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 Expression levels of potentially important gene transcripts were examined in a 

Dehalococcoides ethenogenes strain 195 (DET)-containing mixed culture (D2) 

capable of reductively dechlorinating tetrachloroethene (PCE) successively to 

trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), vinyl chloride (VC), and non-

toxic ethene using H2 as electron donor.  Gene transcripts associated with general cell 

activity, including those corresponding to 16S rRNA and subunits of RNA polymerase 

(RpoB) and an ATP synthase, and also multiple reductive dehalogenase (RDase), 

hydrogenase (H2ase) and other oxidoreductase enzymes were selected for study as 

potential bioindicators of reductive dechlorination in DET.  Quantitative reverse-

transcriptase PCR (qRT-PCR) data on selected gene transcripts in batch PCE-fed 

microcosms indicated that a subset of targets, including RDases TceA, PceA, 

DET1559 and DET1545, the H2ase Hup, and a gene annotated as formate 

dehydrogenase (Fdh), were highly up-regulated within 1 to 12 h after PCE feeding.  

Transcription profiles over time suggested that genes belonging to similar functional 

groups were regulated in similar ways.  Expression studies in cultures fed either 

electron donor or acceptor showed that neither PCE nor H2 alone was sufficient to 

signal up-regulation of chosen bioindicators. 

  



 

Experiments in microcosms continuously fed medium containing PCE showed 

that pseudo-steady-state mRNA levels were achieved and that increases in PCE 

loading rate led to corresponding increases in chloroethene respiration rate.  

Regulation of steady-state transcript levels of most bioindicators was sensitive to 

chloroethene respiration rate and/or concentration.  Within a limited range of 

respiration rates (1.5 – 4.8 µmol/L/hr), Fdh, Hup, TceA, PceA and DET1559 transcript 

levels displayed positive correlation with respiration rate, and could be well-fit with 

linear regression models (R2 between 0.95 - 0.97).  At high PCE respiration rates, 

however, most bioindicator levels reached a plateau or decreased, the reasons for 

which remain unknown.  At very low PCE respiration rates, RDases DET1559 and 

DET1545 were the only potential bioindicators up-regulated above time-0 levels, 

suggesting they play key roles in reductive dechlorination when substrate 

concentrations are low.  Fdh, Hup and TceA transcript abundances were also high in 

microcosms continuously fed medium containing TCE or cDCE.  Experiments using 

these alternate electron acceptors indicated that while some RDase bioindicators could 

reflect substrate utilization, the H2ase Hup was a more accurate and sensitive indicator 

of cellular respiration rate. 
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CHAPTER 1 

Background and Objectives 

 

This dissertation describes molecular biological analyses carried out on a 

Dehalococcoides ethenogenes-containing, reductively dechlorinating mixed culture 

under a variety of conditions, including different substrate types, substrate 

concentrations, and operational feeding regimens.  As a papers-based thesis, each 

main chapter can be read as a discreet story that contains all the information necessary 

for understanding the observed results and conclusions, and which contextualizes 

these results within the literature.  This background section provides a more complete 

historical context for the PCE-dechlorinating mixed culture examined here, and also 

summarizes work with the pure culture of Dehalococcoides ethenogenes strain 195 

derived from it.  Besides providing a reference of past work, this section presents a 

basic rationale for the hypotheses discussed throughout this text.  Chapter 5 

synthesizes the results and discussions of each chapter, highlighting the most 

important observations made during this research.  Additionally, it contains a 

discussion of the many unanswered questions that have arisen, and tries to frame them 

in a way that facilitates meaningful future research.   

 

1.A. A Brief History of the Mixed Culture 

The anaerobic mixed culture upon which this dissertation is based has been 

operated and studied for about twenty years.  It was initially derived from the 

anaerobic digester of the Ithaca wastewater treatment plant and displayed the ability to 

biologically dechlorinate tetrachloroethene (PCE), a pervasive organic groundwater 

contaminant commonly used as a solvent, to the non-toxic end product ethene under 

methanogenic conditions (1).  Radiotracer experiments proved that conversion of PCE 
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to ethene occurred without significant transformation to carbon dioxide (CO2) or 

methane (CH4).  It was also observed that the rate-limiting step was the conversion of 

vinyl chloride (VC), a known human carcinogen, to ethene.  Methanol was initially 

provided as an electron donor, although hydrogen (H2), formate, acetate and glucose 

were also found to be effective electron donor substrates.  Later, it was shown that 

PCE dechlorination could be maintained even when solvent concentrations were 

increased to 550 µM, a concentration found to be inhibitory to methanogenesis (2).  

Under these conditions, electrons derived from methanol were shown to go to 

dechlorination (31%) and acetate production (69%), suggesting a prominent role for 

acetogens rather than methanogens.  Hydrogen, most likely produced via acetogenic 

fermentation of provided methanol, was found to be the direct electron donor for PCE 

dechlorinators (3) and remains the only compound to serve this function.  Initial 

attempts to describe the kinetics of this mixed culture effectively ruled out the 

possibility that reductive dechlorination was being mediated by transition metal 

cofactors, and instead found that the disappearance of PCE and several of its daughter 

products, trichloroethene (TCE) and 1,2-cis-dichloroethene (cDCE), occurred in near 

zero-order fashion (4).  The conversion of VC to ethene, a critical step in the final 

detoxification of chloroethene contaminants, was observed to obey first-order kinetics, 

and was subject to what most likely appeared to be competitive inhibition by higher 

chlorinated ethenes. 

Microbiological characterization of the methanol-PCE culture confirmed the 

presence of high levels of acetogens and decreased numbers of methanogens, in 

addition to sulfidogens and fermentative heterotrophs (5).  Competition for H2 electron 

donor between dechlorinators and methanogens was examined, with results indicating 

that dechlorination activity could be maximized by maintaining low H2 partial 

pressures (6).  The secondary electron donor substrate was subsequently switched 
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from methanol to butyrate, whose fermentation to H2 is thermodynamically limited to 

relatively low H2 levels.  While several secondary electron donors were capable of 

supporting dechlorination on a long-term basis, further studies confirmed that slowly 

fermented donors that released low concentrations of H2, such as butyrate and 

propionate, were optimally suited for this role (7).  A Michaelis-Menten-type kinetic 

model was developed for the mixed culture that described electron donor 

fermentation, acetoclastic methane production, and also the competition for H2 

between dechlorinators and hydrogenotrophic methanogens (8).  Active dechlorinating 

biomass parameters were estimated from measurements of volatile suspended solids, 

assumed yield coefficients, and properties of the reactor system such as mean cell 

residence time and substrate fluxes.  Predicted dechlorination results of the proposed 

model were in good agreement with experimental data. 

 

1.B. A Brief History of the Pure Culture 

Initial attempts at isolation of the dechlorinating organism indicated that it 

required a complex nutritional supplement and had established a synergistic 

relationship with one or more organisms in the mixed culture (3).  Experiments with 

vancomycin suggested that methanol-fermenting acetogens were producing H2, which 

in turn was acting as the direct electron donor for dechlorinators (5).  The mixed 

culture was enriched for the dechlorinating organism as knowledge of its nutritional 

requirements grew.  H2, rather than methanol, was used as a direct electron donor.  

Yeast extract was replaced with acetate – most likely a carbon source – while B12 was 

found to be the only vitamin supplement required for dechlorination.  Isolation of the 

dechlorinating organism Dehalococcoides ethenogenes strain 195 (DET), an irregular 

coccoid microbe with a doubling time of approximately 19 h, was reported in 1997 

(9). 
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This newly purified microbe was at first shown to grow on several chlorinated 

ethenes, including PCE, TCE, 1,1-dichloroethene (1,1-DCE), cDCE, and 1,2-

dichloroethane (DCA) (10,11).  Although DET demonstrated the ability to 

dechlorinate other compounds such as 1,2-trans-dichloroethene (tDCE) and VC, these 

were shown to be cometabolic substrates that did not support growth.  It was later 

shown that DET could partially dechlorinate a diverse array of aromatic compounds, 

including chlorodibenzo-p-dioxins, chlorodibenzofurans, polychlorinated biphenyls, 

and chloronapthalenes, although it was not determined whether these processes were 

cometabolic (12).  Growth appeared to be supported on some, but not all, 

chlorobenzene congeners.  

Its unique and relevant metabolism made DET an attractive target for more 

detailed biochemical and molecular studies.  This work began most notably in 1998 

when Magnuson et al. found that dehalogenase and hydrogenase activity could be 

associated with the membrane fraction of cells taken from the methanol-PCE mixed 

culture (13).  They found evidence for at least two enzymes catalyzing reductive 

dechlorination reactions, and added them to a newly described family of proteins 

called reductive dehalogenases (RDases).  One enzyme (PCE-RDase) catalyzed the 

conversion of PCE to TCE, while another (TCE-RDase) was found to dechlorinate 

TCE, cDCE, tDCE, 1,1-DCE and VC, although its activity on tDCE and VC was 

significantly lower than for the other compounds.  The TCE-RDase encoding gene 

(tceA) was subsequently cloned and characterized as producing a peripheral membrane 

bound protein (TceA) that shared limited homology to enzymes exhibiting similar 

function in phylogenetically unrelated PCE-to-cDCE dechlorinators (14).  

Observations in pure culture supported the new biochemical findings.  cDCE 

accumulation was greater in cultures fed TCE than in PCE-fed cultures, an observation 

that could be explained by competition between cDCE and TCE for the same 
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enzymatic binding site (TceA) (10).  More directly, experiments with methyl viologen, 

which cannot cross lipid bilayers, also supported the idea that the site of electron 

transfer for both reductase and hydrogenase reactions was outside the cytoplasmic 

membrane, and that this membrane contained all the needed components for effective 

electron transport between PCE and H2 (15).  

Completion of the DET genome revealed up to 17 RDase enzymes (plus two 

homologs predicted to be nonfunctional due to truncation or point mutations causing a 

premature stop codon) and a variety of other targets potentially involved in respiration 

and electron transport, including hydrogenases (H2ase) and other oxidoreductases (16).  

With the exception of DET1545 and the previously characterized tceA, all potentially 

functional RDase genes were found to be in close proximity to potential transcription 

regulators.  Among the five H2ase genes detected, only the predicted NiFe-hup 

possessed a twin-arginine transport signal, suggesting it plays an important role in 

processing H2 in the periplasm.  Also, a gene encoding a putative formate 

dehydrogenase was detected, although DET has not been shown capable of using 

formate as an electron donor. 

 

1.C. Rationale of Current Approach 

Laboratory enrichment microcosm studies, together with a limited number of 

field-based analyses, have provided a relatively clear picture of the abilities of DET 

and related Dehalococcoides strains and the conditions under which they tend to 

flourish.  Promoting these conditions and the biotransformation processes catalyzed by 

these organisms is desirable at field sites contaminated with certain halogenated 

organic compounds.  A better understanding of the biochemistry and molecular 

biology underlying DET metabolism is envisioned to lead to more effective 

remediation strategies.  Many recent studies on a variety of both pure and mixed 
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Dehalococcoides-containing cultures have been published that serve to provide a 

broader context for the work described here.  Relevant research will be presented in 

the introductory and discussion sections of each main chapter.      

This dissertation describes the detection and quantification of DET DNA and 

RNA macromolecules, and relates these measurements to chloroethene concentrations 

and respiration rates.  Assays of nucleic acids, especially RNA, were chosen as the 

main tools of research based on the following rationale.  We start with the assumption 

that all macromolecules examined here originate from DET cells, and that it is these, 

and only these, cells that are responsible for chloroethene reduction.  Within DET 

cells, the central dogma of molecular biology provides a framework for understanding 

the flow of information that eventually leads to dechlorination activities and 

phenotypes.  DNA, as a repository for information, acts as a blueprint for all cellular 

processes and is limited to describing what is possible.  Assays of DNA, therefore, can 

confirm the presence and potential of DET, but cannot indicate activity.  RNA is 

transcribed from DNA, usually in response to environmental and/or intracellular 

conditions, and acts as an intermediate between DNA and protein.  Although it is not 

directly responsible for activity, RNA does reflect an initiation of protein synthesis. 

Generally, the translation of mRNA into protein results in the creation of functional 

enzyme, and protein assays provide direct evidence of specific DET activities.  

In accordance with this biological dogma, therefore, DET dechlorination 

activity is a direct result of cellular protein composition, which is in turn related to the 

transcription of RNA from the DNA template. Protein assays, however, suffer from 

methodological limitations associated with extraction and quantification of specific 

proteins, particularly in complex populations found in most mixed cultures and field 

environments.  RNA and DNA assays, on the other hand, utilize highly specific 

oligonucleotide sequences, and are capable of reliably detecting and quantifying 
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discreet targets even when culture complexity is high.  As described above, cellular 

RNA content is regulated based on immediate environmental conditions and metabolic 

needs, while DNA content remains static even during periods of intense activity.  It is 

for these reasons that the majority of data presented here will focus on DET nucleic 

acid characterization, particularly of RNA.  It should be stressed, however, that 

making inferences about protein abundance and activity based on measurements of 

RNA has its limitations, a point that is discussed in more detail in Chapter 5.   

 

1.D. Research Objectives 

In this thesis research, bioindicators of reductive dechlorination are molecules 

(in this case RNA) whose presence and abundance reflect the substrate range and 

activity level of DET populations.  Good RNA bioindicators have three 

characteristics: they should be specific, accurate and quantifiable.  In other words, they 

should be specific to the activity of interest (reductive dechlorination), can be 

accurately correlated to that activity, and can be detected and measured with relative 

ease.  Overall, the goal of this work is to enhance the understanding of DET-mediated 

reductive dechlorination in mixed culture through examination of potential 

bioindicator gene transcripts of known and putative respiratory chain components.   

 

Main objectives include: 

1. Identify specific DET gene transcripts that might be used as bioindicators of 

reductive dechlorination 

2. Determine how chosen bioindicators are expressed under typical mixed culture 

conditions 

3. Determine how changes in substrate concentration, substrate type and 

operational reactor conditions affect bioindicator expression 
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4. Relate bioindicator expression under various conditions to protein abundance 

and cellular respiration rates 
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CHAPTER 2 

Temporal Expression of Respiratory Genes in an Enrichment Culture Containing 

Dehalococcoides ethenogenes * 

 

2.A. Abstract 

Multiple reductive dehalogenase (RDase), hydrogenase (H2ase), and other 

respiration-associated (RA) oxidoreductase genes have been identified in cultured 

representatives of Dehalococcoides.  Although their products are likely to play key 

roles in the environmentally important process of reductive dechlorination, very little 

information is available about their regulation and specific functions.  Here we show 

increased expression and temporal variability in the expression of five RDase genes 

and in the expression of genes for a putative formate dehydrogenase (Fdh) and two 

H2ases, including a periplasmic [Ni/Fe]-H2ase (Hup) and a cytoplasmic [Fe]-H2ase 

(Vhu).  mRNA transcripts extracted from PCE-dechlorinating mixed cultures 

corresponding to Fdh, the H2ase Hup and the RDase targets TceA and DET0162 were 

expressed most highly, with average levels 34 (± 7.5), 23 (± 6.7), 16 (± 3.3) and 13 (± 

3.3)-fold higher, respectively, than that for RNA polymerase (RpoB).  H2ase and RA 

transcripts reached their respective expression maxima within the first 2 hours after 

feeding.  RDase transcripts, however, were most highly expressed after 3 hours, and 

exhibited greater temporal variability than other targets.  Comparison with D. 

ethenogenes strain 195 pure culture expression levels indicated that RDase DET1545 

was more highly expressed in mixed cultures where, on average, its transcript level 

was sixfold higher than that of RpoB.  While the specific function of several of these 

 
* Rahm, B. G.; Morris, R. M.; Richardson, R. E. Temporal expression of 

respiratory genes in an enrichment culture containing Dehalococcoides 
ethenogenes. Appl. Environ. Microbiol. 2006, 72, 5486-5491. 
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gene products remains elusive, the high expression levels and temporal variability 

reported here suggest that these groups of enzymes are metabolically important for the 

respiration of chlorinated ethenes in mixed cultures containing Dehalococcoides. 

 

2.B. Introduction 

Chlorinated ethenes are common groundwater contaminants that are found at 

more than half of the sites on the EPA’s National Priorities List (1).  A mixed 

enrichment culture capable of reductively dechlorinating tetrachloroethene (PCE) 

successively to trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), vinyl chloride 

(VC), and the harmless compound ethene was developed to study this microbially 

mediated process (2).  The enrichment culture (D2) has been maintained for more than 

a decade and is currently the source of an extract required to grow pure cultures of 

Dehalococcoides ethenogenes strain 195, a member of the Chloroflexi phylum capable 

of complete anaerobic reductive dechlorination of PCE.  D. ethenogenes uses H2 as its 

sole electron donor; in the D2 enrichment culture, H2 is formed from the anaerobic 

fermentation of butyric acid to acetate and H2 (3,4).  This organism, which was 

isolated from an earlier generation of the D2 enrichment culture, has been well 

characterized and its genome has been sequenced (5-8).  Characterization of additional 

Dehalococcoides indicates that although all strains have multiple reductive 

dehalogenase (RDase) genes, both the number of RDase genes and the corresponding 

substrate ranges can vary by strain (9-11). 

Of the 19 putative RDases identified in the genome of D. ethenogenes strain 

195, only those corresponding to PceA and TceA, which are believed to catalyze the 

reductions of PCE to TCE (12) and of TCE to ethene (13), respectively, have been 

characterized.  Very little is known about the specific functions of additional RDases 

and other putative respiratory enzymes in the D2 enrichment culture containing strain 
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195.  Recent studies in both pure (J. Fung, personal communication) (14) and mixed 

(14) PCE-fed cultures containing strain 195 indicated that genes predicted to encode 

four RDases (TceA, DET0162, DET0318, and DET1559), a periplasmic [Ni/Fe]-

H2ase (Hup), and a putative formate dehydrogenase (Fdh) exhibited the highest overall 

expression levels.  In another study, expression of multiple RDases in a chloroethene 

reducing Dehalococcoides-containing mixed culture (KB1) was induced by a single 

chlorinated substrate, suggesting that several RDase enzymes might contribute to 

chloroethene dechlorination (11).  Although RDase DET1545 did not show increased 

expression levels in PCE-grown strain 195 pure cultures, Waller and colleagues 

reported expression of a closely related homolog (11), and peptides matching 

DET1545 were detected during proteomic analyses of strain 195 (R. Morris, 

unpublished data). 

It has recently been shown for Geobacter sulfurreducens that molecular 

parameters can serve as bioindicators of interesting metabolic processes and that levels 

of mRNA transcripts can be correlated with rates of substrate reduction (15).  In the 

present study, we targeted several genes from D. ethenogenes strain 195 that may 

serve as potential bioindicators of reductive dechlorination and describe their 

expression profiles over the course of a PCE feeding cycle.  Targets included eight 

RDases that showed increased expression during growth on PCE in pure culture, a 

gene whose RDase was identified by proteomic analyses (DET1545), five H2ase 

genes, and four additional respiration-associated (RA) transcripts (Table 2.1).  These 

data provide novel insights into the relative expression levels and temporal expression 

variability of key D. ethenogenes respiratory oxidoreductase genes in mixed cultures 

and suggest that they may serve as good bioindicators of PCE reductive 

dechlorination. 
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2.C. Materials and Methods 

2.C.1. Chemicals and stock solutions   

Butyric acid (99%; Acros Organics) and PCE (99%; Alfa Aesar) were used as 

culture substrates and, in the case of PCE, as an analytical standard. TCE (99.5%; 

Fisher Scientific), cis-1,2-DCE (97%; Aldrich Chemical Co.), VC (99.5%; Matheson 

Gas Products) and ethene (Matheson Gas Products) were used for preparation of 

analytical standards.  Yeast extract (Difco Laboratories) was used as a culture 

amendment. 

 

2.C.2. Culture procedure   

A PCE-butyrate enrichment culture containing D. ethenogenes strain 195, 

designated D2, was maintained as described previously (16,17).  Ten percent of the 

culture was periodically wasted and replaced with fresh basal medium (3) to obtain an 

average hydraulic residence time of approximately 100 days.  Expression studies were 

performed in triplicate 160 mL subculture serum bottles with a headspace-to-liquid 

ratio similar to the D2 enrichment culture.  The D2 enrichment culture and each 

subculture were fed PCE (110 µM), butyric acid (440 µM) at a 2:1 ratio to PCE on an 

electron equivalents basis (with butyric acid defined as having 4 equiv/mol based on 

its fermentation to 2 moles acetate and 2 moles H2 rather than its oxidation to CO2), a 

vitamin solution (18), and yeast extract to obtain a concentration of 20 mg yeast 

extract/liter of culture.  A subculture lacking PCE was set up as a control to determine 

whether the activity of other organisms in the enrichment culture might contribute to 

expression levels.  Strain 195 pure culture was grown on PCE and H2 as previously 

described (5,6).  In short, culture inoculum sizes were 2% (vol/vol) in 27 mL culture 

tubes containing 10 mL of growth medium.  Basal salts medium was amended with 2 

mM acetate, a vitamin solution containing 0.05 mg of vitamin B12 per liter, 10% 
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(vol/vol) filter-sterilized anaerobic digestor sludge supernatant, and 1% (vol/vol) D2 

enrichment culture extract.  Culture tubes were sealed with Teflon-coated butyl rubber 

stoppers and incubated at 35 °C. 

 

2.C.3. Gas chromatographic methods   

Ethene and chlorinated ethenes were measured by taking 100-µL headspace 

samples via a gas-tight locking syringe, analyzed with a Perkin Elmer Autosystem Gas 

Chromatograph utilizing a 1/8-inch by 8-ft stainless-steel column packed with 1% SP-

1000 on 60/80 Carbopak B (Supelco, Inc.) and routed to a flame-ionization detector as 

described previously (2,17).  Column temperature was held at 90 °C for 2.5 min, 

subsequently ramped at 30 degrees per minute to 195 °C, and then held isothermally 

for 8 min.  The flame ionization detector was isothermally held at 90 °C over the 14-

minute run time.  Standard curves for PCE, TCE, cDCE, VC and ethene were created 

by adding known amounts of each pure compound to 160-mL serum bottles 

containing 100 mL of distilled H2O. 

 

2.C.4. Sampling procedure and nucleic acid extraction   

Liquid culture samples were taken from the D2 enrichment culture and from 

each subculture prior to feeding (time zero), and at selected times following feeding.  

A sterile syringe was purged three times with a 70% N2-30% CO2 gas mixture and 

used to withdraw either 1 or 2 mL of liquid culture for DNA or RNA analyses, 

respectively.  The samples were placed in centrifuge tubes and immediately pelleted at 

21,000 × g for 2 min at 4 °C.  Supernatants were discarded and cell pellets were stored 

at –20 °C or –80 °C prior to DNA and RNA extraction, respectively.  Pure culture cell 

pellets (3 mL) for RNA extractions were prepared by centrifugation at 4 °C for 10 min 

at 21,000 × g.  The supernatant was discarded and cell pellets were stored at -20 °C. 
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DNA and RNA extractions were performed within 24 h using the UltraClean 

Microbial DNA Isolation (Mo Bio Laboratories) and RNeasy Mini (Qiagen) kits.  To 

control for mRNA losses during sample preparation and inefficiencies in reverse 

transcription, a normalization protocol modified from that described in the work of 

Johnson et al. (19), in which 6 x 109 copies of luciferase control RNA (Promega) were 

added during the lysis step of each RNA extraction, was employed.  DNA 

contamination was removed from RNA samples according to the optional on column 

RNase-free DNase I (Qiagen) digestion protocol.  RNA was quantified using the RNA 

6000 Nano assay on the Agilent 2100 Bioanalyzer (Agilent Technologies).  A second 

DNase treatment step lasting 30 min was performed using RQ1 RNase-free DNase 

(Fisher Scientific). 

 

2.C.5. Quantitative reverse transcriptase PCR (qRT-PCR)   

On average, about 1 µg of RNA was obtained per mL of culture collected.  

cDNA was synthesized from 0.2 µg of RNA using an iScript cDNA Synthesis kit 

(BioRad) according to the manufacturer’s instructions.  Gene transcripts were 

quantified by amplification of cDNA with iQ SYBR Green Supermix (BioRad) and 

primers specific for D. ethenogenes strain 195 gene targets and for the luciferase 

control.  H2ase primers were designed using the software package Beacon Designer 4 

(Biosoft International) (14).  Other D. ethenogenes-specific oligonucleotides were 

designed using PrimerQuest (20) and mFold software available at the IDT website 

(http://scitools.idtdna.com/Primerquest/) (J. Fung and S.H. Zinder, personal 

communication).  Primer specificity was checked by BLAST analysis (21).  Standard 

curves for D. ethenogenes targets and the luciferase control target (log DNA 

concentration versus cycle number at which fluorescence reaches an arbitrarily set 

cycle threshold value [Ct]) were generated using serial dilutions of DNA of known 
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concentration extracted from pure and mixed enrichment cultures (for D. ethenogenes 

targets), and luciferase control DNA (for the luciferase control target).  Triplicate 

amplifications of all standards, unknowns, and controls were performed using an 

iCycler iQ Multicolor Real-Time PCR Detection System (BioRad); 25-µL reaction 

volumes contained 1x iQ SYBR Green Supermix, forward and reverse primer at a 

concentration of 700 nM, and approximately 3 ng of cDNA template.  PCR conditions 

used for H2ase primer sets were as follows: 2 min at 50 °C and 3 min at 95 °C, 

followed by 40 cycles of 1 min at 55 °C and 1 min at 95 °C.  PCR conditions for all 

other primer sets were: 2 min at 50 °C and 10 min at 95 °C, followed by 40 cycles of 1 

min at 60 °C and 1 min at 95 °C.  Melt curve analyses were performed after all runs to 

check for purity of amplicons.  A pure culture DNA sample of known quantity was 

analyzed with each primer set and yielded the same abundance value regardless of the 

primer used, supporting the suitability of the mixed culture standard curves. 

 

2.D. Results 

2.D.1. Preliminary analysis of gene expression and target selection   

qRT-PCR data were taken from the D2 enrichment culture over the course of a 

PCE-butyrate feed to identify temporal trends in gene regulation and to select highly 

expressed targets for further analyses (Figure 2.1; Table 2.1).  Genes encoding four 

RDases (TceA, DET0162, DET0318, and DET1559), two H2ases (Hup and Vhu), and 

two RA genes (Fdh and AtpA) exhibited the highest overall expression levels and 

were greater than that of the gene encoding RpoB, which was chosen as a 

“housekeeper.”  The RDase DET1545 was not targeted in the initial D2 expression 

study.  Its product, however, was subsequently identified by liquid chromatography-

tandem mass spectrometry proteomic approaches, and it was added to the list of 

potential bioindicators.  A comparison of pure and mixed culture expression levels  
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Table 2.1. Genomic identification and description of qRT-PCR targets. 

 

 

 

 

 

Locus tag a Description Abbreviationb
Class

0603 DNA-dependent RNA polymerase, beta subunit RpoB Housekeeper

0187 formate dehydrogenase, alpha subunit, putative Fdh
0926 proton-translocating NADH-quinone oxidoreductase, D subunit, putative Nuo
0562 ATP synthase, F1 alpha subunit AtpA
0103 molybdopterin oxidoreductase, iron-sulfur binding subunit, putative Mod

0110 [Ni/Fe] hydrogenase, group 1, large subunit, putative Hup
0615 hydrogenase, group 3, VhuA subunit, putative Vhu
0867 hydrogenase, group 4, EchE subunit, putative Ech
1571 hydrogenase, group 4, HycE subunit, putative Hyc
0147 [Fe] hydrogenase, large subunit HymC, putative Hym

0079 trichloroethene reductive dehalogenase (tceA ) gene TceA
0318 reductive dehalogenase, putative PceAc

1545 reductive dehalogenase, putative
0162 reductive dehalogenase, putative, auth pt mutation
1559 reductive dehalogenase, putative
0173 reductive dehalogenase, putative
0876 reductive dehalogenase, putative
0306 reductive dehalogenase, putative
1519 reductive dehalogenase, putative
a  orf identification number from the D. ethenogenes  strain 195 genome 
b  abbreviation of known or putative protein name 
c   Stephen H. Zinder, personal communication

Other respiration-associated

Hydrogenase

Reductive Dehalogenase
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Figure 2.1. Expression profiles of potential bioindicator targets in the D2 

enrichment culture.  16S rRNA and transcripts corresponding to Fdh, the H2ase Hup, 

and the RDases TceA, DET0162, DET0318 and DET1559 are preferentially 

expressed. 
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indicated that DET1545 expression was lower than RpoB expression in pure cultures 

but increased by nearly 5.6 (± 3.4) fold relative to RpoB expression in mixed cultures.  

Genes encoding the H2ase Hym and the RA target NADH-ubiquinone oxidoreductase 

(Nuo) had expression levels similar to that for the RpoB gene, and the expression 

levels of additional RDase, H2ase, and RA targets, including the molybdopterin 

oxidoreductase (Mod) gene, were lower than that for the RpoB gene and were not 

included in additional expression studies reported here. 

 

2.D.2. Expression and temporal variability  

Preliminary qRT-PCR results (Figure 2.1) suggested that expression of some 

targets increased within 1 h of feeding and reached maximum observed levels within 

12 h, after which point expression tended to slowly decline until returning to the hour 

0 state.  As a result, high-resolution qRT-PCR measurements of a subset of highly 

expressed targets were taken from triplicate subcultures inoculated with D2 and 

incubated for 12 h.  With the exception of DET1545 and DET0318, all targets studied 

showed at least an order of magnitude increase in expression between 0 and 1 h.  The 

Fdh target had average expression levels 34 (± 7.5) fold higher than that of the 

housekeeper RpoB, and was followed by the H2ase Hup and the RDase targets TceA 

and DET0162, which had average expression levels 23 (± 6.7), 16 (± 3.3) and 13 (± 

3.3) fold higher, respectively, than that for RpoB (Figure 2.2).  Similarly high 

expression levels were observed for the Fdh target in a previous study, which 

indicated that the Fdh target was up-regulated in both batch-pure and mixed cultures 

(14); this result was surprising, given the evidence that D. ethenogenes strain 195 is 

not capable of using formate as an electron donor (X. Maymó-Gatell, Y. Chien, T. 

Anguish, J. M. Gossett, and S. H. Zinder, unpublished results).  For all targets studied,  
 

 



 

21 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Expression level of each target in triplicate subcultures relative to that 

for the RpoB gene (data presented are averages of values from 1 to 12 h after PCE 

feeding).  Targets are represented by their corresponding products.  Error bars 

represent standard deviations. 
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average expression levels in the control subculture lacking PCE were approximately 2 

orders of magnitude lower (2 % on average) than in PCE-fed subcultures. 

No significant increases were observed in D. ethenogenes 16S rRNA gene 

abundance during the first 12 h after PCE feeding (Figure 2.3A).  These data suggest 

that the population of D. ethenogenes stayed relatively constant throughout the 

experiment and that qRT-PCR trends reported here reflected differences in expression 

rather than cell numbers.  Temporal variability in the expression profile of the RpoB 

gene, when plotted relative to its own expression maximum, indicates that the period 

of highest cellular activity is between 0 and 3 h (Figure 2.3A).  Statistical comparison 

of three gene groups - RpoB, H2ase/RAs (Hup, Vhu, Fdh, and AtpA), and RDases - 

indicate that expression profiles differ across the three groups (One-way ANOVA 

showed significant interaction of time by gene group F(8,2) =  4.612; P < 0.0001).  

General trends in gene categories suggest that H2ase and RA transcript levels were 

highest early during dechlorination (0 to 3 h), while RDase transcript levels increased 

more slowly, reached their maxima after 3 h, and persisted for up to 12 h (Figure 

2.3A).   RDase transcript levels were typically highest after TCE, cDCE, and VC 

daughter products had reached their maximum values (Figure 2.3A and B).  Reductive 

dechlorination profiles resembled those previously reported for the D2 enrichment 

culture (4).  Daughter products were observed within 0.3 h, and added PCE was 

dechlorinated by near-zero-order kinetics to VC and ethene within 4 to 5 h.  Between 

2 and 3 h, TCE and cDCE accumulated to their respective maxima of approximately 

10 and 5 µmol/L.  VC concentration increased for 3 to 4 h, at which point it was 

slowly converted to ethene for the duration of the experiment (Figure 2.3B). 

Previous studies have suggested that expression levels of Dehalococcoides 

targets may vary over time and that conclusions based on any single time point may be 

confounding (14).  Figure 2.4 indicates that, between hours 1 and 12, some targets  
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Figure 2.3.  (A) 16S rRNA gene abundance (dashed line) and mRNA expression 

profiles (solid lines) of individual targets over time broken up into functional 

categories.  Error bars represent standard deviations.  Each mRNA target is plotted as 

a fraction of its maximum expression and is represented by its corresponding product.  

Expression of the RpoB gene, a central metabolic housekeeper, declines after 3 to 4 h, 

when a majority of respirable substrates are dechlorinated.  The Fdh, AtpA, Hup and 

Vhu genes are grouped as targets associated with hydrogen metabolism and 

experience maximum expression within the first two hours.  RDase genes are grouped 

together and tend to experience maximum expression after 3 h. (B) Dechlorination 

profiles in triplicate subculture bottles.  PCE ( ), TCE ( ) and cDCE ( ) are fully 

dechlorinated within 4 to 5 h, followed by the slow conversion of VC ( ) to ethene 

( ). 
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Figure 4.4. Temporal ranges of expression levels relative to that for the RpoB 

gene.  Left and right ends of horizontal bars mark the levels of lowest and highest 

expression, respectively, for hours 1 through 12.  Black hash marks within each bar 

indicate the average levels of relative expression during this time.  The data column 

shows the difference (n-fold) between the highest and lowest expression level for each 

target; targets are represented by their corresponding products. 
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have a larger range of expression relative to that of the RpoB gene than others.  The 

relative abundance of the TceA gene target at its maximum is 9.2 times higher than its 

lowest observed relative abundance during this time period.  In contrast, the Hup gene 

target shows only a 5.8 fold difference in relative abundance between its highest and 

lowest expression levels.  In general, group comparison indicates that RDase targets 

are expressed with greater variability than are H2ase or RA targets. 

 

2.E. Discussion 

Genes encoding Fdh, the H2ase target Hup, and RDase targets TceA, 

DET0162, DET1545, DET0318 (tentatively identified as PceA - S.H. Zinder, personal 

communication), and DET1559 were transcribed at levels above that for the 

housekeeping gene encoding RpoB, and their corresponding proteins, with the 

exception of DET0162, were identified in a previous study using proteomic 

approaches (14).  The DET0162 target, although highly expressed, contains a point 

mutation, has a partially truncated anchor protein, and is unlikely to code for a 

functional RDase (8).  RDase and H2ase targets tended to be expressed as groups of 

respiratory oxidoreductases that exhibited different patterns of temporal variability.  

Additionally, expression by gene category, particularly in the case of the RDase genes, 

varied significantly over time.  It is likely that the products of these genes play 

important roles in reductive dechlorination.  Further research into the relationship 

between expression levels and the catalytic functions of these enzymes is likely to 

provide novel insights into the signal(s) that controls their expression at field sites 

contaminated with chlorinated ethenes. 

While increases in expression were observed within the first hour after PCE 

feeding, expression in no-PCE controls did not significantly increase, supporting the 

conclusion that expression levels are attributable to D. ethenogenes rather than to other 
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members of the community, such as fermenters or methanogens.  Furthermore, 

measurements of relative cell numbers did not indicate a significant change in the 

population size during the time frame of this study (Figure 2.3A).  Although some 

growth certainly occurred in these cultures, increases in cell numbers alone could not 

account for the order of magnitude increases in expression that were observed. 

Two recent studies of Dehalococcoides have shown that expression levels of 

TceA and H2ase targets can vary with time (14,22).  Johnson et al. examined the 

RDase target TceA under a variety of conditions and found that its expression was 

independent of hydrogen concentration and chlorinated ethene concentration down to 

about 2 µM but that it varied according to the electron acceptor used (22).  In general, 

they found that expression of the TceA target increased over time in response to 

growth-supporting substrates (TCE, cDCE, 1,1-DCE) as well as to trans-DCE, which 

does not support growth, but that PCE or VC did not lead to increased expression.  

Our results indicate that expression levels in batch cultures of many key respiratory 

targets, particularly RDases, depend on time of sampling and that individual target 

expression does not appear to correlate with the instantaneous dechlorination of 

specific chlorinated ethenes.  Furthermore, results show distinct temporal patterns in 

the ways that RDases and H2ases are expressed: H2ases and RA targets (including Fdh 

and AtpA) tend to reach their maximum expression earlier in the feeding cycle, as 

does the housekeeper RpoB, while RDases tend to reach their maxima later.  D. 

ethenogenes may maintain a relatively large “standing crop” of RDase enzymes 

which, though adequate for initial dechlorination, require augmenting as high 

concentrations of substrate persist.  It is also possible that D. ethenogenes devotes its 

initial energy to the gathering of electrons, up-regulating RDase expression only after 

creating a sufficient pool of reducing energy (a high concentration of charged energy  
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carriers).  Finally, the expression of RDase and H2ase targets may be up-regulated as 

daughter products (such as TCE, cDCE, or VC) reach critical concentrations. 

The variability in expression trends across functionally distinct gene categories 

(housekeeper, H2ase, RA and RDase) suggest that transcriptional regulation is 

occurring at the group level.  Housekeeper, H2ase and RA target expression profiles 

share similar patterns of temporal variation that are different from those of RDase 

profiles (Figure 2.3A).  While RDases as a group are up-regulated later than H2ase and 

RA targets, the timing and extent of up-regulation varies for each RDase target.  This 

suggests that unique regulatory pathways exist for each RDase gene and agrees with 

the prediction of two component regulatory elements (histidine kinases and response 

regulators) flanking most of the RDase genes in the available Dehalococcoides 

genomes (8,10).  These regulatory elements may work in both cis and trans fashion to 

coordinate expression of multiple RDase genes. 

Our goal was to identify possible bioindicators of reductive dechlorination and 

understand their expression over time in response to addition of growth-limiting 

substrates.  A good bioindicator for ultimate field use should be specific (unique to the 

genes imparting the desired activity), accurate (correlated to the desired activity) and 

quantifiable (detectable and measurable).  The housekeeper RpoB is an attractive 

option, since it is highly conserved among Dehalococcoides groups compared to more 

mobile and divergent targets such as the RDases.  On the other hand, H2ases and 

RDases, once a better understanding of their expression under various conditions is 

obtained, may have the ability to yield more information about dechlorination 

potential and rate.  Also, the higher expression levels of some H2ase and RDase targets 

may make them more attractive options at field sites where cell densities are low and 

detection limits are a major concern.  Accurate and comprehensive documentation of 

in situ bioremediation at a field site will probably require a suite of bioindicators that 
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includes highly conserved, more metabolically central targets, such as RpoB, and 

targets more specific to reductive dechlorination, such as Hup and TceA.  Here we 

report novel respiratory oxidoreductase expression data from a mixed dechlorinating 

community containing D. ethenogenes, identify temporal patterns in gene regulation, 

and suggest potential bioindicators. 
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CHAPTER 3 

Correlation of Respiratory Gene Expression Levels and Pseudo-Steady-State PCE 

Respiration Rates in Dehalococcoides ethenogenes * 

 

3.A. Abstract 

DNA and RNA transcripts, particularly of genes of functional importance in 

the reductively dechlorinating microbe Dehalococcoides, are increasingly being 

studied as potential molecular bioindicators of reductive dechlorination.  Ideally, 

mRNA bioindicators would be informative both qualitatively (with respect to 

dechlorination endpoint and substrate range) and quantitatively (with respect to 

activity rates).  Here, we examined pseudo-steady-state mRNA levels in 

Dehalococcoides-containing microcosms continuously fed PCE at various loading 

rates.  We characterized gene transcript abundance of potential Dehalococcoides 

bioindicators of reductive dechlorination, including 16S rRNA, and genes encoding an 

annotated formate dehydrogenase (Fdh), the hydrogenase (H2ase) Hup, and the 

reductive dehalogenases (RDases) TceA, DET1559, PceA and DET1545.  Increases in 

steady PCE loading rate led to corresponding increases in PCE respiration rate (1.5 ± 

0.1, 2.5 ± 0.3, 4.8 ± 0.1, and 9.2 ± 0.5 µmol/L/hr).  We also observed that pseudo-

steady-state expression levels of most functional targets increase linearly over PCE 

respiration rates of 1.5 to 4.8 µmol/L/hr, with Fdh, Hup and TceA transcripts 

increasing by approximately 2 x 1010 copies per mL of culture for every µmol/L/hr 

increase in chloroethene respiration rate, and DET1559 and PceA transcripts 

increasing by approximately 9 x 109 copies per mL of culture, whereas increased 

 
* Rahm, B. G.; Richardson, R. E. Correlation of respiratory gene expression 

levels and pseudo-steady-state PCE respiration rates in Dehalococcoides 
ethenogenes. Environ. Sci. Technol. 2007, in press. 
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respiration rates of 9.2 µmol/L/hr did not necessarily lead to corresponding increases 

in transcript levels.  

 

3.B. Introduction 

Characterizing the microbially mediated reductive dechlorination of 

chlorinated ethenes at contaminated field sites is often limited to gas chromatographic 

assays of the chlorinated compounds themselves, and to measurements of geochemical 

parameters that may signal adequate reducing conditions (1-6).  However, there is 

increasing evidence that molecular biological characterization of microbial 

populations may also be useful for characterization of contaminated sites and for 

making accurate predictions about microbial potentials and activities (7-14).  Assays 

of specific microbial DNA and RNA sequences can be attractive to scientists and 

engineers who seek to enhance inferences based on geochemical data alone.  To date, 

use of microbial bioindicators at chloroethene-contaminated field sites has been 

limited to assays for DNA signatures of Dehalococcoides (DHC) populations known 

to carry out reductive dechlorination.  This is accomplished by targeting, and in some 

cases quantifying, DHC 16S rRNA genes, although there have been some efforts to 

target other gene sequences as well (12,13,15-21). 

Expression studies in batch-fed, reductively dechlorinating cultures containing 

DHC strains have shown that certain “functional” targets – gene transcripts whose 

corresponding enzymatic proteins are potentially related to this group’s unique 

respiration capabilities – are abundant and potentially valuable as bioindicators (22-

28).  These include reductive dehalogenases (RDases), which are responsible for the 

reductive dehalogenation of chlorinated organic compounds; hydrogenases (H2ases), 

which oxidize hydrogen, the only known electron donor for DHC strains; and a 

putative formate dehydrogenase (Fdh).  Up-regulation of bioindicator expression in 
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batch-fed enrichment and pure cultures can depend on substrate type and substrate 

concentration (24-27).  Previous work in batch culture has suggested that RDase genes 

are transcriptionally regulated (22,24-27), a feature which is predicted from their 

proximity to regulatory genes in DHC genomes (29,30), and that multiple RDases are 

often co-expressed upon growth on a single chlorinated substrate (26-28,31).  

However, it is unclear whether results obtained under batch-fed conditions, in which 

cells experience periods of high chloroethene concentration followed by starvation, 

can be extrapolated to field environments.  No studies have yet tested the relationship 

between steady-state respiration rates by DHC and functional gene expression levels.   

Here we explore the behavior of a reductively dechlorinating mixed culture 

(D2) containing Dehalococcoides ethenogenes strain 195 (DET) as its sole 

dechlorinating constituent (32,33) by utilizing a pseudo-steady-state (PSS) reactor 

system in which PCE is continuously loaded at different rates for up to 24 hours.  This 

system more closely reflects the continuous and relatively steady recharge of 

chlorinated ethenes seen by microbial populations at field sites and allows 

investigation into the transcription of bioindicator gene targets under conditions of low 

substrate concentration.  In this study, data on DET genes previously found to be 

significantly up-regulated during the reductive dechlorination of PCE, including those 

corresponding to RDases TceA, DET1559, PceA (corresponding to DET0318 [22]) 

and DET1545, the H2ase Hup, and Fdh (26), suggest that expression occurs at steady 

levels which correlate with chloroethene respiration rates within a limited range.  

Additionally, these findings support the idea that RDases are individually regulated 

and provide evidence that induction of expression occurs at lower chloroethene levels 

than previously tested. 
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3.C. Materials and Methods 

3.C.1. Culture procedure 

A DET-containing enrichment culture (D2) capable of reductively 

dechlorinating PCE was maintained as previously described (26,34).  Briefly, the D2 

enrichment culture was pulse-fed PCE (110 µM), butyric acid (440 µM) at a 2:1 ratio 

to PCE on an electron equivalent basis (with PCE defined as having 8 equivalents/mol 

based on its reductive dechlorination to ethene, and butyric acid defined as having 4 

equivalents/mol based on its fermentation to 2 mol acetate and 2 mol H2 rather than its 

oxidation to CO2), a vitamin solution (35), and 20 mg yeast extract/liter of culture.  

Expression and chloroethene concentration data were obtained from triplicate 100 mL 

PSS subcultures established in 160 mL serum bottles.  PSS microcosms were seeded 

with D2 culture that had been starved for 72 hours.  They were then given an initial 

pulse-feeding of vitamin solution, yeast extract, and 44 µmoles butyric acid, the 

fermentation of which has been shown to facilitate the slow release of electron donor 

concentrations adequate for dechlorination for at least 20 hours (36).  Culture bottles 

were then held upside-down at a 45º angle over a magnetic stir plate and stirred 

vigorously.  Filtered basal culture medium (37) containing approximately 414 µM 

PCE was delivered at rates of 5, 10, 20 and 40 µL per min through the submerged top 

stopper via 10 mL gas-tight locking syringe dispensed by syringe pump.  To allow for 

headspace sampling without disturbing the bottle, a second port was drilled into the 

side of each PSS serum bottle and fitted with a Teflon coated butyl stopper held in 

place with a screw tight ring clamp.  Gas and liquid samples were extracted by syringe 

from the side port periodically, as was waste liquid as needed to maintain steady 

culture volume (100 mL). 
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3.C.2. Chemicals and analyses of chloroethenes 

Butyric acid, chloroethenes and yeast extract were purchased and used as 

previously described (26).  Gas chromatograph measurements were obtained by taking 

100 µL headspace samples via gas-tight locking syringe, and were analyzed using a 

Perkin Elmer Autosystem gas chromatograph with a 1/8 inch by 8 ft stainless steel 

column packed with 1% SP-1000 on 60/80 Carbopak B (Supelco, Inc.), and routed to 

a flame ionization detector as previously described (36).  

 

3.C.3. Sampling procedure and nucleic acid extraction 

Prior to nutrient addition and initiation of PCE feeding (time 0) and at selected 

times thereafter, 1 and 1.5 mL liquid culture samples for DNA and RNA analyses, 

respectively, were taken from PSS microcosms and processed as previously described 

(26).  Cell pellets for DNA and RNA analyses were stored at –20°C or –80°C, 

respectively.  DNA and RNA extractions were performed within 24 hours.  For RNA 

samples, reverse transcription inefficiencies and mRNA losses incurred during sample 

preparation were estimated using a modified normalization protocol (38) in which 6 x 

109 copies of luciferase control RNA (Promega) were added to cell pellets prior to 

lysis.  Sample processing then proceeded as described previously (26).  RNA was  

quantified using the RNA 6000 Nano assay on an Agilent 2100 bioanalyzer (Agilent 

Technologies). 

 

3.C.4. Quantitative reverse transcriptase PCR (qRT-PCR) 

cDNA was synthesized from 0.1 µg of RNA with the iScript cDNA select 

synthesis kit using the provided random hexamer primers (Bio-Rad).  Gene transcripts 

and added luciferase RNA were measured by amplification of corresponding cDNA 

using iQ SYBR Green Supermix (Bio-Rad) and DET-specific primers for genes 
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encoding subunits of RNA polymerase (RpoB), TCE-RDase (TceA), PCE-RDase 

(PceA), putative RDase DET1559 (22), an annotated formate dehydrogenase (Fdh), a 

nickel-iron H2ase (Hup) (28), 16S rRNA (31), putative RDase DET1545 (this study), 

and the luciferase control sequence (38).  Primers targeting DET1545 were designed 

by Robert Morris using Beacon Designer 4 (Biosoft International) 

(CCTCCACCTACAACTTCC and AAGAGGCAGGTCTGTTAAG).  Amplifications 

were performed in triplicate using an iCycler iQ multicolor real-time detection system 

(Bio-Rad) under conditions previously described (26).  Melt curve analysis confirmed 

the absence of primer-dimerization.  

 

3.C.5. Expression data analysis 

Expression levels were calculated using Data Analysis for Real-Time PCR 

(DART-PCR), a freely available Excel (Microsoft) based macro which determines 

threshold cycles, reaction efficiencies and relative cDNA starting quantities from raw 

fluorescence data (39) (http://www.gene-quantification.de/download.html#dart).  

Differences in amplification efficiency within and between tested groups of gene 

targets were assessed using one-way analysis of variance (ANOVA).  Outlier samples 

were excluded from further analyses.  Standard curves covering four orders of 

magnitude (R2 values between 0.95 – 0.97) were constructed with serial dilutions of 

DNA of known concentration extracted from DET pure culture (for DET targets) and 

of luciferase control DNA (for the luciferase control target) (Promega), and were used 

to estimate transcript concentration (copies/mL culture) in PSS microcosms.  cDNA 

concentrations in all samples were above the limit of detection, and average RNA 

recovery for all samples after RNA extraction and cDNA synthesis steps was 

determined to be 14 ± 4%. 
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3.D. Results 

3.D.1. Chloroethene dechlorination in PSS microcosms 

Reductive dechlorination of added PCE in PSS reactors is shown in Figure 3.1.  

Dechlorination occurred steadily throughout the experiment with increasing PCE 

feeding rates leading to corresponding increases in VC + ethene accumulation of 34 ± 

1, 62 ± 5, 111 ± 1, and 207 ± 8 µmol/L, respectively, within 22 to 24 hours.  

Concentrations of PCE, TCE and cDCE reached steady levels within 2 to 3 hours that 

were either undetectable (<30 nM) or very low (Table 3.1).  PCE respiration rates 

were calculated from the production of VC + ethene, rather than either compound 

alone, based on the following line of reasoning.  The slow, cometabolic conversion of 

VC to ethene by DET does not yield energy (40-42), and therefore cannot be 

considered respiration.  However, with respect to a chloroethene mole balance, both 

VC and ethene represent moles of fully respired PCE, and each compound must be 

accounted for in the calculation of molar respiration rates.  Therefore, since production 

of both VC and ethene was observed to occur at nearly constant rates, a linear 

regression of VC + ethene concentrations over time was used to determine PCE 

respiration rate for each reactor.  Microcosms operated at increasing PCE feeding rates 

had PCE respiration rates of 1.5 ± 0.1, 2.5 ± 0.3, 4.8 ± 0.1, and 9.2 ± 0.5 µmol/L/hr, 

respectively (Table 3.1). 

 

3.D.2. Gene expression in PSS microcosms 

For all targets studied, transcript levels increased over an order of magnitude above 

time 0 levels (time 0 is indicative of conditions after 72 hours starvation) within 2 

hours of supplying PCE.  Expression of transcripts corresponding to 16S rRNA, 

RpoB, RDases TceA, DET1559, PceA and DET1545, the H2ase Hup and a putative 

Fdh, was observed to remain relatively steady after hour 6 regardless of PCE 
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Figure 3.1. VC + ethene production in triplicate PSS microcosms continuously fed 

medium containing approximately 414 µM PCE at feeding rates of 5, 10, 20 and 40 

µL/min. Portions of this data have been presented previously (48). 
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Table 3.1. Average PSS chloroethene concentrations and calculated respiration 

rates in triplicate microcosms. 
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feeding rates (Figure 3.2; Figure A4.1).  Transcript levels of RDases DET1559 and 

DET1545 showed some variability (Figure A4.1).  Expression of the gene for RpoB, 

chosen here as a general indicator of cellular activity, appeared to peak around hour 2, 

particularly at the higher PCE feeding rates (Figure 3.2), before settling down to 

steady levels. 

For comparative analyses, we identified the time period between 6 and 18 

hours as “pseudo-steady-state” (except in microcosms respiring PCE at 1.5 µmol/L/hr, 

for which data were only obtained through hour 12), since targets had relatively steady 

expression profiles during this time.  Pseudo-steady-state expression was calculated by 

averaging observed transcript levels from hours 6, 12 and 18, and is shown in Figure 

3.3.  Data indicate that PCE feeding rate, and thus chloroethene respiration rate, can 

significantly affect expression levels.  16S rRNA was the most abundant RNA at each 

respiration rate and, like many of the enzyme-encoding gene transcripts, was 

significantly more abundant at rates of 4.8 and 9.2 µmol/L/hr.  Genes for Fdh and the 

H2ase Hup showed relatively high expression overall, particularly at higher PCE 

respiration rates.  Among RDase targets, TceA was the most highly expressed in 3 of 

the 4 experiments, followed in each case by DET1559, and then either PceA or 

DET1545 (Figure 3.3).  At the lowest PCE respiration rate, however, DET1559 was 

observed to have the highest expression, suggesting that RDases may be differentially 

transcribed depending on substrate concentration or per-cell respiration rate.  

Interestingly, DET1545 transcript levels were highest at 2.5 µmol/L/hr, but were 

comparatively low at 9.2 µmol/L/hr (Figure 3.3).  

Measurements of 16S rRNA gene copy abundance in each microcosm at hours 

0, 6, 8, 12 and 24 remained statistically unchanged and indicated a steady DET 

population size of approximately 5.2 ± 1.3 x 108 cells/mL regardless of PCE 

respiration rate.  Using published biomass yield values for related DHC strains BAV1 
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Figure 3.2. Expression profiles of selected gene transcripts over time in PSS 

microcosms.  Hours 6 – 18 are identified as pseudo-steady-state.  Error bars represent 

standard deviation of triplicate microcosms.  Profiles of additional targets are provided 

in Figure A4.1. 
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Figure 3.3. Average bioindicator gene expression levels during the period of 

pseudo-steady-state (hours 6-18) for all targets at all PCE respiration rates.  Error bars 

represent standard deviation of the means of triplicate microcosms. 
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(43) and bacterium VS (44) of 6.0 x 107 and 5.2 x 108 16S rRNA gene copies per 

µmol Cl- respired, respectively, we calculated potential increases in DET population 

size of between 7 and 62% in microcosms respiring PCE at 9.2 µmol/L/hr, the highest 

rate tested.  However, the standard deviation of 16S rRNA gene copy values, as 

measured via qPCR, indicated fluctuations of about 25%.  Therefore, although it is 

likely that cell growth in these microcosms occurred, it is possible that DET biomass 

yield values are more similar to those for BAV1 than for bacterium VS, and that the 

sensitivity of our quantitative tools was not sufficiently high to quantify growth.  

Pseudo-steady-state expression levels of enzyme-encoding targets, with the 

exception of DET1545, increase steadily over PCE respiration rates of 1.5 to 4.8 

µmol/L/hr (Figure 3.3).  Correlation between PCE respiration rates within this range 

and expression level for these functional transcripts can be illustrated using a linear 

model (Figure 3.4), with the abundance of Fdh, Hup and TceA transcripts increasing 

by approximately 2 x 1010 copies per mL of culture for every µmol/L/hr increase in 

PCE respiration rate, and with DET1559 and PceA transcripts increasing by 

approximately 9 x 109 copies per mL of culture for every µmol/L/hr increase.  

However, expression of most of these targets shows no significant increase between 

PCE respiration rates of 4.8 and 9.2 µmol/L/hr.  Only Fdh and the RDase TceA show 

additional increases in pseudo-steady-state expression with increasing rates of PCE 

respiration above 4.8 µmol/L/hr. 

 

3.E. Discussion 

The major goal of this study was to determine the relationship between 

pseudo-steady-state PCE respiration rates and potential DET bioindicator expression 

levels.  Regulation of gene transcription is presumably based on the cell’s ability to 

sense concentrations of available substrates and/or intracellular energy stores.  Gene  
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Figure 3.4. Correlation between PCE respiration rate and pseudo-steady-state gene 

transcript expression level for targets (A) Fdh and the H2ase Hup and for (B) RDases 

TceA, DET1559 and PceA.  Data for the three lowest PCE respiration rates are fit with 

a linear regression model.  Error bars represent standard deviation of the mean of 

triplicate microcosms. 



 

47 

transcript levels, in turn, influence cellular concentrations of functional enzymes 

whose activities are directly responsible for observed respiration of PCE.  As Figure 

3.1 and Table 3.1 show, steady rates of VC + ethene production were achieved in all 

reactors, with higher PCE feeding rates leading to correspondingly higher rates of 

respiration without PCE buildup, indicating that PCE dechlorination kinetics were 

non-limiting.  qRT-PCR results indicated that the abundance of functional transcripts 

corresponding to Fdh, Hup, TceA, DET1559 and PceA could be linearly correlated to 

PCE respiration rate within a limited range (Figure 3.4).  If this linear model were 

extended to the y-axis, it could be postulated that a basal rate of respiration 

(approximately 1 µmol/L/hr) is required for cells at this DET population density (5 x 

108  per mL) to actively up-regulate these transcripts.  It is possible that PCE feeding 

rates corresponding to respiration rates below this threshold would not induce 

transcription of new functional RNA.  

Functional targets Fdh and the RDase TceA have shown high relative 

expression in previous studies (26,28) and, unlike other targets studied here, are 

transcribed at levels that correlate with increasing PCE respiration rates over the entire 

range examined (1.5 to 9.2 µmol/L/hr).  The lack of correlation between transcript 

levels of other targets and chloroethene respiration at the highest PCE feeding rate was 

unexpected.  A possible explanation for this observation is that maximum per-cell 

transcription rates have been reached.  Alternatively, transcription of biosynthesis 

related genes might be prioritized at the expense of respiratory gene expression as 

cells sense an opportunity for increased rates of growth.  These hypotheses are hard to 

test given the relatively low predicted yield of DET, the short time scale of this study, 

and the previously discussed limitations in 16S rRNA gene quantitation.  Lastly, there 

may be an unknown toxicity effect related to high PCE respiration rates that represses 

the expression of these functional targets.  This seems unlikely as respiration of PCE 
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occurred steadily at 9.2 µmol/L/hr, and since pseudo-steady-state PCE concentrations 

remained low (20 nM) and steady.  Moreover, previous studies have shown that DET 

activity is not inhibited by VC or ethene concentrations observed here (35,42).    

RDase genes presumably reflect the substrate ranges of DHC organisms.  

However, for most putative RDases, little is known about their substrate specificity 

and transcriptional regulation.  Results here suggest that expression of individual 

RDase genes is tightly regulated and highly sensitive to cellular respiration activity 

and/or substrate concentration.  Previous studies have shown that transcription of the 

gene corresponding to TceA is induced by TCE + cDCE levels as low as 2 µM (24).  

Considering that PSS levels of TCE and cDCE in the 1.5 µmol/L/hr experiment were 

0.02 and 0.4 µM, respectively, this induction range can be extended downward.  

Overall, TceA transcripts were most abundant among RDases at respiration rates of 

2.5 to 9.2 µmol/L/hr.  However, at the lowest rate of 1.5 µmol/L/hr, where PSS 

chloroethene concentrations were also lowest (Table 3.1), DET1559 was the most 

abundant RDase transcript (Figure 3.3), suggesting that relative quantities of RDase 

transcripts can change even when substrate type remains the same.  Putative RDase 

DET1545, which has homologs in at least three other DHC strains (27,29,45), showed 

decreasing transcript levels as respiration rates increased from 2.5 to 9.2 µmol/L/hr 

(Figure 3.3; Figure A4.1), which is curious given the fact that it has no recognizable 

adjacent regulator (30).  Interestingly, in previous batch-fed studies (26), DET1545 

expression only increased above background after all measurable PCE had been 

consumed.  These data suggest that DET1545 expression is either repressed by one or 

more of the respirable chloroethenes or up-regulated during substrate-limiting 

conditions by some as-yet unknown cellular signaling mechanism.   

Challenges remain before these techniques can be confidently incorporated 

into remediation and modeling efforts at chloroethene-contaminated sites.  While PSS 
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concentrations of respirable chloroethenes studied here (~0.4 – 2.1 µM) may 

reasonably reflect values observed in contaminated groundwater (12,13,15), the rates 

of respiration in this highly enriched culture are much faster than what can be 

expected at field sites.  Studies with more dilute cultures and lower PCE loading rates 

are an important step in further development of these and other bioindicators.  As for 

the feasibility of mRNA detection in the field, specific Geobacteraceae mRNAs were 

detected in groundwater at levels between 7 and 200 transcripts per ng of total 

extracted RNA during biostimulation at a uranium-contaminated site (10).  Although 

detection of DHC transcripts in groundwater has not been reported, all mRNAs 

targeted in this study were found at concentrations greater than 500 transcripts per ng 

of total extracted RNA, supporting the possibility that methods used here could be 

adapted to field use. 

Continued improvements in our understanding of the cellular regulation of 

dehalorespiring DHC strains are needed, as are improved methodologies for the 

extraction and quantification of RNA and other microbial macromolecules from field 

environments.  Nevertheless, this study suggests that a variety of gene transcripts can 

serve as potential bioindicators of reductive dechlorination.  Because of the high 

abundance of 16S rRNA transcripts, even after 72 hours of starvation, and because 

rRNA is generally more stable than mRNA, it remains a good option for initial 

detection of potentially active dechlorinating populations.  Data presented here suggest 

that enzyme-encoding gene transcripts for Fdh, the H2ase Hup, and the RDases TceA, 

DET1559, PceA and DET1545 could potentially be used to assay more specific signs 

of activity.  Although the function of Fdh is not known, its high level of expression 

and conservation across observed DHC strains (29,46) could make it a good general 

indicator of dehalorespiration while RDases, particularly TceA, could serve as 

bioindicators of specific chloroethene conversion processes.  DET1559 and DET1545 
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may be reasonable choices as bioindicators when chloroethene concentrations and/or 

respiration rates are low.  However, until their substrate ranges are characterized, it is 

not possible to associate them with specific dehalorespiration processes.  Other gene 

targets such as those for VC-RDases VcrA (19,47) and BvcA (16,21), which are 

important functional gene transcripts in VC-respiring cultures, must also be studied.  

Assays capable of targeting multiple DHC strains and that incorporate many of these 

potential bioindicators are needed before an overall picture of the relationships 

between gene transcript levels and dehalorespiration can be elucidated. 

 

3.F. Acknowledgments 

We thank Jennifer Fung and Robert Morris for assistance with primer design, 

and Professors James Gossett and Stephen Zinder for helpful advice regarding 

experimental design.  We also thank Annette Rowe for help reviewing the manuscript, 

and three anonymous reviewers for their insightful comments.  This project was 

supported through a fellowship to BG Rahm from the Initiative for Future Agriculture 

and Food Systems Grant no. 2001-52104-11484 from the USDA Cooperative State 

Research, Education, and Extension Service, and also by the U.S. Department of 

Energy (DOE) Office of Cleanup Technologies and administered by the U.S. 

Department of Energy Savannah River (SR) Operations Office (Contract No. DE-

AC09-96SR18500), and is a product of the Monitored Natural Attenuation/Enhanced 

Attenuation for Chlorinated Solvents Technology Alternative Project.  



 

51 

REFERENCE 

 
1. Chartrand, M. M. G.; Morrill, P. L.; Lacrampe-Couloume, G.; 

SherwoodLollar, B. Stable isotope evidence for biodegradation of chlorinated 
ethenes at a fractured bedrock site. Environ. Sci. Technol. 2005, 39, 4848-
4856. 

 

2. Chen, G. Reductive dehalogenation of tetrachloroethylene by microorganisms: 
current knowledge and application strategies. Appl. Microbiol. Biot. 2004, 63, 
373-377. 

 

3. Löffler, F. E.; Tiedje, J. M.; Sanford, R. A. Fraction of electrons consumed in 
electron acceptor reduction and hydrogen thresholds as indicators of 
halorespiratory physiology. Appl. Environ. Microbiol. 1999, 65, 4049-4056. 

 

4. Newell, C. J.; Aziz, C. E. Long-term sustainability of reductive dechlorination 
reactions at chlorinated solvents sites. Biodegradation 2004, 15, 387-394. 

 

5. Song, D. L.; Conrad, M. E.; Sorenson, K. S.; Alvarez-Cohen, L. Stable carbon 
isotope fractionation during enhanced in situ bioremediation of trichloroethene. 
Environ. Sci. Technol. 2002, 36, 2262-2268. 

 

6. Yang, Y.; McCarty, P. L. Competition for hydrogen within a chlorinated 
solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 1998, 
32, 3591-3597. 

 

7. Alfreider, A.; Vogt, C.; Babel, W. Expression of chlorocatechol 1,2-
dioxygenase and chlorocatechol 2,3-dioxygenase genes in chlorobenzene-
contaminated subsurface samples. Appl. Environ. Microbiol. 2003, 69, 1372-
1376. 

 

 
 



 

52 

8. Fleming, J. T.; Sanseverino, J.; Sayler, G. S. Quantitative relationship between 
naphthalene catabolic gene frequency and expression in predicting PAH 
degradation in soils at town gas manufacturing sites. Environ. Sci. Technol. 
1993, 27, 1068-1074. 

 

9. Holmes, D. E.; Nevin, K. P.; Lovley, D. R. In situ expression of nifD in 
Geobacteraceae in subsurface sediments. Appl. Environ. Microbiol. 2004, 70, 
7251-7259. 

 

10. Holmes, D. E.; Nevin, K. P.; O'Neil, R. A.; Ward, J. E.; Adams, L. A.; 
Woodard, T. L.; Vrionis, H. A.; Lovley, D. R. Potential for quantifying 
expression of the Geobacteraceae citrate synthase gene to assess the activity of 
Geobacteraceae in the subsurface and on current-harvesting electrodes. Appl. 
Environ. Microbiol. 2005, 71, 6870-6877. 

 

11. Jeffrey, W. H.; Nazaret, S.; Barkay, T. Detection of the merA gene and its 
expression in the environment. Microbial Ecol. 1996, 32, 293-303. 

 

12. Lendvay, J. M.; Löffler, F. E.; Dollhopf, M.; Aiello, M. R.; Daniels, G.; 
Fathepure, B. Z.; Gebhard, M.; Heine, R.; Helton, R.; Shi, J.; Krajmalnik-
Brown, R.; Major, C. L.; Barcelona, M. J.; Petrovskis, E.; Hickey, R.; Tiedje, 
J. M.; Adriaens, P. Bioreactive barriers: a comparison of bioaugmentation and 
biostimulation for chlorinated solvent remediation. Environ. Sci. Technol. 
2003, 37, 1422-1431. 

 

13. Major, D.; McMaster, M.; Cox, E.; Edwards, E.; Dworatzek, S.; Hendrickson, 
E.; Starr, M.; Payne, J.; Buonamici, L. Field demonstration of successful 
bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. 
Environ. Sci. Technol. 2002, 36, 5106-5116. 

 

14. Nazaret, S.; Jeffrey, W. H.; Saouter, E.; Von Haven, R.; Barkay, T. merA gene 
expression in aquatic environments measured by mRNA production and Hg(II) 
volatilization. Appl. Environ. Microbiol. 1994, 60, 4059-4065. 

 

 



 

53 

15. Fennell, D. E.; Carroll, A. B.; Gossett, J. M.; Zinder, S. H. Assessment of 
indigenous reductive dechlorinating potential at a TCE-contaminated site using 
microcosms, polymerase chain reaction analysis, and site data. Environ. Sci. 
Technol. 2001, 35, 1830-1839. 

 

16. Krajmalnik-Brown, R.; Hölscher, T.; Thomson, I. N.; Saunders, F. M.; 
Ritalahti, K. M.; Löffler, F. E. Genetic identification of a putative vinyl 
chloride reductase in Dehalococcoides sp. strain BAV1. Appl. Environ. 
Microbiol. 2004, 70, 6347-6351. 

 

17. Hendrickson, E. R.; Payne, J. A.; Young, R. M.; Starr, M. G.; Perry, M. P.; 
Fahnestock, S.; Ellis, D. E.; Ebersole, R. C., Molecular analysis of 
Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites 
throughout North America and Europe. Appl. Environ. Microbiol. 2002, 68, 
485-495. 

 

18. Macbeth, T. W.; Cummings, D. E.; Spring, S.; Petzke, L. M.; Sorenson, K. S., 
Jr. Molecular characterization of a dechlorinating community resulting from in 
situ biostimulation in a trichloroethene-contaminated deep, fractured basalt 
aquifer and comparison to a derivative laboratory culture. Appl. Environ. 
Microbiol. 2004, 70, 7329-7341. 

 

19. Müller, J. A.; Rosner, B. M.; von Abendroth, G.; Meshulam-Simon, G.; 
McCarty, P. L.; Spormann, A. M. Molecular identification of the catabolic 
vinyl chloride reductase from Dehalococcoides sp. strain VS and its 
environmental distribution. Appl. Environ. Microbiol. 2004, 70, 4880-4888. 

 

20. Rahm, B. G.; Chauhan, S.; Holmes, V. F.; Macbeth, T. W.; Sorenson, K. S. J.; 
Alvarez-Cohen, L. Molecular characterization of microbial populations at two 
sites with differing reductive dechlorination abilities. Biodegradation 2006, 17, 
523-534. 

 

21. Ritalahti, K. M.; Amos, B. K.; Sung, Y.; Wu, Q.; Koenigsberg, S. S.; Loffler, 
F. E. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes 
simultaneously monitors multiple Dehalococcoides strains. Appl. Environ. 
Microbiol. 2006, 72, 2765-2774. 



 

54 

22. Fung, J. M.; Morris, R. M.; Adrian, L.; Zinder, S. H. Expression of reductive 
dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on 
tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl. Environ. 
Microbiol. 2007, 73, 4439-4445. 

 

23. Holmes, V. F.; He, J.; Lee, P. K. H.; Alvarez-Cohen, L. Discrimination of 
multiple Dehalococcoides strains in a trichloroethene enrichment by 
quantification of their reductive dehalogenase genes. Appl. Environ. Microbiol. 
2006, 72, 5877-5883. 

 

24. Johnson, D. R.; Lee, P. K. H.; Holmes, V. F.; Fortin, A. C.; Alvarez-Cohen, L. 
Transcriptional expression of the tceA gene in a Dehalococcoides-containing 
microbial enrichment. Appl. Environ. Microbiol. 2005, 71, 7145-7151. 

 

25. Lee, P. K. H.; Johnson, D. R.; Holmes, V. F.; He, J.; Alvarez-Cohen, L. 
Reductive dehalogenase gene expression as a biomarker for physiological 
activity of Dehalococcoides spp. Appl. Environ. Microbiol. 2006, 72, 6161-
6168. 

 

26. Rahm, B. G.; Morris, R. M.; Richardson, R. E. Temporal expression of 
respiratory genes in an enrichment culture containing Dehalococcoides 
ethenogenes. Appl. Environ. Microbiol. 2006, 72, 5486-5491. 

 

27. Waller, A. S.; Krajmalnik-Brown, R.; Loffler, F. E.; Edwards, E. A. Multiple 
reductive-dehalogenase-homologous genes are simultaneously transcribed 
during dechlorination by Dehalococcoides-containing cultures. Appl. Environ. 
Microbiol. 2005, 71, 8257-8264. 

 

28. Morris, R. M.; Sowell, S.; Barofsky, D.; Zinder, S.; Richardson, R. 
Transcription and mass-spectroscopic proteomic studies of electron transport 
oxidoreductases in Dehalococcoides ethenogenes. Environ. Microbiol. 2006, 8, 
1499-1509. 

 

 
 



 

55 

29. Kube, M.; Beck, A.; Zinder, S. H.; Kuhl, H.; Reinhardt, R.; Adrian, L. Genome 
sequence of the chlorinated compound-respiring bacterium Dehalococcoides 
species strain CBDB1. Nature 2005, 23, 1269-1273. 

 

30. Seshadri, R.; Adrian, L.; Fouts, D. E.; Eisen, J. A.; Phillippy, A. M.; Methe, B. 
A.; Ward, N. L.; Nelson, W. C.; Deboy, R. T.; Khouri, H. M.; Kolonay, J. F.; 
Dodson, R. J.; Daugherty, S. C.; Brinkac, L. M.; Sullivan, S. A.; Madupu, R.; 
Nelson, K. E.; Kang, K. H.; Impraim, M.; Tran, K.; Robinson, J. M.; 
Forberger, H. A.; Fraser, C. M.; Zinder, S. H.; Heidelberg, J. F. Genome 
sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. 
Science 2005, 307, 105-108. 

 

31. Adrian, L.; Hansen, S. K.; Fung, J. M.; Gorisch, H.; Zinder, S. H. Growth of 
Dehalococcoides strains with chlorophenols as electron acceptors. Environ. 
Sci. Technol. 2007, 41, 2318-2323. 

 
32. Jennings, L. K.; Warren, E. L.; Rahm, B.G.; Richardson, R. E. Using fosmid 

libraries to isolate and characterize large genomic fragments of 
Dehalococcoides populations in a highly enriched community which fully 
dehalogenates PCE to ethene. 2004, Abstracts of the 104th General Meeting of 
the American Society of Microbiology, New Orleans, LA. 

 
33. Lazar, B. J.; Morris, R. M.; Rahm, B. G.; Richardson, R. E. Improved 

detection of Dehalococcoides strains via confocal microscopy with FISH and 
spatial analysis of biofloc architecture in reductive dechlorinating mixed 
cultures. 2005, Abstracts of the 105th General Meeting of the American 
Society of Microbiology, Atlanta, GA. 

 

34. Fennell, D. E. Comparison of alternative hydrogen electron donors for 
anaerobic reductive dechlorination of tetrachloroethene. 1998, Ph.D. thesis, 
Cornell University, Ithaca, NY. 

 

35. Maymó-Gatell, X.; Tandoi, V.; Gossett, J.; Zinder, S. Characterization of an 
H2-utilizing enrichment culture that reductively dechlorinates 
tetrachloroethene to vinyl chloride and ethene in the absence of 
methanogenesis and acetogenesis. Appl. Environ. Microbiol. 1995, 61, 3928-
3933. 



 

56 

 

36. Fennell, D. E.; Gossett, J. M.; Zinder, S. H. Comparison of butyric acid, 
ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive 
dechlorination of tetrachloroethene. Environ. Sci. Technol. 1997, 31, 918-926. 

 
37. DiStefano, T.; Gossett, J.; Zinder, S. Hydrogen as an electron donor for 

dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. 
Environ. Microbiol. 1992, 58, 3622-3629. 

 

38. Johnson, D. R.; Lee, P. K. H.; Holmes, V. F.; Alvarez-Cohen, L. An internal 
reference technique for accurately quantifying specific mRNAs by real-time 
PCR with application to the tceA reductive dehalogenase gene. Appl. Environ. 
Microbiol. 2005, 71, 3866-3871. 

 

39. Peirson, S. N.; Butler, J. N.; Foster, R. G. Experimental validation of novel and 
conventional approaches to quantitative real-time PCR data analysis. Nucl. 
Acids Res. 2003, 31, e73. 

 

40. Magnuson, J. K.; Stern, R. V.; Gossett, J. M.; Zinder, S. H.; Burris, D. R. 
Reductive dechlorination of tetrachloroethene to ethene by a two-component 
enzyme pathway. Appl. Environ. Microbiol. 1998, 64, 1270-1275. 

 

41. Maymó-Gatell, X.; Chien, Y.; Gossett, J. M.; Zinder, S. H. Isolation of a 
bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 
1997, 276, 1568-1571. 

 

42. Maymó-Gatell, X.; Anguish, T.; Zinder, S. H. Reductive dechlorination of 
chlorinated ethenes and 1, 2-dichloroethane by "Dehalococcoides 
ethenogenes" 195. Appl. Environ. Microbiol. 1999, 65, 3108-3113. 

 
43. He, J.; Ritalahti, K.; Yang, K.; Koenigsberg, S.; Loffler, F. Detoxification of 

vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 
2003, 424, 62-65. 

 



 

57 

44. Cupples, A. M.; Spormann, A. M.; McCarty, P. L. Growth of a 
Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene 
as electron acceptors as determined by competitive PCR. Appl Environ 
Microbiol 2003, 69, 953-959. 

 

45. Hölscher, T.; Krajmalnik-Brown, R.; Ritalahti, K. M.; Wintzingerode, F. v.; 
Görisch, H.; Löffler, F. E.; Adrian, L. Multiple nonidentical reductive-
dehalogenase-homologous genes are common in Dehalococcoides. Appl. 
Environ. Microbiol. 2004, 70, 5290-5297. 

 

46. Morris, R. M.; Fung, J. M.; Rahm, B. G.; Zhang, S.; Freedman, D. L.; Zinder, 
S. H.; Richardson, R. E. Comparative proteomics of Dehalococcoides spp. 
reveals strain-specific peptides associated with activity. Appl. Environ. 
Microbiol. 2007, 73, 320-326. 

 

47. Cupples, A. M.; Spormann, A. M.; McCarty, P. L. Comparative evaluation of 
chloroethene dechlorination to ethene by Dehalococcoides-like 
microorganisms. Environ. Sci. Technol. 2004, 38, 4768-4774. 

 

48. Rahm, B. G.; Richardson, R. E. Relating Dehalococcoides' messenger RNA to 
chloroethene dechlorination rates. Proceedings of the Ninth International 
Symposium on In Situ and On-Site Bioremediation. 2007, Baltimore, M.D., 
Battelle Press. 

 

 

 

 

 

 
 
 

 



 

58 

CHAPTER 4 

Dehalococcoides’ Gene Transcripts as Quantitative Bioindicators of PCE, TCE and 

cDCE Dehalorespiration Rates: Trends and Limitations. * 

 

4.A. Abstract 

Gene transcripts corresponding to 16S rRNA, a putative formate 

dehydrogenase (Fdh), the hydrogenase (H2ase) Hup and reductive dehalogenases 

(RDases) TceA, PceA, DET1559 and DET1545 in Dehalococcoides ethenogenes 

strain 195 (DET) hold promise as potential bioindicators of the dehalorespiration of 

chlorinated ethenes.  Here, we present quantitative reverse-transcriptase PCR (qRT-

PCR) data taken from DET-containing mixed culture microcosms (4.4 x 108 DET 16S 

rRNA gene copies/mL) operated under continuous-feed conditions, with the aim of 

clarifying the relationship between potential bioindicator transcript abundance and 

respiration rate of various substrates, including tetrachloroethene (PCE), 

trichloroethene (TCE), and cis-1,2-dichloroethene (cDCE).  Results from PCE-fed 

microcosms respiring at very low rates showed that an induction threshold for 

transcription of some bioindicator genes exists between chloroethene respiration rates 

of 2.1 and 9.5 µeeq/L/hr.  Putative RDase genes DET1559 and DET1545, however, 

were up-regulated at low PCE respiration rates, suggesting that these enzymes may be 

functionally significant when substrate levels are low.  Data from microcosms in 

which the DET population was respiring PCE at its maximum kinetic rate indicated 

that high respiration rate was not necessarily associated with correspondingly high 

bioindicator transcript abundance.  From these microcosms operated at 30 °C we  

 
* Reproduced with permission from Environmental Science and Technology, 

submitted for publication.  Unpublished work copyright 2007 American 
Chemical Society. 
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calculated an approximate yield value of 1.6 x 108 16S rRNA gene copies (cells) per 

µmol Cl- released, and estimated a kmax of PCE respiration of 3 x 10-9 µmol Cl- per 

16S rRNA gene copy per day.  TCE- and cDCE-fed microcosm studies indicated that 

Fdh, Hup and TceA transcripts would all make suitable choices as bioindicators of 

activity for these substrates.  Hup transcripts could be positively correlated to 

respiration rate (between approximately 8 and 45 µeeq/L/hr), regardless of 

chloroethene substrate, with transcript levels predicted to increase by 1.8 x 109 

copies/mL culture for every µeeq/L/hr increase in respiration rate (R2 = 0.90).  While 

RDase transcripts may provide information on substrate range, H2ase transcripts may 

be better indicators of per cell respiration rates. 

 

4.B. Introduction 

Pure and mixed cultures containing Dehalococcoides ethenogenes strain 195 

(DET) have the ability to reductively dechlorinate halogenated organic compounds 

including chlorinated ethenes (1,2) and various chloroaromatics (3,4).  The 

dechlorinating capabilities of DET and other closely related Dehalococcoides strains 

have led to their usage in in situ bioremediation of chloroethene contaminants in 

groundwater (5-7).  Reduction of chloroethenes by Dehalococcoides has been shown 

to be mediated by a group of membrane-bound reductive dehalogenase enzymes 

(RDases) (8-10), while hydrogenase enzymes (H2ases) are likely involved in the 

stripping of electrons from H2, their only known electron donor (11,12).   

While many RDases have been identified in Dehalococcoides strains (10,13-

17), very little is known about their specific functions, their substrate ranges, or the 

regulatory networks that govern their expression.  In DET, RDases PceA and TceA 

have been shown to catalyze the reductions of tetrachloroethene (PCE) to 

trichloroethene (TCE) and TCE to ethene, respectively (8).  However, recent studies 
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have shown that transcripts of several other RDases, including DET1559 and 

DET1545, can be detected at relatively high levels in actively respiring cultures fed 

PCE (18,19).  Proteome characterization studies have also detected each of these 

proteins, PceA, TceA, DET1559 and DET1545 in mixed DET-containing cultures (20, 

J.J. Werner – unpublished results).  In general, data indicate that transcript abundance 

of individual RDases depends in part on substrate type and concentration, and that co-

transcription of multiple RDases is possible, even under single-substrate conditions 

(3,14,17,19,21-23).    

Despite the apparent complexity of RDase regulation and function, their 

specificity to phenotypes of interest – the degradation of chloroethenes – and their 

potentially high expression make them good candidates as bioindicators of 

dehalorespiration.  Here, a “bioindicator” is a biological molecule – in this case RNA 

– whose detection and quantity may reflect the substrate range and activity level of a 

DET population.  Several other DET RNA targets corresponding to 16S rRNA, a 

putative formate dehydrogenase (Fdh), and the membrane bound H2ase Hup also share 

these characteristics (18,19,24).  Assays of mRNA are being increasingly utilized to 

evaluate and predict microbial potentials and activities at contaminated field sites (25-

28).  Determining how measurements of these molecular bioindicators are related to 

phenotypic states remains a major challenge.     

In a previous study, we utilized a continuously fed mixed culture (D2) 

containing DET as its sole dechlorinating constituent (29,30) to explore the 

relationship between steady-state transcript levels of potential bioindicators and PCE 

respiration rates (19).  Results suggested that a predictive relationship exists between 

transcript levels of certain targets and PCE respiration rate, but that this relationship is 

only valid within a limited range of respiration rates.  The objectives of the present 

study are to further explore the relationship between transcription of bioindicator 
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targets and PCE respiration, both at very low rates that might describe conditions in 

groundwater containing dilute PCE-contaminants, and at very high rates that 

maximize the culture’s kinetic potential.  Additionally, we evaluate the transcription of 

bioindicators in D2 cultures continuously fed TCE or 1,2-cis-dichloroethene (cDCE).  

Data suggest that transcript abundance of each bioindicator gene target varies with 

respiration rate and that some bioindicators have a varied transcriptional response 

pattern when respiring different substrates. 

 

4.C. Materials and Methods 

4.C.1. Chemicals and analyses of chloroethenes 

Chloroethenes and solutions used during culturing procedures were purchased 

and used as previously described (18).  Gas chromatograph measurements were 

obtained by taking 100 µL headspace samples via gas-tight locking syringe, and were 

analyzed using a Perkin Elmer Autosystem gas chromatograph with a 1/8-inch by 8-ft 

stainless-steel column packed with 1% SP-1000 on 60/80 Carbopak B (Supelco, Inc.), 

and routed to a flame-ionization detector (31).   

 

4.C.2. Calculation of dehalorespiration rates 

In this study PCE was defined as having 8 electron equivalents per mole based 

on its respiration to VC and cometabolic conversion to ethene, while TCE, cDCE and 

VC were likewise defined as having 6, 4 and 2 electron equivalents per mole, 

respectively.  Therefore, the following equations were used where rPCE , rTCE  and rcDCE  

represent respiration rates (µeeq/L/hr) of PCE, TCE and cDCE, respectively.  

 

rPCE = 8
d(ethene)

dt
+ 6

d(VC)
dt

+ 4
d(cDCE)

dt
+ 2

d(TCE)
dt
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rTCE = 6
d(ethene)

dt
+ 4

d(VC)
dt

+ 2
d(cDCE)

dt
 

rcDCE = 4
d(ethene)

dt
+ 2

d(VC)
dt

 

 

4.C.3. Culture procedure  

The dehalorespiring enrichment culture D2, containing DET as its sole 

dechlorinator, was maintained as previously described (18), and was used as a source 

culture for all experiments.  The D2 culture was consistently starved for approximately 

72 hr prior to establishment of microcosms studied here.  Quantitative reverse-

transcriptase polymerase chain reaction (qRT-PCR) and gas chromatograph 

measurements were taken from triplicate 100 mL pseudo-steady-state (PSS) 

microcosms operated at 30ºC as previously described (19) with the following 

exceptions.  For low-rate PCE-fed microcosms (PCElow), filtered basal culture 

medium (32) containing approximately 410 µM dissolved PCE was delivered by 

syringe pump at a constant volumetric loading rate of 1.5 µL/min.  TCE- and cDCE-

fed microcosms were similarly given medium containing approximately 810 µM 

dissolved TCE and 1400 µM dissolved cDCE, respectively, by syringe pump at 

volumetric loading rates of 5, 10 and 20 µL/min.  In this way, similar volumetric 

loading rates of each substrate – including PCE experiments reported previously (19) 

– delivered comparable amounts of respirable electron equivalents regardless of 

substrate type.  For high-rate PCE-fed microcosms (PCEhigh), initial feeding rates 

(hours 1-5) failed to push the culture to its maximum kinetic potential as evidenced by 

a lack of detectable PCE build-up.  Therefore, starting at hour 5, PCEhigh microcosms 

were amended with 2 µL pulses of neat PCE every 3 hours, thereby keeping the 

aqueous PCE concentration above 13 µM at all times.  All microcosms were 
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administered initial pulse-feedings of vitamin solution (33), 20 mg yeast extract/liter 

of culture, and 44 µmoles butyric acid (with butyric acid defined as having 4 electron 

equivalents per mole based on its fermentation to 2 moles acetate and 2 moles H2 

rather than its oxidation to CO2).  Bottles were then held upside-down at a 45º angle 

over a magnetic stir plate and stirred vigorously.  Additional pulses of nutrients and 

butyric acid were amended as dictated by established feeding procedures (18).  Gas 

and liquid samples were extracted by syringe from a side port, as was waste liquid as 

needed to maintain steady culture volume (100 mL). 

 

4.C.4. Nucleic acid extraction and qRT-PCR analysis 

Liquid culture samples of 1 and 1.5 mL for DNA and RNA analyses, 

respectively, were taken from all microcosms prior to substrate addition and initiation 

of chloroethene feeding (time 0) and at selected times thereafter, and processed as 

previously described (18).  Procedures for treatment of RNA samples and cDNA 

synthesis have been reported previously (19).  Gene transcripts corresponding to 16S 

rRNA, the B subunit of RNA polymerase (RpoB), an annotated formate 

dehydrogenase (Fdh), a nickel-iron H2ase (Hup), TCE-RDase (TceA), PCE-RDase 

(PceA), and putative RDases DET1559 and DET1545 were measured using iQ SYBR 

Green Supermix (Bio-Rad) and an iCycler iQ multicolor real-time detection system 

(Bio-Rad) as previously described (18,19).  As before (19), transcript levels were 

determined with the help of Data Analysis for Real-time PCR (DART-PCR), available 

at http://www.gene-quantification.de/download.html#dart (34). 
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4.D. Results 

4.D.1. Transcriptional regulation at low PCE feeding rates 

Dehalorespiration in PCElow PSS reactors is illustrated in Figure 4.1A.  

Added PCE was respired at a steady rate of 2.1 ± 0.1 µeeq/L/hr (0.3 ± 0.0 µmol/L/hr) 

throughout the experiment (Table 4.1), which was well below our previously 

estimated threshold of 1 µmol/L/hr for the up-regulation of potential bioindicator 

transcripts in PSS cultures (19).  Figure 4.2 compares the average 6-18 hour transcript 

abundance of bioindicator targets to their average time-0 levels and indicates that 

transcript levels corresponding to 16S rRNA, RpoB, Fdh, Hup, TceA and PceA 

remained statistically unchanged, a result which was verified using two-tailed 

Student’s t-tests.  Transcript levels of RDases DET1559 and DET1545, however, 

increased by approximately 25 ± 4.8 (p-value = 0.00006) and 2.8 ± 0.4 (p-value = 

0.004) fold, respectively (Figure 4.2).  

 

4.D.2. Relationship between transcript abundance and respiration at high 

PCE loading rates 

Dehalorespiration in PCEhigh reactors is illustrated in Figure 4.1B.  The 

purpose of PCEhigh microcosms was to evaluate transcript levels under conditions of 

maximum PCE respiration rate.  Unlike other PSS trials, PCE concentrations were not 

allowed to equilibrate, but rather were maintained above 13 µM, forcing maximum 

kinetic rates on the DET population.  As a result, TCE and cDCE concentrations 

reached steady levels that were significantly higher in these microcosms than in others 

(Table 4.1).  After hour 5, GC data indicates that added PCE was steadily respired at a 

rate of 370 ± 5.9 µeeq/L/hr (64 ± 1.2 µmol/L/hr) (Table 4.1).  

The relationship between potential bioindicator transcript abundance and 

respiration rate in PCEhigh microcosms is summarized in Figure 4.3, and is shown in 
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Figure 4.1. Respiration in triplicate (A) PCElow and (B) PCEhigh microcosms. 
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Figure 4.2. Transcript abundance in PCElow microcosms respiring PCE at the rate 

of 2.1 ± 0.1 µeeq/L/hr (0.3 ± 0.0 µmol/L/hr).  Time-0 levels (after 72 h starvation), 

observed prior to addition of substrates, are compared to 6-18 hour average levels.  To 

maintain scale, 16S rRNA and Fdh transcript levels are divided by 50 and 10, 

respectively.  Error bars represent standard deviation of the mean of triplicate 

microcosms. 
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the context of other experiments performed here (PCElow) and in previous work (19).  

For each of the four RDases studied, 6-18 hour average transcript levels in PCEhigh 

cultures were either similar to (TceA & PceA) or lower than (DET1559 & DET1545) 

average transcript levels in previously studied cultures operated at the lower PCE 

respiration rate of 57 ± 3.2 µeeq/L/hr (9.2 ± 0.5 µmol/L//hr), suggesting RDase 

transcript abundance may plateau, or in some cases decrease, as respiration approaches 

maximum kinetic rates (Figure 4.3A).  Transcripts corresponding to Fdh were more 

abundant in PCEhigh cultures than in any previously studied PSS culture, although the 

relationship between transcript abundance and respiration rate does not appear to be 

linear over the whole range (Figure 4.3B).  16S rRNA was also more abundant in 

PCEhigh cultures than in previous trials, and the full time-course shows that 16S 

rRNA levels continue to increase throughout the experiment (Figure 4.4).  16S rRNA 

gene-copy measurements indicated an approximate 79% increase in DET population 

size in PCEhigh microcosms (data not shown).  However, given that many of the 

trends observed here occur over several orders of magnitude, this growth was 

determined to minimally affect measurements of transcript abundance.  

 

4.D.3. Bioindicator performance in TCE-fed PSS cultures 

Dehalorespiration in PSS reactors fed TCE at three different loading rates is 

illustrated in Figure 4.5A, with increasing loading rates leading to increasing 

dehalorespiration rates of 8.3 ± 0.5, 21 ± 2.1 and 45 ± 2.0 µeeq/L/hr (1.9 ± 0.1, 4.9 ± 

0.4 and 10 ± 0.4 µmol/L/hr) (Table 4.1).  In all TCE-fed microcosms, concentrations 

of TCE and cDCE reached steady levels that were either below detection (<30 nM) or 

very low (Table 4.1), indicating that TCE dechlorination kinetics were non-limiting.  

Average 6-18 hour transcript abundance for each potential bioindicator was 

significantly higher than time-0 levels at all three feeding rates (Figure 4.6A).  In  
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Figure 4.3. Relationship between PCE respiration rates and gene transcript levels 

of (A) RDases and (B) the H2ase Hup and Fdh in PCE-fed PSS microcosms.  Data are 

presented both from this and a previous study (19).  Error bars represent standard 

deviations of the mean of triplicate microcosms.  X-axis error bars are smaller than the 

symbols. 
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Figure 4.4. Abundance of 16S rRNA transcripts in PCE-fed microcosms over time.  

16S rRNA transcript levels increase over two orders of magnitude during the time-

course of PCEhigh experiments, while transcript levels in all other PCE-fed PSS 

microcosms remain relatively low and steady. Some data are reprinted from a previous 

report (19). 
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general, regardless of respiration rate, Fdh was observed to be the most abundant 

transcript overall, while TceA was consistently the most abundant RDase transcript.  

TceA transcript levels increased with increasing TCE respiration rate, and could be 

well-fit (R2: 1.00) with a linear model predicting an additional 1.0 x 109 copies/mL 

culture for each µeeq/L/hr increase in TCE respiration, compared to increases of 3.3 x 

109 copies/mL culture for each µeeq/L/hr increase in PCE respiration (within a similar 

respiration range [19]) (Figure 4.7A), while Fdh (R2: 0.95) and Hup (R2: 0.97) both 

increased by about 1.4 x 109 copies/mL culture for each µeeq/L/hr increase in TCE 

respiration rate (compared to 3.3 x 109 copies/mL culture during PCE respiration [19]) 

(Figure 4.7B).  The RDase PceA showed the opposite relationship, with transcript  

abundance decreasing linearly (R2: 0.99) with each successive increase in TCE 

respiration rate (Figure 4.7A).  16S rRNA was always relatively abundant, but did not 

correspond either positively or negatively to TCE respiration rates.  DET population 

size, determined by 16S rRNA gene quantification, remained statistically unchanged 

during the course of the experiments. 

 

4.D.4. Bioindicator performance in cDCE-fed PSS cultures 

Increasing loading rates of cDCE-containing media led to continuous 

dehalorespiration rates of 8.9 ± 0.1, 20 ± 0.9 and 43 ± 0.9 µeeq/L/hr (3.7 ± 0.1, 8.5 ± 

0.3 and 19 ± 0.3 µmol/L/hr) (Figure 4.5B; Table 4.1).  Concentrations of cDCE were 

observed to reach steady levels (Table 4.1), indicating that cDCE kinetics were non-

limiting.  Average 6-18 hour transcript abundance for each potential bioindicator 

isshown in Figure 4.6B.  Genes corresponding to Fdh, the H2ase Hup and the RDase 

TceA all show relatively high transcript levels; however, only Hup transcript 

abundance increased successively with increasing cDCE respiration rate and could be 

well-fit (R2: 0.97) with a linear model predicting an additional 1.6 x 109 copies/mL for  
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Figure 4.5. Respiration in triplicate (A) TCE-fed and (B) cDCE-fed microcosms. 
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Figure 4.6. Average bioindicator transcript levels during the period of pseudo-

steady-state (hours 6-18) in (A) TCE-fed and (B) cDCE-fed microcosms.  To maintain 

scale, 16S rRNA level is divided by 2.  Error bars represent standard deviations of the 

mean of triplicate microcosms. 
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Figure 4.7. Correlation between TCE respiration rate and average pseudo-steady-

state transcript abundance for (A) RDases TceA and PceA and (B) Fdh and the H2ase 

Hup in TCE-fed microcosms.  Error bars represent standard deviations of the mean of 

triplicate microcosms. 
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each µeeq/L/hr increase in cDCE respiration (data not shown).  TceA was consistently 

the most abundant RDase, followed each time by PceA.  For each RDase, abundance 

decreased significantly as cDCE respiration rate increased from 20 ± 0.9 to 43 ± 0.9 

µeeq/L/hr.  As with TCE-fed cultures, 16S rRNA was relatively abundant in cDCE-

fed microcosms, but did not correspond to cDCE respiration rates, and growth 

measured via 16S rRNA gene quantification was negligible. 

 

4.E. Discussion 

Given that DET relies on halogenated organic compounds and H2 for energy 

conservation, it is not surprising that RDase and H2ase enzymes are important 

components of this organism’s respiratory machinery and are transcriptionally 

regulated according to changes in substrate type and concentration.  Indeed, the 

genome sequence reveals transcriptional regulator genes in close proximity to 15 of 

the 19 annotated RDase genes (16), and other possible regulatory candidates have 

been suggested (21).  Nonetheless, how regulation of key respiratory genes is linked to 

aqueous substrate conditions and internal cell redox signals remains unknown.  

Previous work in PSS cultures respiring PCE at a rate of 9.5 µeeq/L/hr (1.5 

µmol/L/hr) demonstrated significant increases in chosen RDase transcript levels at 

TCE + cDCE concentrations of 390 nM (19), almost an order of magnitude lower than 

previously reported inducing chloroethene concentrations (22), and also suggested that 

a threshold for up-regulation may exist at approximately 1 µmol PCE respired per liter 

per hour (19).  GC data from PCElow microcosms studied here (Figure 4.1A) 

indicated that added PCE was steadily respired at a rate of 2.1 µeeq/L/hr (0.3 

µmol/L/hr), well below the predicted threshold for transcriptional up-regulation, while 

TCE + cDCE concentrations were below the limit of detection (<30 nM).  qRT-PCR 

data taken from these cultures indicate that only RDases DET1559 and DET1545 were  
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Figure 4.8. RDase DET1559 and DET1545 transcript levels in PCE-fed 

microcosms at 30 °C.  Filled circles indicate total measured RDase transcript 

abundance (made up of TceA, PceA, DET1559 and DET1545 transcripts).  Open 

squares represent the fraction of that total that is comprised of DET1559 and 

DET1545 transcripts at various PCE-respiration rates. 
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significantly up-regulated, while transcript levels of other targets remained at time-0 

levels (indicative of conditions after 72 hr starvation), suggesting that different genes 

have different regulatory thresholds, and supporting previous evidence that these 

RDases may play important roles when chloroethene concentrations and/or respiration 

rates are low (19).  To illustrate this point further, Figure 4.8 shows how RDases 

DET1559 and DET1545 make up a larger fraction of observed total RDase transcripts 

as PCE respiration rate decreases.  In microcosms respiring PCE at 2.1 µeeq/L/hr, 

DET1559 + DET1545 account for 82% of measured RDase transcripts, while at 370 

µeeq/L/hr, they drop to only 6%, the majority accounted for as TceA transcripts 

(78%).  What functional roles DET1559 and DET1545 play in chloroethene 

conversion remain unknown. 

The PCEhigh experiment pushed the DET population to respire PCE at 

maximum kinetic rates.  Previous results showed lack of correlation between transcript 

levels of most potential bioindicators and PCE respiration as rates rose to 57 µeeq/L/hr 

(9.2 µmol/L/hr), leading to various hypotheses: a maximum per-cell transcription rate 

had been reached, transcription of biosynthesis related genes are prioritized at the 

expense of respiratory genes as cells sense an opportunity for increased rates of 

growth, or some unknown toxicity effect related to high PCE respiration rate was 

repressing transcription (19).  PCE respiration rate in PCEhigh cultures reached 370 

µeeq/L/hr (64 µmol/L/hr), roughly 6.5 times higher than in previously studied PSS 

cultures (19), effectively ruling out the toxicity hypothesis.  During PCEhigh trials, 

however, 6-18 hour average transcript abundance of all four RDases was similar to, or 

lower than, abundance observed in microcosms respiring PCE at 57 µeeq/L/hr (9.2 

µmol/L/hr) (Figure 4.3).  While both Fdh and Hup transcripts were more abundant in 

PCEhigh cultures by factors of roughly 2.5 and 1.5, respectively, only the increase in 

Fdh transcript level was statistically significant.  Furthermore, the higher Fdh and Hup 
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transcript levels were modest relative to the increase in respiration rate, suggesting that 

the slope and/or form of the correlation curves are not constant over the whole range 

of respiration rates studied.  Interestingly, data from PCEhigh cultures indicated a 

significant increase in 16S rRNA level as the experiment proceeded (Figure 4.4).  

Although some increase in 16S rRNA abundance was expected due to the 79% 

increase in DET population, the modest growth observed cannot by itself account for 

the two orders of magnitude change in ribosome content.  This suggests that the 

observed transcriptional “plateau” of functional RDase targets did not represent a 

limitation in per-cell transcription rates, but rather may have been due to a shift in 

transcription prioritization.  It is also possible that 16S rRNA abundance became the 

controlling factor in translation of new RDase proteins at these higher respiration 

rates.  Alternatively, or perhaps concomitant with this possibility, the controlling 

mechanism may be related to the regulation of protein stability.  

A Dehalococcoides population’s ability to respire chloroethenes at a given rate 

is dependent on its cell density.  Microcosms studied here contain a relatively dense 

DET population (4.4 ± 1.2 x 108 cells/mL on average).  While such high cell densities 

allowed us to operate these microcosms over a wide range of respiration rates, they 

also meant that accurate measures of growth would require very high respiration rates 

or experiment times.  Growth observed in PCEhigh cultures at 30˚C, amounting to a 

79% increase in DET abundance, allowed us to calculate an approximate yield of 1.6 x 

108 16S rRNA gene copies (cells) per µmol Cl- released (between PCE & VC), a value 

in between those found for Dehalococcoides strain CBDB1 grown at 29-32˚C on 2,3-

dichlorophenol and other substrates (7.6 x 107 cells per µmol Cl- released) (3), and 

strain KB1 grown at room temperature on cDCE and TCE (about 3.6 x 108 16S rRNA 

gene copies per µmol Cl- released) (35,36), and about one-third the value found for 

bacterium VS grown at 20˚C on VC (5.2 x 108 16S rRNA gene copies per µmol Cl- 
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released) (37).  Also, given the evidence that PCEhigh cultures were operating at their 

maximum kinetic potential, we estimated a kmax for PCE respiration of about 3 x 10-9 

µmol Cl- per 16S rRNA gene copy per day.  This value is about 4-fold greater than 

that reported for bacterium VS grown on VC (8 x 10-10 µmol Cl- per 16S rRNA gene 

copy per day) (37). 

Due to their high overall abundance and linear responses to changes in TCE 

respiration rate (within the range studied), Fdh, Hup and TceA targets, all of which 

made reasonable choices as bioindicators in PCE-fed cultures (19), are also candidates 

for bioindicators in TCE-fed cultures.  Data for the RDase PceA suggested that 

cultures fed increasing amounts of TCE maintained lower steady-state levels of this 

transcript, thus making it unsuitable for use as a bioindicator when TCE is the most 

highly chlorinated substrate.  Unlike in PCE-fed cultures, DET1559 was never the 

most abundant RDase transcript in any TCE-fed cultures, and its usefulness as a 

bioindicator under these conditions is questionable.  DET1545 transcripts were found 

in relatively high numbers at the lowest TCE feeding rate, three-fold higher than in 

PCE-fed cultures respiring at comparable rates on an eeq basis (at the lowest feeding 

rate only).  Thus, DET1545, which has homologs in most other studied 

Dehalococcoides strains, may be a viable bioindicator in TCE-fed cultures when the 

respiration rate is low.  

With the exception of PceA, trends in the transcript abundance of many 

bioindicators were similar in both PCE- and TCE-fed cultures: Fdh, Hup, TceA and 

DET1559 transcript abundance tended to increase with increasing respiration rate 

(within a limited range) while DET1545 decreased.  Transcript levels in cDCE-fed 

cultures, however, did not follow these trends so clearly.  No RDase transcript, for 

example, increased monotonically with cDCE respiration rate.  Only the H2ase Hup 

showed increased transcript abundance with successive increases in cDCE respiration.    
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Figure 4.9. Dehalorespiration rates on all substrates (within the range of 

approximately 8 and 45 µeeq/L/hr), and average pseudo-steady-state transcript 

abundance of the H2ase Hup in PCE-, TCE- and cDCE-fed cultures.  Error bars 

represent standard deviations of the mean of triplicate microcosms.  Portions of this 

data have been presented previously (19). 
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Interestingly, Hup seemed to respond similarly regardless of substrate, and a general 

relationship between chloroethene respiration and Hup transcript level could be 

described in which an additional 1.8 x 109 copies/mL culture are transcribed per 

µeeq/L/hr increase in respiration rate (between approximately 8 and 45 µeeq/L/hr) 

(Figure 4.9).  This is an interesting result since provision of electron donor in all PSS 

cultures was presumed to supply a steady, non-limiting source of H2 (PH2 ≥  1 x 10-5 

atm) (31).  Experiments in microcosms under conditions of higher H2 partial pressures 

and also in H2 limited cultures will be useful for determining the signals controlling 

H2ase regulation.  

High overall expression of the H2ase Hup and its linear response to increases in 

cDCE respiration rate made it the only bioindicator candidate with diagnostic and 

predictive potential in cDCE-fed cultures.  Despite their high levels, the lack of a good 

linear correlation between Fdh and TceA transcripts and cDCE respiration rate over 

the observed range prevents their use as rate-predictive bioindicators when cDCE is 

the key substrate.  RDases PceA, DET1559, and DET1545, while detectable, were 

never the most abundant RDases found nor were their transcript levels proportional to 

cDCE respiration rates.  Thus, these RDases do not seem ideal as bioindicators of 

cDCE respiration.  

Interpretation of results presented here, and their application to phenotypes 

desired in field environments, is complicated by several factors.  For example, there is 

not necessarily a direct relationship between transcript abundance and in situ 

concentration of functional enzyme.  RDase and H2ase enzyme concentration within 

active DET cells depends on protein translation rates, the cell’s ability to properly fold 

and transport these enzymes to their functional destination in the periplasmic 

membrane space, and individual protein decay rates, factors which were beyond the 

scope of the current study.  Moreover, the introduction of different substrates such as 
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TCE and cDCE to a culture accustomed to growth on PCE may create different 

patterns of transcriptional induction, the exact causes of which are currently poorly 

understood.  More work is needed to define the causal relationships underpinning 

respiratory function and transcriptional regulation in DET and other Dehalococcoides 

strains.  Despite these limitations, the current study provided new insight into how 

transcription of potential bioindicators is influenced by substrate type and respiration 

rate.  Furthermore, data suggest that while RDase bioindicators may supply more 

specific information about what type of substrate is being dechlorinated, it may be 

H2ase levels that more accurately reflect the instantaneous respiration activity of DET 

cells. 
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CHAPTER 5 

A Discussion of Results and Remaining Questions 

 

5.A. Reiteration of Research Goals 

The aim of this research was to gain insight into the transcription of genes 

employed during the process of anaerobic dehalorespiration in Dehalococcoides 

ethenogenes strain 195 by combining analytical observation of the reductively 

dechlorinating mixed culture D2 with DET molecular biological data.  Specific 

research goals, as given in Chapter 1, are reiterated below. 

1. Identify specific DET gene transcripts that might be used as bioindicators of 

reductive dechlorination 

2. Determine how chosen bioindicators are expressed under typical mixed culture 

conditions 

3. Determine how changes in substrate concentration, substrate type and 

operational reactor conditions affect bioindicator expression 

4. Relate bioindicator expression under various conditions to protein abundance 

and cellular respiration rates  

 

5.B. Summary of Findings 

An initial list of DET genes potentially important in reductive dechlorination 

was assembled based on the annotated DET genome (1) and on qRT-PCR (2) and 

proteomic (3) analyses in both pure and mixed cultures.  Preliminary screening of 

batch, PCE-fed D2 microcosms revealed that only a subset of these potentially 

important genes showed significant up-regulation relative to time-zero expression 

levels.  Among these, the most highly expressed bioindicators were gene transcripts 

reflecting general levels of cellular activity, including 16S rRNA, RpoB and ATPase, 
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as well as transcripts corresponding to genes of known or putative respiratory 

function, including a putative Fdh, H2ases Hup and Vhu, and RDases TceA, PceA, 

DET1559, DET1545 and DET0162.  Other putative respiratory genes, including the 

H2ase Hym as well as oxidoreductases Nuo and Mod, were up-regulated, but to a 

lesser extent. 

 In PCE-fed microcosms operated in typical batch fashion, temporal variability 

of bioindicator gene transcript levels was observed, particularly for RDases.  Most 

targets were significantly up-regulated within 2 h of batch addition of substrates, and 

profiles of transcript levels over time indicated group-specific regulation.  H2ase (Hup 

and Vhu) and Fdh transcripts were observed to reach their maximum levels between 4 

and 13 h after substrate addition and remained at relatively constant levels throughout 

24 h.  RDase transcripts (TceA, PceA, DET1559, DET1545 and DET0162), on the 

other hand, reached maximum levels between 11 and 24 h, and displayed an increased 

variability in individual RDase expression.  The cause of this temporal discrepancy 

between maximal expression of H2ases and RDases, which presumably work in 

concert to gain energy from the respiration of H2 and chloroethenes, remains unclear.

 Substrate variations were also observed to affect transcription of bioindicator 

genes.  Data from batch-fed microcosms in which either PCE or butyrate was omitted 

from the medium indicated that neither substrate alone was able to induce significant 

up-regulation of gene expression (Appendix II).  Rather, transcriptional regulation 

appeared to depend on a more complex signal indicative of growth-supporting 

conditions.  Although some up-regulation of bioindicator transcription was observed 

in microcosms lacking butyrate, the transcriptional response was relatively weak and 

temporally late, and was likely due to H2 released via endogenous decay of mixed 

culture biomass. 
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Results from PCE-fed PSS microcosms indicated that steady-state transcript 

levels had been achieved in individual reactors and that transcriptional regulation of 

bioindicator genes was sensitive to chloroethene respiration rates and/or 

concentrations.  After a brief response period (<6 hours) transcript abundance in PSS 

microcosms generally did not change over time for any given experiment, regardless 

of the gene target.  This result was not surprising since the PSS reactor system was 

setup to stabilize transcript levels at steady-state concentrations.  Comparison across 

experiments showed that abundance of gene transcripts corresponding to Fdh, Hup, 

TceA, PceA, and DET1559 increased with successive increases in PCE respiration 

rate within a certain range (1.5 – 4.8 µmol/L/hr), and could be well-fit with a linear 

regression.  However, at relatively high PCE respiration rates, including rates in 

kinetically limited cultures, transcript levels were observed to plateau, and in some 

cases decline, relative to levels observed in microcosms respiring at lower rates.  

These results indicate that some factor other than transcript level controls high rates of 

respiration.  High levels of 16S rRNA in these microcosms suggest that activity may 

be regulated by ribosome content and/or translational kinetics.  The abundance of 

DET1545 gene transcripts tended to decrease with each successive increase in PCE 

respiration rate.  At very low respiration rates, the DET population did not 

significantly up-regulate the transcription of many bioindicator genes relative to time-

0 levels (indicative of 72 h starvation), suggesting that some threshold may exist 

below which a DET population of this size does not actively respond.  Interestingly, 

transcription of DET1559 and DET1545 genes were actively up-regulated even at 

these low levels of respiration, implying that enzymes corresponding to these genes 

may play important roles in reductive dechlorination when substrate concentrations 

are low.  
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PSS microcosms fed alternate substrates TCE and cDCE provided additional 

evidence that substrate type and concentration can affect bioindicator gene transcript 

levels.  As in PCE-fed microcosms (within a range of respiration rates), abundance of 

gene transcripts corresponding to Fdh, Hup, and TceA increased with successive 

increases in TCE respiration rate (between 1.9 and 10 µmol/L/hr), and could be well-

fit with a linear regression.  In cDCE-fed microcosms, however, trends were not so 

clear.  Although the abundance of Fdh and TceA gene transcripts was always 

relatively high, they could not be well correlated to cDCE respiration rates (between 

3.7 and 19 µmol/L/hr).  Only Hup gene transcript abundance could be positively 

correlated with cDCE respiration rate within this range.   

 Results from PSS microcosm studies generally supported previous substrate 

range characterizations of RDases PceA and TceA.  The RDase PceA had been shown 

to catalyze the reduction of PCE to TCE (2,4).  This was supported by data from PCE-

fed PSS microcosms in which transcript levels of the gene corresponding to PceA 

were relatively high and showed positive correlation with increasing PCE respiration 

rate within a certain range.  Conversely, PceA gene transcript abundance in TCE-fed 

microcosms was relatively low and showed a negative correlation to increasing TCE 

respiration.  Gene transcripts for TceA, however, were relatively abundant in all PSS 

microcosms, and showed a positive correlation with increasing PCE and TCE 

respiration, supporting the claim that TceA catalyzes the reduction of both TCE and 

cDCE (4,5).  RDase gene DET1559 showed similar transcript levels regardless of 

substrate respired, while transcription of DET1545 seemed to decrease with increasing 

respiration rate regardless of substrate.  While both DET1559 and DET1545 tended to 

be more highly transcribed under conditions of low respiration, neither could be 

associated with the respiration of any specific chloroethenes.   
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5.C. Unanswered and Newly Discovered Questions 

Initial studies in batch PCE-fed microcosms suggested that transcription of 

functionally related groups of bioindicator genes, such as H2ases and RDases, were 

regulated differently from each other.  It was later determined that neither electron 

donor nor acceptor alone could cause up-regulation of transcription.  Work both here 

and elsewhere (2,6) has shown that some RDase genes are regulated in response to 

substrate type, but the presence of substrate alone does not seem to be enough.  More 

research is needed in order to understand the environmental signals triggering these 

variable transcriptional responses, and the basis for group-specific regulation.  

 Later studies performed in PSS PCE-fed reactors demonstrated that the 

abundance of several bioindicator gene transcripts increased linearly with increasing 

PCE respiration rate within a certain range, but that higher rates of PCE respiration did 

not lead to correspondingly higher transcript levels.  One possible hypothesis for the 

lack of apparent up-regulation at high respiration rates was that transcription of 

biosynthesis related genes was prioritized at the expense of respiratory gene 

transcription.  Indeed, endpoint PCR followed by gel electrophoresis of cDNA 

corresponding to the ftsA gene, which has been shown to be involved in cell division 

in other organisms (7,8), qualitatively suggested that transcription increases 

successively with increasing PCE respiration rate, even at high rates (H. Fullerton, 

unpublished results).  Additional studies on the transcription of a broader range of 

gene targets, including genes known or thought to participate in growth-related 

pathways, would help to evaluate this hypothesis.  Microarray and proteomic 

techniques would help to identify the physiological differences between DET 

populations respiring PCE at rates above the linear range identified here.  An 

evaluation of transcript and protein decay rates is also essential for accurately relating 

information from diverse macromolecule pools.  
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 PSS PCE-fed microcosms respiring PCE at very low levels indicated that a 

respiration threshold exists for up-regulation of many chosen bioindicators.  

Interestingly, RDase genes DET1559 and DET1545 were up-regulated at these low 

respiration rates, even while other RDases were not, suggesting that their 

corresponding proteins may play important roles in reductive dechlorination when 

substrate concentrations are low.  However, more research is needed to confirm this 

transcriptional threshold, and to clarify the roles of DET1559 and DET1545 in 

chloroethene respiration.  Since inferring the substrate ranges of these RDases via data 

on transcript abundance has proven difficult, it may be necessary to purify these 

proteins and characterize them separately, as Magnuson et al. did for TceA and PceA 

(4,5).  How the DET population was able to reductively dechlorinate PCE at low rates, 

despite the lack of up-regulation of many RDase genes, was not specifically 

determined.  It is possible that the “standing crop” of RDase enzymes – carried over 

from the previous period of activity - was sufficiently large to reduce the substrate 

available.  Better characterization of this standing crop, including its relationship to 

previous activity levels, is needed in order to clarify these results.   

Studies in TCE- and cDCE-fed PSS microcosms yielded results that were in 

agreement with previous research on the characteristics of TceA and PceA mediated 

reductive dechlorination, but did not give any clear evidence about the substrate 

ranges of DET1559 or DET1545.  Fung et al (2007) examined the transcription of all 

putative RDase genes in DET pure culture grown on TCE (2).  However, nothing is 

known about the transcription of DET’s full complement of RDase genes in cultures 

grown on cDCE.  Expression studies in microcosms given cDCE and other 

halogenated organic compounds, including VC, chlorobenzenes and others, might 

enhance our ability to define specific RDase substrate ranges. 

  



 

95 

Much additional research is needed before the goals of this study are realized 

in a practical and meaningful way.  Proteomics experiments are needed in order to 

address the relationship between bioindicator transcript levels and cellular enzyme 

concentrations, as well as to understand the effects of protein decay and translation 

kinetics on the regulation of enzyme pools.  While initial proteomic studies suggest 

that relative protein levels change in agreement with bioindicator transcript abundance 

(J. Werner, unpublished results), these data need to be replicated and expanded to 

include additional experimental conditions.  Also, data similar to that reported here for 

the D2 mixed culture should be collected from other culture environments, including 

the DET pure culture and other pure and mixed cultures with similar dechlorinating 

phenotypes.  Useful translation of these results to complex field environments will 

require a robust understanding of various Dehalococcoides organisms.  Lastly, 

interpretation of data presented here requires the elucidation of the specific functions 

of Fdh, DET1559 and DET1545.  

 

5.D. A Brief Discussion of Methods: Advantages and Limitations 

In these studies, conclusions rely heavily on RNA based assays, and it is 

worthwhile to recognize the advantages and limitations of such an approach.  As 

discussed throughout this work, RNA was chosen as a bioindicator molecule for 

several reasons: specificity, accuracy, and ease of quantification.  Here, chosen RNA 

bioindicators are specific to reductive dehchlorination activity and are not abundant 

unless conditions are favorable for growth on chloroethenes.  Many of these 

bioindicators are also accurate assays of activity under some conditions, which is to 

say their abundance can be correlated to the respiration rate of one or more 

chloroethene substrates.  Lastly, the relatively high transcript abundance of 

bioindicators under conditions examined here makes them easy to acquire using 
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current RNA isolation methods, while the wide range of transcript abundance of 

bioindicators under various conditions is readily differentiated using qRT-PCR 

techniques.   

 DNA assays, too, have their advantages.  Relative to RNA, DNA is more 

resistant to degradation.  Also, DNA extraction and quantification protocols are 

relatively simple and avoid reverse-transcription steps that can be variably inefficient. 

However, while detection of bioindicator genes via DNA confirms presence of DET 

and indicates the potential for reductive dechlorination, it does not reflect activity.  

Furthermore, since gene copy numbers do not change except in the case of DET 

population growth – a relatively slow process – there is little opportunity to observe 

the potentially dynamic relationship between chloroethene degradation and cellular 

metabolic regulation.  DNA, therefore, was not a primary candidate for use as a 

bioindicator. 

 Theoretically, protein assays are the most direct way of measuring activity.  

DNA encodes the information needed to produce a functional enzyme, and RNA 

converts this information into an accessible blueprint, but neither molecule – in most 

cases – is endowed with a function that leads to a recognizable phenotype.  Enzymatic 

proteins are the functional molecules of the cell and are specific for the reactions they 

catalyze.  Their concentration, depending on the kinetics of a given reaction, may be 

directly proportional to activity rate.  Despite these attractive characteristics, the 

extraction, detection and quantification of proteins remains difficult.  It was for this 

reason that protein was not chosen as the primary bioindicator molecule in these 

studies.  

 Having established RNA as the bioindicator molecule of choice for these 

studies, it still must be stressed that making inferences about cellular activity based on 

RNA data alone is problematic.  To begin with, gene expression profiles may be 
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altered by procedures such as cell pelleting and storage (9).  Given that the half-life of 

TceA transcripts has been determined to be around 5 h (10), it is unlikely that these 

relatively quick procedures make a significant impact on bioindicator expression 

levels.  Still, the recovery of an accurate and representative RNA sample remains a 

concern.  Assuming that RNA has been extracted faithfully, making conclusions about 

specific enzymatic functions and activities remains tenuous.  Transcripts 

corresponding to the DET0162 RDase gene were found in high abundance in batch 

PCE-fed microcosms; however, due to a point mutation, predicted DET0162 peptides 

were never detected in shotgun proteomic assays (3,11).  Transcript abundance is not 

necessarily related to transcription rate or translation rate.  Several unrelated species 

have all been shown to exhibit widely variable mRNA decay rates that are generally 

inversely proportional to mRNA abundance (9,12,13).  This implies that identification 

of “important” gene transcripts on the basis of high abundance is misleading, and may 

not accurately reflect the translation process.  Bioindicator transcripts found at 

relatively low levels, therefore, such as DET1559 and DET1545, may be among the 

most stable mRNAs, possibly supporting their role under basal metabolic and/or 

starvation conditions.  Highly stable transcripts may also require longer time periods 

to reach steady-state concentrations, a possible explanation for the similar transcript 

abundance of DET1559 during PSS experiments under conditions of various PCE 

loading rates.  

 Despite the difficulties associated with protein extraction and detection 

mentioned above, a number of studies have recently stressed the need to combine 

RNA assays with proteomic techniques in order to gain an accurate understanding of 

cellular gene networks (14).  In part, this is because the quantitative link between 

levels of mRNA and protein is not straightforward due to varying protein degradation 

rates and post-translational regulation strategies (15).  In fact, there is now evidence 
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that mRNA and protein levels do not necessarily correspond to each other (16,17).  

Additional reasons for this include limitations in ribosome concentration, competition 

for tRNA, and constraints on the kinetics of translation (17).      

 

5.E. Future Work: Context and Suggestions 

Future experiments utilizing PSS microcosms can help resolve many of the 

questions posed above.  In particular, microcosms amended with various substrates, 

including chloroethenes/ethanes, bromoethenes/ethanes, DCP and PCB electron 

acceptors, and H2, butyrate, methanol and lactate electron donors, should help to 

define the substrate ranges and behaviors of various bioindicators.  Experiments with 

even lower PCE loading rates, lower temperatures, and more dilute starting cell 

densities may more accurately reflect field environments in which DET populations 

and chloroethenes are less concentrated than in the enrichment D2 culture used for 

these studies.  Also, as mentioned above, repeating these tests using different 

Dehalococcoides strains should show whether bioindicators studied here have 

homologs with similar transcriptional profiles, and will also help to identify and 

characterize other gene targets that may be important in other organisms.  Ultimately, 

it will be important to apply these RNA assays to field samples and to combine them 

with estimates of field-observed chloroethene degradation rates.      

Bringing together analytical data describing culture conditions, available 

substrates, intermediates, and products, along with molecular biological data 

describing DNA, RNA and protein concentrations, transcription thresholds and 

possible patterns of regulation, necessitates a systems biology framework.  Work 

described here would most accurately fall into what Bernhard Palsson termed “step 1” 

of the systems biology paradigm (18): an enumeration of observed macromolecules 

under a variety of conditions that will hopefully lead to a reconstruction of the DET 
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biochemical reaction network.  Additional experiments outlined above will help to 

continue this process. 

 High-throughput methodologies are critically important in the continued 

development of this systems biology foundation.  qRT-PCR techniques, which have 

been used for the work presented here, are valuable for the study of relatively small 

groups of RNA targets under a limited range of conditions.  Results are relatively 

quick and easy to obtain, and generally do not require elaborate validation or 

explanation.  However, techniques utilizing microarrays and proteomic approaches 

have the ability to yield far more data, and are also recommended tools for 

incorporation into future research.  Preliminary results using a Dehalococcoides-

specific microarray, for example, were able to delineate and partially characterize a 

cobalamin (vitamin B12) regulon in DET (19), and also described the up-regulation of 

many genes, including RDases, H2ases, and ABC transporters in cultures reductively 

dechlorinating TCE (20).  Proteomic techniques, as discussed before, have been able 

to confirm the presence of many bioindicator peptides in D2 cultures respiring PCE, 

and have also been used to identify additional peptides of interest, such as one 

tentatively thought to represent the S-layer protein (3).  Current studies already 

underway should provide insight into protein decay half-lives and the correlation 

between bioindicator transcript abundance and protein abundance in PCE-, TCE- and 

cDCE-fed PSS microcosms.  As information via high-throughput technologies such as 

microarrays and proteomics becomes easier, more reliable and cheaper, results 

obtained through these methodologies will continue to support and drive PSS 

microcosm and other studies. 

 It is hoped that a more detailed understanding of the expression of bioindicator 

targets in Dehalococcoides organisms will lead to accurate diagnostic assays of 

microbial activities at field sites contaminated with halogenated organic compounds.  
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Experiments described here have furthered this aim by identifying and partially 

characterizing the expression of several potential bioindicators in DET under a variety 

of conditions.  Future work utilizing similar methods in combination with high-

throughput techniques such as microarrays and proteomic assays will expand this 

research.  All together, a more robust knowledge of bioindicator gene networks will 

allow engineers to more skillfully manipulate the microbial populations that are 

responsible for desirable remediation outcomes. 
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APPENDIX I 

Comparison of Bioindicator Transcript Levels in D1 and D2 Cultures 

 

Transcript abundance of potential bioindicator genes in both of the mixed 

communities currently being maintained (D1 and D2) was evaluated in order to assess 

possible similarities and differences between the two dechlorinating populations.  

Transcript levels presented here for the D2 culture represent independent 

measurements from those reported in Chapter 2 under similar conditions.  The D1 and 

D2 cultures were operated in parallel, and were treated identically as outlined in 

Chapter 2.  Sampling procedures and processing, gas chromatograph analyses, and 

qRT-PCR were also performed as described in Chapter 2. 

  Dechlorination profiles of the D1 and D2 cultures are provided in Figure A1.1, 

and illustrate typical behavior.  Added PCE was degraded sequentially to TCE, cDCE, 

VC and finally ethene.  In both cultures, PCE persisted until about hour 10; TCE and 

cDCE were transiently observed at low concentrations until hour 4; VC production 

occurred rapidly until about hour 8, at which point it began to slow; ethene formation 

continued more or less steadily throughout the experiment. 

Results of qRT-PCR analyses are summarized in Figure A1.2.  Detailed 

timecourses of each target studied, which include genes for RpoB, ATPase, Fdh, the 

H2ases Hup and Vhu, and the RDases TceA, DET0162, DET1559, and DET0318, are 

provided as well (Figure A1.3).  Relative to that of the RpoB gene, which was used as 

an indicator of general DET activty, transcription levels of the Fdh, Hup, TceA and 

DET0162 genes were high in both cultures, while ATPase, which was also considered 

a general activity indicator, was transcribed just above levels of the RpoB gene.  The 

Vhu gene transcript was found at comparable levels to the RpoB transcript in each 
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Figure A1.1. Dechlorination profiles in D1 and D2 enrichment cultures amended 

with approximately 11 µmoles PCE. 
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Figure A1.2. Transcript level of each target in D1 and D2 cultures relative to that for 

the RpoB gene (data presented are averages of values from 1 to 12 h after PCE 

feeding). 
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culture.  Interestingly, D1 was found to contain relatively high levels of the RDase 

DET1559 compared to D2, while the opposite was true for the RDase DET0318.   

Since the D1 and D2 cultures behave phenotypically similar with respect to the 

reductive dechlorination of PCE, it is not surprising that a comparison of their 

transcriptional profiles would yield many similarities.  Indeed, transcript levels of 

genes for RpoB, ATPase, Fdh, Hup, Vhu, TceA and DET0162 are similar in both 

cultures and agree with other independent observations of the D2 culture (Chapter 2).  

Curiously, this data set indicates that the RDases DET1559 and DET0318 can be 

differentially expressed, raising the possibility that these two cultures contain very 

similar dechlorinating populations that utilize different combinations of RDase 

enzymes to achieve the same goal.  However, data taken from D2 subcultures shown 

in Chapter 2 indicate a higher level of transcription for the DET1559 gene, which 

agrees more closely with the level observed in the D1 culture here.  As a result, the 

idea that the D1 and D2 cultures express their RDases differently should be treated 

with some skepticism.  More work, particularly with the D1 culture, is needed to 

verify such claims. 
 

 

 

 

 

 

 

 

 



 

108 

 

 

Figure A1.3. Transcript abundance timecourses for each target in D1 and D2 

cultures.  Data presented has been normalized according to luciferase reference target 

recovery, a procedure that helps to control for mRNA losses during sample 

preparation and inefficiencies in reverse transcription. 
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APPENDIX II 

Bioindicator Expression in Amendment Microcosms 

 

Amendment subcultures were established to determine what contribution each 

substrate, PCE and butyric acid, may have on expression of bioindicator targets.  

Additionally, a subculture amended with a half-dose of PCE was established to 

determine the effect of substrate concentration on expression levels.  100 mL 

amendment subcultures were established in 160 mL serum bottles and were fed either 

PCE (3 µmoles for the “PCE only” bottle), 44 µmoles butyric acid (“butyrate only”), 

or both (3 and 1.5 µmoles PCE for the “PCE+butyrate” and “PCE/2+butyrate” bottles, 

respectively).  Additionally, all bottles were fed a vitamin mixture and 20 mg yeast 

extract/liter of culture.  Sampling procedures and gas chromatograph measurements 

were performed as outlined in Chapter 2.  qRT-PCR was also carried out as described 

in Chapter 2, except that luciferase reference RNA was not included in the analyses.  

As a result, transcript levels were not corrected for mRNA losses incurred during 

sample processing and cDNA synthesis, and are reported in arbitrary abundance units.  

Reductive dechlorination of added PCE in amendment subcultures is shown in 

Figure A2.1.  In the “PCE+butyrate” bottle, TCE was detected within 2 h, and added 

PCE was dechlorinated to VC and ethene within 10 h.  VC concentration reached a 

maximum of 36 µmol/L around hour 7, at which point it was slowly converted to 

ethene.  Similar trends were observed in the “PCE/2+butyrate” bottle where added 

PCE was dechlorinated to VC and ethene within 9 h.  In the “PCE only” bottle, added 

PCE (30 µmol/L) was dechlorinated slowly to a final concentration of 19 µmol/L, 

while TCE concentration steadily increased to 4 µmol/L.  cDCE and VC 

concentrations never rose above 1 µmol/L, and no ethene was detected.  

Dechlorination was still occurring when the experiment ended.  In the absence of 
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Figure A2.1. Dechlorination profiles of amendment subcultures.  The 

“PCE+butyrate” and “PCE/2+butyrate” bottles shows degradation of all PCE, TCE 

and cDCE within 10 h, followed by the slow conversion of VC to ethene.  The “PCE 

only” bottle shows modest PCE degradation with corresponding TCE accumulation, 

with negligible production of VC and ethene. 
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butyrate, dechlorination observed in the “PCE only” bottle was probably due to the 

generation of hydrogen via endogenous decay of biomass.  No chloroethenes were 

detected in the “butyrate only” bottle.  

To determine whether both electron acceptor and donor were required for 

expression of bioindicators, qRT-PCR data were taken from amendment subcultures 

over the course of 12 h.  Figure A2.2 summarizes this data, and detailed timecourses 

of expression are provided in Figure A2.3 and A2.4.  Generally, transcript levels were 

highest in cultures amended with both PCE and butyrate.  Furthermore, while 

respirable chloroethenes (PCE, TCE, cDCE) were largely depleted by hour 6.5 and 4 

in the “PCE+butyrate” and “PCE/2+butyrate” bottle, respectively, elevated levels of 

many transcripts continued until at least hour 12 when the experiment was terminated.  

Transcript levels in the “PCE only” bottle were generally low.  However, levels of 

some transcripts, particularly for certain RDase genes, rose an order of magnitude or 

more above time 0 levels, although this increase was not observed until hour 6.5, 

indicating relatively late up-regulation.  The late and reduced onset of RDase 

transcription increases in the “PCE only” bottle compared to bottles receiving PCE 

and butyrate, together with the lack of observable up-regulation of H2ase targets (with 

the exception of Vhu) supports the suggestion that PCE degradation in this bottle was 

due to hydrogen produced by endogenous decay.  In the “butyrate only” bottle, 

expression of transcripts never increased above time 0 levels. 
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Figure A2.2. Average transcript abundance in amendment subcultures from 4 to 12 h 

(data from 0 to 4 h was excluded since transcription in all subcultures appeared to lag 

at time zero levels until 4 hours after amendment addition).  Expression data is shown 

for (A) the housekeeper gene RpoB, ATPase, the oxidoreductase Nuo, the gene 

annotated as Fdh, and the H2ases Hup, Vhu, Ech and HycE, as well as for (B) the 

RDase genes TceA, DET0162, DET0318, DET1559 and DET0173. 
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Figure A2.3. Timecourses of housekeeper, respiration associated and hydrogenase 

gene transcript abundance in amendment cultures. 
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Figure A2.4. Timecourses of reductive dehalogenase gene transcript abundance in 

amendment cultures. 
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APPENDIX III 

Supporting Timecourses for Chapter 2 
 

 

 

Figure A3.1. Timecourses of transcript abundance in triplicate D2 subcultures batch-

fed PCE as described and summarized in Chapter 2.  Data for gene transcripts, 

including RpoB, ATPase, 16S rRNA, Fdh and the H2ases Hup and Vhu are presented 

normalized to luciferase reference RNA recovery in order to correct for mRNA losses 

incurred during sample processing and cDNA synthesis.  Error bars represent standard 

deviations of triplicate cultures. 
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Figure A3.2. Timecourses of transcript abundance in triplicate D2 subcultures batch-

fed PCE as described and summarized in Chapter 2.  Data for gene transcripts, 

including RDases TceA, DET0162, DET1545, DET0318 and DET1559 are presented 

normalized to luciferase reference RNA recovery in order to correct for mRNA losses 

incurred during sample processing and cDNA synthesis.  Error bars represent standard 

deviations of triplicate cultures. 
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APPENDIX IV 

Supporting Timecourses for Chapter 3 
 

 

 

 

 

 

 

Figure A4.1. Expression profiles of 16S rRNA and remaining functional transcripts 

over time.  Hours 6 – 18 are identified as pseudo-steady-state.  Error bars represent 

standard deviation of the mean of triplicate microcosms. 
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APPENDIX V 

Supporting Timecourses for Chapter 4 

 

Figure A5.1. Expression profiles of bioindicator transcripts in PCElow microcosms 

respiring PCE at the rate of 2.1 ± 0.1 µeeq/L/hr (0.3 µmol/L/hr).  Time-0 samples 

reflect culture conditions after 72 hours of starvation.  Hours 6 – 18 are identified as 

pseudo-steady-state.  Error bars represent standard deviation of the mean of triplicate 

microcosms. 
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Figure A5.2. Expression profiles of bioindicator transcripts in PCEhigh microcosms 

respiring PCE at the rate of 370 ± 5.9 µeeq/L/hr (64 µmol/L/hr).  Hours 6 – 18 are 

identified as pseudo-steady-state.  Error bars represent standard deviation of the mean 

of triplicate microcosms. 
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Figure A5.3. Expression profiles of genes corresponding to (A) 16S rRNA, RpoB, 

Fdh and Hup and (B) RDases TceA, DET1559, PceA and DET1545 in TCE-fed 

microcosms respiring TCE at the rates of 8.3 ± 0.5, 21 ± 2.1 and 45 ± 2 µeeq/L/hr 

(1.9, 4.9 and 10 µmol/L/hr).  Hours 6 – 18 are identified as pseudo-steady-state.  Error 

bars represent standard deviation of the mean of triplicate microcosms. 
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A) 
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Figure A5.4. Expression profiles of genes corresponding to (A) 16S rRNA, RpoB, 

Fdh and Hup and (B) RDases TceA, DET1559, PceA and DET1545 in cDCE-fed 

microcosms respiring cDCE at the rates of 8.9 ± 0.1, 20 ± 0.9 and 43 ± 0.9 µeeq/L/hr 

(3.7, 8.5 and 19 µmol/L/hr).  Hours 6 – 18 are identified as pseudo-steady-state.  Error 

bars represent standard deviation of the mean of triplicate microcosms. 
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