REPEATED SELECTION WITH MULIIVARIATE NORMAL DISTRIBUTION

Ying Y. Wang

BU-23I-M
December, 1966

ABSTRACT

This is a multivariate extension of a k-cycle selection model with normal distribution, as discussed by Robson (BU-171-M). In the selection problem, we assume that the p-dimensional trait vector X is observed with errors in the $i^{\text {th }}$ cycle as $\underline{Y}_{i}=\underline{X}+\underline{E}_{i}$, where \underline{X} and ${\underset{E}{i}}^{i}, 1=1,2, \cdots, k$, are all multivariate p-dimensional normal vectors and independent of each other. Selection at $i^{\text {th }}$ stage retains the upper P_{i} fraction for the next stage. We shall consider two kinds of selections, componentwise selection and selection using a linear function on Y_{i} 。

Department of Plant Breeding and Biometry, Cornell University, Ithaca, New York.

Ming Y. Wang

This is a multivariate extension of a k-cycle selection model with normal distribution, as discussed by Robson (BU-171-M). In the selection problem, we assume that the p-dimensional trait vector X is observed with errors in the $i^{\text {th }}$ cycle as $\underline{Y}_{i}=\underline{X}+\underline{E}_{i}$, where \underline{X} and $\underline{E}_{i}, i=1,2, \cdots, k$, are all multivariate p-dimensional normal vectors and independent of each other. Selection at $i^{\text {th }}$ stage retains the upper P_{i} fraction for the next stage. We shall consider two kinds of selections, componentwise selection and selection using a linear function on \underline{Y}_{1}. Let

$$
\begin{aligned}
& \underline{X} \sim \mathbb{N}(\underline{\xi}, \sharp), \quad p \times I, \quad \underline{\psi}=\left(\sigma_{i j}\right) \\
& \underline{Y}_{i}=\underline{X}+\underline{E}_{i}, \quad \underline{E}_{i} \sim \mathbb{N}\left(\underline{0}, \Omega_{i}\right), \quad \Omega_{i}=\left(\omega_{i j k}\right) \\
& \underline{Y}_{i} \sim \mathbb{N}\left(\underline{\xi}, \sharp+\Omega_{i}\right), \quad i=1,2, \cdots, k \\
& \operatorname{Cov}\left(\underline{X}, \underline{E}_{i}\right)=0, \quad \operatorname{Cov}\left(\underline{E}_{i}, \underline{E}_{j}^{\prime}\right)=0 ; \quad i \neq j \cdot
\end{aligned}
$$

The \underline{Y}_{i} 's are selected $\underline{Y}_{i} \geq \underline{y}_{i}$, componentwise, with

$$
\begin{aligned}
& P_{1}=\operatorname{Pr}\left\{\underline{y}_{1} \geq \underline{y}_{1}\right\} \\
& P_{1} P_{2}=\operatorname{Pr}\left\{\underline{y}_{1} \geq \underline{y}_{1}, \underline{y}_{2} \geq \underline{y}_{2}\right\} \\
& \vdots \\
& P_{1} P_{2} \cdots P_{k}=\operatorname{Pr}\left\{\underline{Y}_{1} \geq \underline{y}_{1}, \cdots \underline{y}_{k} \geq \underline{y}_{k}\right\} .
\end{aligned}
$$

Let

$$
\begin{array}{ll}
W_{i}=\left(X_{i}-\xi_{i}\right) / \sqrt{\sigma_{i i}} & , \quad i=1,2, \cdots, p \\
Z_{j}=\left(Y_{\ell i}-\xi_{i}\right) / \sqrt{\sigma_{i 1}+\omega_{\ell i i}}, \quad j=\ell p+1, \quad j=1,2, \cdots, k p
\end{array}
$$

so

$$
\begin{aligned}
& \mathrm{p} \times 1 \\
& \mathrm{kp} \times 1
\end{aligned}\left[\begin{array}{l}
\underline{W} \\
\underline{Z}
\end{array}\right] \sim \mathbb{N}\left[\begin{array}{ll}
\underline{O} & \mathrm{R}
\end{array}\right]
$$

where

$$
R=\left[\begin{array}{cc}
R_{1} & R_{3}^{\prime} \\
R_{3} & R_{2}
\end{array}\right]=\text { correlation matrix of } \underline{X} \text { and }\left[\begin{array}{c}
\underline{Y}_{1} \\
\vdots \\
\underline{Y}_{k}
\end{array}\right] \text {. }
$$

Let

$$
\begin{aligned}
\underline{z}=\left(z_{j}\right) \quad z_{j}=\left(y_{\ell i}-\xi_{i}\right) / \sqrt{\sigma_{i i}+\omega_{\ell i i}}, \quad & j=\ell p+i \\
& j=1,2, \cdots, \mathrm{kp}
\end{aligned}
$$

the conditional distribution of \underline{W} given $\underline{Z}=\underline{z}$ is

$$
\underline{W} \mid \underline{z} \sim N\left(R_{3}^{\prime} R_{2}^{-1} \underline{z}, \quad R_{I}-R_{3}^{\prime} R_{2}^{-1} R_{3}\right)
$$

The moment generating function for \underline{W} given $\underline{Z} \geq \underline{z}$ is
$M \quad(\underline{t})=E\left(e^{t^{\prime}} \underline{W} \mid \underline{z} \geq \underline{z}\right)=E \quad\left(E\left(e^{t^{\prime}}-\underline{Z} \mid \underline{z}=\underline{U}\right)\right)$
$\underline{W} \mid \underline{Z} \geq \underline{z}$ $\underline{U} \geq \underline{Z}$

$$
=\begin{aligned}
& E\left(\epsilon^{\left.\underline{U} \mathbb{Z}_{Z}^{\prime} R_{B}^{\prime} R_{B}^{-1} \underline{U}+\frac{1}{2} \underline{t}^{\prime}\left(R_{1}-R_{3}^{\prime} R_{a}^{-1} R_{3}\right) t\right)} .\right.
\end{aligned}
$$

$$
=e^{\frac{1}{2} t^{\prime} R_{1} t} \frac{1}{\left(\left|R_{2}\right| 2 \pi\right)^{\frac{k p}{2}} P_{1} \cdots P_{k}} \int_{\underline{U} Z_{z}} e^{-\frac{1}{2} U^{\prime} R_{2}^{-1} U-\frac{1}{2} t^{\prime} R_{3}^{\prime} R_{2}^{-1} R_{3} t+t^{\prime} R_{3}^{\prime} R_{2}^{-1} \underline{U} \underline{U}}
$$

$$
=M_{W}(\underline{t}) \frac{1}{\left(\left|R_{2}\right| 2 \pi\right)^{\frac{k p}{2}} P_{1} \cdots \cdot P_{k}} \quad \int_{U Z_{Z-R_{3} t}} e^{-\frac{1}{2} U^{\prime} R_{2}^{-1} \underline{U}} d \underline{U} .
$$

So the conditional mean of W has $i^{\text {th }}$ component

$$
\begin{aligned}
E\left(W_{1} \mid \underline{Z} \geq \underline{z}\right) & =\left.\frac{\partial}{\partial t_{i}} M_{\underline{W} \mid \underline{z} \geq \underline{\underline{z}}}(\underline{t})\right|_{\underline{t}=\underline{0}} \\
& =\sum_{j=1}^{k p} \operatorname{Pr}\left\{U_{\ell} z_{z}, \forall \ell \neq j \mid \underline{U} z_{\underline{z}}, U_{j}=z_{j}\right\} R_{3 j 1} e^{-z_{j}^{2} / 2} .
\end{aligned}
$$

Let ${ }_{j} \underline{U}$ denote the \underline{U} vector with U_{j} deleted, then given $U_{j}=z_{j}, j-\mathbb{U}$ is distribute as

$$
\underset{j-}{U} \sim N\left(R_{2 j \cdot} z_{j}, R_{2 \cdot .}-R_{2 j \cdot} R_{2 j \cdot}^{\prime}\right)
$$

where R_{2}. is the matrix R_{2} with $j^{t h}$ row and column deleted,

$$
R_{2 j} \text {. is the } j^{\text {th }} \text { column of } R_{2} \text { without the } j^{t h} \text { element. }
$$

The matrix $\underset{k p \times p}{R_{3}}$ has $j i^{t h}$ element $R_{3 j i}, j=n p+\ell$

$$
\begin{aligned}
R_{3 j 1} & =E\left(\frac{X_{\ell}-\xi_{\ell}}{\sqrt{\sigma_{l \ell}+\omega_{n \ell l}}}\right)\left(\frac{x_{i}-\xi_{i}}{\sqrt{\sigma_{1 i}}}\right) \\
& =\frac{\sigma_{i \ell}}{\sqrt{\sigma_{i i}} \sqrt{\sigma_{l \ell}+\omega_{n \ell l}}}
\end{aligned}
$$

Let ${ }_{j} \underline{V}={ }_{j} \underline{U}-R_{2 j} \cdot z_{j} \sim N\left(0, R_{j}^{*}\right), \quad R_{j}^{*}=R_{2 \ldots}-R_{2 j} \cdot R_{2 j}^{\prime}$. so finally

$$
E\left(W_{i} \mid \underline{z} \geq \underline{z}\right)=\sum_{j=1}^{k p} \frac{e^{-z_{j}^{2} / 2}}{P_{1} \cdots P_{k}\left(2 \pi\left|R_{j}\right|\right)^{\frac{1}{2}}} \operatorname{Pr}\left\{_{j \underline{V}} z_{\left.j \underline{z}-R_{2 j \cdot} z_{j}\right\}}\right.
$$

where $\quad j=n p+\ell$

$$
\left|R_{2}\right|=\left|R_{2 j j}\right| \cdot\left|R_{2 \ldots}-R_{2 j} \cdot R_{2 j}^{\prime}\right|=\left|R_{j}^{*}\right|
$$

Alternatively, if the selection uses linear functions on X_{i} and chooses

$$
\underline{a}_{i}^{\prime} Y_{i} \geq y_{i}, \quad i=1,2, \cdots, k
$$

with

$$
P_{1}=\operatorname{Pr}\left\{\underline{a}_{1}^{\prime} Y_{1} \geq y_{1}\right\}, \quad P_{1} \cdots P_{k}=\operatorname{Pr}\left\{\underline{a}_{i}^{\prime} Y_{i} \geq y_{i}, \quad i=1,2, \cdots, k\right\}
$$

then

$$
\text { Let } \begin{aligned}
W_{i} & =\left(x_{i}-\xi_{i}\right) / \sqrt{\sigma_{i i}} ; i=1,2, \cdots, p \\
z_{j} & =\left(v_{j}-\underline{a}_{j}^{\prime} \underline{j}\right) / \sqrt{\underline{a}_{j}^{\prime}\left(4+\Omega_{j}\right) \underline{a}_{j}} ; j=1,2, \cdots, k,
\end{aligned}
$$

and
$p \times I$
$k \times I$$\quad\left[\begin{array}{l}\underline{W} \\ \underline{Z}\end{array}\right] \sim N\left[\begin{array}{ll}\underline{0}, & R\end{array}\right]$
where B is the correlation matrix of \underline{X} and \underline{V}.

Similar to before

$$
\begin{aligned}
& E\left(e^{t^{\prime} \underline{W}} \mid \underline{\underline{z}} \geq \underline{z}\right)=M_{\underline{W}}(\underline{t}) \frac{1}{P_{1} \cdots P_{k}\left(\left|R_{2}\right| 2 \pi\right)^{\frac{k}{2}}} \int_{\underline{U} \geq_{\underline{z}-R_{3}} \underline{t}} e^{-\frac{1}{2} U^{\prime} R_{2}^{-1} \underline{U}} d \underline{U}
\end{aligned}
$$

$$
\begin{aligned}
& e^{U} \sim \mathbb{N}\left(\underline{0}, R_{l}^{*}\right) \\
& R_{\ell}^{*}=R_{2 \ldots}-R_{2} \cdot \ell^{R_{2 \ell}} . \\
& { }^{\omega}{ }_{\ell l}=\underline{a}_{l}^{\prime}\left(\psi+\Omega_{\ell}\right) \underline{a}_{\ell} \\
& { }^{z}{ }_{\ell}=\left(y_{l}-\underline{a}_{l}^{\prime} \underline{\underline{E}}\right) / \sqrt{\underline{\underline{z}}_{\ell}^{\prime}\left(4+\Omega_{\ell}\right) \underline{\underline{a}}_{\ell}} \cdot
\end{aligned}
$$

where

In actual computation for the multidimensional normal integral

$$
\operatorname{Pr}\{\underline{v} \geq \underline{c}\}
$$

where \underline{V} is a pk-l or kl dimensional vector and

$$
\underline{V} \sim N(\underline{O}, \quad R)
$$

most of the work for dimension higher than four have been restricted to special cases of the correlation matrix R. A general discussion of this topic and bibliography given by Gupta (AMS, 34, pp. 792-838) will be very helpful.

