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General Comments 

This is not a psychology book. It is a straightout statistics book, written by two professors at 

Miami University, Oxford, Ohio. It deals with the statistical analysis of data from well-known, 

well-designed, and well-executed experiments. Its first five chapters deal largely with linear 

model theory (supplemented by a matrix algebra appendix) and its last thirteen chapters deal 

with analyzing data, mostly from experiments. A multitude of well-known standard results is 

presented, along with quite extensive numerical details for many good examples. 
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Assessing intended readership is not easy because the book contains so much 

information, from elementary to advanced: matrix algebra, linear model theory (but with no 

statistical appendix), many numerical examples, and SAS GLM computing, both commands and 

data output, the latter in excessively many-decimal numbers. These are no easier to follow, for 

the beginning student, than the algebra they are illustrating. At least a few thoughtfully planned 

hypothetical examples with easy-to-read and easy-to-calculate numbers would be more useful. 

In the literature of mathematical statistics the convention is to use capital letters for 

random variables and lower case for realizations thereof. This clashes with the custom in matrix 

algebra of capitals for matrices and lower case for vectors (usually both in bold face). To its 

credit, this book tries to use both these notations. For example, equation (2.I.4), on page I 0 is 

y=X~+ ~: , where y is a vector (of random variables), but X is a matrix (of known constants), and 

~ and ~: are vectors. Then on page 19 there is y=Xb+e, described as the sample form of (2.I.4), 

withy being a data vector and b = (X'Xt I X' yin (2.3.5). This is fine, but page 66 has 

p = (X'XtX'Y and exercise 4-14 on page 97 has Yar(p). But, and it is a big "but", a "hat" over 

• a symbol representing an estimator (or estimate) is so firmly entrenched in the literature that its 



• use in p where the Y therein is not data is hard to accept. It is, of course, very correct, because 

then pis the estimator and b is the estimate, as is made clear on page 66. However, when the 

notation gets extended on page 115 to Var(.e'p) = cr2 t(x'Xt f. and to (5.3.4) which has 

Var( .e'p) = &2 f.'(X'X t f. it is harder to keep track. Then atop page 116, comes "the point 

estimate ofthe random variable Var(.t"p) is s2.e'(X'Xt f. where s2 is the observed value ofthe 

random variable &2 ".This is too much! The authors' attempt at rigorously distinguishing 

between random variables and their realizations is highly commendable, but it becomes 

cumbersome. Most writings of linear models avoid this maze by having y do double duty, both 

for data, the realization of a random vector, and for that random vector itself. Similarly 
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• p = (X'Xt X' y and &2 each represent either a random variable or a realization thereof, as 

• 

determined by context. This clears the air notationally, and seldom leads to confusion. This 

notation is used here, in this review. 

A starting point for discussing a linear statistical model is usually an equation such as 

y = Xf3 + t of (2.1.4) on page 10. It is referred to there as a linear model. That is not so. It is a 

model equation. A model is a model equation plus description of its elements. Describing y as a 

random variable, as on page 9, and t as a random error term as on page 11 tells us nothing about 

what t represents. What sort of error? A satisfying answer is to use E (.) for expectation over 

repeated sampling and to assume 

E(y) = xp [1] 
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• and define 

t = y- E (y) [2] 

Then t is the amount by which y differs from its expected value, its mean. [I] and [2] have three 

important consequences. First, they lead to model equation y = xp + E of (2.1.4). Second, [2] 

shows what we are defining E to represent. Third, [2] provides a reason for E(E) = 0, without it 

being an unexplained assumption as in (a) of ( 4.1.1) on page 63. The basic assumption is [ 1 ]; and 

[2] is a definition. 

Actually, it is probably more correct to "attribute" to E(y) the right-hand side of [1] than 

to "assume" it. A dictionary says "assuming" is "taking for granted", whereas to "attribute" is to 

"consider as belonging" which seems appropriate here. Likewise in the equation ( 4.1.1) on page 

• 63 we attribute (rather than assume) cr2 and 0 to be the forms of Var ( £. ) and cov ( £. , £ . ) 
l l J 

respectively. 

Another advantage of [2] is for describing least squares estimation of p. We want to find 

p as the value of p which minimizes the sum of squares of the elements of E, namely E't . Since 

p is an unknown constant we can minimize t'E with respect to p only by temporarily treating p 

as a mathematical variable. Doing this gives the minimizing value as (x'Xt X' y which we call 

p, but denoted by bin (3.2.2) on page 44. 

Technical Matters 

• Least squares estimation of p for y = xp + E leads to normal equations with a solution 

p = (X'Xt X' y for (x'Xt being a generalized inverse of X'X. Because there are many values 
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• of (X'Xt when, as is usual, X has less than full column rank, there are advantages to using p0 

for (X'Xt X' y to distinguish it from denoting an estimate of p as p, which p0 is not. 

Although for many of the book's examples (involving as they do, balanced data), (x'Xt is not 

difficult to derive, an easier procedure is to apply side conditions directly to the normal 

equations. Example 3.4.1 on page 52 illustrates this. But what is not said is that this 

simplification does not necessarily apply easily for unbalanced data. The minimal discussion of 

such data (pages 441-7) summarizes their difficulties quite well, except for some errors of 

omission such as the following. The expected value three lines above (13.7.1) should include 

-
p + (ap). , providing n .. > 0 V j. And the second line below the table on page 447 requires 

· I· IJ 

• "the specific" to precede "interaction". And at the bottom of that page the necessity for the data 

to be connected needs to be said. 

The book's endpoint is well-known analyses of variance for designed experiments. 

Derivations are based on linear models procedures with little or no use of the basic identities 

that, for example 

(y .. -y )=(y. -y )+(y .-y )+(y .. -y. -y .+y) [3] 
IJ . . I · . . . J . . IJ I · . J .. 

and, for balanced data, the same identity holds for sums of squares of each parenthesized tem1 in 

[3]. That identity is behind many an analysis of variance table. Instead of that, the authors use 

what they call (page 127) the "principle of conditional error" (a phrase new to me, found in 

neither the table of contents nor the index). It uses a reduced model, which is the full model with 

y = xp + E amended by assuming a hypothesis LP = 0 is true. With SSe and SSe* being error • 
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• (residual) sums of squares for fitting the full and reduced models, respectively, the book 

repeatedly uses (what in this review is called) 11: 

11 =SSe* - SSe [4] 

For many experiments a familiar summation formula is given (or derived) for 11, e.g. 

pages 196-7,323 and 393. But sometimes (e.g., pages 365-6) using computer software to 

calculate SSe* and SSe is suggested, without giving any specific formulae. This occurs with 

incomplete block designs (IBDs) of chapter 11. As described there (page 363) these are 

indistinguishable from 2-factor unbalanced data with 0 or 1 observation per cell. Hence no 

summation formulae are available, as indicated at pages 446-7. But the page 363 illustration of 

an IBD is, without saying so, a special case, a balanced incomplete block design (BIBD), the 

most usual form ofiBD, and it does have familiar summation formulae (page 378). 

• The book professes to use linear models (and hence matrix) procedures. Unfortunately 

they are not used to the fullest extent available. For example, 11 of [ 4] has a general matrix 

expression on page 129. With some straightforward matrix manipulation one can readily show, 

when the reduced model is simply the full model with some factors removed, that 11 is a sum of 

squares, with a quadratic form in y having an idempotent matrix [e.g., (82) of Searle (1987; p. 

264)]. These are very important properties of 11, yet they are barely alluded to, on page 213, 

along with suggesting that their derivation can be found in the succeeding exercises: but I found 

no such exercise. And theorem 5.1.5 provides another opportunity for the advantage of a succinct 

matrix treatment over the tedious scalar proof of page I 09. 

For computing needs, this book relies entirely on SAS GLM software. It mentions no 

other. Yet it also gives no information whatever as to where SAS comes from. All that SAS gets 

• is nine words in the preface; it merits more than that. 



• In illustrating SAS GLM (to an excess in my opinion) only the sums of squares labeled 

Types I and III are explained (pages 152-162) in terms of regression models. But describing 

Type III as "principle of conditional error sums of squares" (page 162) is not correct for 
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unbalanced data for linear models having interactions, especially for some-cells-empty data. And 

the ignored Type II is very useful for unbalanced data, even for Latin squares. 

A problem with a book having extensive use of any computing package is that even long-

lasting software are constantly being up-graded. Hence a book's descriptions can often be out of 

date before they are published. 

Finally, for computing purposes, it is quite unnecessary to present a reparameterization of 

models solely for using regression software (e.g., sections 7.6, 10.6, 11.3, 12.4, and 13.5, 

comprising some 30 pages, nearly 5% of the book). This is not needed in today's computing 

• environment: whoever would have regression software without also having GLM software of 

some sort? 

Final Remarks 

The early part of the book deals primarily with theoretical underpinnings. The resulting 

methodology is then applied in pretty much a uniform manner to designs such as the completely 

random design, randomized complete blocks, balanced incomplete blocks, Latin squares, and 

extensions thereof, complete with the standard forms of analyses of variance, F-tests, contrasts, 

standard errors, confidence intervals, multiple comparisons and so on. The technical parts of this 

are all good. And the many exercises, both numeric and theoretic, are excellent. But I do find 

there to be too many words, unnecessary verboseness. For example, on page 282, the first 

paragraph, of 53 words, is easily written in 20: "These procedures utilize the t-distribution; • Bonferroni's (section 8.4) controls overall Type I error, whereas Fisher's controls per 
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comparison error". And chapter 7, on the one-way classification, has 68 pages! This is 10% of 

the book, which is excessive for what is quite the easiest model to understand. Overall, there is 

considerable lack of the succinctness that so often brings clarity to, and which is a hallmark of, 

good mathematical writing. 

A distinguished mathematician allegedly once said "a mathematics book without at least 

one typographical error on every page is a sign ofwasted effort!" For its size (680 pages), this 

book has remarkably few typos, most of which, being obvious, will already be known to the 

authors. A couple of less obvious ones are: (i) on page 166 the second denominator in p 2 should 

be plp1: it is currently p0p1, which equals zero.(ii) In the last line of exercise 6-14, on page 

181, the a 1 should be a 2 . 

On two occasions (hopefully no more) technical terms occur which have not earlier been 

defined. They are (I) "Type I error" (on page 221) which is not even in the index; and (ii) 

"power", on page 219, which is defined on page 251, but with the serious omission of"only 

when H0 is true" which needs to come after "probability of rejection". 

Some errors of omission are unfortunate: theorem 3.2.3 requires X to be real. For page 

104, proof or a reference is needed that the sum of n independent x~ variables is a x; variable 

(and chi-square is not in the index!). Errors in variables need mentioning on page 64. The X that 

is called a design matrix on page 190 is now more generally called a model matrix. And on page 

523, in the middle of item 3 "there is little interest in estimating the ~ .s [no apostrophe needed, 
J 

~. docs not possess anything] since these are random ... " is plain wrong. There is considerable 
J 



• literature on predicting random effects. See, for example, Searle, Casella and McCulloch ( 1992, 

chapter 7), and McCulloch and Searle (200 1, chapter 9). 

Publicity on the book's back cover suggests its availability as a reference book. It 

certainly qualifies as such in terms of its wealth of good, standard material. But for success as a 

reference it has serious deficiencies. First, the running heads contain only chapter titles; and 
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without section or sub-section titles and numbers, the running heads are useless. Sub-sections are 

also not in the table of contents. Second, the index lacks many important entries; e.g., hypothesis, 

tests of hypotheses, Types I and II errors, SAS, and on and on. All of this makes it difficult to 

locate a topic of interest. 

Finally, the book's list, and use, of references is woefully poor, with many supporting 

books and papers notably absent. Moreover, references in the text seldom have page numbers 

• (e.g., page 221). Are readers expected to read a whole book or paper to find what they want? 

And in some cases (e.g., Fisher and Bonferroni, at pages 282-3) not even dates are given; and 

these two are not in the reference list (pages 661-2). And what is de Morgan's law (page 270)? 

Also, the headings ofTables B.3, B.5, and B.7 (are 8 pages of this really needed?) are 

incomplete. 

In summary then, I could not use the book as a reference despite its containing, for 

analyzing experimental data, a wealth of useful information, little ofwhich is new and most of 

which is readily available in a raft of established texts; e.g., Kempthome (1952), Federer ( 1955) 

and Winer ( 1971 ). And I would not try to teach from the book because, for that purpose, it is too 

verbose and repetitive . 

• 
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