and complementary slackness residuals, respectively.

However, we might want to use different right-hand sides. If the right-hand side b or cost

vector c is changed to b′ or c′, we may wish to use this instead of b or c to compute rp or rd.

Similarly, we may want to strive for a different product of the primal and dual variables than

µe, as in target-following methods. We will say that the Newton step from (x, y, s) targeting

the feasible point (x′, y′, s′) of LPP (b′, c′) and LPD(b′, c′) that satisfies X ′S′e = v is the

triple (∆x,∆y, ∆s) solving (2) for rp = b′ −Ax, rd = c′ −AT y − s, and rxs = v −XSe. (This

is a slight abuse of language, since such a point might not exist, but the Newton step is still

defined.)

If A has full row rank, then the system (2) has a unique solution given by:

∆y = (AD2AT )−1(rp + AD2rd − AS−1rxs),

∆s = rd − AT ∆y,

∆x = S−1(rxs − X∆s),

(3)

where D = S−
1

2 X
1

2 . The key observation here is that if A has full row rank, then AD2AT

will be symmetric positive definite, and hence invertible.
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To avoid extra computation, we note that the results below need not be applied to the final

iterate generated by a primal-dual interior-point method. If we backtrack to the previous iter-

ate, a factorization of the matrix AD2AT necessary to compute the Newton step will already

be available. Then an iteration simply reduces to solving two triangular systems followed by a

few matrix-vector products. Hence in practice we may choose to let (x, y, s) be the penultimate

iterate of the method used to solve the original problems.

Next, we present our results about perturbations of b and c.

Proposition 1. Assume that (x, y, s) is a strictly feasible point for LPP (b, c) and LPD(b, c)

and the right-hand side vector b is replaced by b′ := b + ∆b, where ∆b ∈ IRm. Suppose a

Newton step is taken from (x, y, s) targeting the feasible point (x′, y′, s′) of LPP (b′, c) and

LPD(b′, c) that satisfies X ′S′e = XSe. If, and only if,

‖S−1AT (AD2AT )−1∆b‖∞ ≤ 1, (4)

where D = X
1

2 S−
1

2 , then a full Newton step can be taken and the resulting iterate will be

feasible for the new problems. Moreover, in this case the new iterate will have duality gap at

most xT s.

Proof. Using the above notation in (2) and by the hypothesis, we find rp = ∆b, rd = 0, and

rxs = 0. Let’s consider the third equation in (2):

S∆x + X∆s = 0. (5)

Rewriting this equality component-wise, we have:

si∆xi + xi∆si = 0 so
∆xi

xi
+

∆si

si
= 0, i = 1, . . . , n, (6)

where xi denotes the ith component of x. However, the next iterate will be feasible iff xi+∆xi ≥

0 and si + ∆si ≥ 0, i = 1, . . . , n, since the equality constraints will automatically be satisfied

if a full Newton step is taken. Combining these inequalities with (6), we have that the new

iterate will satisfy nonnegativity for both x and s if and only if |∆si

si
| ≤ 1, i = 1, . . . n. Thus,

it is necessary and sufficient to have
∥∥S−1∆s

∥∥
∞

≤ 1. But using (3), we have:

∆y = (AD2AT )−1∆b and ∆s = −AT ∆y. (7)
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Hence
∥∥S−1∆s

∥∥
∞

=
∥∥S−1AT (AD2AT )−1∆b

∥∥
∞

,

and this proves the first part of the proposition.

The duality gap of the new iterate will be given by:

(x + ∆x)T (s + ∆s) = xT s + xT ∆s + sT ∆x + ∆xT ∆s. (8)

Multiplying (5) by eT from the left, we have xT ∆s + sT ∆x = 0. From (6), ∆xi and ∆si have

opposite signs, and so ∆xT ∆s ≤ 0. Thus, we have:

(x + ∆x)T (s + ∆s) ≤ xT s (9)

as claimed.

ut

We note that the simple bound

‖∆b‖∞ ≤
1

‖S−1AT (AD2AT )−1‖
∞

(10)

implies that ∆b satisfies the condition (4); moreover (10) defines the largest L∞-box around

the origin guaranteeing this condition. The proof is straightforward. A similar statement holds

for the next result on perturbations of the cost vector c.

Proposition 2. Assume that (x, y, s) is a strictly feasible point for LPP (b, c) and LPD(b, c)

and the cost vector c is replaced by c′ := c + ∆c, where ∆c ∈ IRn. Suppose a Newton step is

taken from (x, y, s) targeting the feasible point (x′, y′, s′) of LPP (b, c′) and LPD(b, c′) that

satisfies X′S′e = XSe. If, and only if,

‖S−1(I − AT (AD2AT )−1AD2)∆c‖∞ ≤ 1, (11)

where D = X
1

2 S−
1

2 , then a full Newton step can be taken and the resulting iterate will be

feasible for the new problems. Moreover, in this case the new iterate will have duality gap at

most xT s.

Proof. Once again using (2), we have rp = 0, rd = ∆c and rxs = 0. By the argument used in

the proof of Proposition 1, it is necessary and sufficient that ‖S−1∆s‖∞ ≤ 1. Note that (3)

implies

∆y = (AD2AT )−1AD2∆c and ∆s = (I − AT (AD2AT )−1AD2)∆c.
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Therefore,

‖S−1∆s‖∞ = ‖S−1(I − AT (AD2AT )−1AD2)∆c‖∞,

and this proves the first part of the proposition. Essentially the same arguments as in the

previous proposition hold to prove the decrease in the duality gap. ut

The proposed Newton system to regain feasibility for the new problems uses rxs = 0 in

(2). This choice can be motivated in the following way. If (x, y, s) is near-optimal to start with,

the pairwise products xisi then are very small. Therefore, by targeting a point for the new

problems with the same pairwise products, we hope to be able to maintain near-optimality

while regaining feasibility. For reoptimization after a data perturbation, the simplex method

always maintains complementarity (xisi = 0) while working towards primal or dual feasibility.

Consequently, the proposed Newton system seems to be a natural analogue of the simplex

method in this respect. Moreover, since the primal and dual steps are not orthogonal when the

right-hand side or cost vector are changed, we need to control the second-order term in the

change of the duality gap, and our choice does this nicely, guaranteeing that the new duality

gap for the perturbed problem will be at least as small as the original one. Finally, our choice

of right-hand side implies that the proportional changes X−1∆x and S−1∆s are negatives of

one another, so our conditions become simply L∞ bounds on a single vector.

Goffin and Sharifi-Mokhtarian [5] also use a similar choice for the Newton step in a different

setting: they study the analytic center cutting plane method for solving convex feasibility

problems which approximates analytic centers of polyhedra containing the convex set generated

via cutting planes. After adding a cut (which possibly makes the current approximate center

infeasible) the center is updated based on an infeasible primal-dual Newton’s method to restore

primal-dual feasibility, where a similar choice to ours is used for the old variables to keep the

analysis manageable. However, the motivation and the analysis are very different from ours.

Finally, we give the version of the two propositions above for directional perturbations,

i.e., the right-hand side vector b is replaced by b + βdb, and the cost vector c is replaced by

c + βdc, where β ∈ IR, db ∈ IRm and dc ∈ IRn.

Proposition 3. Assume that (x, y, s) is a strictly feasible point for LPP (b, c) and LPD(b, c)

and the right-hand side vector b and the cost vector c are replaced by b′ := b + βdb and

c′ := c + βdc, respectively, where β ∈ IR, db ∈ IRm, and dc ∈ IRn. Suppose a Newton step
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is taken from (x, y, s) targeting the feasible point (x′, y′, s′) of LPP (b′, c′) and LPD(b′, c′)

that satisfies X′S′e = XSe. Then a full Newton step will yield a feasible iterate for the new

problem with duality gap at most xT s if and only if

|β| ≤
1

‖S−1(I − AT (AD2AT )−1AD2)dc − S−1AT (AD2AT )−1db‖∞
, (12)

where D = X
1

2 S−
1

2 .

Proof. Using (3), we have rp = βdb, rd = βdc, and rxs = 0 by the hypothesis. Therefore,

‖S−1∆s‖∞ = |β|‖S−1(I − AT (AD2AT )−1AD2)dc − S−1AT (AD2AT )−1db‖∞, (13)

from which the result follows immediately. ut

2.2. Simplex Approach

Here we give the bounds derived from the optimal basis. Since the simplex method yields an

optimal basic solution, as noted above we call this the simplex approach.

First, we consider changes in the right-hand side vector b. It is clear that as long as ∆b

satisfies certain conditions, the optimal basis for the original LP will remain optimal for the

new LP.

Let x∗ be an optimal solution for the original LP, and assume that it is partitioned as

x∗

B and x∗

N , corresponding to the basic and nonbasic variables, respectively. Similarly, assume

that the columns of the coefficient matrix A are partitioned into B and N accordingly. Let the

right-hand side vector b be replaced by b + ∆b, where ∆b ∈ IRm. Then the optimal basis will

remain optimal for the new problem if and only if primal feasibility is retained:

B−1(b + ∆b) ≥ 0 or B−1∆b ≥ −B−1b = −x∗

B . (14)

Clearly, the simplex approach yields “one-sided” bounds as opposed to the “two-sided”

bounds we have in the interior-point approach.

Next, we consider changes in the cost vector c. Assume that c is replaced by c+∆c, where

∆c ∈ IRn. Once again, partition c as cB and cN , and ∆c as ∆cB and ∆cN , corresponding to

the basic and nonbasic variables, respectively. The optimal basis will remain optimal if and
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only if dual feasibility is retained (i.e., the dual slack variable s∗ remains nonnegative):

cT
N + ∆cT

N − cT
BB−1N − ∆cT

BB−1N ≥ 0 or ∆cN − NT B−T ∆cB ≥ −s∗N , (15)

where s∗N and s∗B partition the dual optimal slack s∗. Hence, as long as ∆c satisfies the above

inequality, the same optimal basis will remain optimal for the new problem.

In the next subsection, we compare the two approaches under the assumption of a unique,

nondegenerate optimal solution. Before doing that, we illustrate with a small example what

can go wrong with the interior-point bounds (4) and (11) in the degenerate case. Let (P) be

given by min{x2 − x1 : x1 − x2 = 0, x2 + x3 = 1, x ≥ 0}. Then (P) has multiple optimal

solutions given by (x1, x2, x3) = (β, β, 1 − β) where β ∈ [0, 1] with an optimal value of 0. The

dual problem in this case has a unique but degenerate optimal solution. Let the right hand

side be perturbed to (0, 1)T + t (2, 1)T . It has been shown by Adler and Monteiro [2] and

Jansen, de Jong, Roos, and Terlaky [12] that maintaining the optimal partition rather than

an optimal basis gives more accurate information about the range of t. The optimal partition-

based bounds for t in this example are (−1/3, +∞). Fixing a near-optimal dual strictly feasible

point at y = (−1−ε,−2ε)T , s = (ε, ε, 2ε)T for small ε > 0, we evaluate the interior-point bound

(4) at various primal strictly feasible points as a function of β. The interior-point bound yields

±β/(2β + 1) as the limits for t; the upper bound increases from 0 to the desired symmetrized

value of 1/3 as β goes from 0 to 1. One can come up with a similar example for perturbations of

c. This shows that the interior-point bounds depend on the near-optimal solution at which they

are evaluated in the presence of degeneracy, contrary to the situation under nondegeneracy as

we show in the next subsection. However, in a follow-up paper, we will show that we can still

say something about the quality of the interior-point bounds even under degeneracy.

2.3. Comparison of the Simplex and Interior-Point Approaches

Recall that Propositions 1 through 3 hold for any strictly feasible pair of solutions for LPP (b, c)

and LPD(b, c). Clearly, they cannot be applied directly to the optimal solution pair since

strict feasibility is violated. Hence, we need to obtain a “good” strictly feasible point for

LPP (b, c) and LPD(b, c) so that we can compare the conditions and bounds from the simplex

approach with those arising from the interior-point approach. Throughout this subsection, we
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will assume that the original LP has a unique, nondegenerate solution, with basic and nonbasic

variables indicated by the subscripts B and N as above. Thus the optimal primal solution is

x∗ = (x∗

B ; x∗

N ) and the optimal dual solution (y∗, s∗) = (y∗, (s∗B ; s∗N )) with x∗

B > 0, x∗

N = 0,

s∗B = 0, and s∗N > 0.

We will first compare the conditions and bounds where those for the interior-point approach

are generated from a strictly feasible point that is close to optimal and also close to the central

path. We show that asymptotically the same conditions and bounds are generated by the two

approaches, as long as the simplex (or basis) conditions are “symmetrized” to make them two-

sided like those from the interior-point approach. Then we will consider any strictly feasible

point that is close to optimal and show that similar results continue to hold.

The basis condition (14) on ∆b can be written as (X∗

B)−1B−1∆b ≥ −e. We will call the

symmetrized condition the strengthening where this vector must lie between −e and e, or

‖(X∗

B)−1B−1∆b‖∞ ≤ 1. (16)

Similarly, the basis condition (15) on ∆c can be written as

(S∗

N )−1(∆cN − NT B−T ∆cB) ≥ −e; as above, the symmetrized condition is then

‖(S∗

N )−1(∆cN − NT B−T ∆cB)‖∞ ≤ 1. (17)

Recall that the central path is the set of solutions for positive µ of the system

AT y + s = c,

Ax = b,

XSe = µe,

(18)

with x > 0 and s > 0. Adler and Monteiro [1] show that the above system indeed defines a

continuous and differentiable path of solutions parametrized by µ, and that as µ approaches

0, the points on the central path converge to the analytic center of the optimal face. They

also analyze the limiting behavior of the central path and show that the derivative of the path

as a function of µ has a limit as µ tends to 0. Here is their result, which holds regardless of

degeneracy if x and s are partitioned with respect to the optimal partition.

Theorem 1. Let (x∗, y∗, s∗) = limµ→0(x(µ), y(µ), s(µ)). Let x and s be partitioned as xB,

xN , sB and sN . Then limµ→0 ẋN (µ) = (s∗N )−1 and limµ→0 ṡB(µ) = (x∗

B)−1.
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Here, (s∗N )−1 denotes the vector of inverses of the components of s∗N and similarly for

(x∗

B)−1. We refer the reader to the proofs of Theorems 5.1 and 5.3 in [1]. Note that our

assumption of a unique, nondegenerate solution implies that the optimal partition coincides

with the basis partition. Hence, we immediately get a closed form expression for the derivative

of xB(µ): note that BxB(µ) + NxN (µ) = b implies BẋB(µ) + NẋN (µ) = 0 or ẋB(µ) =

−B−1NẋN (µ). Hence, by Theorem 1, we have:

lim
µ→0

ẋB(µ) = −B−1N(s∗N )−1. (19)

Similarly, we also get a closed form expression for the derivative of sN (µ) as follows: we have

BT y(µ) + sB(µ) = cB or y(µ) = B−T (cB − sB(µ)) and so NT y(µ) + sN (µ) = cN gives

sN (µ) = cN − NT B−T (cB − sB(µ)). Differentiating this last equation with respect to µ,

taking the limit as µ tends to 0 and using Theorem 1, we have:

lim
µ→0

ṡN (µ) = NT B−T (x∗

B)−1. (20)

The strictly feasible point we will initially use in our analysis of the interior-point approach

is obtained by taking a first-order Taylor approximation from the optimal solution (x∗, y∗, s∗)

using the above theorem. Clearly, for small enough µ, the point will be a good approximation

to (x(µ), y(µ), s(µ)). Consequently, we have the following strictly feasible point:

xB = x∗

B − µB−1N(s∗N )−1 ≈ xB(µ),

xN = µ(s∗N )−1 ≈ xN (µ),

sB = µ(x∗

B)−1 ≈ sB(µ),

sN = s∗N + µNT B−T (x∗

B)−1 ≈ sN (µ).

(21)

With y = y∗ − µB−T (x∗

B)−1 = B−T (cB − µ(x∗

B)−1) ≈ y(µ), it is easy to verify that the

resulting points (x, y, s) will be strictly feasible for small enough µ; moreover, it is easy to

check that the duality gap of (x, y, s) is µn, the same as that of the corresponding point on

the central path. Therefore, in the case of a unique nondegenerate solution to LPP (b, c), we

have a strictly feasible point to use in our analysis for the interior-point approach.

From Proposition 1, we need to compute the following matrix:

S−1AT (AD2AT )−1. (22)
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Instead, it is easier to work with its row permutation:


 S−1

B

S−1
N




 BT

NT





[

B N

]

 S−1

B

S−1
N




XB

XN




 BT

NT






−1

=


 S−1

B BT

S−1
N NT


(BS−1

B XBBT + NS−1
N XN NT

)
−1

. (23)

Next, we substitute the values from (21). In order to simplify the computations, we will fre-

quently use the following formulae. Suppose M is a square matrix with ‖M‖ ≤ 1/2 (we can

use any of several norms here, but let us suppose this is the L2-operator norm). Then the

Neumann lemma [7] implies that I +M is invertible with ‖(I +M)−1‖ ≤ 2, and it is then easy

to see that

(I + M)−1 = I − M(I + M)−1.

Next suppose that U is invertible and ‖U−1V ‖ ≤ 1/2. Then applying the result above to

M = U−1V we get U + V = U(I + U−1V ) invertible, ‖(I + U−1V )−1‖ ≤ 2, and

(U + V )−1 = U−1 − U−1V (I + U−1V )−1U−1. (24)

We will apply this result with U := BS−1
B

XBBT and V := NS−1
N

XN NT . Note that U−1 =

B−T SB(XB)−1B−1 and that U−1 and V are O(µ) (by this we mean each entry is of the

stated order).

Now we return to (23). We find that

S−1
B BT U−1 = (XB)−1B−1 = (X∗

B)−1B−1 + O(µ), (25)

and from this the top part of the matrix is (X∗

B)−1B−1 + O(µ). Since (SN )−1 = (S∗

N )−1 +

O(µ) = O(1), the bottom part of the matrix is O(µ) since U−1 and V are. Hence (23) is


 (X∗

B)−1B−1 + O(µ)

O(µ)


 .

This generates the necessary and sufficient condition

∥∥∥∥∥∥


 (X∗

B)−1B−1 + O(µ)

O(µ)


∆b

∥∥∥∥∥∥
∞

≤ 1, (26)

which is asymptotically the same as the symmetrized basis condition (16).
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Next, we consider a change in the cost vector c. From Proposition 2, we need to evaluate

the following:

S−1(I − AT (AD2AT )−1AD2). (27)

Permuting both the rows and the columns yields the following:

 S−1

B

S−1
N




I −


 BT

NT


(BXBS−1

B
BT + NXN S−1

N
NT
)
−1
[

BXBS−1
B

NXN S−1
N

]

 .

Let us examine each block of this 2 × 2 block matrix. The top left block is (SB)−1 −

(SB)−1BT (U+V )−1BXB(SB)−1. Using our expressions for (U+V )−1 and for (SB)−1BT U−1

in (24) and (25), we find that this equals

(SB)−1 − (SB)−1 + (XB)−1B−1V (I + U−1V )−1B−T , (28)

which is O(µ) since V is. Similarly, the top right block can be written as

−(SB)−1BT (U + V )−1NXN (SN )−1, which simplifies using the same two equations to

(XB)−1B−1(I − V (I + U−1V )−1U−1)NXN (SN )−1,

and this is again O(µ) because XN is.

The bottom left block is −(SN )−1NT (U + V )−1BXB(SB)−1. Once again using these

equations, we find that this simplifies to −(SN )−1NT (I − U−1V (I + U−1V )−1)B−T , which

equals (since U−1 and V are O(µ))

−(SN )−1NT B−T + O(µ2) = −(S∗

N )−1NT B−T + O(µ).

Finally, the bottom right block is (SN )−1 − (SN )−1NT (U + V )−1NXN (SN )−1. Using (24)

we can approximate this (since U−1 and XN are O(µ)) as

(SN )−1 + O(µ2) = (S∗

N )−1 + O(µ).

Our necessary and sufficient condition then reduces to
∥∥∥∥∥∥


 O(µ) O(µ)

−(S∗

N )−1NT B−T + O(µ) (S∗

N )−1 + O(µ)




∆cB

∆cN



∥∥∥∥∥∥
∞

≤ 1, (29)

and again this is asymptotically identical to the basis condition (17).

We conclude this section by generalizing our results (26) and (29). In deriving these re-

sults, we used an approximation to the point on the central path based on a first-order Taylor
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approximation from the optimal solution. In the next theorem, we show that the same asymp-

totic result can be obtained using any strictly feasible solution (x, y, s) with a small duality

gap µn := xT s, which makes our results algorithmically more applicable. In the theorem (i.e.,

in the bounds (26) and (29)) and in the rest of this section, we use O(µ) to denote a scalar,

vector, or matrix whose entries may depend on (x, y, s) but are bounded by a multiple of µ;

this multiple can depend on B and N and on (x∗, y∗, s∗), but does not depend on the strictly

feasible solution (x, y, s). This is the meaning of the term “uniformly” in the statement.

Theorem 2. Under the assumption of a unique, nondegenerate solution, the expressions (4)

and (11) yield the asymptotic results (26) and (29), respectively for all strictly feasible points

(x, y, s) uniformly in µ where µ := xT s/n. These bounds converge to the symmetrized simplex

bounds (16) and (17) as µ approaches zero.

To prove Theorem 2, we use the following lemma. In fact, the lemma holds for any feasible

point (x, y, s) and even for a point where feasibility is violated by O(µ), but the statement

below suffices for our needs.

Lemma 1. Under the assumption of a unique, nondegenerate solution, let (x, y, s) be any

strictly feasible solution with duality gap µn, let (x∗, y∗, s∗) be the optimal solution and let

the coefficient matrix A be partitioned as B and N , corresponding to the basic and nonbasic

variables, respectively. Then x and s satisfy:

xB = x∗

B + O(µ), xN = O(µ), xN > 0,

sB = O(µ), sB > 0, sN = s∗N + O(µ),

(30)

where the subscripts indicate the appropriate partitions with respect to B and N .

Proof. Note that x∗ is the unique solution to Ax̂ = b, (s∗)T x̂ ≤ 0, x̂ ≥ 0. Since x satisfies this

system with the second right-hand side changed to µn, the result for x follows from Hoffman’s

lemma [10]. A similar argument applies to the dual problem. ut

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Let (x, y, s) be any strictly feasible solution with duality gap µn. By

Lemma 1, x and s have the form (30). Let us re-examine how we obtained (26) from (22). The

only use we made of the form of (x, y, s) was that it satisfied (30). The major difference is that
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now we cannot bound S−1
B

by O(µ−1); but in our derivation, all occurrences of S−1
B

cancel,

and no bound is necessary. In particular, see (25) which shows how the S−1
B terms disappear.

Next we reconsider the derivation of (29) from (27). Once again, all we required is (30),

and the S−1
B terms vanish; see, e.g., (28), where two such terms cancel.

We conclude that our earlier proof goes through unchanged, and this establishes the the-

orem. ut

We find it remarkable that the same bounds are produced asymptotically by any strictly

feasible point, whereas it seems that solutions close to the boundary of the feasible region

would generate much worse bounds, since perturbations appear much more likely to lead to

infeasibility. However, we have shown that this is not the case. This analysis may shed some

light on how well interior-point methods work even when their iterates lie very close to the

boundary of the feasible region.

We conclude this section with a brief note on what the O(µ) terms depend on in the

asymptotic results (26) and (29). The analysis reveals that those terms are determined by

the condition number of B and the minimum components of x∗

B and s∗N , which act as a

condition measure for LPs. As B or the LP gets ill-conditioned, the convergence would require

increasingly smaller duality gaps.

3. Semidefinite Programming

We consider the SDP given in the following standard form:

(SDP ) minX C • X

Ai • X = bi, i = 1, . . . , m,

X � 0,

where all Ai ∈ SIRn×n, b ∈ IRm, C ∈ SIRn×n are given, and X ∈ SIRn×n. Here SIRn×n

denotes the space of n × n symmetric matrices, and X � 0 indicates that X is symmetric

positive semidefinite. Similarly, X � 0 will indicate that X is symmetric positive definite.

The notation P • Q represents the usual inner product Trace (P T Q) =
∑

ij
PijQij on n × n

matrices, and the Frobenius norm ‖P‖F := (P •P )1/2 is the associated norm. We assume that
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the set {Ai} is linearly independent. The dual problem associated with (SDP ) is:

(SDD) maxy,S bT y

∑m

i=1
yiAi + S = C,

S � 0,

where y ∈ IRm and S ∈ SIRn×n. Once again, we will parametrize SDP and SDD by b and C,

and the matrices Ai will be fixed. Note that LP is a special case of SDP where all the matrices

Ai and C are diagonal; then S is automatically diagonal, and any X can be replaced by its

diagonal restriction without loss of generality.

The concept of the central path can be extended to SDP. If we assume that both SDP (b,C)

and SDD(b,C) have strictly feasible solutions (i.e., with X and S positive definite), the central

path is defined as the set of solutions (X(µ), y(µ), S(µ)) for µ > 0 to the following system

together with the requirement that X and S are symmetric positive definite:

∑m

i=1
yiAi + S = C,

Ai • X = bi, for i = 1, . . . ,m,

XS = µI.

(1)

A crucial observation is that Newton’s method cannot be directly applied to (1). The reason

is that the residual map takes an iterate (X, y, S) ∈ SIRn×n × IRm × SIRn×n to a point in

IRm ×SIRn×n × IRn×n (since XS −µI is in general not symmetric), which is a space of higher

dimension. Many authors have suggested different ways of symmetrizing the third equation in

(1) so that the residual lies in SIRn×n. Todd [24] analyzes twenty different search directions

for SDP.

Next, we introduce some notation that we will use throughout this section. Script letters

will denote linear operators on symmetric matrices. In particular, A : SIRn×n → IRm is defined

by

AU := (Ai • U)m
i=1, (2)

with adjoint A∗ : IRm → SIRn×n; then

A∗y =

m∑

i=1

yiAi. (3)

We use ‖ · ‖2 to denote the L2-operator norm on matrices, and λmin(·) and λmax(·) to denote

the minimum and maximum eigenvalues of a symmetric matrix.
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The directions we will examine will be Newton steps for nonlinear systems of the form

A∗ỹ + S̃ = C,

AX̃ = b,

Θ(X̃, S̃) = Θ(X′, S′),

(4)

where Θ(X, S) is some symmetrization of XS and where X ′ and S′ are the targeted points.

(Once again, X′ and S′ typically form the point on the central path satisfying X ′S′ = µI

for some µ > 0, and µ is decreased at each iteration towards 0. We assume that Θ(X ′, S′)

is known for such points even if X ′ and S′ are not.) Therefore, the Newton direction will be

given by the solution of the following system:

A∗∆y + ∆S = Rd,

A∆X = rp,

E∆X + F∆S = REF ,

(5)

where rp = b−AX is the primal residual, Rd = C−A∗y−S is the dual residual, the operators

E = E(X, S) and F = F(X, S) are the derivatives of Θ with respect to X̃ and S̃ respectively,

evaluated at (X, S), and REF = REF (X, S) = Θ(X′, S′) − Θ(X,S). We will also use the

following notation introduced by Alizadeh, Haeberly, and Overton [3]:

(P � Q)K :=
1

2
(PKQT + QKP T ), (6)

where P,Q ∈ IRn×n and K ∈ SIRn×n, and we will regard it as an operator from SIRn×n to

SIRn×n. The adjoint operator is defined as usual by E∗U • V = U • EV for all U , V , and it is

easy to see that

Q � P = P � Q, (P � Q)∗ = P T � QT , (7)

so that P � Q is self-adjoint if P and Q are symmetric. If moreover P and Q are positive

definite, then

(P � Q)U • U = Trace (PUQU) = Trace (P 1/2UQ1/2Q1/2UP 1/2) = ‖P 1/2UQ1/2‖2
F ,

so that P � Q is also positive definite. If P is nonsingular,

(P � P )−1 = P−1 � P−1,

but there is no simple expression for (P � Q)−1 in general. Note that I � I is the identity

operator. Very occasionally, we will extend the domain of the operator P � Q to all of IRn×n;
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for possibly nonsymmetric matrices K, we define it by

(P � Q)K :=
1

2
(PKQT + QKT P T ). (8)

Assume that E is nonsingular. Then the operator AE−1FA∗ takes IRm into itself, so is

represented by an m×m matrix, called the Schur complement. (It is unnecessary to represent

the operators E and F as matrices to define or evaluate the Schur complement.) We find that

(5) has a unique solution iff the Schur complement matrix is nonsingular, and in this case the

solution can be found from

(AE−1FA∗)∆y = rp −AE−1(REF − FRd),

∆S = Rd −A∗∆y,

∆X = E−1(REF −F∆S).

(9)

In this paper, we will analyze the AHO, H..K..M, and the NT directions, as well as the general

family of Monteiro-Y. Zhang search directions [15,27,17]. The AHO direction was suggested by

Alizadeh, Haeberly and Overton [3]. The H..K..M direction was independently introduced by

Helmberg, Rendl, Vanderbei and Wolkowicz [9]; Kojima, Shindoh and Hara [14]; and Monteiro

[15]. Finally, Nesterov and Todd [19,18] introduced the NT direction.

The reason for considering the above three directions is twofold. Firstly, the H..K..M and

NT directions give a unique search direction for every symmetric positive definite X and

S and surjective operator A. The AHO direction also enjoys this property if XS + SX is

symmetric positive semidefinite [22,25] or if (X, y, S) lies in a suitable neighborhood of the

central path [16]. Moreover, the first two directions possess the property that E−1F is positive

definite, which will lead to a reduction in the duality gap for the new problem arising from

perturbations of b and C as in the LP case; moreover, E−1F is self-adjoint, so that the Schur

complement matrix is symmetric in these cases. (Note that an operator G from SIRn×n to

SIRn×n is positive definite if U • GU > 0 for every nonzero U ∈ SIRn×n; it is self-adjoint if

U • GV = V • GU for every U,V ∈ SIRn×n.) Again, the AHO direction enjoys the positive-

definiteness property (but not self-adjointness in general) if XS + SX is symmetric positive

semidefinite. Our second reason for analyzing these three directions is that they are among the

search directions used most frequently in practice. In the next subsection, we will present our

general results for the Monteiro-Zhang family of search directions for the SDP. Then we will

turn our attention to the three specific search directions stated above. Finally, we will show



20 E. Alper Yıldırım, Michael J. Todd

that for these three cases, if the SDP under consideration is derived from an LP problem, then

the bounds reduce to those we obtained above for the LP case.

Since the derivation is somewhat technical, and the results cannot be stated precisely

without some initial analysis, the reader may wish to skip Subsections 3.2–3.4 on a first reading.

3.1. General Results

We assume that there is a strictly feasible point (X, y, S) for SDP (b,C) and SDD(b, C) defined

in the obvious way. We also assume that A is a surjective operator, which follows if the Ais

are linearly independent. Clearly, the duality gap corresponding to this point will be given by

C • X − bT y = X • S > 0, since both X and S are symmetric positive definite. We further

assume that the operators E and F are in the following form:

E = S � M, F = MX � I, (10)

where M is a symmetric positive definite matrix; this defines precisely the Monteiro-Zhang

family of search directions. As is known and will also be seen shortly, this assumption holds

for the AHO, H..K..M and NT directions. From (7), the adjoint operators are given by

E∗ = S � M, F∗ = XM � I. (11)

Under the assumption (10), E is nonsingular. Moreover, E−1F is positive definite for the

H..K..M and NT directions, and this also holds for the AHO direction if XS+SX is symmetric

positive semidefinite. Note that since A is surjective, the Schur complement matrix AE−1FA∗

will then be nonsingular. Finally, V
1

2 will denote the unique symmetric positive definite square

root of the symmetric positive definite matrix V .

First, we consider a change in the right-hand side vector b.

Proposition 4. Assume that (X, y, S) is a strictly feasible point for SDP (b,C) and SDD(b,C)

and let E and F as in (5) be given by (10). Assume that AE−1FA∗ is nonsingular. Let the

right-hand side vector b be replaced by b′ := b + ∆b, where ∆b ∈ IRm, and suppose a New-

ton step for the system (4) is taken from (X, y, S) targeting the feasible point (X ′ , y′, S′) of

SDP (b′, C) and SDD(b′, C) that satisfies Θ(X ′, S′) = Θ(X,S). Then a full Newton step can
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be taken and the resulting iterate will be feasible for the new problems if, and only if, ∆b

satisfies the following inequalities:

λmin

(
X−

1

2

(
E−1FA∗

[
(AE−1FA∗)−1∆b

])
X−

1

2

)
≥ −1, (12)

λmax

(
S−

1

2

(
A∗
[
(AE−1FA∗)−1∆b

])
S−

1

2

)
≤ 1. (13)

Moreover, the duality gap of the new iterate will be at most X •S if E−1F is positive definite.

Proof. Note that by the hypothesis, we have rp = ∆b, Rd = 0 and REF = 0. Then, from (9),

the Newton step (∆X,∆y, ∆S) is given by:

∆y = (AE−1FA∗)−1∆b,

∆S = −A∗

[
(AE−1FA∗)−1∆b

]
,

∆X = E−1FA∗

[
(AE−1FA∗)−1∆b

]
.

(14)

Then, clearly, the next iterate will be feasible for the new problem if and only if X + ∆X � 0

and S + ∆S � 0. But,

X + ∆X � 0 holds iff I + X−
1

2 ∆X X−
1

2 � 0. (15)

(15) implies that all the eigenvalues of the symmetric matrix X−
1

2 ∆X X−
1

2 should be greater

than or equal to -1. With this observation and combining (14) with (15), we have exactly (12)

as a necessary and sufficient condition for the new X iterate to be feasible. Similarly,

S + ∆S � 0 holds iff I + S−
1

2 ∆S S−
1

2 � 0; (16)

combining (14) with (16), and using the same argument, we have exactly (13) as a necessary

and sufficient condition for the new S iterate to be feasible.

Next, we will show that the duality gap of the new iterate is at most the original duality

gap given by X • S, assuming E−1F is positive definite. Note that

(X + ∆X) • (S + ∆S) = X • S + X • ∆S + S • ∆X + ∆X • ∆S. (17)

By our hypothesis, E and F are given by (10). Therefore, if we use (11), it is easy to verify

that

E∗M−1 = S, F∗M−1 = X. (18)
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Then, using (18), we have:

∆X • S = ∆X • E∗M−1 = E∆X • M−1. (19)

Similarly,

∆S • X = ∆S • F∗M−1 = F∆S • M−1. (20)

However, (5) and our hypothesis imply E∆X +F∆S = 0. Combining this with (19) and (20),

we obtain

∆X • S + X • ∆S = 0. (21)

Finally,

∆X • ∆S = −∆S • E−1F∆S ≤ 0, (22)

since E−1F is positive definite. Hence, (17), (21), and (22) imply:

(X + ∆X) • (S + ∆S) ≤ X • S. (23)

This completes the proof. ut

Next, we consider perturbations of the cost matrix C.

Proposition 5. Assume that (X, y, S) is a strictly feasible point for SDP (b,C) and SDD(b,C)

and let E and F as in (5) be given by (10). Assume that AE−1FA∗ is nonsingular. Let the cost

matrix C be replaced by C ′ := C + ∆C, where ∆C ∈ SIRn×n, and suppose a Newton step for

the system (4) is taken from (X, y, S) targeting the feasible point (X ′, y′, S′) of SDP (b,C′)

and SDD(b, C′) that satisfies Θ(X′, S′) = Θ(X,S). Then a full Newton step can be taken

and the resulting iterate will be feasible for the new problems if, and only if, ∆C satisfies the

following inequalities:

λmax

(
X−

1

2

[
E−1F∆C − E−1FA∗(AE−1FA∗)−1AE−1F∆C

]
X−

1

2

)
≤ 1, (24)

λmin

(
S−

1

2

[
∆C −A∗(AE−1FA∗)−1AE−1F∆C

]
S−

1

2

)
≥ −1. (25)

Moreover, the duality gap of the new iterate will be at most X •S if E−1F is positive definite.

Proof. Once again, using the hypothesis and the notation in (9), we have rp = 0, Rd = ∆C,

and REF = 0. Then the Newton step (∆X, ∆y,∆S) is given by:

∆y = (AE−1FA∗)−1AE−1F∆C,

∆S = ∆C −A∗(AE−1FA∗)−1AE−1F∆C,

∆X = −E−1F∆C + E−1FA∗(AE−1FA∗)−1AE−1F∆C.

(26)
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Then, proceeding as in the proof of Proposition 4, we see that the next iterate will be feasible

for the new problem if and only if X +∆X � 0 and S+∆S � 0. Using a similar argument as in

the previous proof, these conditions become that the minimum eigenvalues of X−
1

2 ∆X X−
1

2

and S−
1

2 ∆S S−
1

2 be at least −1. Then, using (26), we obtain exactly the bounds (24) and

(25) we seek. Essentially the same argument as in Proposition 4 shows that, if E−1F is positive

definite, the duality gap is bounded above by X • S. This completes the proof. ut

Next, as in the LP case, we present our result for directional perturbations.

Proposition 6. Assume that (X, y, S) is a strictly feasible point for SDP (b,C) and SDD(b,C)

and let E and F as in (5) be given by (10). Assume that AE−1FA∗ is nonsingular. Let the

right-hand side vector b and the cost matrix C be replaced by b′ := b + βdb, C′ := C + βDC ,

respectively, where β ∈ IR, db ∈ IRm, and DC ∈ SIRn×n. Suppose a Newton step for the

system (4) is taken from (X, y, S) targeting the feasible point (X ′, y′, S′) of SDP (b′, C′) and

SDD(b′, C′) that satisfies Θ(X′, S′) = Θ(X, S). Then a full Newton step can be taken and the

resulting iterate will be feasible for the new problems if, and only if, β satisfies the following:

|β| ≤ min{a, b}, (27)

where a is the reciprocal of

λmax

(
X−

1

2

(
E−1F

[
DC −A∗(AE−1FA∗)−1AE−1FDC −A∗(AE−1FA∗)−1db

])
X−

1

2

)

(or +∞ if this quantity is negative) and b that of

−λmin

(
S−

1

2

[
DC −A∗(AE−1FA∗)−1AE−1FDC −A∗(AE−1FA∗)−1db

]
S−

1

2

)

(again, +∞ if this quantity is negative). Moreover, the duality gap of the new iterate will be

at most X • S if E−1F is positive definite.

Proof. As in Propositions 4 and 5, the result follows simply by observing that rp = βdb, RD =

βDC and RXS = 0 in (9), and imposing the conditions

λmin(S−
1

2 ∆S S−
1

2 ) ≥ −1 and λmin(X−
1

2 ∆X X−
1

2 ) ≥ −1. ut

Before analyzing the three search directions, we would like to discuss the concept of scale-

invariance. Given SDP (b,C) and SDD(b, C), if we apply a change of variable in SDP (b,C)
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such that X is replaced by X̂ = PXP T , where P is a nonsingular matrix in IRn×n, SDP (b,C)

transforms to

(ŜDP ) min
X̂

Ĉ • X̂

ÂX̂ = b,

X̂ � 0,

where Ĉ := P−T CP−1, and Â and Â∗ are defined from {Âi := P−T AiP−1} as in (2) and

(3). The dual of this problem is

(ŜDD) max
ŷ,Ŝ

bT ŷ

Â∗ŷ + Ŝ = Ĉ,

Ŝ � 0,

which is exactly the transformation of SDD(b,C) with (y, S) replaced by (ŷ := y, Ŝ :=

P−T SP−1). If (X, y, S) is a strictly feasible point for SDP (b,C) and SDD(b,C), then (X̂, ŷ, Ŝ) =

(PXP T , y, P−T SP−1) is a strictly feasible point for ŜDP and ŜDD.

Now, we are in a position to discuss P-scale-invariance and Q-scale-invariance introduced

by Todd [24]. A method for defining a search direction for semidefinite programming is called

P-scale-invariant if the direction at any iterate is the same as would result from scaling the

problem and iterate by an arbitrary nonsingular matrix P , using the method to determine the

direction for the scaled problem, and then scaling back. It is called Q-scale-invariant if this is

true when P is restricted to the set of orthogonal matrices. Todd shows that the H..K..M and

NT directions are P -scale invariant, whereas all three directions we will analyze are Q-scale

invariant (see Propositions 6.6 and 6.7 in [24]).

Furthermore, the Schur complement matrix given by AE−1FA∗ is invariant under scaling,

i.e., AE−1FA∗ = ÂÊ−1F̂Â∗. To see this, consider the ith column of the unscaled Schur

complement matrix:

u = (AE−1FA∗)ei = AE−1FAi, (28)

where ei is the ith unit vector. Let K = E−1FAi. Then we have EK = FAi. Using the fact

that E = S �M and F = MX � I for our directions where M is a symmetric positive definite

matrix (10), we have:

1

2
(SKM + MKS) =

1

2
(MXAi + AiXM). (29)
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Then u in (28) is given by

u =




A1 • K

...

Am • K


 . (30)

As will be seen in the following analysis, the matrix M scales like S, i.e., M̂ = P−T MP−1,

for the H..K..M and NT directions. Then Ê = Ŝ � M̂ and F̂ = M̂X̂ � I. Therefore, the ith

column of the scaled Schur complement matrix is given by:

u′ = (ÂÊ−1F̂Â∗)ei = ÂÊ−1F̂Âi. (31)

Let K̂ = Ê−1F̂Âi. Then ÊK̂ = F̂Âi. Using the definitions of Ê and F̂ , and substituting the

values for the scaled matrices, we have:

1

2
(ŜK̂M̂ + M̂K̂Ŝ) =

1

2
(M̂X̂Âi + ÂiX̂M̂) or

1

2
(P−T SP−1K̂P−T MP−1 + P−T MP−1K̂P−T SP−1) =

1

2
(P−T MP−1PXP T P−T AiP

−1 + P−T AiP
−1PXP T P−T MP−1). (32)

Multiplying (32) by P T from the left and P from the right, we get:

1

2
(SP−1K̂P−T M + MP−1K̂P−T S) =

1

2
(MXAi + AiXM). (33)

Comparing (29) with (33), we have the same symmetric matrix on the right-hand side. Since

S and M are symmetric positive definite, both systems have the same unique solution, so that

K̂ = PKP T . Hence,

u′ =




Â1 • K̂

..

.

Âm • K̂


 =




Trace (P−T A1P−1PKP T )

..

.

Trace (P−T A1P−1PKP T )


 =




A1 • K

..

.

Am • K


 . (34)

From (30) and (34), we conclude that the Schur complement matrix is invariant under scaling.

With this observation, either the original iterate or the scaled one can be used to compute this

matrix. We will make use of this observation in our analysis.

For the AHO direction, M = I, thus M̂ = M = I = P−T P−1 iff P = P−T . This is the

reason why, unlike the other directions, the AHO direction only enjoys Q-scale invariance.
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3.2. The AHO Direction

The AHO direction [3] is the Newton step for the following symmetrization of the third equation

in (4):

Θ(X̃, S̃) :=
1

2
(X̃S̃ + S̃X̃) =

1

2
(X′S′ + S′X′). (35)

It corresponds to taking

E = S � I, F = X � I, REF =
1

2
(X′S′ + S′X′) −

1

2
(XS + SX). (36)

Therefore, M = I for the AHO direction. Recall from Section 3.1 that we need the operator

E−1 for our analysis. For the AHO direction, E is given by (36), and E−1 does not have a nice

closed form expression. However, using the Q-scale invariance property, assuming that (X, y, S)

is our current strictly feasible point for SDP (b,C) and SDD(b,C), we let S = QDQT be the

eigenvalue decomposition of S, where D is a diagonal matrix with strictly positive eigenvalues

of S, and Q is an orthogonal matrix. Then, using P = Q−1 as a scaling matrix, we have:

X̂ = Q−1XQ−T = QT XQ,

Ŝ = QT SQ = D,

Âi = QT AiQ.

(37)

With this transformation, Ê = Ŝ � I = D � I. Therefore, Ê−1 has a closed form expression:

U := Ê−1R is given by

ÊU = R iff DU + UD = 2R iff Uij =
2Rij

di + dj
, (38)

where Uij denotes the (i, j) entry of the matrix U , and di the ith diagonal element of D.

Now we compute the Schur complement matrix for the current iterate (X, y, S) using the

scaled iterate. Let N = ÂÊ−1F̂Â∗. Then the ith column of N is given by:

Nei = (ÂÊ−1F̂ Â∗)ei = ÂÊ−1F̂ Âi = ÂÊ−1
[

1
2
(ÂiX̂ + X̂Âi)

]
= ÂK̂i, (39)

where

(K̂i)kl =
(ÂiX̂ + X̂Âi)kl

dk + dl
(40)
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from (38). Let us also write Ki for QK̂iQT . Therefore,

Nei =




Â1 • K̂i

...

Âm • K̂i


 =




A1 • Ki

...

Am • Ki


 . (41)

(41) implies that the Schur complement matrix N is not symmetric in general (see also Propo-

sition 6.4 in [24]).

As mentioned previously, the AHO direction does not satisfy the well-defined direction

property, that is, the AHO direction may fail to exist at a strictly feasible iterate. Therefore,

we assume that (X, S) is such that the Schur complement AE−1FA∗ is nonsingular in this

subsection.

First, we consider a change in the right-hand side vector b. If we use the scaled iterate

(X̂, ŷ, Ŝ) and the fact that ∆̂b = ∆b, Proposition 4 implies that the following bounds on ∆b

are necessary and sufficient:

λmin

(
X̂−

1

2

[
Ê−1F̂Â∗(N−1∆b)

]
X̂−

1

2

)
≥ −1,

λmax

(
Ŝ−

1

2

[
Â∗(N−1∆b)

]
Ŝ−

1

2

)
≤ 1.

(42)

The first inequality in (42) yields the following:

λmin

(
X̂−

1

2

(
Ê−1

[
1

2

m∑

i=1

(N−1∆b)i

(
ÂiX̂ + X̂Âi

)
])

X̂−
1

2

)
=

λmin

(
m∑

i=1

(N−1∆b)i

(
X̂−

1

2 K̂iX̂
−

1

2

))
≥ −1, (43)

where K̂i is as in (40) and (N−1∆b)i denotes the ith component of the vector N−1∆b. In

this bound, we can also replace X̂−
1

2 K̂iX̂
−

1

2 by X−
1

2 KiX
−

1

2 , since the two are related by

an orthogonal similarity. Similarly, the second inequality in (42) yields the following:

λmax

(
D−

1

2

[
m∑

i=1

(N−1∆b)iÂi

]
D−

1

2

)
=

λmax

(
m∑

i=1

(N−1∆b)i

(
D−

1

2 ÂiD
−

1

2

))
≤ 1. (44)

Again, D−
1

2 ÂiD
−

1

2 can be replaced by S−
1

2 AiS
−

1

2 if desired. Summarizing, we have
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Proposition 7. Let (X, y, S) be a strictly feasible point for SDP (b,C) and SDD(b,C) such

that AE−1FA∗ is nonsingular. Assume that the right-hand side vector b is replaced by b′ := b+

∆b, where ∆b ∈ IRm. Suppose a Newton step is taken from (X, y, S) targeting the feasible point

(X′, y′, S′) of SDP (b′, C) and SDD(b′, C) that satisfies (X ′S′ + S′X′)/2 = (XS + SX)/2.

Then, if we use the AHO direction, a full Newton step can be taken and the resulting iterate

will be feasible for the new problems iff ∆b satisfies (43) and (44). Moreover, the duality gap

of the new iterate will be at most X • S if E−1F is positive definite.

ut

Next, we consider a change in the cost matrix C. If we use the scaled iterate (X̂, ŷ, Ŝ)

again and the fact that ∆̂C = QT ∆CQ, Proposition 5 implies that the following bounds on

∆̂C are necessary and sufficient:

λmax

(
X̂−

1

2

[
Ê−1F̂∆̂C − Ê−1F̂Â∗N−1ÂÊ−1F̂∆̂C

]
X̂−

1

2

)
≤ 1,

λmin

(
Ŝ−

1

2

[
∆̂C − Â∗N−1ÂÊ−1F̂∆̂C

]
Ŝ−

1

2

)
≥ −1.

(45)

Let L̂ = Ê−1F̂∆̂C = Ê−1

(
1
2
(∆̂CX̂ + X̂∆̂C)

)
. Then, using (38), we get L̂ij =

(∆̂CX̂+X̂∆̂C)ij

di+dj
.

Hence, the first inequality in (45) simplifies to

λmax

(
X̂−

1

2

(
L̂ − Ê−1F̂Â∗(N−1v)

)
X̂−

1

2

)
=

λmax

(
X̂−

1

2

(
L̂ − Ê−1

[
1

2

m∑

i=1

(N−1v)i

(
ÂiX̂ + X̂Âi

)
])

X̂−
1

2

)
=

λmax

(
X̂−

1

2

(
L̂ −

m∑

i=1

(N−1v)iK̂i

)
X̂−

1

2

)
≤ 1, (46)

where K̂i is again given by (40) and

v =




L̂ • Â1

...

L̂ • Âm


 .

Similarly, the second inequality in (45) yields:

λmin

(
D−

1

2

[
∆̂C − Â∗

(
(N−1)ÂÊ−1F̂∆̂C

)]
D−

1

2

)
=

λmin

(
D−

1

2

[
∆̂C −

m∑

i=1

(N−1v)iÂi

]
D−

1

2

)
≥ −1. (47)
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(As before, we can express these bounds in terms of unscaled quantities using Ki as above and

L := Q L̂ QT .) Hence, we obtain

Proposition 8. Let (X, y, S) be a strictly feasible point for SDP (b,C) and SDD(b,C) such

that AE−1FA∗ is nonsingular. Assume that the cost matrix C is replaced by C ′ := C + ∆C,

where ∆C ∈ SIRn×n. Suppose a Newton step is taken from (X, y, S) targeting the feasible point

(X′, y′, S′) of SDP (b,C′) and SDD(b,C′) that satisfies (X′S′ + S′X′)/2 = (XS + SX)/2.

Then, if we use the AHO direction, a full Newton step can be taken and the resulting iterate

will be feasible for the new problems iff ∆̂C = QT ∆CQ satisfies (46) and (47). Moreover, the

duality gap of the new iterate will be at most X • S if E−1F is positive definite.

ut

3.3. The H..K..M Direction

The H..K..M direction [9,14,15] is the Newton step for the following symmetrization of the

third equation in (4):

Θ(X̃, S̃) :=
1

2
(SX̃S̃ + S̃X̃S) =

1

2
(SX′S′ + S′X′S). (48)

Here, the operators E and F are given by

E = S � S, F = SX � I, REF =
1

2
(SX′S′ + S′X′S) − SXS. (49)

Therefore, M = S for the H..K..M direction. Alternatively, so that E does not need to be

inverted, we have:

E = I � I, F = X � S−1, REF =
1

2
(X′S′S−1 + S−1S′X′) − X. (50)

Note that the H..K..M direction is P -scale invariant. Therefore, we apply the scaling transfor-

mation using P = S
1

2 . Then we have the following scaled matrices:

X̂ = S
1

2 XS
1

2 ,

Ŝ = I,

Âi = S−
1

2 AiS
−

1

2 ,

Ĉ = S−
1

2 CS−
1

2 .

(51)
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We also have Ê = E = I � I and F̂ = X̂ � I.

Now we compute the Schur complement matrix for the current iterate (X, y, S) using the

scaled iterate. Let N = ÂÊ−1F̂Â∗. Then the ith column of N is given by:

Nei = (ÂÊ−1F̂Â∗)ei = ÂÊ−1F̂Âi = Â

[
1

2
(ÂiX̂ + X̂Âi)

]
. (52)

Therefore,

Nei =
1

2




Â1 • (ÂiX̂ + X̂Âi)

...

Âm • (ÂiX̂ + X̂Âi)


 =




Trace (Â1X̂Âi)

...

Trace (ÂmX̂Âi)


 . (53)

In the above derivation, we used the obvious facts that Trace (A) = Trace (AT ) and Trace (PK) =

Trace (KP ), for any square matrices A, P , and K. (53) implies that the Schur complement

matrix N is always symmetric (see also Proposition 6.4 in [24]).

The H..K..M direction is a well-defined direction, i.e., it exists and is unique for every

symmetric positive definite X and S and every surjective A. Moreover, the operator E−1F is

self-adjoint and positive definite (see Proposition 6.3 in [24]).

First, we consider a change in the right-hand side vector b. If we use the scaled iterate

(X̂, ŷ, Ŝ) and the fact that ∆̂b = ∆b, Proposition 4 implies that the following bounds on ∆b

are necessary and sufficient:

λmin

(
X̂−

1

2

[
Ê−1F̂Â∗(N−1∆b)

]
X̂−

1

2

)
≥ −1,

λmax

(
Ŝ−

1

2

[
Â∗(N−1∆b)

]
Ŝ−

1

2

)
≤ 1.

(54)

The first inequality in (54) yields the following:

λmin

(
X̂−

1

2

[
1

2

m∑

i=1

(N−1∆b)i

(
ÂiX̂ + X̂Âi

)
]

X̂−
1

2

)
=

λmin

(
1

2

m∑

i=1

(N−1∆b)i

[
X̂−

1

2 ÂiX̂
1

2 + X̂
1

2 ÂiX̂
−

1

2

])
≥ −1. (55)

Similarly, the second inequality in (54) yields the following:

λmax

(
m∑

i=1

(N−1∆b)iÂi

)
≤ 1. (56)

Note that (56) bounds the maximum eigenvalue of E :=
∑m

i=1
(N−1∆b)iÂi, while (55) bounds

the minimum eigenvalue of (U−1EU + UEU−1)/2 for U := X̂
1

2 . By Lemma 3.3 of Monteiro
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[15], the former eigenvalue is always bounded by the maximum eigenvalue of (U−1EU +

UEU−1)/2. Thus, we have

Proposition 9. Let (X, y, S) be a strictly feasible point for SDP (b,C) and SDD(b,C). As-

sume that the right-hand side vector b is replaced by b′ := b + ∆b, where ∆b ∈ IRm and a

Newton step is taken from (X, y, S) targeting the feasible point (X ′, y′, S′) of SDP (b′, C) and

SDD(b′, C) that satisfies 1
2
(SX′S′ + S′X′S) = XS. Then, if we use the H..K..M direction,

a full Newton step can be taken and the resulting iterate will be feasible for the new problems

iff ∆b satisfies (55) and (56). A sufficient condition is that
∥∥∥∥∥

1

2

m∑

i=1

(N−1∆b)i

[
X̂−

1

2 ÂiX̂
1

2 + X̂
1

2 ÂiX̂
−

1

2

]∥∥∥∥∥
2

≤ 1.

Moreover, the duality gap of the new iterate will be at most X • S.

ut

(It is easy to see that the sufficient condition in the theorem is in fact necessary and sufficient

for both perturbations ∆b and −∆b to yield feasible full Newton steps.)

Next, we consider a change in the cost matrix C. If we use the scaled iterate (X̂, ŷ, Ŝ)

again and the fact that ∆̂C = S−
1

2 ∆CS−
1

2 , Proposition 5 implies that the following bounds

on ∆̂C are necessary and sufficient:

λmax

(
X̂−

1

2

[
Ê−1F̂∆̂C − Ê−1F̂Â∗N−1ÂÊ−1F̂∆̂C

]
X̂−

1

2

)
≤ 1,

λmin

(
Ŝ−

1

2

[
∆̂C − Â∗N−1ÂÊ−1F̂∆̂C

]
Ŝ−

1

2

)
≥ −1.

(57)

The first inequality in (57) yields the following:

λmax

(
X̂−

1

2

[
1

2
(∆̂CX̂ + X̂∆̂C) − F̂Â∗

(
N−1Â

[
1

2
(∆̂CX̂ + X̂∆̂C)

])]
X̂−

1

2

)
=

λmax

(
X̂−

1

2

[
1

2
(∆̂CX̂ + X̂∆̂C) −

1

2

m∑

i=1

(N−1v)i(ÂiX̂ + X̂Âi)

]
X̂−

1

2

)
=

λmax

(
1

2

(
X̂−

1

2 ∆̂CX̂
1

2 + X̂
1

2 ∆̂CX̂−
1

2

)
−

1

2

m∑

i=1

(N−1v)i

(
X̂−

1

2 ÂiX̂
1

2 + X̂
1

2 ÂiX̂
−

1

2

))
≤ 1,

(58)

where vi = Âi • ∆̂CX̂ .

Similarly, the second inequality in (57) yields:

λmin

(
∆̂C − Â∗

(
N−1ÂF̂∆̂C

))
= λmin

(
∆̂C −

m∑

i=1

(N−1v)iÂi

)
≥ −1, (59)
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where v is the same as above. Note that (59) bounds the minimum eigenvalue of E := ∆̂C −

∑m

i=1
(N−1v)iÂi, while (58) bounds the maximum eigenvalue of (U−1EU + UEU−1)/2 for

U := X̂
1

2 . Again, the results of Monteiro [15] show that the former is at most the minimum

eigenvalue of (U−1EU + UEU−1)/2. Thus, we have shown

Proposition 10. Let (X, y, S) be a strictly feasible point for SDP (b,C) and SDD(b, C).

Assume that the cost matrix C is replaced by C ′ := C + ∆C, where ∆C ∈ SIRn×n and

a Newton step is taken from (X, y, S) targeting the feasible point (X ′, y′, S′) of SDP (b,C′)

and SDD(b, C′) that satisfies X′S′ = XS. Then, if we use the H..K..M direction, a full

Newton step can be taken and the resulting iterate will be feasible for the new problems iff

∆̂C = S−
1

2 ∆CS−
1

2 satisfies (58) and (59). A sufficient condition is that

∥∥∥∥∥
1

2

(
X̂−

1

2 ∆̂CX̂
1

2 + X̂
1

2 ∆̂CX̂−
1

2

)
−

1

2

m∑

i=1

(N−1v)i

(
X̂−

1

2 ÂiX̂
1

2 + X̂
1

2 ÂiX̂
−

1

2

)∥∥∥∥∥
2

≤ 1.

Moreover, the duality gap of the new iterate will be at most X • S.

ut

3.4. The NT Direction

The NT direction [19,18] is the Newton step for the following symmetrization of the third

equation in (4):

Θ(X̃, S̃) :=
1

2
(W−1X̃S̃ + S̃X̃W−1) =

1

2
(W−1X′S′ + S′X′W−1), (60)

where W is the scaling matrix defined by W = X
1

2 (X
1

2 SX
1

2 )−
1

2 X
1

2 so that WSW = X.

Here, the operators E and F are given by

E = S � W−1, F = W−1X � I,

REF =
1

2

(
(W−1X′S′ + S′X′W−1) − (W−1XS + SXW−1)

)
. (61)

Therefore, M = W−1 for the NT direction. It has been shown [25] that if the targeted point

satisfies X′S′ = νI for some ν > 0, then the NT direction can alternatively be defined in the

following convenient way, in which case E does not need to be inverted:

E = I � I, F = W � W, REF = νS−1 − X. (62)
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We claim that the representation (62) can be generalized to the case when X ′ and S′ are

arbitrary matrices if REF is appropriately chosen. First of all, note that (61) implies that the

third equation of (5) is given by

(S∆X + ∆SX)W−1 + W−1(∆XS + X∆S) = W−1(X′S′ − XS) + (S′X′ − SX)W−1. (63)

Postmultiplying (63) by W , we obtain

S∆X + ∆SX + W−1(∆XS + X∆S)W = W−1(X′S′ − XS)W + S′X′ − SX. (64)

Now we will show that there exists a unique symmetric matrix REF such that the following

system

∆X + W∆SW = REF , (65)

which is related to (62) is equivalent to (64) for arbitrary X ′ and S′. Proceeding as in [25], we

see that (65) is equivalent to each of the following two equations:

W−1∆XSW + ∆SX = W−1REF SW, (66)

S∆X + SW∆SW = SREF . (67)

The first equality follows from premultiplying (65) by W−1 and postmultiplying by W−1X,

together with SW = W−1X, and the second equality is a consequence of premultiplying (65)

by S. Adding up (66) and (67), we obtain the same expression on the left hand side of (64).

Hence, it follows that REF should satisfy

W−1REF SW + SREF = W−1(X′S′ − XS)W + S′X′ − SX. (68)

Postmultiplying (68) by W−1, we obtain

W−1REF S + SREF W−1 = W−1(X′S′ − XS) + (S′X′ − SX)W−1. (69)

Using the notations in (6) and (8), (69) is equivalent to

(W−1 � S)REF = (W−1 � I)[X′S′ − XS]. (70)

On the left, W−1�S is viewed as an operator from SIRn×n to itself, while on the right W−1�I

takes IRn×n to SIRn×n. However, note that W−1 � S is positive definite, and therefore (70)

has a unique solution REF . This shows that the solution to (65) will also satisfy (63) if REF is
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given by (70). However, the solutions to the two Newton systems (5) where the third equations

are given by (63) and (65) respectively exist and are unique, and hence must agree. Therefore,

we conclude that an alternative representation of the NT direction is given by

E = I � I, F = W � W, REF , (71)

where REF is defined as the solution to (70). Observe that computation of REF involves

solving a Lyapunov system. However, for our purposes, the right hand side of (70) is exactly

equal to Θ(X′, S′) − Θ(X, S), and in our case this is 0; therefore REF = 0.

Note that the NT direction is also P -scale invariant. Therefore, we apply the scaling

transformation using P = W−
1

2 . Then we have the following scaled matrices:

X̂ = W−
1

2 XW−
1

2 ,

Ŝ = W
1

2 SW
1

2 ,

Âi = W
1

2 AiW
1

2 ,

Ĉ = W
1

2 CW
1

2 .

(72)

Hence X̂ = Ŝ and so Ŵ = I. Thus we have Ê = F̂ = I � I.

Now we compute the Schur complement matrix for the current iterate (X, y, S) using the

scaled iterate. Let N = ÂÊ−1F̂Â∗. Then the ith column of N is given by:

Nei = (ÂÊ−1F̂Â∗)ei = ÂÂi

=




Â1 • Âi

...

Âm • Âi


 .

(73)

Thus the Schur complement matrix N is always symmetric (see also Proposition 6.4 in [24]).

The NT direction is a well-defined direction, i.e., it exists and is unique for every symmetric

positive definite X and S and every surjective A. Moreover, the operator E−1F is self-adjoint

and positive definite (see Proposition 6.3 in [24]).

First we consider a change in the right-hand side vector b. If we use the scaled iterate

(X̂, ŷ, Ŝ) and the fact that ∆̂b = ∆b, Proposition 4 implies that the following bounds on ∆b

are necessary and sufficient:

λmin

(
X̂−

1

2

[
Ê−1F̂Â∗(N−1∆b)

]
X̂−

1

2

)
≥ −1,

λmax

(
Ŝ−

1

2

[
Â∗(N−1∆b)

]
Ŝ−

1

2

)
≤ 1.

(74)
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The first inequality in (74) yields the following:

λmin

(
m∑

i=1

(N−1∆b)iX̂
−

1

2 ÂiX̂
−

1

2

)
≥ −1. (75)

Similarly, since X̂ = Ŝ, the second inequality in (74) requires that the maximum eigenvalue

of the same matrix be at most 1. Therefore, unlike the situation for the other directions,

both bounds relate to the same matrix, and our necessary and sufficient condition simplifies,

becoming similar to the sufficient condition involving the 2-norm for the H..K..M direction or

the necessary and sufficient condition involving the L∞-norm of a vector for LP. We state this

nice result about the NT direction as:

Proposition 11. Let (X, y, S) be a strictly feasible point for SDP (b,C) and SDD(b, C).

Assume that the right-hand side vector b is replaced by b′ := b+∆b, where ∆b ∈ IRm. Suppose

a Newton step is taken from (X, y, S) targeting the feasible point (X ′, y′, S′) of SDP (b′, C)

and SDD(b′, C) that satisfies Θ(X ′, S′) = Θ(X,S). Then, if we use the NT direction, a full

Newton step can be taken and the resulting iterate will be feasible for the new problems iff ∆b

satisfies ∥∥∥∥∥
m∑

i=1

(N−1∆b)iX̂
−

1

2 ÂiX̂
−

1

2

∥∥∥∥∥
2

≤ 1.

Moreover, the duality gap of the new iterate will be at most X • S.

ut

Next, we consider a change in the cost matrix C. If we use the scaled iterate (X̂, ŷ, Ŝ)

again and the fact that ∆̂C = W
1

2 ∆CW
1

2 , Proposition 5 implies that the following bounds

on ∆̂C are necessary and sufficient:

λmax

(
X̂−

1

2

[
Ê−1F̂∆̂C − Ê−1F̂Â∗N−1ÂÊ−1F̂∆̂C

]
X̂−

1

2

)
≤ 1,

λmin

(
Ŝ−

1

2

[
∆̂C − Â∗N−1ÂÊ−1F̂∆̂C

]
Ŝ−

1

2

)
≥ −1.

(76)

The first inequality in (76) yields the following:

λmax

(
X̂−

1

2

[
∆̂C −

m∑

i=1

(N−1v)iÂi

]
X̂−

1

2

)
=

λmax

(
X̂−

1

2 ∆̂CX̂−
1

2 −

m∑

i=1

(N−1v)iX̂
−

1

2 ÂiX̂
−

1

2

)
≤ 1, (77)

where vi = Âi • ∆̂C.
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Similarly, the second inequality in (76) requires that the minimum eigenvalue of the same

matrix be at most −1. Once again, the two bounds involve the same matrix, and so can be

written concisely as a bound on its 2-norm. We state this as:

Proposition 12. Let (X, y, S) be a strictly feasible point for SDP (b,C) and SDD(b, C).

Assume that the cost matrix C is replaced by C ′ := C + ∆C, where ∆C ∈ SIRn×n. Suppose

that a Newton step is taken from (X, y, S) targeting the feasible point (X ′, y′, S′) of SDP (b,C′)

and SDD(b,C′) that satisfies Θ(X′, S′) = Θ(X,S). Then, if we use the NT direction, a full

Newton step can be taken and the resulting iterate will be feasible for the new problems iff

∆̂C = W
1

2 ∆CW
1

2 satisfies

∥∥∥∥∥X̂−
1

2

[
∆̂C −

m∑

i=1

(N−1v)iÂi

]
X̂−

1

2

∥∥∥∥∥
2

≤ 1.

Moreover, the duality gap of the new iterate will be at most X • S.

ut

3.5. Comparison with LP

As mentioned before, LP is a special case of SDP where all the matrices Ai, C, and hence

X and S, are restricted to be diagonal. If the LP is given in the standard form, then Ai

is the diagonal matrix corresponding to the ith row of the coefficient matrix A in LP, C is

the diagonal matrix whose components are given by the cost vector c, and X and S are the

diagonal matrices similarly obtained from x and s, respectively.

In this section, given an LP, we analyze the relationship between the LP bounds (4) and

(11) and their counterparts resulting from the three directions for the corresponding SDP. The

analysis will not refer to any of the three directions specifically, but we will only assume that

the operators E and F are given by (10) and that the matrix M is also diagonal whenever X

and S are diagonal. This property holds for all three directions as well as the so-called dual

H..K..M direction [14,15], which uses M := X−1.

Since the matrices defining the operators E and F are diagonal and since diagonal matrices

commute, some of the computations in the previous sections can be significantly simplified. In

particular, if Σ is diagonal, then E Σ = SMΣ, F Σ = MXΣ. Therefore, E−1F Σ = S−1XΣ.
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By this observation, the ith column of the Schur complement matrix N = AE−1FA∗ is then

given by

Nei = AE−1FAi = AS−1XAi =⇒

Nei =




Trace (A1S−1XAi)

...

Trace (AmS−1XAi)


 .

(78)

However, (78) implies that N = AD2AT , where D2 = XS−1, which is exactly the Schur

complement matrix in LP.

Let us first focus on perturbations of b. The bounds (12) and (13) arising from Proposition

4 can be simplified using the fact that all operations yield diagonal matrices and that diagonal

matrices commute. In particular, (12) is equivalent to

λmin

(
X−

1

2

(
E−1FA∗

[
(AE−1FA∗)−1∆b

])
X−

1

2

)
=

λmin

(
S−1A∗

[
(AE−1FA∗)−1∆b

])
≥ −1,

(79)

which can be combined with (13) to yield the following norm bound:

∥∥S−1A∗

[
(AE−1FA∗)−1∆b

]∥∥
2

=

∥∥∑m

i=1

(
(AD2AT )−1∆b

)
i
AiS

−1
∥∥

2
=

∥∥S−1AT (AD2AT )−1∆b
∥∥
∞

≤ 1,

(80)

where the last equality follows from the fact that the L2 operator norm of a diagonal matrix

is the same as the L∞ norm of the vector of its diagonal entries. Therefore, the SDP bounds

for ∆b reduce exactly to the bound given in Proposition 1.

We now consider perturbations of C. In a similar manner, the bounds (24) and (25) arising

from Proposition 5 can be combined into a single norm bound given by

∥∥S−1
(
∆C −A∗(AE−1FA∗)−1AE−1F∆C

)∥∥
2
≤ 1. (81)

Using our previous observations, AE−1F∆C = AD2∆c, where ∆c is the vector obtained from

the diagonal entries of ∆C. Therefore, (81) can be rewritten as

∥∥S−1∆C −
∑m

i=1

(
(AD2AT )−1AD2∆c

)
i
AiS−1

∥∥
2

=

∥∥S−1(I − AT (AD2AT )−1AD2)∆c
∥∥
∞

≤ 1,

(82)

which again is the same as the bound given in Proposition 2.

Therefore, we have proved the following proposition:
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Proposition 13. Given an LP, the interior-point bounds for all three directions for the cor-

responding SDP are exactly the same as those for the original LP for perturbations of b and

c.

ut

4. Discussion

In this paper, we have analyzed perturbations of the right-hand side and the cost parameters

in LP and SDP and presented tight bounds on the perturbations so that the result of a single

interior-point iteration would yield feasible solutions to the perturbed problem and its dual.

For the LP case where the solution is unique and nondegenerate, we showed that the bounds

arising from the interior-point method asymptotically coincide with those from the optimal

basis after symmetrizing with respect to the origin. Moreover, as long as the perturbations

are within the bounds, one interior-point iteration at a strictly feasible point for the original

problem and its dual results in a feasible point for the perturbed problem and its dual with a

duality gap no greater than that of the original iterates.

Under the assumption of a unique and nondegenerate solution in LP, the optimal parti-

tion coincides with the basis partition. This no longer holds under degeneracy, however, since

the optimal basis is not unique. Therefore, the bounds obtained from the simplex approach

depend on the basis being used and a direct analysis as in the nondegenerate case is not very

meaningful. In order to overcome this shortcoming of the basis approach, an optimal partition

perspective has been developed [2,12] and shown to yield more accurate information on sensi-

tivity. Consequently, in the presence of degeneracy, the optimal partition-based bounds seem

to be a natural basis for comparison with the interior-point bounds. However, the analysis

is considerably more complex and uses different tools: it will be the subject of a subsequent

paper. However, it is worthwhile to note that the bounds resulting from our interior-point

approach still apply regardless of degeneracy as long as both primal and dual LPs have strictly

feasible solutions.

For the SDP case, the analysis gets harder and the conditions on the perturbations for

feasibility to be regained in one step more complicated to state, involving eigenvalue bounds

on two different matrices, except for the simpler NT case. However, all three of our search
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directions yield the same bounds (and the same as given by the LP interior-point approach)

in the case that an LP is cast as an SDP. Since an optimal solution for an SDP does not

typically resemble a basic feasible solution, a comparison as in the LP case is not possible.

However, in [6], Goldfarb and Scheinberg extend the optimal partition approach to sensitivity

analysis in SDP. The resulting bounds can therefore be used for comparison with the interior-

point bounds. Furthermore, from the theoretical results, it is not clear as to how the bounds

resulting from the three search directions compare with one another in practice. We intend to

study such questions in future research.
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