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ABSTRACT 
The objective of this research was to detect and recognize the plant stress caused by disease in the 
field conditions by combining hyperspectral reflection information between 450 and 900nm and 
fluorescence imaging. The results can be used to develop a tractor mounted cost-effective optical 
device for site-specific pesticide application in order to reduce and optimize pesticide use. The work 
reported here used yellow rust (Puccinia striiformis) disease of winter wheat as a model system. In the 
field hyperspectral reflection images of healthy and infected plants were taken by an imaging 
spectrograph mounted at spray boom height. Leaf recognition and spectral normalization procedures 
were used to account for differences in canopy architecture and spectral illumination were used. A 
model, based on quadratic discrimination, was built, using a selected group of wavebands to 
differentiate diseased from healthy plants. The model could discriminate diseased from healthy crop 
with an error of about 10% using measurements from only three wavebands. Multispectral 
fluorescence images were taken on the same plants using UV-blue excitation. Through comparison of 
the 550 and 690 nm fluorescence images, the detection of disease was clearly possible.  Fraction of 
pixels in one image, recognized as diseased, was set as final fluorescence disease variable and called 
the lesion index (LI). The lesion index was added to the pool of normalized selected reflection 
wavebands. This pool of observations was used in a quadratic discrimination model. The combined 
model improved disease discrimination compared to either the spectral model or fluorescent model 
and had a classification error of between 5 and 6 %. 

The results suggest that there is a potential for developing detection systems based on multisensor 
measurements that can be used in precision disease control systems for use in arable crops. 
 
Keywords. spectrograph, imaging fluorescence, hyperspectral imaging, disease detection, sensor 
fusion, quadratic discrimination, yellow rust 
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1. INTRODUCTION 

The most widely used practice in pest and disease control in arable crops is still to spray pesticides 
uniformly over fields at different times during the cultivation cycle.  However, most disease 
infestations are not evenly distributed across the field but occur in patches and during the early stages 
of an epidemic large areas of the field are free of disease. Excessive use of pesticides increases costs 
and can increase pesticide residue levels on agricultural products. Because pesticides are among the 
highest components in the production costs of field crops and have been identified as a major 
contributor to ground water contamination, there is increasing pressure to reduce their use. This can 
be done by targeting pesticides only on those places in the field where they are needed. Therefore a 
simple and cost-effective optical device, based on the measurement of canopy reflectance in several 
wavebands, would allow disease patches to be identified and thus controlled. 

Yellow rust (Puccinia striiformis f. sp. tritici) is an important disease of wheat and was chosen as a 
model for studying under the OPTIDIS project (EU project, QLK5-1999-01280). The pathogen is 
wind-dispersed and can rapidly form disease patches, especially in the early stages of an epidemic.  
Severe epidemics of Yellow rust can reduce yield by up to 7 tons per hectare (Anonymous, 1999). 
The disease is controlled by a combination of the use of highly resistant cultivars, seed treatment by 
fungicide, and foliar applications of fungicides (triazole, morpholine and strobilurin).  

The pathogen has many asexual reproductive cycles, producing yellow coloured uredospores on 
leaves during the winter and spring. These spores are wind dispersed in dry weather but require high 
humidity or wetness films for infection. There is some evidence of rain-splashed dispersal in yellow 
rust and this plus the tendency of spores to clump together in humid weather so that they are not 
blown very far can lead to clearly visible yellow patches of disease (Sache, 2000), caused by chlorotic 
(initial symptoms) and yellow-rusted plants. 

Spectral reflectance characteristics of leaves have been shown to be highly correlated with their 
chemical composition. Carter and Knapp (2001) showed the importance of chlorophyll concentration 
on the spectral signature of leaves. The spectral reflectance around 700nm was found to be highly 
correlated with total leaf chlorophyll content. They also investigated the effects of different stress 
factors including disease. The optical response to stress near 700nm, as well as corresponding changes 
in reflectance that occur in the green-yellow spectrum, was explained by the general tendency of 
stress to reduce leaf chlorophyll concentration. The reflection of incident radiation from the leaf 
interior of stressed plants increases such that stressed plants appear brighter in the visible region of the 
spectrum than healthy plants (Cibula and Carter, 1992). Riedell and Blackmer (1999) found that leaf 
reflectance in the 625-635nm and the 680-695nm wavebands together with the NPCI (Normalized 
total Pigment Chlorophyll a ratio Index) was significantly correlated with the total chlorophyll 
concentrations in both green bug and Russian wheat aphid-damaged plants. The NPCI is calculated as 
in equation 1: 

680 430 680 430( ) /( )NPCI R R R R= − +          (1) 
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where Ri represents the reflectance at i nm. Polischuk et al. (1997) used spectral reflectance 
measurements to make an early diagnosis of symptoms of tomato mosaic tobamovirus infection in 
Nicotiana debneyi plants at different growth stages.  Reduction in chlorophyll content in the leaves 
was detected by reflectance measurements less than 10 days after inoculation even although it was 
three weeks before significant visible differences between healthy and infected plants were noted.  
Lorenzen and Jensen (1989) obtained similar results for barley leaves infected with cereal powdery 
mildew.  Sasaki et al. (1998) distinguished diseased cucumber leaves from healthy leaves at an early 
infection stage, based upon the spectral reflectance of the leaves in the 500, 600 and 650nm 
wavebands. They obtained a classification error of about 10%. 

However, most of the above investigations were done in the laboratory and were not related to the 
field conditions. Boochs et al. (1990) suggested that high-resolution reflectance spectra, especially in 
the red edge area (reflectance between 680-760nm), would be useful for the identification of small 
differences in the chemical and morphological status of the plants in the field. It was also suggested 
that field-based studies could provide as much information as laboratory investigations, if plant 
health, growing conditions and plant development were strictly controlled. Borel and Gerstl (1994) 
pointed out that canopy architecture strongly influences illuminated areas for different sun angles, and 
thus reflectance. This can affect the spectral signature of plants in the field. On the contrary, at a given 
sun angle, but varying viewing angles, canopy architecture slightly affects spectral signatures and 
may preserves leaf chemistry signatures.  

A small percent of ultraviolet and visible light absorbed by plant's pigments is re-emitted at longer 
wavelengths as fluorescence in blue, green, red and far-red bands. As this process is in competition 
with photosynthesis, the efficiency of the photochemistry of the plant, i.e. its physiological status, can 
be probed by means of chlorophyll fluorescence sensing, allowing to distinguish normal from stressed 
condition in intact plant material (Cerovic et al., 1999; McMurtrey et al., 2001).  

Fluorescence imaging system (FIS) permits to acquire detailed information on local spatial variability 
of fluorescence pattern across the sample and have been applied in laboratory conditions at 
microscopic, leaf and plant scale to investigate a wide range of stress symptoms. Daley (1995) studied 
the effects of tobacco mosaic virus at sub-millimeter scale on tobacco leaves fluorescence, finding 
high intensity spots in correspondence of the regions where the infection occurred. Peterson and 
Aylor (1995) found a similar pattern on bean leaves infected by bean rust, stressing that significant 
chlorophyll fluorescence changes preceded visual symptoms by 3-5 days. Scholes and Rolfe (1996) 
considered the effects of crown rust on fluorescence of oat leaves, finding again a higher emission by 
infected regions 3-4 days before the appearance of chlorotic lesions. 

More recently multispectral fluorescence imaging systems (MFIS) have been introduced, allowing to 
acquire images of chlorophyll fluorescence in its different spectral bands, with the aim of 
investigating the wavelength dependence on the emission according to the stress perturbations. 
Laboratory researches conducted by Heisel et al. (1996), Lang et al. (1996) and Lichtenthaler et al. 
(1996) showed that leaves affected by water deficiency and nitrogen deficiency are characterized by a 
higher blue/red ratio than control leaves; on the opposite, heat stress was found to increase the 
emission in the red band. Bushmann and Lichtenthaler (1998) reported a dotted pattern of high 
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intensity spots in blue and green bands with a slight decrease in red and far-red for fluorescence 
emission of bean leaves affected by mite attack. Kim et al. (2000) found significant differences in 
red/far-red ratio in leaves treated with herbicide as well as in leaves exposed to elevated ozone 
concentrations.  

Hence, the results reported by researchers show that changes in chlorophyll fluorescence, even if they 
do not seem to provide a precise and unambiguous information about the stress factor, precede visible 
indications of stress status of plants, and interesting to investigate further properties in case of disease 
attacks. Anyway, reflectance disturbance of environmental light is the most severe constraint for field 
applications of FIS. Johansson et al. (1996) showed the feasibility of remote fluorescence imaging in 
outdoor conditions by developing a MFIS, based on a pulsed laser synchronized with a gated 
intensified sensor, able to exclude background illumination and allowing to obtain field images by 
integrating the acquisition over one hundred laser shots.  

The uniqueness of normalized reflectance spectra is discussed by Price (1994). Techniques of spectral 
unmixing cannot always unambiguously differentiate between different species (or different health 
status of a given plant species), especially when some spectral signatures are linear combinations of 
so-called end-points (identification features of other species or plant status). One method to overcome 
this problem is to make maximum use of variables (e.g. spectral reflectance bands) and less correlated 
features such as a combination of spectral and fluorescence imaging results. An optimized set-up can 
also contribute to better measurements (Borel and Gerstl, 1994). The fusion of different measurement 
approaches, should then provide clearer identification patterns and thus less confusion. 

Pre-mapping of diseases and stresses could also be achieved using air-borne systems. Spatial 
resolutions down to a few meters are possible from satellites and to below 1 m from aircraft 
(Blakeman et al, 2000). Current commercial satellite sensing is probably not suitable for early disease 
detection (even if the wavelengths at which data are collected were suitable) because of limitations in 
spatial resolution. At best, satellite images can be useful by highlighting relatively large areas of 
disease or other stresses in a crop which can then be checked by the farmer. In addition, revisit time 
and variability in cloud cover could mean that even this simple information may not be available 
when required. Aircraft or helicopter mounted systems do not have these constraints and could be 
used when required. However, data acquisition equipment would likely have to be faster, more 
sophisticated and more expensive than for terrestrial vehicle-mounted systems. 

Several techniques are available to discriminate spectral signals. Moshou et al. (2001) proposed a 
neural network architecture based on the SOM (Self-Organizing Map) to detect weeds using line 
spectrography. They successfully compared this architecture with other neural classifiers and classical 
statistical discrimination based on Minimum Distance Classifier and the Fisher discriminant. Inputs 
for the neural networks were selected by correlellogram analysis. It is possible to detect nitrogen 
deficiency by using spectral reflection and neural networks as in (Moshou et al., 2003). Also it is 
possible to detect water deficiency by using fusion of spectral reflection and fluorescence kinetics as 
in (Moshou et al, 2002). 
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2. MATERIALS and METHODS 

2.1 Fields, Plants and Material 

2.1.1. Inoculation and growth 
 
Measurements of yellow rust development in winter wheat were taken in 6 plots of 10 x 9 m in size 
and surrounded by 3 m wide guard rows, located on IACR-Rothamsted’s experimental farm. All 
cultivation were according to local commercial practice (Table 1).  Fungicides applied to control other 
diseases, non-target, when needed. 
 
 
 

Table 1. Cultivation detail for the yellow rust experiment (2001 harvest) 

 
Cultivar Madrigal 
Seed rate (No/m2) 350 
Sowing date 6 Oct. 00 
Row spacing (cm) 12.5 
Previous crop Lupins 
Basal Fungicide against 
non-target fungi 

‘Unix’ (cyprodinil) 

 

Yellow rust plots were inoculated by putting a 10 cm pot containing 6 infected wheat plants (cv. 
Madrigal), growing in a peat-based compost, at the center of the plot. The potted plants were 
inoculated at the second leaf stage (GS 12) by dusting them with uredospores of P. striiformis, mixed 
with 10 parts talcum powder. After inoculation the plants were covered with transparent plastic 
cloches to maintain a high humidity and were kept at 10°C.  The cloches were removed after two days 
and the plants were transferred to a glasshouse (14-20°C). The inoculation was repeated 7 days after 
the first one to ensure that all plants would be well colonized. Chlorosis was visible 15 days after the 
first inoculation (sporulation after about two weeks). The pots were planted in the field on 14 March 
2001, approximately three weeks after the first inoculation.  

2.1.2. Spectral equipment and data acquisition 

The spectral equipment used during the experiments consisted of a digital visual monochromatic 
camera on which a spectrograph was mounted. The spectrograph measured a line on the canopy and 
projected a spectrum (between 460-900 nm) for every single area of 0.65mm wide on this line onto 
the camera, creating a spectral image, with spectral and spatial axes. The length of the measured line 
was 0.5 m and its width was 4 mm. Light was directed through a 13 mm 1:1.5 C-mount objective into 
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the spectrograph.  An irradiation reference of 50% reflectance (Spectralon SRS 50-010, 38.1 mm 
diameter, constant 50% reflectance over the 300-2500 nm band) was placed at a constant vertical 
distance of 70 cm from the objective.  It had a flat surface and was positioned horizontally.  The 
equipment was fixed on a buggy, and it was possible to maintain a constant distance between 
objectives and canopy (Figure 1). The use of the buggy at this stage facilitated the assessment of the 
feasibility of optical detection of diseases. The use of a buggy is not practical for permanent use. The 
final disease detection system is planned to be tractor mounted (Fig. 1). 
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Figure 1. ( Left): The buggy on which the spectrograph was mounted. (Right): a spectral image as it 

was stored. 

 

Measurements were done in plots of winter wheat (cv Madrigal) under ambient conditions. The 
objectives were positioned at spray boom height (approx. 1m).  After data acquisition, the images 
were loaded as 8-bit matrices with a spectral and a spatial dimension. 

2.1.3. Fluorescence imaging: working principle 

The multispectral fluorescence imaging system (MFSI) was based on a 10 bits CCD camera with a 
digital output and a resolution of 1300×1000 pixels approximately, linked with a four bands optical 
beam splitter. This optical device allowed to split the current field of view of the camera in four 
identical sub-images, each one independently filtered with pass-band filters (450, 550, 690 and 
740nm, all with a FWHM=10nm). Chlorophyll fluorescence was excited by a continuous emitting 
xenon arc lamp equipped with a IR cut-off filter and a low pass filter with a threshold at 420nm, 
limiting its emission to the spectral range 350-420nm. The lamp was controlled via a TTL trigger 
signal by a portable PC, which acquired and stored the images (Fig. 2). 
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As the intensity of the fluorescence signal is extremely weak, representing a few percent of the actinic 
light absorbed, compared to the reflected environmental light, background disturbance was reduced 
by means of an opaque shield which covered the sampled canopy as well as the instrumentation. 

For each measurement two consecutive images were acquired. First, a background image was 
acquired with the xenon lamp off. Immediately after, the second image was acquired when the sample 
was illuminated by both environmental and additional actinic lights. By subtracting, pixel by pixel, 
the two images a third image was obtained, representing a “fluorescence map” of the canopy sensed. 
 

 
 

Figure 2. Set-up for field fluorescence imaging: (a) the MSFI mounted on the instrumented buggy; (b) 
the components of the imaging system; (c) the reflective shield reducing the disturbance of the 

environmental light on the sensed canopy. 

 

The MFSI (Fig. 2) was mounted on the instrumented buggy and operated from a distance of about 
0.8m from the canopy. The area excited to fluorescence by actinic light had a typical diameter of 0.5-
0.6m. Fluorescence images at 450, 550, 690 and 740 nm were obtained for canopy areas of about 
0.2m diameter, situated in the middle of the illuminated region, resulting in a typical resolution of 
about 0.3mm/pixel.  

Fluorescence images showed typical disease patches. It was observed that disease lesions are 
characterised by a high emission at 550nm and a low emission at 690nm, where as for a healthy 
region the fluorescence intensity is quite uniform in the two bands.  

The weak fluorescence signal and environmental noise made the precise fluorescence measurement 
difficult. To compensate for these variations only well illuminated vegetation pixels, determined by 
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an adaptive threshold were included in the analysis. The retained regions were then spatially filtered 
in order to eliminate the noise spots and to fill possible “holes” in closed areas, obtaining the 
vegetation region to be inspected. 

Based on this, just the images in the two fluorescence bands 550nm and 690nm were used and a 
disease index for each pixel was defined as the relative intensity in the two bands, fG (Equation 2). 

 

nmnm

nm
G II

If
690550

550
+

=           (2) 

 

A pixel was assumed to be “diseased” when fG exceeded 0.65. A lesion index (LI), defined as the 
fraction of the analyzed pixels that were “diseased” (fG > 0.65), and representing the suspected 
diseased area, was calculated for each image. Only well illuminated vegetation pixels, determined by 
an adaptive threshold were included in the analysis. 
 

2.2 Spectral Data Normalization 

2.2.1. Leaf selection 

In order to analyse the entire spectral signature of the canopy, it was important to select the plant 
which was only in the specific spectra. The normal differential vegetation index (NDVI), is a good 
parameter for leaf detection (Rouse et al., 1974) and is defined through Equation 3: 

NIR RNDVI
NIR R

−
=

+
           (3) 

where NIR represents the reflectance in the near infrared band (740-760nm) and R the reflectance in 
the red band (640-620nm). The spreading of the NDVI over a plant (or an entire plot) characterizes 
the state of the plant (age, leaf area index, health in some extend). The method proposed here 
considered the entire canopy, since disease can occur anywhere on the plant. Therefore all leaf 
surfaces had to be taken into account, without interference from the soil or other sources. NDVI’s 
were examined and lower and upper values that allowed the maximum number of leaves to be 
identified were chosen. After reflectance normalization (division of the canopy spectral reflection 
through the illumination spectrum), the spectra were also normalized for differences in canopy 
architecture by adjusting for illumination intensity. The illumination was indirectly measured by a 
spectralon 50% reflectance included in the spectral image (Fig. 1). The spectralon had a 50% constant 
reflectance over the 200-2000nm waveband.  Suppose that the spectral image can be written as matrix 
A, then the normalized matrix B can be defined as below:  
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where s is the observation number along the spatial axis, λ is the waveband and ref is the position of 
the reference (spectralon) along the spatial axis (in pixel numbers).  

By opting to identify a maximum number of leaves, the canopy spectra were highly variable. Single 
spectra were therefore subjected to high levels of noise resulting in low discrimination, even after 
intensity normalization. Since infected leaves are mostly surrounded by other diseased leaves (see the 
patches in which the disease develops), it was decided to average the spectra in the spatial dimension 
with a 20cm wide moving window, in order to reduce the variability. Consequently the variance of 
one waveband reflectance decreased, but its mean stayed the same allowing discrimination. 

2.2.2. Illumination independence 

The effect of different illumination levels on normalized spectral signatures was investigated by 
correlating the normalized spectral output at each wavelength with the illumination at the same 
wavelength (Fig. 3) 

 
 

Figure 3. The distribution of correlation coefficients with wavelengths for the correlation of 
normalized spectra with illumination at the same wavelength measured on May 29th, 2002.  

 

Subsequent linear regressions of the relationships between illumination at all wavebands and 
reflectance at the same wavebands were therefore applied in last normalization step (Equation 5). 
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( , ) * ( , )B s a A ref bλ λ= +          (5) 

where B(s, λ) is the average reflectance of one image in a given waveband, A(s, λ) the illumination in 
the same waveband, a and b are waveband related regression coefficients. The final normalized 
spectral output at a certain waveband, NewSpec(s, λ),  was defined in Equation 6:  

( , )( , )
* ( , )

B s bNewSpec s
a A ref const

λλ
λ
−

=
+

       (6) 

The constant (const) was required to avoid numerical problems (division with small numbers) that  
could lead to unreliable results (here the constant was chosen equal to 50). 

 

2.3 Data handling 
2.3.1. Waveband selection 

In order to find best discriminating wavebands between diseased and healthy spectra, wavebands were 
found through a stepwise variable selection. The procedure was based on the following:  a waveband 
was only selected when its addition to the existing set of selected wavebands significantly increased 
the discriminating power of the new set of wavebands as determined by an F-test; and before a new 
waveband was chosen, the already chosen wavebands were investigated for the significance of their 
presence in the selected set. The ultimate selection was then used to build the discrimination model. 

2.3.2. Quadratic Discriminant Analysis (QDA) 

Once the most discriminating set of wavebands was selected, a simple discrimination rule was 
defined. This criterion, called the quadratic classification rule, was based on the Mahalanobis distance 
of a single observation (average of normalized spectra over a fixed window) to the class means 
(healthy or diseased). An observation was then classified according to the smallest Mahalanobis 
distance to a class mean. The criterion was trained on 75% of the data. The discrimination models 
were thereafter validated by a test dataset using the other 25% of all data. 

 

3. RESULTS and DISCUSSION 

3.1. Spectrographic Disease Detection 

Spectrographic results for disease detection using three 20nm wide wavebands (680, 725 and 750 nm) 
are shown in Table 2. 

 

Table 2. Different classification results for spectrographic measurements obtained using QDA. 

 



 

 

C. Bravo, D. Moshou, R. Oberti, J. West, A. McCartney, L. Bodria, and H. Ramon.  “Foliar Disease 
Detection in the Field Using Optical Sensor Fusion”.  Agricultural Engineering International: the 
CIGR Journal of Scientific Research and Development.  Manuscript FP 04 008. Vol. VI. December, 
2004. 

 

11

 Observations expressed in % classified into each category 

Status  Classified Healthy Classified Diseased Total 

Healthy 90.23 % 9.77 % 100 % 

Diseased 12.75 % 87.25 % 100 % 

 

3.2. Imaging Fluorescence Disease Detection  

For all measurements LI values were determined and saved in appropriate format to be fused with 
spectral measurements for the same measured field areas. Typical values obtained were: LI=0 - 0.07 
for a healthy canopy; LI=0.05 - 0.20 for a slightly infected canopy; LI=0.35 - 0.60 for a disease focus. 
The values of LI for healthy canopies showed small overlap with the values obtained from slightly 
infected plants. This means that a discrimination algorithm using LI as a feature can not separate 
completely healthy from slightly infected plants. QDA results from the LI are shown in Table 3. 

 

Table 3. Disease classification results for fluorescence imaging measurements obtained using 
QDA. 

 
 Observations expressed in % classified into each category 

Status  Classified Healthy Classified Diseased Total 

Healthy 71.43 % 28.57 % 100 % 

Diseased 4.35 % 95.65 % 100 % 

3.3. Sensor Fusion Results 

In order to design a practical optical sensor that can discriminate between healthy and diseased 
canopies it is important to reduce the number of selected wavebands to a minimum which can still 
maintain discrimination. The best results were obtained using the largest possible spatial window 
width on the spectrographic data.  Quadratic Discriminant Analysis (QDA) was used for disease 
detection based on the features identified from the F-test waveband selection. Three 20 nm wide 
wavebands (680, 725 and 750 nm) that gave the best discrimination were selected. A total of four 
fusion features were used: 3 spectral reflectance values and the fluorescence parameter, LI. The two 
20 nm wide wavebands (750 and 680 nm) were also used for leaf detection by NDVI. Disease 
discrimination results derived from a fusion of these measurements are presented in Table 4. 
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Table 4. Disease classification results derived from the fusion of sensor measurements obtained 
from the test dataset using QDA. 

 
 Observations expressed in % classified into each category 

Status Classified Healthy Classified Diseased Total 

Healthy 97.78 % 2.22 % 100 % 

Diseased 8.86 % 91.14 % 100 % 

 

4. CONCLUSIONS 

Although previous laboratory studies have shown that optical techniques have the potential to 
discriminate between diseased and healthy plants, the experiments reported here demonstrate the 
feasibility of using such methods for disease detection under field conditions. Two separate 
approaches were used: first one was based on spectral reflectance measurements and second one was 
based on fluorescence induction. The spectral reflection method, based on only three wavebands, was 
developed that could discriminated the disease with an error of about 10%. The method based on 
fluorescence was less accurate (discrimination error of about 25%), because it used only two 
fluorescence wavebands. However, combining the measurements from the two approaches allowed 
disease discrimination with accuracy between 94 and 95%. 

The results of these experiments clearly demonstrate that techniques based on the fusion of 
measurements from different optical sensors have great potential for developing tractor-based systems 
for disease detection in the field. However, further research is necessary to develop and test practical 
systems that could be incorporated into management programs for controlling foliar diseases of arable 
crops.  
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