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Abstract. We attempt to bring some modest unity to three subareas of heavy tail analysis and extreme
value theory:
• limit laws for componentwise maxima of iid random variables;
• hidden regular variation and asymptotic independence;
• conditioned limit laws when one component of a random vector is extreme.

The common theme is multivariate regular variation on a cone and the three cases cited come from specifying
the cones [−∞,∞]d \ {0}; (0,∞]d; and [0,∞]× (0,∞].
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1. Introduction

Several problems in extreme value theory and heavy tail analysis have as their core idea standard multivari-
ate regular variation on a cone. Choosing different cones yields somewhat different theories and applications
but the common thread is that all of the problems have a reduction to regular variation of multivariate
distributions on a particular cone. We consider the following three cones, labelled C, and the associated
three theories and application areas.

Cone Application

C = [0,∞] \ {0} multivariate extreme value theory

C = (0,∞] hidden regular variation,
coefficient of tail dependence;

C = [0,∞]× (0,∞] Conditioned limit theorems when
one component is extreme.

Table 1. Three theories stemming from standard multivariate regular variation on three
different cones.

1.1. Background. Now we rapidly survey several mathematical subjects which are heavily used throughout.
More detail is available in Bingham et al. (1987), de Haan and Ferreira (2006), de Haan (1970), Feller (1971),
Geluk and de Haan (1987), Resnick (2006, 1987), Seneta (1976).

1.1.1. Univariate regularly varying functions.

Definition 1. A function U : R+ 7→ R+ is regularly varying with index ρ ∈ R, if for x > 0 we have

(1.1) lim
t→∞

U(tx)/U(t) = xρ

When (1.1) holds, we write U ∈ RVρ. The quantity ρ is called the index or exponent of regular variation.
If ρ = 0, we call U slowly varying so that

lim
t→∞

U(tx)/U(t) = 1, x > 0 .

If U ∈ RVρ then L(x) := U(x)/xρ ∈ RV0, since

L(tx)
L(x)

=
U(tx)/xρtρ

U(t)/tρ
→ xρ/xρ = 1 .

So one can always represent U ∈ RVρ as U(x) = xρL(x).
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Example 1. Consider the following examples to fix ideas.
(1) The canonical regularly varying functions are power functions U(x) = xρ ∈ RVρ for x > 0 and ρ ∈ R.
(2) The canonical slowly varying function is log(1 + x) ∈ RV0.
(3) If limx→∞ U(x) = U(∞) exists finite, then U ∈ RV0. So for instance, every probability distribution

function is slowly varying at ∞.
(4) If X is a Pareto random variable with distribution F so that

1− F (x) =: F̄ (x) = x−α, x ≥ 1, α > 0,

then F̄ ∈ RV−α.
(5) If X has the Frechet extreme value distribution Φα(x) = e−x−α

, then

P [X > x] = Φ̄α(x) = 1− e−x−α ∼ x−α x →∞.

Therefore 1− Φα ∈ RV−α.
(6) The Stable law with index α ∈ (0, 2) has regularly varying tail probabilities which are regularly

varying with index −α.
(7) The Cauchy density is of the form

F ′(x) =
1

π(1 + x2)
∼ x−2, x →∞.

Therefore the Cauchy distribution tail F̄ satisfies F̄ (x) ∈ RV−1.

Suppose F is a distribution with a regularly varying tail, meaning that F̄ ∈ RV−α, for some α > 0. It is
common to abuse language and say that X has a regularly varying tail.

Now consider two apparent weakenings of the regular variation definition (1.1)

Lemma 1. (i) If U : R+ 7→ R+ is measurable and

lim
t→∞

U(tx
U(t)

= h(x), x > 0,

(or for x in some dense subset of (0,∞)). Then

h(x) = xρ,

same ρ ∈ R, and U ∈ RVρ.
(ii) Suppose U is monotone. Then U ∈ RVρ, for some ρ ∈ R, iff there exist λn ∼ λn+1 and there exist

bn →∞ such that

(1.2) λnU(bnx) → h(x) > 0,

where the limit h is finite, and then h(x)/h(1) = xρ.

Proof. (i) One the one hand, for x, y > 0

(1.3)
U(txy)
U(t)

→ h(xy)

and on the other hand,

(1.4)
U(txy)
U(t)

=
U(tx · y)
U(tx)

· U(tx)
U(t)

→ h(y)h(x).

Therefore
h(xy) = h(x)h(y)

which implies that h must be a power function. See, for example, Bingham et al. (1987), de Haan (1970),
Feller (1971), Resnick (1987), Seneta (1976).

(ii) Suppose that U is regularly varying and non-decreasing. Set λn = n and

(1.5) bn = U←(n) = inf{s : U(s) ≥ n} .
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Then
U(bnx)

n
∼ U(bnx)

U(bn)
→ xρ .

Conversely, suppose U is non-decreasing and λnU(bnx) → h(x). Let

n(t) = inf{m : bm+1 > t}.
so that bn(t) ≤ t < bn(t)+1. Then, as t →∞,

(1.6)
U(tx)
U(t)

≤ λn(t)+1U(bn(t)+1x)
λn(t)U(bn(t))

· λn(t)

λn(t)+1
→ h(x)

h(1)
· 1 .

A lower bound is obtained in a similar fashion. ¤

Here is a list of useful properties of regularly varying functions.
(1) The defining property of regular variation

lim
t→∞

U(tx)
U(t)

= xρ, ρ ∈ R, x > 0,

holds locally uniformly for x ∈ (0,∞). If ρ > 0, the convergence is uniform on compact intervals of
(b,∞) for b > 0. If ρ < 0, uniform convergence holds on intervals of the form [b,∞), b > 0.

(2) Integration and Karamata’s theorem. Suppose U is regularly varying with representation U(x) =
xρL(x). The slowly varying function L behaves like constant with respect to integration. If ρ ≥ −1
and U ∈ RVρ, then ∫ x

0

ρ(s)ds ∈ RVρ+1,

and as x →∞, ∫ x

0

U(s)ds ∼ 1
1 + ρ

xU(x).

If ρ < −1 or ρ = −1 and
∫∞

x
U(s)ds < ∞, then

∫ ∞

x

U(s)ds ∈ RVρ+1,

and as x →∞, ∫ ∞

x

U(s)ds ∼ 1
−(1 + ρ)

xU(x).

Converses for these results also exist.
As an example, consider the standard Cauchy density F ′(x),

F ′(x) =
1

π(1 + x2)
, x ∈ R.

Then as x →∞, F ′(x) ∼ 1
π x−2, and from Karamata’s theorem

F̄ (x) := 1− F (x) ∼ 1
π

x−1, (x →∞).

(3) Karamata Representation theorem: The function L ∈ RV0 iff

(1.7) L(x) = c(x) exp{
∫ x

1

ε(s)
s

ds},

with
lim

s→∞
ε(s) = 0, and lim

x→∞
c(x) = c0 ∈ (0,∞).

Furthermore, a function U(x) satisfies U ∈ RVρ iff

(1.8) U(x) = c(x) exp{
∫ x

1

ρ(s)
s

ds} ,
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with
lim

t→∞
ρ(t) = ρ and lim

x→∞
c(x) = c0 ∈ (0,∞).

Statement (1.8) follows straightforwardly from (1.7). To see why a function with representation
(1.7) must be slowly varying, observe that

L(tx)
L(t)

=
c(tx)
c(t)

exp{
∫ tx

t

ε(s)
s

ds} =
c(tx)
c(t)

exp{
∫ x

1

ε(ts)
ds

s
}

and that for t large

−ε log x ≤
∫ x

1

ε(ts)
ds

s
≤ ε

∫ x

1

ds

s
= ε log x .

So for fixed x: ∫ x

1

ε(ts)
ds

s
→ 0 and

L(tx)
L(t)

→ 1.

For the converse, note that

b(x) =
xL(x)∫ x

0
L(s)ds

→ 1,

and set ε(x) = b(x) − 1 → 0 and the result may then be verified. See, for example, Resnick (2006,
page 29).

(4) Regular variation and differentiation: Suppose U : R+ 7→ R is absolutely continuous with density
u(x) so that

U(x) =
∫ x

0

u(s)ds.

(a) (Von Mises) If

(1.9) lim
x→∞

xu(x)
U(x)

= ρ,

then U ∈ RVρ which follows from Karamata’s theorem.
b) If U ∈ RVρ, and u is monotone, then (1.9) holds and if ρ 6= 0 then |u| ∈ RVρ−1.

(5) If U is non-decreasing and U ∈ RVρ, with ρ > 0, then U← ∈ RV1/ρ.
(6) Smooth versions of regularly varying functions: If U ∈ RVρ with ρ 6= 0, then there exists a function

U∗ satisfying U(x) ∼ U∗(x) as x →∞ and U∗ is absolutely continuous and strictly monotone.
(7) Suppose U ∈ RVρ. If ρ > 0, then U(x) →∞ and if ρ < 0, then U(x) → 0. In fact

log U(x)/ log x → ρ.

See, for example, Resnick (2006, page 48).

1.1.2. Vague convergence. Suppose (E, E) is a nice space (that is, locally compact with countable base). We
set

M+(E) = {all Radon measures on E}.
So µ ∈ M+(E), means that µ is a measure on E and µ(K) < ∞ for all compact sets K ∈ E . Denote

C+
K(E) : {f : f : E→ R+, fcontinuous with compact support}.

If µn, µ ∈ M+(E) then µn
v→ µ if for any f ∈ C+

K(E),

µn(f) :=
∫

E
fdµn →

∫

E
fdµ =: µ(f).

An equivalent formulation is that µn(G) → µ(G), for any relatively compact G ∈ E with µ(∂G) = 0, where
∂G is the boundary of G. See Daley and Vere-Jones (2003), Kallenberg (1983), Neveu (1977), Resnick (2006,
1987).

The following is from Resnick (1987) and Resnick (2006, page 62).
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Theorem 1. Regular variation of distribution function tails in dimension d = 1: Suppose X ≥ 0 is a random
variable with distribution function F and set F̄ (x) = 1− F (x) = P [X > x]. The following are equivalent:

(i) F̄ ∈ RV−α, α > 0.
(ii) There exists bn →∞ such that

nF̄ (bnx) → x−α, x > 0.

(iii) There exists bn →∞ such that

(1.10) µn(·) = nP [
X

bn
∈ · ] v→ να(·),

in M+(0,∞], where να ∈ M+(0,∞] satisfies να(x,∞] = x−α, for x > 0.

Remark 1. (a) We can always set

(1.11) b(t) =
( 1

1− F

)←
(t) = F←(1− 1

t
),

which we call the quantile function and then define bn = b(n).
(b) Note the use of the unusual state space (0,∞], which is a one point uncompactification of the

compact set [0,∞]. See Resnick (2006, page 170). This topology makes neighborhoods of∞ relatively
compact. This is required because vague convergence only controls behavior of measures on relatively
compact sets and (x,∞] is a natural set when dealing with right tail problems.

Proof. (i) ↔ (ii): This was done in Lemma 1.
(iii) → (ii): If µn → να, then να is atomless and

nP [X > bnx] = nF̄ (bnx) = µn(x,∞] → να(x,∞] = x−α

which gives (ii).
(ii) → (iii): We must show

µn(f) = nEf(
X

bn
) → να(f), ∀ f ∈ C+

K(0,∞].

Note f has compact support which we may suppose is a subset of (δ,∞] for some δ > 0. Define

Pn(·) =
µn|(δ,∞](·)
µn(δ,∞]

where the numerator is the restriction of µn to (δ,∞]; this makes Pn a probability measure on (δ,∞]. For
y > δ, we have

Pn(y,∞] → y−α

δ−α
= P∞(δ,∞].

Since f is bounded and continuous on (δ,∞], we have from weak convergence of probability measures that

Pn(f) =
µn(f)

µn(δ,∞]
→ P∞(f) =

να(f)
δ−α

which entails µn(f) → να(f) as required. ¤

1.1.3. Inversion. A useful technique is to translate a variation property of a family of monotone functions to
a corresponding family of function inverses using the following simple result. See Billingsley (1995), de Haan
(1970), Resnick (1987).

Proposition 1. If Hn, n ≥ 0 are non-decreasing functions on R with range (a, b) and as n →∞,

Hn(x) → H0(x),

for all continuity points of H0, then
H←

n (t) → H←
0 (t)

for all t ∈ (a, b) which are continuity points of H←
0 .



MULTIVARIATE REGULAR VARIATION 7

1.2. Notation and symbol glossary. Here we review conventions and use of symbols.

1.2.1. Vector notation. Vectors are denoted by bold letters, capitals for random vectors and lower case for
non-random vectors. For example: x = (x(1), . . . , x(d)) ∈ Rd. Operations between vectors should always be
interpreted componentwise so that for two vectors x and z

x < z means x(i) < z(i), i = 1, . . . , d, x ≤ z means x(i) ≤ z(i), i = 1, . . . , d,

x = z means x(i) = z(i), i = 1, . . . , d, zx = (z(1)x(1), . . . , z(d)x(d)),

x ∨ z = (x(1) ∨ z(1), . . . , x(d) ∨ z(d)),
x

z
=

(x(1)

z(1)
, . . . ,

x(d)

z(d)

)
,

and so on. Also, if
α = (α(1), . . . , α(d)) ≥ 0,

we write for x ≥ 0
xα =

(
(x(1))α(1)

, . . . , (x(d))α(d))
.

Further, we define

0 = (0, . . . , 0), 1 = (1, . . . , 1), ∞ = (∞, . . . ,∞), ei = (0, . . . , 1, . . . , 0),

where in ei the ”1” occurs in the ith spot. For a real number c, write as usual cx = (cx(1), . . . , cx(d)). We
denote the rectangles (or the higher dimensional intervals) by

[a, b] = {x ∈ Rd : a ≤ x ≤ b}.
Higher dimensional rectangles with one or both endpoints open are defined analogously, for example,

(a, b] = {x ∈ Rd : a < x ≤ b}.
To fix ideas, suppose for now that E = [0,∞] \ {0}. Complements are taken with respect to E, so that

for x > 0,

[0, x]c = E \ [0, x] = {y ∈ E :
d∨

i=1

y(i)

x(i)
> 1}.

1.2.2. Symbol and concept list. Here is a glossary of miscellaneous symbols and terminology used throughout.

RVρ The class of regularly varying functions on [0,∞) with index ρ ∈ R.

D[0,∞) The Skorokhod space of real-valued càdlàg functions on [0,∞)
equipped with the J1-topology.

D([0,∞),Rd)) The Skorokhod space of Rd-valued càdlàg functions on [0,∞)
equipped with the J1-topology.

εx The probability measure consisting of all mass at x.

f← The left continuous inverse of a non-decreasing function f defined by
f←(x) = inf{y : f(y) ≥ x}.

Leb Lebesgue measure.

E Often [0,∞]d \ {0} or [−∞, ∞] \ {−∞}.
Radon Adjective applied to a measure to indicate the measure is finite on relatively compact sets.
v→ Vague convergence of measures.

M+(E) The space of non-negative Radon measures on E.

Mp(E) The space of Radon point measures on E.

να A measure on (0,∞] given by να(x,∞] = x−α, α > 0, x > 0.
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PRM(µ) Poisson random measure on E with mean measure µ.

⇒ Convergence in distribution.

b(t) Usually the quantile function of a distribution function F (x),
defined by b(t) = F←(1− 1

t ) but usage can vary somewhat by context.

2. Multivariate regular variation

Suppose C is a cone in Rd, d ≥ 1 so that

x ∈ C implies tx ∈ C, ∀t > 0.

We assume that 1 ∈ C. A function h : C → R+ is regularly varying at ∞ with limit function λ(x) > 0, if
for all x ∈ C,

(2.1) lim
t→∞

h(tx)
h(t1)

= λ(x) > 0 , x ∈ C .

For more details, see de Haan and Ferreira (2006), Resnick (2006).
We now consider an immediate implication: Fix x ∈ C and define

U(t) = h(tx) , t > 0 .

Then U ∈ RVρ for some ρ ∈ R, since by Lemma 1,

lim
t→∞

U(ts)
U(t)

= lim
t→∞

h(tsx)
h(tx)

= lim
t→∞

h(tsx)
h(t1)

h(t1)
h(tx)

=
λ(sx)
λ(x)

= sρ(x) .

Fact: The exponent does not depend on x (see Resnick (2006, page 169) and therefore the limit function λ
is homogeneous:

(2.2) λ(sx) = sρλ(x).

2.1. The polar coordinate transform. Let ‖ · ‖ be a norm on Rd and denote the unit sphere of Rd in
this norm by

ℵ = {x ∈ Rd : ‖x‖ = 1}.
Define

T : Rd \ {0} 7→ (0,∞)× ℵ
by

(2.3) T (x) =
(
‖x‖, x

‖x‖
)

=: (r,a) .

The inverse map T← : (0,∞)× ℵ 7→ Rd \ {0} yields

T←(r,a) = ra .

Note we do not define T for x = 0 or if x has infinite components.

2.2. The one (or more) point uncompactification. The one point uncompactification identifies the
compact sets in a compact space modified by the removal of one point. It is based on the following simple
result. (See Resnick (2006, page 170).)

Proposition 2. Let (X, T ) be a topological space with open sets T . From X, chop away D to get

X] = X \ D = X ∩ DC

with relative topology

(2.4) T ] = T ∩ DC = T ∩ X] .

Then the compact sets of X] are

(2.5) K(X]) = {K ∈ K(X) : K ∩ D = φ} .
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So the compact sets in the new, modified space are the original compact sets prior to modification,
provided they miss the deleted set D.

Example 2. Here are some examples of modified spaces that have been useful.

(1) (0,∞] = [0,∞] \ {0} has compacta which are closed in [0,∞] and do not contain 0.
(2) [0,∞]d \ {0} = [0, ∞] \ {0} has compacta which are compact in [0,∞]d and do not contain {0}. We

informally refer to such sets as bounded away from 0.
(3) (0,∞]d = [0,∞]d \ ∪d

i=1{tei, t ≥ 0}, where

ei = (0, . . . 0, 1, 0, . . . 0).

The compacta of this compact set modified by removal of the axes are closed subsets of [0,∞]d not
touching the axes. We refer to such sets as being neighborhoods of ∞.

(4) [0,∞]× (0,∞] = [0,∞]2 \{t(1, 0), t > 0}. The compact sets are closed subsets of [0,∞]2 not touching
the horizontal axis.

(5) (0,∞]× ℵ+, where ℵ+ = {x ≥ 0 : ‖x‖ = 1}.
2.3. Multivariate regular variation of tail probabilities. We characterize regular variation of tail
probabilities on the cone C = [0, ∞] \ {0}. Suppose Z ≥ 0 is a random vector on with distribution F
concentrating on [0,∞). The following are equivalent but the symbols (ν, b(·), bn may differ slightly in each
instance.

(1) There exists a Radon measure on C called ν such that

(2.6) lim
t→∞

1− F (tx)
1− F (t1)

= lim
t→∞

P [t−1Z ∈ [0,x]c]
P

[
t−1Z ∈ [0,1]c

] = ν([0, x]c),

for all x ∈ [0,∞) \ {0} which are continuity points of the limit ν([0, · ]c).
(2) There exist b(t) →∞ and a Radon measure ν on C such that

(2.7) P [Z/b(t) ∈ · ] v→ ν(·), t →∞, in M+(C).

(3) There exist bn →∞, and a Radon measure ν on C such that in M+(C),

nP [Z/bn ∈ · ] v→ ν(·), n →∞.

(4) Let ℵ+ = ℵ ∩ [0,∞]d. Then there exist a probability measure S(·) on Borel subsets of ℵ+ called the
angular measure, and a function b(t) →∞ such that with

(R,Θ) =
(
‖Z‖, Z

‖Z‖
)

we have

(2.8) tP [
( R

b(t)
,Θ

)
∈ · ] v→ cνα × S

in M+

(
(0,∞]× ℵ+

)
or, equivalently,

(2.9) nP [
( R

bn
,Θ

)
∈ · ] v→ cνα × S .

The standard proofs are in Resnick (2006, page 173).
We will need several extensions of the definition of multivariate regular variation given in (2.6), (2.7),

or (2.8). We should consider other cones besides [0,∞] \ {0}. We should consider what happens if the
components of Z not normalized by the same scaling function b(t). And finally, we should assess methods
for analyzing dependence structure and how to statistically estimate such dependence.
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2.4. Some remarks on cones. Let C̄ be a closed compact cone in [−∞,∞]d with 0 ∈ C̄. Suppose

C := C̄ \ ({0} ∪ D)

is still a cone. Compact subsets of C are the compact sets of C̄ not touching 0 or D. The distribution of Z
is regularly varying on C if there exists a scaling function b(t) →∞, and a limit Radon measure ν ∈ M+(C)
such that

tP [
Z

b(t)
∈ · ] → ν(·), in M+(C) .

Example 3. Consider the following examples.

Cone D

1. C = [−∞,∞]d \ {0} D = ∅
2. C = (0,∞]2 D = (0,∞]× {0} ∪ {0} × (0,∞]

3. C = [0,∞]× (0,∞] D = (0,∞]× {0}
Table 2. Three cones which are used for various applications.

Note that “Radon” means something different for each example since the notion of compact is different
for each example. For instance:

• In the first cone, ν{x : ‖x‖ > 1} < ∞.
• Relative to the second cone, ν{x > 0 : ‖x‖ > 1} is not necessarily finite.
• For the third cone in the table, ν{(x, y) : ‖(x, y)‖ > 1} is also not necessarily finite.

Example 4. Consider d = 1 and suppose C = [−∞,∞] \ {0}. Suppose Z is a random variable with
distribution F and suppose F has a regularly varying tail. There is no mass at {±∞} and regular variation
means

(2.10) tP [Z/b(t) ∈ · ] → ν(·) in M+

(
[−∞,∞] \ {0}

)
.

This implies that

(2.11) tP [Z/b(t) > x] → ν(x,∞], x > 0 , t →∞,

and from the sequential form of regular variation (see Lemma 1, part (ii) for d = 1), this yields

(2.12) ν(x,∞] = c+x−α, α > 0 , c+ ≥ 0 .

Also, in a similar manner,

(2.13) tP [Z/b(t) ≤ −x] → ν[−∞,−x], x > 0,

which implies

(2.14) ν[−∞,−x] = c−x−α .

Why is the α the same for both tails? There is only an issue if c+ > 0, c− > 0 since otherwise ν only
concentrates on a half line emanating from the origin. So suppose c+ > 0, c− > 0. Then we have as t →∞,

tF̄
(
b(t)x

) → x−α, x > 0,

or equivalently after taking reciprocals

1

t
(
1− F

(
b(t)x

)) =
U

(
b(t)x

)

t
→ xα,

where U = 1/(1 − F ) and we may take U←(t) = b(t). But U ∈ RVα implies b ∈ RV1/α. (See Section 1.1.1
and Property 5 in the list of useful properties.)
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Likewise for the other tail, as t →∞,

tF
(
b(t)(−x)

) → ν[−∞,−x], x > 0,

leads to
ν(−∞,−x] = c−x−β

for some β > 0 which would imply b(t) ∈ RV1/β so we have β = α.
We conclude the limit measure is of the form

(2.15) ν(dx) = c+αx−α−1dx1(0,∞](x) + c−|x|−α−1dx1[−∞,0)(x) ,

and also that

(a) P [|X| > x] ∈ RV−α,

(b) lim
t→∞

P [X > t]
P [|X| > t]

= lim
t→∞

tP [X/b(t) > 1]
tP [|X|/b(t) > 1]

=
ν(1,∞]

ν{x : |x| > 1} =
c+

c+ + c−
=: p,

and

(c) lim
t→∞

P [X < −t]
P [|X| > t]

=
c−

c+ + c−
=: q

where p + q = 1.
If 0 < α < 2, these are the necessary and sufficient conditions for convergence of sums of iid random

variables with common distribution F to a stable law.

Example 5. Suppose d = 2 and let Z = (Z(1), Z(2)) where Z(1), Z(2) are iid, and

P [Z(i) > x] = x−1, x ≥ 1.

The vector Z has two different regular variation properties on two different cones.
(a) Z has a regularly varying distribution on [0,∞]2 \ {0}. To see this, note that for i = 1, 2,

tP [Z(i) > tx] = t(tx)−1 = x−1, x > 0, for all t big,

so we have marginal regular variation. For x = (x(1), x(2)), we have

lim
t→∞

tP{[Z ≤ tx]c} = lim
t→∞

tP [Z(2) > tx(2)] + lim tP [Z(1) > tx(1)]

− lim
t→∞

tP [Z1 > tx(1)]P [Z(2) > tx(2)]

=(x(2))−1 + (x(1))−1 − 0 = ν([0, x]c).(2.16)

This implies that ν concentrates on the axes and has no mass on (0,∞]2.
(b) Z has a distribution which is regularly varying on (0,∞]2: To see this, observe that

(2.17) tP
[ Z√

t
∈ (x, ∞]

]
=
√

tP [Z(1) >
√

tx(1)]
√

tP [Z(2) >
√

tx(2)] → (x(1))−1(x(2))−1 .

So on [0,∞]2 \ (0), Z has a distribution which is regularly varying with limit measure ν given in
(2.16). On (0,∞]2, Z has a distribution which is regularly varying with limit measure ν∗(x, ∞] =
(x(1)x(2))−1 and b∗(t) =

√
t.

2.5. Form of the limit measure ν. Suppose that ν is a Radon measure on Borel subsets of the cone C,
that b(t) →∞ is a scaling function and F is a probability distribution such that

tF (b(t)·) v→ ν(·), in M+(C).

For the cones we consider, we have the following properties:
(i) The scaling function b(·) satisfies b ∈ RV1/α for some α > 0.
(ii) The limit measure ν(·) has a homogeneity property

ν(t·) = t−αν(·), on C.
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(iii) The scaling property (ii) of the limit measure ν is equivalent to a product form when using polar
coordinates. To see this, suppose Λ ∈ B(ℵ ∩ C). Then

ν{x : ‖x‖ > r ,
x

‖x‖ ∈ Λ} =ν{x : ‖r−1x‖ > 1 ,
r−1x

‖r−1x‖ ∈ Λ}

=ν{ry : ‖y‖ > 1 ,
y

‖y‖ ∈ Λ}

=r−αν{y : ‖y‖ > 1 ,
y

‖y‖ ∈ Λ} .(2.18)

Define a measure S on B(ℵ ∩ C) by

S(Λ) := ν{y : ‖y‖ > 1 ,
y

‖y‖ ∈ Λ}

and we conclude

(2.19) ν{x : ‖x‖ > r ,
x

‖x‖ ∈ Λ} = r−αS(Λ) .

Call S the angular or spectral measure.

Remark 2. Note the following features.

(1) If ℵ ∩ C is compact, S is finite in which case we assume it is a probability measure.
(2) If C = [0,∞]d \ {0}, then ℵ ∩ C = {x ≥ 0 : ‖x‖ = 1} is compact.
(3) If C = (0,∞]2, then ℵ ∩ C = {x > 0 : ‖x‖ = 1} is not compact and S is not necessarily finite.
(4) If C = [0,∞]× (0,∞],

ℵ ∩ C = {(x, y) : 0 ≤ x ≤ ∞, ∞ ≥ y > 0, ‖(x, y)‖ = 1}
is not compact.

2.5.1. Expressing ν in terms of the angular measure S. Suppose B ∈ B(C). Then integrating by means of
polar coordinates we obtain

ν(B) =
∫∫

{(r,a):r·a∈B, r>0, ‖a‖=1}
αr−α−1drS(da).

For example if C = [0,∞]d \ {0},

(2.20) ν
(
[0, x]c

)
=

∫∫

{ra)≤x}c

αr−α−1drS(da).

Now

{ra ≤ x}c ={(r,a) : r >
x(i)

a(i)
, for some i}

=
{
(r,a) : r > ∧d

i=1

x(i)

a(i)

}
.

So integrate first in (2.20) with respect to r via Fubini’s theorem and then

ν
(
[0, x]c

)
=

∫

ℵ∩C

( ∧d
i=1

x(i)

a(i)

)−α
S(da)

=
∫

ℵ∩C
∨d

i=1

(a(i)

x(i)

)α
S(da) .(2.21)
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3. Extreme value theory

Regular variation on the cone [0, ∞] \ {0} leads to the classical theory of multivariate extreme value
distributions as limits of componentwise maxima of an iid sample. See de Haan and Resnick (1977), Resnick
(1987, Chapter 5) and de Haan and Ferreira (2006).

Suppose X∗ has distribution F∗ which is regularly varying on the cone [0, ∞] \ {0}. We suppose the
regular variation is in standard form, which means we may set b(t) = t and there exists a Radon measure ν∗
such that

(3.1) tP [
X∗
t
∈ · ] v→ ν∗(·), in M+

(
[0,∞] \ {0}) .

From this we get the multivariate extreme value distributions in the following way, using the theory of
extended regularly varying functions (Bingham et al., 1987, Geluk and de Haan, 1987). The story goes like
this: Suppose a(·) > 0, b(·) ∈ R are measurable functions on (0,∞) satisfying,

(3.2)
b(tx)− b(t)

a(t)
→ ψ(x), x > 0, t →∞,

where ψ 6= 0, and ψ is not constant. Then ψ must be of the form

(3.3) ψ(x) =
{

k
(

xρ−1
ρ

)
, ρ ∈ R , ρ 6= 0 , x > 0

k log x ρ = 0 , x > 0

for some k 6= 0. Furthermore,
(a) If ρ > 0, then b(·) ∈ RVρ, and b(t) ∼ 1

ρa(t), and (3.2) really says that

b(tx)
b(t)

→ xρ.

(b) If ρ = 0, then (3.2) defines b(·) as a Π-varying function. (Π-varying functions are a subclass of the
slowly varying functions; see Bingham et al. (1987), de Haan and Ferreira (2006), de Haan (1970),
Geluk and de Haan (1987), Resnick (1987).) Also, a(·) is slowly varying and b(t)/a(t) →∞.

(c) If ρ < 0, then b(∞) := limt→∞ b(t) exists finite and

(3.4) b(∞)− b(t) ∈ RVρ , b(∞)− b(t) ∼ 1
|ρ|a(t) .

The inverted form of extended regular variation: If the function b is nondecreasing with inverse b←, we
can invert (3.2) using Proposition 1. Supposing for convenience that k = 1, the inversion of (3.2) yields

(3.5)
b←(b(t) + ya(t))

t
→ ψ←(y) = (1 + ρy)1/ρ , (1 + ρy > 0).

Now assume (3.1) and suppose (b(i), a(i), i = 1 . . . d satisfy (3.2) with limits ψi and parameters ρi and that
each b(i) is non-decreasing. Then

tP [
b(i)

(
X

(i)
∗

)− b(i)(t)
a(i)(t)

≤ x(i) , i = 1 . . . d]c =tP [
X

(i)
∗
t

≤ b(i)←(
a(i)(t)x(i) + b(i)(t)

)
/t , i = 1 . . . d]c

→ν∗
({y : y(i) ≤ ψ←i (x(i)) , i = 1 . . . d}c

)
.(3.6)

Where does the relation (3.6) lead? Set X(i) = b(i)(X(i)) and suppose b(i) non-decreasing. Then (3.6) can
be rephrased as

tP{[X(i) ≤ a(i)(t)x(i) + b(i)(t), i = 1, . . . , d]c} → ν∗({y : y(i) ≤ ψ←i (x(i)); i = 1, . . . , d}c)

or, replacing t with n

(3.7) nP{[X(i) ≤ a(i)(n)x(i) + b(i)(n); i = 1, . . . , d]c} → ν∗({y : y(i) ≤ ψ←i (x(i)); i = 1, . . . , d}c).

If npn → ` ∈ (0,∞) so that pn → 0, then n
(− log(1− pn)

) → `, so

n(− log P [X(i) ≤ a(i)(n)x(i) + b(i)(n); i = 1, . . . , d] → ν∗({y : y(i) ≤ ψ←i (x(i)); i = 1, . . . , d}c)
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or exponentiating

(3.8)
(
P [X(i) ≤ a(i)(n)x(i) + b(i)(n), i = 1, . . . , d]

)n → exp{−ν∗({y : y(i) ≤ ψ←i (x(i)), i = 1, . . . , d}c)}.

Since

P [
n∨

j=1

Xj ≤ x] =
(
P [X1 ≤ x])n,

when X1, . . . , Xn are iid random vectors and “≤” is interpreted componentwise, we conclude, as n →∞,

(3.9) P [
n∨

j=1

(X
(i)
j − b(i)(n)
a(i)(n)

)
≤ x(i); i = 1, . . . , d] → exp{−ν∗({y : y(i) ≤ ψ←i (x(i)); i = 1, . . . , d}c)}.

The limit is the form of the general max-stable distributions which are approximations for distributions
of componentwise maxima of iid random vectors whose common distribution is in a maximal domain of
attraction.

3.1. Normalizing constants a(·), b(·). Where do the functions a(·), b(·) satisfying (3.2) come from? Sup-
pose d = 1 and let X1, . . . , Xn be iid random variables with common distribution function F (x) satisfying a
one dimensional version of (3.9); that is, suppose there exist functions a(t) > 0, b(t) ∈ R and a disribution
G such that

(3.10) P [
n∨

j=1

Xj − b(n)
a(n)

≤ x] → G(x) .

Then we say F is in the maximal domain of attraction of G and write F ∈ MDA(G). The limit relation
(3.10) leads to

P [
n∨

j=1

Xi ≤ a(n)x + b(n)] = Fn
(
a(n)x + b(n)

) → G(x) ,

so taking logarithms we get

n(− log F
(
a(n)x− b(n)

) → − log G(x).

This leads to

(3.11) t(− log F
(
a(t)x− b(t)

) → − log G(x)

and

t(1− F
(
a(t)x + v(t)

) → − log G(x)

and then taking reciprocals,

(3.12)
1
t

( 1
1− F

(
a(t)x + v(t)

)
)
→ 1
− log G(x)

.

Invert via Proposition 1,

(3.13)

(
1

1−F

)←
(yt)− b(t)

a(t)
→

( 1
− log G

)←−
( y), y > 0.

So we may set b(t) =
(

1
1−F

)←(t) and a(t) = b(te)− b(t).
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3.2. Some conclusions. Assume again that d > 1. We summarize the procedure outlined in this section.
(a) Start with a random vector X∗ satisfying the standard form of regular variation (3.1) on [0, ∞]\{0}.
(b) Assume b(i) : (0,∞) 7→ (0,∞) is non-decreasing and assume there exist a(i)(·) > 0 such that for

i = 1, . . . , d each b(i), a(i) pair satisfies (3.2).
(c) Transform X∗ to X =

(
X(i), . . . , X(d)

)
by

X(i) = b(i)
(
X

(i)
∗

)
; i = 1, . . . , d.

(d) Then X satisfies (3.6) and if (X1, . . . , Xn) are iid and X1
d= X we get (3.9).

(e) We can choose

(3.14) b(i) =
( 1

1− F(i)

←)

where F(i) is a distribution in the maximal domain of attraction of a one dimensional extreme value
distribution.

4. Hidden regular variation

Hidden regular variation is regular variation corresponding to the cone {x ≥ 0 : x(i)∧x(j) > 0, for some 1 ≤
i, j ≤ d}. Before reviewing this, there are several transitional topics that should be understood.

4.1. A construction of multivariate regularly varying distributions. In this section C = [0, ∞]\{0}.
Suppose the random variable R satisfies R ≥ 1 and

P [R > r] = r−α, r > 1,

and Θ is a random variable concentrating on ℵ+ = ℵ ∩ Rd
+ with distributions S(dθ). We assume R and Θ

are independent, written R ⊥⊥ Θ. Then for r > 0, Λ ∈ B(ℵ+), we have

tP [
R

t1/α
> r , Θ ∈ Λ] =tP [

R

t1/α
> r]P [Θ ∈ Λ]

→r−αS(Λ), as t →∞.(4.1)

Note the same conclusion would hold if we only assumed P [R > r] ∈ RV−α and replaced t1/α by

b(t) :=
( 1

1− P [R > ·]
)←

(t) .

Let T be the polar coordinate transform: Tx = (‖x‖, x/‖x‖) = (r,a) and define

(4.2) Z = T←(R,Θ).

Then Z has a regularly varying distribution

(4.3) tP [
Z

b(t)
∈ · ] → ν(·)

where
ν ◦ T← = αr−α−1drS(dθ).

4.2. The découpage de Lévy. The following result of Lévy helps to understand ”peaks over threshold.”
See Resnick (1987) for more detail on the proof.

Theorem 2 (Lévy). Let {Xn, n > 1} be iid random elements of a nice space (E, E). Fix B ∈ E with
P [X1 ∈ B] > 0 and define τ±0 = 0 and

τ+
i = inf{j > τ+

i−1 : xj ∈ B}, τ−i = inf{j > τ−i−1 : xj ∈ Bc} .

Let Kn = sup{i : τ+
i ≤ n} be the (renweal) counting function for visits to B. Then

{
Xτ+

j

}
,

{
Xτ−j

}
,

{
Kn

}
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are independent with
P [Xτ+

1
∈ A] = P [X1 ∈ A|X1 ∈ B] , A ⊂ B

and
P [Xτ−1

∈ A] = P [X1 ∈ A|X1 ∈ B] , A ⊂ Bc .

Further {Kn} is a renewal counting function, E(Kn) = nP [X1 ∈ B] and both {Xτ+
j
}, {Xτ−j

} is iid.

4.3. Peaks over threshold and the POT method. Children of the ’60’s may wonder about the wisdom of
giving a procedure the acronym POT. Nevertheless, this is an important concept. A good way to understand
it is by means of the découpage de Lévy.

Suppose {Zj , j ≥ 1} are iid Rd
+-valued random vectors and set B in the découpage to be

B = {x ∈ Rd
+ : ||x|| > t} .

Then for s > 1, Λ ∈ B(ℵ+) and ts > 1, {Zτ+
j
} are iid and

P [Rτ+
1

> ts , Θτ+
1
∈ Λ] =P [R1 > ts , Θ1 ∈ Λ|R1 > t]

=
P [R1 > ts , Θ1 ∈ Λ]

P [R1 > t]
≈ s−αS(Λ),(4.4)

where “≈” means this is only true exactly as t → ∞. The “peaks over threshold” or POT philosophy says
pretend there is actual equality for some t. Then the method suggests,

(a) Consider the subsample of exceedances {Zτ+
j

, j ≥ 1} with disribution in polar coordinates:

P [T (Zτ+
1

) ∈ drdθ] = αr−α−1drS(dθ), r ≥ 1, θ ∈ ℵ+.

(b) Think of exceedances as coming from the construction of Section 4.1.
This method is popular for inference purposes but there is no obvious way to quantity error when replacing

“≈” with ”=”. See Coles (2001) for a convincing and clear discussion of advantages; there is also further
material in Resnick (2006).

4.4. Asymptotic independence. Suppose Z is an Rd
+-valued random vector with a distribution which is

regularly varying on [0, ∞] \ {0} so that there exists b(t) →∞ such that

tP [Z/b(t) ∈ · ] → ν(·), in M+

(
[0,∞] \ {0}) .

Then Z (or its distribution) is asymptotically independent if

(4.5) ν{x ∈ [0, ∞] \ {0} : x(i) ∧ x(j) > 0, for some 1 ≤ i < j ≤ d} = 0

or equivalently for x ≥ 0, x 6= 0,

(4.6) ν
(
[0, x]c

)
=

d∑

i=1

ci(x(i))−α .

Therefore, ν concentrates on the lines through 0 of the form {tei , t > 0}, i = 1, . . . , d where ei =
(0, . . . , 0, 1, 0, . . . , 0) with “1” in the i-th spot.

Recall the example Z = (Z(i), . . . , Z(d)) where Z(i), 1 ≤ i ≤ d are iid and P [Z(i) > x) = x−α, x ≥ 1
leads to asymptotic independence, which is not surprising since independence ought to imply asymptotic
independence.

There are two main reasons for the name asymptotic independence although this modifier has lots of other
meanings in probability and statistics so we make no claim to universal appropriateness.

(1) Suppose d = 2 and Z possesses asymptotic independence. Then

lim
t→∞

P [Z(i) > t|Z(i) > t] = lim
n→∞

P [Z(1) > b(n), Z(2) > b(n)]
P [Z(1) > b(n)]

= lim
n→∞

cnP [Z(1) > b(n), Z(2) > b(n)]
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=cν(1, ∞] = 0

since ν concentrates on {(0, x) : x > 0}∪{(x, 0) : x > 0}. So given one component is large, the other
tends not to be large; there is negligible probability they are both large.

(2) The regular variation condition for the vector Z is equivalent to supposing {Zj , j ≥ 1} iid with
Zj = Z, j ≥ 1, and

P [
n∨

j=1

Zj/b(n) ≤ x] → e−ν([0,x]c) = P [Y ≤ x].

Asymptotic independence is equivalent to Y (i), . . . , Y (d) being independent random variables (Resnick,
1987, Chapter 5).

The name asymptotic independence is used frequently for many different concepts, so beware. It is
sometimes a surprising concept.

Example 6. Consider two surprising examples and one totally unsurprising.
(1) Suppose U is U(0, 1) distributed and define

Z =
( 1

U
,

1
1− U

)
.

Then Z possesses asymptotic independence as can be verified by direct calculation. This example
was pointed out in de Haan and de Ronde (1998).

(2) Let (N1, N2) be bivariate normal with normal distribution

N
((

0
0

)(
1 ρ
ρ 1

) )
.

So Corr(N1, N2) = ρ. Provided ρ < 1,

Z =
( 1

Φ(N1)
,

1
Φ(N2)

)

is asymptotically independent. See Sibuya (1960) or Resnick (1987, Chapter 5).
(3) Suppose Z = (Z(1), Z(2)) where Z(1) ⊥⊥ Z(2) and for i = 1, 2,

P [Z(i) > x] = x−1, x > 1.

This was already discussed.

4.5. Hidden regular variation; definition and properties. Suppose we have two cones

C = [0, ∞] \ {0} , C0 = C \
d⋃

i=1

{tei , t > 0}.

We may also express C0 as

C0 = {x ∈ C : for some 1 ≤ i < j ≤ d , x(i) ∧ x(j) > 0}.
SupposeZ ≥ 0 has distribution F . Then if F is regularly varying on C we say F possesses hidden regular
variation if it is also regularly varying on C0. Thus there exists a Radon measure ν on C, and also there
exists a Radon measure ν0 on C0 such that for scaling functions b(t) →∞ and b0(t) →∞ we have

tP [Z/b(t) ∈ · ] v→ ν(·) in M+(C)(4.7)

tP [Z/b0(t) ∈ · ] v→ ν0(·) in M+(C0)(4.8)

and , to ensure this is not a trivial concept, we assume

(4.9)
b(t)
b0(t)

→∞ .
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4.5.1. Consequences and properties. Here are some properties resulting from the definition. For fuller treat-
ment, see Heffernan and Resnick (2005), Maulik and Resnick (2005), Resnick (2006, 2002). Hidden regular
variation elaborates ideas of Ledford and Tawn (1996, 1997).

(a) There exists α > 0 such that for t > 0,

ν(t·) = t−αν(·) on C.

(b) There exists α0 ≥ α such that for t > 0,

ν0(t·) = t−α0
ν0(·) on C0.

(c) Consequently, we have

b ∈ RV1/α, b0 ∈ RV1/α0 .

(d) ℵ0 := ℵ ∩ E0 is not compact.
(e) Suppose, as usual, that T (x) = (‖x‖, x

‖x‖ ) is the polar coordinate transform. Then for c > 0, we
have

(4.10) ν0 ◦ T−1 = cνα × S

where να(x,∞] = x−α, for x > 0 and S is a probability measure on ℵ+ = ℵ ∩ C. Also for c0 > 0,

(4.11) ν0 ◦ T−1 = c0να0 × S0

where να0(x,∞] = x−α0
for x > 0, and S0 is Radon on ℵ0 but not necessarily finite.

(f) Regions of the form (x, ∞] are relatively compact in C0 and

tP [
d∧

i=1

Z(i)

b0(t)
> x] =tP

[ Z

b0(t)
∈ (x1,∞]

]

→ν0(x1,∞] = x−α0
ν0(1,∞] .(4.12)

With x = 1, the limit is ν0(1, ∞].
(g) Hidden regular variation implies asymptotic independence since if Z > 0

tP [
Z

b(t)
> z] ≤tP

[ Z

b(t)
>

d∧

i=1

z(i)1
]

=tP
[ Z

b0(t)
>

b(t)
b0(t)

d∧

i=1

z(i)1
] → 0,(4.13)

since b(t)/b0(t) → ∞ and tP [Z/b0(t) ∈ · ] → ν0(·). So in contrast to (4.12) we get with b(t) as the
scaling function, that as t →∞,

(4.14) tP [
d∧

i=1

Z(i)

b(t)
> x] → 0 .

For d = 2, (4.14) gives

0 = lim
t→∞

P [Z(2) > t|Z(1) > t]

and if you are a religious copularian, this is

λ := lim
u→1

P [F1(Z(2)) > u|F1(Z(1)) > u] = 0

where F1 is the marginal distribution.
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(h) Choices for the scaling function b(t) appearing in (4.7) include

b(t) =
( 1
1− F1

)←(t)

where F1 is the distribution of Z(1) or alternatively,

b(t) =
( 1

1− P [
∨d

i=1 Z(i) > ·]
)←(t) .

Choices for b0(t) include

b0(t) =
( 1

1− P [
∧d

i=1 Z(i) > ·]
)←(t) .

This results from the next property.
(i) Regular variation on C implies

∨d
i=1 Z(i) has a regularly varying distribution tail

P [
d∨

i=1

Z(i) > x] ∈ RV−α

while regular variation on C0 implies ∧d
i=1Z

(i) has a regularly varying distribution tail,

P [
d∧

i=1

Z(i) > x] ∈ RV−α0 .

More precisely, we have the following result. See Resnick (2006, 2002).

Theorem 3. Suppose b(·) ∈ RV1/α, b0(·) ∈ RV1/α0 , 0 < α ≤ α0 and b(t)
b0(t) →∞. Suppose also

(4.15) tP [
Z(i)

b(t)
> x] → x−α , x > 0, i = 1, . . . , d .

Then Z possesses hidden regular variation iff
(a) Max-linear combinations have regularly varying tail probabilities,

(4.16) tP [
d∨

i=1

s(i)Z(i)

b(t)
> x] → c(s)x−α , x > 0 , t →∞.

for s ∈ [0, ∞) \ {0} and some c(s) > 0;
and
(b) Min-linear combinations have regularly varying tail probabilities,

(4.17) tP [
d∧

i=1

a(i)Z(i)

b0(t)
> x] → d(a)x−α0

, x > 0 t →∞,

for some d(a) > 0 where a ∈ (C0)−1 = (0,∞] \⋃d
i=1{te−1

i , t > 0} and

e−1
i = (∞, . . . ,∞, 1,∞, . . . ,∞).

(j) The last item suggests a diagnostic for detection: Assume Z1, . . . , Zn is a random sample and
compute the componentwise minima,

(
n∧

i=1

Z
(1)
i , . . . ,

n∧

i=1

Z
(d)
i ) .

Estimate the tail index for the minima. If the problem has been standardized so that α = 1 we seek
evidence that α̂0 > 1 which would be consistent with hidden regular variation.
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4.5.2. Hidden regular variation and marginal distributions. Regular variation on C0 plus correct behavior of
the marginal distributions implies hidden regular variation.

Proposition 3. Suppose Z ≥ 0 satisfies

Z(1) d= Z(2) d= . . .
d= Z(d)

and Z is regularly varying on C0 so that there exist b0(·) ∈ RV1/α0 and ν0 ∈ M+(C0) such that

tP [
Z

b0(t)
∈ · ] v→ ν0(·), in M+(C0).

Suppose additionally that one dimensional marginals have regularly varying tails; that is, there exists b(·) ∈
RV1/α with α ≤ α0 and b(t)/b0(t) →∞, and

tP [
Z(i)

b(t)
> x] → x−α , x > 0, i = 1, . . . , d.

Then Z is regularly varying on C = [0, ∞] \ {0}.
Proof. : For x > 0 we have by the inclusion-exclusion formula,

tP
(
[

Z

b(t)
≤ x]c

)
=t

d∑

i=1

P [
Z(i)

b(t)
> x(i)]− t

∑

1≤i<j≤d

P [
Z(i)

b(t)
> x(i) ,

Z(j)

b(t)
> x(j)]

+ t
∑

1≤i<j<k≤d

P [
Z(i)

b(t)
> x(i) ,

Z(j)

b(t)
> x(j) ,

Z(k)

b(t)
> x(k)]− . . . ,

→
d∑

i=1

(x(i))−α + 0, (t →∞).

The “0” comes from

tP [
Z(1)

b(t)
> x(1) ,

Z(2)

b(t)
> x(2)] = tP [

Z(1)

b0(t)
> x(1) b(t)

b0(t)
,
Z(2)

b(0t)
> x(2) b(t)

b0(t)
] → 0,

since b(t)/b0(t) →∞. ¤

4.5.3. Examples of hidden regular variation. We now consider some examples to emphasize how hidden
regular variation can arise in practice.

Example 7. (1) Recall Example 5. Suppose Z = (Z(1), Z(2)) with Z(1) ⊥⊥ Z(2) and P [Z(i) > x] = x−1

for x > 1 and i = 1, 2. Then

tP [
Z

t
∈ ·] v→ ν(·), in M+(C),

tP [
Z√
t
∈ ·] v→ ν0(·), in M+(C0)

where

ν(x, ∞] = 0, for x > 0, and(4.18)

ν0(x, ∞] =
1

x(1)x(2)
, for x > 0,(4.19)

(2) Suppose B, Y , U are independent with
(a) P [B = 0] = P [B = 1] = 1

2 .
(b) Y = (Y (1), Y (2)) where Y (1) ⊥⊥ Y (2) and P [Y (i) > x] = x−1, for x > 1. Set α = 1 and b(t) = t

to describe the regular variation of the distribution of Y .
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(c) U is multivariate regularly varying on C with index α0, 1 < α0 < 2. Then there exists b0 ∈
RV1/α0 and a Radon measure ν0 ∈ M+(C) so that

tP [U/b0(t) ∈ · ] v→ ν0(·) 6≡ 0

in M+(C). Here we really do mean M+(C) and not M+(C0).
Next, define

Z = BY + (1−B)U .

For x > 0, we have,

tP [Z/b0(t) > x] = t
2P [Y > b0(t)x] + t

2P [U > b0(t)x] = I + II.

For I we have because of the independent Pareto random variables that as t →∞,

t

2
1

b0(t)2x(1)x(2)
→ 0

since
(
b0(t)

)2 ∈ RV2/α0 and t/
(
b0(t)

)2 → 0.

For II we have

II → 1
2
ν0(x, ∞] .

Also marginal distributions are RV−α = RV−1, since

P [Z(1) > x] = 1
2P [Y (1) > x] + 1

2P [U (1) > x] ∈ RV−1

since the first term on the right is RV−1 and the second is RV−α0 with α0 > 1. This is enough to
imply hidden regular variation by Proposition 3.

(3) Here is a way to construct a class of examples.
Let Θ be a random variable define on (1,∞) with distribution G. Suppose B is an independent

Bernoulli random variable,
P [B = 0] = 1

2 = P [B = 1] .

Suppose R ⊥⊥ {B, Θ} and P [R > r] = r−1, r > 1. Define

Θ = B(Θ, 1) + (1−B)(1, 0), Z = RΘ .

So the distribution of Θ concentrates on the lines emanating from (1, 1) in the horizontal and vertical
directions.

We now give some properties of this construction.
(a) We have

Z(1) = RΘ(1), Z(2) = RΘ(2),

and
Θ(1) = BΘ + (1−B)1, Θ(2) = B1 + (1−B)Θ.

(b) For the marginal distributions, we have,

P [Z(i) > x] =P [RΘ(i) > x =
∫ ∞

1

P [Θ(i) > x/r]
dr

r2

and setting s = x
r we obtain

= 1
x

∫ x

0

P [Θ(i) > s]ds =
1
2x

[
∫ 1

0

2ds +
∫ x

1

Ḡ(s)ds]

=
1
2x

[2 +
∫ x

0

Ḡ(s)ds] .(4.20)
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(c) The random vector Z is regularly varying on (0,∞]2 with α0 = 1. Furthermore, let ν0 be the
limit measure. It has angular measure S0 and S(0) is finite iff∫ ∞

0

G(s)ds < ∞.

To see this, note for ν0 we have for x > 0,

ν0(x,∞] = lim
t→∞

tP [
Z

t
> x] .

Now

tP [Z/t > x] =tP [RΘ(1) > tx(1) , RΘ(2) > tx(2)]

=tP [RΘ(1) > tx(1) , RΘ(2) > tx(2), B = 1]

+ tP [RΘ(1) > tx(1) , RΘ(2) > tx(2), B = 0]

=
t

2
P [RΘ > tx(1), R > tx(2)] +

t

2
P [R > tx(1), RΘ > tx(2)]

=
t

2

∫

r>tx(2)
Ḡ(

tx(1)

r
∨ 1)

dr

r2
+

t

2

∫

r>tx(2)
Ḡ(

tx(2)

r
∨ 1)

dr

r2
.

Set s = t/r and we obtain

=
1
2

∫ 1/x(2)

0

Ḡ(sx(1) ∨ 1)ds +
1
2

∫ 1/x(1)

0

Ḡ(sx(2) ∨ 1)ds

=
1

2x(1)

∫ x(1)/x(2)

0

Ḡ(u ∨ 1)du +
1

2x(2)

∫ x(2)/x(1)

0

Ḡ(u ∨ 1)du .

Let, for instance, x(1) → 0 and the limit is infinite iff
∫∞
0

Ḡ(u)du = ∞.
(d) If Ḡ ∈ RV−α, α < 1, then Z is regularly varying on C = [0,∞]2 \ {0} with index α. The reason

for this is that from item 3b and Karamata’s theorem, we have

P [Z(i) > x] ∈ RV−α

and the multivariate regular variation follows from Proposition 3.

Remark 3. Note the following.
(1) For Example 1, ν0 is infinite on C0 ∩ {x : ‖x‖ > 1}. Hence S0 is infinite on ℵ0. This follows from

(4.19) by, say, setting x(1) = 1 and letting x(2) → 0.
(2) For Example 2, ν0 is finite on C0 ∩ {x : ‖x‖ > 1}. Hence S0 is finite on ℵ0 = ℵ ∩ C0. This follows

because we assumed U is regularly varying on C and not just on C0.
(3) For Example 3, ν0 may be finite or infinite on C0 ∩ {x : ‖x‖ > 1}, depending on whether the first

moment of G exists or not.

4.5.4. The coefficient of tail dependence η of Ledford and Tawn. Hidden regular variation elaborates some
ideas of Ledford and Tawn (1996, 1997). They define η by assuming that Z = (Z(1), Z(2)) is a two dimensional
random vector with non-negative components such that Z(1) d= Z(2) and

(4.21) P [Z(1) ∧ Z(2) > t] ∼ L(t)(P [Z(1) > t]1/η,

where 0 < η ≤ 1 and L ∈ RV0.
If Z possesses hidden regular variation, then (4.21) is true: Suppose as usual b(·) satisfies

tP [Z(1) > b(t)] ∼ 1.

Then (4.21) becomes

(4.22) P [Z(1) ∧ Z(2) > b(t)] ∼ L(b(t))t−1/η = L′(t)t−1/η,
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where L′(t) = L(b(t)) ∈ RV0. We know from hidden regular variation (See Theorem 3) that

P [Z(1) ∧ Z(2) > t] ∼ t−α0
`(t),

for some function `(t) ∈ RV0. So

P [Z(1) ∧ Z(2) > b(t)] ∼ b(t)−α0
`(b(t)).

Now for some slowly varying function `∗(t), b(t) ∼ t1/α`∗(t) and ` ◦ b ∈ RV0, so

(4.23) P [Z(1) ∧ Z(2) > b(t)] ∼ t−α0/α`∗∗(t) ,

for a slowly varying function `∗∗ ∈ RV0. From comparing (4.22) and (4.23), we conclude that

η =
α

α0
.

5. Conditioned limit theorems

Suppose C1/2 = [0,∞]× (0,∞] and Z is regularly varying on C1/2 meaning

(5.1) tP [
Z

b(t)
∈ · ] → ν(·), in M+(C1/2).

This implies

tP [
Z(1)

b(t)
∈ [0,∞],

Z(2)

b(t)
> x] = tP [

Z(2)

b(t)
> x] → ν

(
[0,∞]× (x,∞]

)
= cx−α .

Suppose, as a normalization, that c = 1, so that,

(5.2) ν
(
[0,∞]× (1,∞]

)
= 1 .

Then from (5.1), for Λ ∈ B(R+),

P [
Z(1)

b(t)
∈ Λ

∣∣∣Z
(2)

b(t)
> 1] =

P [Z(1)

b(t) ∈ Λ, Z(2)

b(t) > 1]

P [Z(2)/b(t) > 1]

∼tP [
Z(1)

b(t)
∈ Λ,

Z(2)

b(t)
> 1] → ν

(
Λ× (1,∞]

)
.(5.3)

So regular variation on C1/2 implies a conditioned limit theorem: Given that the second component is large,
the conditional distribution of the first variable is approximately determined by the limit measure in the
definition of regular variation.

5.1. General formulation. The previous formulation was for regular variation where each component
could be normalized by the same scaling function. Regular variation on C1/2 naturally led to a conditioned
limit theorem. How can we generalize this to make a more flexible class of statistical models? Here is an
introduction; more detail and applications are found in Abdous et al. (2005), Heffernan and Resnick (2007),
Heffernan and Tawn (2004).

We assume we have a two dimensional random vector Z = (X, Y ). Suppose there exist a(t) > 0, α(t) > 0,
β(t) ∈ R, b(t) ∈ R such that

(5.4) tP
[(X − β(t)

α(t)
,
Y − b(t)

a(t)

)
∈ ·

]
ν→ µ(·),

in M+

(
[−∞,∞]× (−∞,∞]

)
or equivalently

(5.5) tP
[X − β(t)

α(t)
≤ x,

Y − b(t)
a(t)

> y
]
→ µ

(
[−∞, x]× (y,∞]

)
, −∞ ≤ x ≤ ∞, y > −∞.

We require that the limit measure µ satisfy the following constraints:
(a) For easch fixed y, the distribution function u[−∞, x]×(y,∞] is not a degenerate distribution function

in x.
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(b) For x ∈ [−∞,∞] and y > −∞, we have

µ([−∞, x]× (y,∞]) < ∞.

5.1.1. Standardizing the Y -variable. Observe that (5.5) is in M+

(
[−∞,∞]× (−∞,∞]

)
and so we may insert

the compact set [−∞,∞] for the X-variable, effectively marginalizing to Y . Therefore,

(5.6) tP
[Y − b(t)

a(t)
> y

] → µ
(
[−∞,∞]× (y,∞]

)
, y ∈ R,

which entails that Y ∈ D(Gγ) for some γ ∈ R; that is, the distribution of Y is in a maximal domain of
attraction (de Haan and Ferreira, 2006, Embrechts et al., 1997, Resnick, 1987). Note (5.6) is the defining
property of univariate extreme value distributions (as in (3.11) in Section 3.1) so (5.6) entails (essentially by
inverting (5.6)) that b(·) can be chosen as a monotone function and for some γ ∈ R, as t →∞,

(5.7)
b(tx)− b(t)

a(t)
→c(

xγ − 1
γ

) , x > 0, c 6= 0.

This allows us to standardize the Y -variable in the usual way. See Resnick (1987, Chapter 5), or de Haan
and Ferreira (2006), de Haan and Resnick (1977). Therefore write Y ∗ = b←(Y ) and

tP
[X − β(t)

α(t)
≤ x ,

Y ∗

t
> y

)
=tP

[X − β(t)
α(t)

≤ x ,
Y − b(t)

a(t)
>

b(ty)− b(t)
a(t)

]

→µ
(
[−∞, x]× (c(

yγ − 1
γ

),∞]
)

=: µ∗/2

(
[−∞, x]× (y,∞]

)
, x ∈ R, y > 0.

The subscript ∗/2 on the limit reminds us that the limit is obtained from the original µ by standardizing
only the Y variable.

Our conclusion: We can always standardize the Y -variable by making the transformation Y 7→ Y ∗ =
b←(Y ); then Y ∗ need only be normalized by t. The meaning of the phrase standardization is that normal-
ization by t is adequate.

5.1.2. Standardizing the X-variable. What about the X-variable? Suppose we know that β is non-decreasing
and write

(5.8) tP [
β←(X)

t
≤ x ,

Y ∗

t
> y] = tP [

X − β(t)
α(t)

≤ β(tx)− β(t)
α(t)

,
Y ∗

t
> y] .

Provided

(5.9)
β(tx)− β(t)

α(t)
→ ψ2(x) 6≡ 0, x > 0,

we get with X∗ = β←(X) that

(5.10) tP [
X∗

t
≤ x ,

y∗

t
> y] → µ

(
[−∞, ψ2(x)]× (

c(
yγ − 1

γ
),∞])

=: µ∗
(
[0, x]× (y,∞]

)
, x > 0, y > 0,

and standardization is achieved.

Proposition 4. (Heffernan and Resnick, 2007) Suppose

(5.11) tP [
X − β(t)

α(t)
≤ x ,

y∗

t
> y] → µ∗/2([−∞, x]× (y,∞]), x ∈ R, y > 0,

is the assumption where the Y -variable is standardized . We assume
(a) For each y > 0, µ∗/2([−∞, x] × (y,∞]) is not a degenerate distribution in x; that is, it has more

than one point of increase for the x-variable.
(b) The distribution of Y ∗ is in the domain of attraction of G1, the Frechet extreme value distribution

with γ = 1. We write this as P [Y ∗ ≤ t] ∈ D(G1). (This actuallhy follows from (5.11).)
(c) The measure µ∗/2 satisfies

(5.12) µ∗/2

(
[−∞,∞]× (1,∞]

)
= 1.
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Then there exist functions ψ1(c), ψ2(c), c > 0 such that

(5.13) lim
t→∞

α(tc)
α(t)

= ψ1(c)

and

(5.14) lim
t→∞

β(tc)− β(t)
α(t)

= ψ2(c) ,

and the convergences in [5.13], [5.14] are locally uniform.

Proof. Pick c > 0 and assume (x, 1) and (x, c−1) are continuity points of µ∗/2([−∞, x]× (y,∞]). (There are
only countably many points not continuity points.) Define

(5.15) H(x) = µ∗/2([−∞, x]× (y,∞]), x ∈ R,

and because of (5.12), H(x) is a probability distribution function. Similarly, we define the conditional
probability distribution

(5.16) Ht

(
α(t)x + β(t)

)
= P [

X − β(t)
α(t)

≤ x|Y ∗ > t] .

Then on the one hand,

Ht

(
α(t)x + β(t)

)
=

P [X−β(t)
α(t) ≤ x, Y ∗ > t]

P [Y ∗ > t]

∼tP [
X − β(t)

α(t)
≤ x , Y ∗ > t] → µ∗/2

(
[−∞, x]× (1,∞]

)
.(5.17)

On the other hand

Ht

(
α(tc)x + β(tc)

)
=P [

X − β(tc)
α(tc)

≤ x|Y
∗

t
> 1] ∼ tP [

X − β(tc)
α(tc)

≤ x,
Y ∗

t
> 1]

=
1
c

(
tcP [

X − β(tc)
α(tc)

≤ x,
Y ∗

tc
>

1
c
]
)

→1
c
µ∗/2

(
[−∞, x]× (c−1,∞]

)
=: H(c)(x) .(5.18)

Comparing (5.17) and (5.18) and applying the convergence to types theorem (Feller, 1971, Resnick, 1999)
we conclude that (5.13), (5.14) must hold and tha H and H(c) are related by

(5.19) H(c)(x) = H
(
ψ1(c)x + ψ2(c)

)
.

¤

5.1.3. The limit measure is a product. When ψ2 6≡ 0, this allows standarization. However, it can occur that
ψ2 ≡ 0 as shown in the following example (Abdous et al., 2005, Heffernan and Resnick, 2007).

Example 8. Let N1, N2 be iid N(0, 1) and define

(X, Y ) = (
√

1− ρ2N1 + ρN2, N2)

so that (X,Y ) has a bivariate normal distribution

N
( (

0
0

)
,

(
1 ρ
ρ 1

) )
.

Define

Φ(x) =
∫ x

−∞

e−t2/2

√
2π

dt
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for the normal cdf and then we may set (see, for instance, de Haan and Ferreira (2006), Resnick (1987))

a(t) =
1√

2 log t
,(5.20)

b(t) =
( 1
1− Φ

)←(t) =
√

2 log t−
1
2 (log log t + log 4π√

2 log t
+ o(a(t)).(5.21)

This choice of a(·) and b(·) ensures

(5.22) tP [
N1 − b(t)

a(t)
> x] → e−x, x ∈ R.

Furthermore (Abdous et al., 2005, Heffernan and Resnick, 2007)

(5.23) tP [X − ρb(t) ≤ x,
Y − b(t)

a(t)
> y] → Φ

( x√
1− ρ2

)
e−y = µ

(
[−∞, x]× (y,∞]

)
, (x, y) ∈ R2,

or after standardization

(5.24) tP [X − ρb(t) ≤ x,
Y ∗

t)
> y] → Φ

( x√
1− ρ2

)
y−1 = µ∗/2

(
[−∞, x]× (y,∞]

)
x ∈ R, y > 0 .

It requires some calculation to verify (5.23) or (5.24) but the calculations are elementary. From (5.24), we
see that

α(t) = 1 , β(t) = ρb(t) .

This implies
β(tc)− β(t)

α(t)
=

ρ
(
b(tc)− b(t)

)

1
.

Either from (5.22) or from the explicit forms in (5.20) and (5.21) we get that the function b ∈ Π with
auxiliary function a(·), meaning (de Haan and Ferreira, 2006, de Haan, 1970, Resnick, 1987)

b(tc)− b(t)
a(t)

→ log c, c > 0.

Thus we obtain
β(tc)− β(t)

α(t)
= ρ

(b(tc)− b(t)
a(t)

)
a(t) ∼ ρ log c · a(t) → 0 ≡ ψ(c) .

Also α(t) ≡ 1 implies ψ(c) ≡ 1.

The circumstance (ψ1(c), ψ2(c)) ≡ (1, 0) is associated with the limit measure being a product measure.
We state the result (Heffernan and Resnick, 2007) next.

Proposition 5. The limit measure u∗/2 is a product measure

(5.25) µ∗/2 = H(·)× ν1 where ν1(x,∞] = x−1, x > 0,

or equivalently

(5.26) µ∗/2

(
[−∞, x]× (y,∞]

)
= H(x)y−1, y > 1,

iff the functions ψ1, ψ2 in (5.13), (5.14) satisfy

(5.27) ψ1(c) ≡ 1 , ψ2(c) ≡ 0 .

Proof. If µ∗/2 is a product then from (5.17)
H(c) = H

since (5.17) implies µ∗/2([−∞, x]× (t,∞]) = H(c)(x) = H(x). Therefore, ψ1 ≡ 1, ψ2 ≡ 0.
If ψ1 ≡ 1 and ψ2 ≡ 0, then H(c) = H and from (5.17)

1
cµ∗/2([−∞, x]× (c−1,∞]) = H(c)(x) = H(x)
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or
µ∗/2([−∞, x]× (c−1,∞]) = cH(x)

or
µ∗/2([−∞, x]× (y,∞]) = y−1H(x) .

So µ∗/2 is a product measure. ¤

6. Estimation

Here we sketch some estimation techniques which describe methods for estimating the angular measure.
More detail is in Resnick (2006, Chapter 9) and de Haan and Ferreira (2006).

6.1. The need for standardization. The angular measure S only exists for regular variation where each
component has same normalization. The simplest case of this is standard case regular variation where each
component is normalized by t. Assume in this section that C = [0,∞] \ {0}.

If we use the usual definition with each component normalized by the same function b(t), we get

(6.1) tP [
Z

b(t)
∈ · ] v→ ν(·), t →∞.

The relation (6.1) implies tail equivalence for the distribution of the components,

(6.2)
P [Z(i) > t]
P [Z(j) > t]

→ cij ∈ [0,∞], ∀ 1 ≤ i, j ≤ d,

so the tails are comparable. In practice, tails are never estimated to be equal. So we relax the requirement
that all components are normalized by the same function.

Definition 2. Assume the following two conditions hold:
(i) Marginal regular variation: For i = 1, . . . , d, there exist functions b(i)(t) →∞ such that

(6.3) tP [
Z(i)

b(i)(t)
> x] → x−α(i)

, x > 0 , t →∞ , α(i) > 0 , i = 1, . . . , d.

(ii) Non-standard global regular variation: Suppose ν is Radon on C and

(6.4) tP
[( Z(i)

b(i)(t)
, i = 1, . . . , d

) ∈ · ] → ν(·) .

So we assume marginal regular variation that that jointly, all the components can be normalized by
component specific normalizers such that the vector satisfies (6.4). This more flexible form of regular
variation can be converted (de Haan and Resnick, 1977, Klüppelberg and Resnick, 2007, Resnick, 2006,
1987) to standard regular variation in the following way: Set

F(i)(x) = P [Z(i) ≤ x] and b(i)(t) =
( 1
1− F(i)

)←(t) .

Then

(6.5) Z∗ :=
(
(b(i))←(Z(i)) , i = 1, . . . , d

)

satisfies

(6.6) tP [
Z∗

t
∈ · ] = tP

[( (b(i))←(Z(i))
t

, i = 1, . . . , d
)
∈ ·

]
→ ν∗(·) in M+(C)

and

(6.7) ν∗(t·) = t−1ν∗(·)
so that α = 1. This implies we have standard marginal regular variation,

(6.8) tP
[Z∗(i)

t
> x

]
→ x−1 , x > 0, t →∞ ; i = 1, . . . , d.
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To see why (6.6) holds, suppose x ∈ C and then we have,

tP
(
[
Z∗

t
≤ x]c

)
=tP

{
[Z(i) ≤ b(i)(tx(i)) , i = 1, . . . , d]c

}

=tP
{

[
Z(i)

b(i)(t)
≤ b(i)(tx(i))

b(i)(t)
, i = 1, . . . , d]c

}

and since b(i) ∈ RV1/α(i) ,
b(i)(tx(i))

b(i)(t)
→ (x(i))1/α(i)

and therefore

(6.9) tP
{[Z∗

t
≤ x

]c}
→ ν

(
[0, [(x(i))1/α(i)

, i = 1, . . . , d)]c
)

= ν
(
[0, (x1/α]c

)
=: ν∗

(
[0, x]c

)
.

Klüppelberg and Resnick (2007) refer to Z∗ as the Pareto copula.

6.2. Standard case estimation of the angular measure S (not realistic). Assume, temporarily, the
regular variation condition where each component can be normalized by the same scaling function, so that
b(i)(t) = b(t), i = 1, . . . , d and

(6.10) nP [
Z

b(n)
∈ · ] → ν(·), in M+(C),

or, in polar coordinates,

(6.11) nP
[( R

b(n)
,Θ

)
∈ ·

]
→ να × S, in M+

(
(0,∞]× ℵ+

)
.

Suppose Z1, . . . , Zn or
(
(Ri,Θi), i = 1 . . . n

)
are a random sample. How do we estimate S?

Pick a sequence k = k(n) with k(n) →∞, k/n → 0 and define the tail empirical measure

(6.12) νn(·) =
1
k

n∑
1

ε
Zi/b(

n
k )

or in polar coordinates

(6.13) νn ◦ T−1 =
1
k

n∑
1

ε(
Ri/b(

n
k ),Θi

),

where T (x) = (‖x‖, x/‖x‖) is the polar coordinate transform. Then in M+(C) or M+

(
(0,∞]× ℵ+

)

(6.14)
1
k

n∑
1

ε
Zi/b(

n
k )
⇒ ν,

1
k

n∑

i=1

ε(
Ri/b(

n
k ),Θi

) ⇒ να × S .

The proof uses Laplace functionals and characterizations of the topology in M+(C). See Resnick (2006, 1986,
1987). Note as a plausibility argument that

E
(
νn(·)) =

1
k

n∑

i=1

E
(
ε
Zi/b(

n
k )

(·)
)

=
n

k
P [

Z1

b(n/k)
∈ · ] → ν(·)

since n/k →∞.
To get an estimate of the angular measure S proceed as follows. For Λ ∈ B(ℵ+), as n →∞,

(6.15)
1
k

∑n
i=1 ε(

Ri/b(
n
k ),Θi

)(
(1,∞]× 1

)

1
k

∑n
i=1 ε(

Ri/b(
n
k ),Θi

)(
(1,∞]× ℵ+

) =

∑n
i=1 ε(

Ri/b(
n
k ),Θi

)(
(1,∞]× 1

)
∑n

i=1 ε(
Ri/b(

n
k ),Θi

)(
(1,∞]× ℵ+

) → να(1,∞]× S(Λ)
να(1,∞]× S(ℵ)

= S(Λ) .

On the left side is the percent of the sample of big points (thresholded so Ri/b(n
k ) > 1) such that Θi ∈ Λ.

So for this context, the estimation method for estimating S consists of two steps:
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(a) Peaks over threshold: Restrict the sample to points with large norm.
(b) From the restricted sample, estimate S with an empirical distribution as in (6.15).

But: From a practical point of view, this is not useful since we do not know b(·)! We try to estimate b(·)
in the following way.

Lemma 2 (Resnick and Stărică (1997), Resnick (2006)). If

1
k

n∑

i=1

εRi/b( n
k ) ⇒ να, να(x,∞] = x−α,

then

(6.16) R(k)/b(
n

k
) P→ 1 ,

where
R(1) ≥ R(2) ≥ . . . ≥ R(n)

are the order statistics of R1, . . . , Rn. In fact

(6.17)
R(dkte)
b(n/k)

P→ t−1/α in D(0,∞] .

Proof. We focus on (6.16); for the rest, consult Resnick (2006). Write

P [| R(k)

b(n/k)
−1| > ε] = P

[
R(k) > (1 + ε)b(n

k )
]
+ P

[
R(k) < (1− ε)b(n

k )
]

≤P
[ n∑

i=1

ε
Ri/b

n
k
(1 + ε,∞] ≥ k

]
+ P

[ n∑

i=1

ε
Ri/b

n
k
(1− ε,∞] < k

]

=P
[

1
k

n∑

i=1

ε
Ri/b

n
k
(1 + ε,∞] ≥ 1

]
+ P

[
1
k

n∑

i=1

ε
Ri/b

n
k
(1− ε,∞] < 1

]

and since
1
k

n∑
1

ε
Ri/b(

n
k )

(1 + ε,∞] → (1 + ε)−α < 1

and
1
k

n∑
1

ε
Ri/b(

n
k )

(
[1− ε,∞]

) → (1− ε)−α > 1 ,

the result follows. Relation (6.17) follows from inverting

1
k

n∑
1

ε
Ri/b(

n
k )

(
(t,∞]

) → t−α ,

and using the fact that when a sequence of monotone functions converges, so do the inverses. ¤

This solves the problem of the unknown b by using a composition argument. Define b̂(n/k) = R(k) and
set

ν̂n(·) =
1
k

n∑

i=1

ε
Zi/b̂(

n
k )

.

Then in (M+(C)× R+) we have

(6.18)

(
1
k

n∑

i=1

ε Zi

b(n/k)

(·), b̂(n
k )

b(n/k)

)
⇒ (ν(·), 1) .

Apply the almost sure continuous composition map

(µ(·), x) → µ(x·)
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from (M+(C)× (0,∞)) → M+(C) and get

(6.19)

(
1
k

n∑

i=1

ε
Zi/b(

n
k )

b̂(n
k )

b(n
k )

)
=

1
k

n∑

i=1

εZi/bb(n/k))(·) = ν̂n(·) ⇒ ν(1·) = ν(·) .

So this simple scaling argument allows one to replace b(·) by b̂(·).

6.3. Using ranks to standardize. Start by assuming marginal and global regular variation (6.3), (6.4).
In particular

(6.20) tP
[( Z(i)

b(i)(t)
, i = 1 . . . d

)
∈ ·

]
→ ν(·) , b(i) ∈ RVα(i) α(i) > 0 , i = 1, . . . , d .

From marginal regular variation, the one dimensional tail empirical process converges

(6.21) 1
k

n∑

j=1

ε
Z

(i)
j /b(i)(n/k)

⇒ να(i) , i = 1 . . . d

in M+(0,∞] where recall the notation να(x,∞] = x−α, x > 0. Inverting (6.21) gives

(6.22)
Z

(i)

(dkt(i)e)
b(i)(n/k)

⇒ (t(i))−1/α(i)
, i = 1, . . . , d; t(i) > 0,

in D(0,∞]. Couple the global regular variation condition in (6.20) with the joint convergence over i in (6.22)
to get

(6.23)
(
νn,

( Z
(i)

(dkt(i)e)
b(i)(n/k)

, i = 1 . . . d
)) ⇒ (

ν, ((t(i))−1/α(i)
, i = 1 . . . d)

)

in M+(C)×D(0,∞]× . . .×D(0,∞]. Recall

ν
(
[0,x1/α]c

)
= ν∗

(
[0,x]c

)

is standard and apply the map

(ν, t) → ν
(
[0, t]c

)
t = (t(i), . . . , t(d)),

and we get

(6.24) νn

([
0,

(
Z

(i)

(dkt(i)e)
b(i)(n/k)

, i = 1 . . . d
)]c

)
⇒ ν

(
[0, t−1/α]c

)
.

The left side is

1
k

n∑

j=1

1[
Z

(i)
j

b(i)(n/k)
≤

Z
(i)

(dkt(i)e)
b(i)(n/k)

, i=1...d

]c
=

1
k

n∑

j=1

1
[
Z

(i)
j ≤ Z

(i)

(dkt(i)e) , i = 1 . . . d
]c

.

Define the (anti-)rank

(6.25) r
(i)
j =

n∑

`=1

1
[Z

(i)
` ≥Z

(i)
j ]

= # of Z(i)’s ≥ Z
(i)
j .

Since [Z(i)
j ≤ Z(dkt(i)e)] means that the number of ith components ≥ Z

(i)
j is at least kt(i), we have

(6.26)
1
k

n∑
γ=1

1[
r(i)≥kt(i) , i=1...d

]c ⇒ ν
(
[0, t−1/α]c

)



MULTIVARIATE REGULAR VARIATION 31

and changing variables s 7→ t−1 gives

(6.27)
1
k

n∑

j=1

1[
k

r
(i)
j

≤s(i) , i=1...d
]c ⇒ ν

(
[0, s1/α]c

)

or

(6.28)
1
k

n∑

j=1

ε(
k/r

(i)
j , i=1...d

) ⇒ ν∗ in M+(C) .

6.3.1. Method for converting to standard form and estimating the angular measure S. We summarize the
methodology as follows: We seek to transform to the standard case where a standard limit measure ν∗ esists
and then estimate the angular measure S associated with ν∗. The method is:

(1) Transform via ranks

(6.29) (Z1, . . . Zn) → (
(r(i)

j , i = 1 . . . d) , j = 1 . . . n
)

= (rj , j = 1 . . . n) .

(2) To the new data (k/rj , j = 1, . . . , n) apply the polar coordinate transform

T (x) = (‖x‖, x

‖x‖ ) =: (r,θ)

to get

(6.30)
(
T (k/rj), j = 1, . . . , n

)
=

(
(Rj,k,Θj,k) ; j = 1, . . . , n

)

and then it follows that

(6.31)
1
k

n∑

j=1

εRj,k,Θj,k
⇒ ν1 × S .

This gives the estimator

(6.32) Ŝn(·) =

∑n
j=1 εRj,k,Θj,k

(
(1,∞]× ·)∑n

1 εRj,k(1,∞]
⇒ S(·) .

So we estimate S with {Θj,k : Rj,k > 1}.
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