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Abstract

In this paper, we analyze the problem of stocking and dispensing inventory to satisfy cus-

tomers who have contracted for different levels of parts availability. We consider a model con-

sisting of multiple priority demand classes exhibiting mutually independent, stationary, Poisson

demand processes, independent and identically distributed, non-zero, order lead times, an (S-

1,S) ordering policy, and a threshold level-based allocation and backorder clearing policy. For

the solution procedure, first we develop an efficient algorithm for the multiple class setting, called

the Modified Bridge Algorithm-2, that significantly reduces the complexity of the solution proce-

dure caused by high dimensionality. We then develop an efficient algorithm to determine steady

state probabilities. After that, an optimization scheme is developed that minimizes total system

stock for a given set of fill-rate constraints. Finally, we provide numerical results to suggest the

cost savings that can be realized compared to conventional practices.

1 Model

Vicil and Jackson [5] analyze the same setting for two priority demand class setting. Their main

main contribution is an exact analysis of the stationary probabilities and an efficient algorithm

for finding the minimal stock required to satisfy demand class-specific fill-rate constraints. In this

paper, we extend our analysis to a more general setting.

For the general n-demand classes, let us represent the customers as 1, 2, . . . , n in terms of their

priorities, where customer type-1 and type-n have the lowest and the highest priorities respectively.
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Each class has its own fill-rate service level requirement, where fill-rate is the fraction of demand

satisfied directly from on-hand stock (physical inventory). For the general n-demand classes case,

threshold levels are given by (S1, S2, . . . , Sn), where S1 is the total system inventory.

As in the two priority demand classes setting, two allocation policies must be specified: one for

when a demand occurs and one for when a unit of stock is delivered. We refer to the first as the

rationing policy and the second as the backorder clearing mechanism. Both policies are governed

by a threshold level. Hence, followed policy is:

Threshold Rationing Policy for n-demand class:

• On-hand stock (OH) > S2 : satisfy all customer demands on a FCFS basis;

• For i = 2, 3, . . . , n− 1:

Si+1 < OH 6 Si : satisfy type-i,..., type-n demands on a FCFS basis

but backorder type-1,..., type-(i-1) demands;

• 0 < OH 6 Sn : satisfy only type-n demands but backorder the others;

• OH = 0 : backorder all types of demands.

Threshold Backorder Clearing Mechanism for n-demand class:

• an incoming unit from resupply system will satisfy an existing type-n backorder, if one exists;

• an incoming unit from resupply will satisfy an existing backorder of type-i customer, only if

OH meets critical level Si+1 for that class.1

Hence, the optimization problem can be written as:

min S1

s.t.

βi(S1, S2, . . . , Sn) > ci for i = 1, 2, . . . , n

and S1 > S2 > . . . > Sn > 0.

1In other words, if OH is at least Si+1 before the receipt of the unit.
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Based on the PASTA principle, the fill-rate measures are related to the steady state distribution

of an on-hand stock as:

βi = P∞(OH > Si+1) for i = 1, 2, . . . , n− 1; and

βn = P∞(OH > 0).

For the n-priority demand class case, n > 3, let us denote the state random variable as

(OH, B1, B2, . . . , Bn, R). The existence of steady state probabilities and general lead time solutions

are given by the following theorems:

Theorem 1.1 Assuming there are no orders in the pipeline at time zero, then for continuous or

discrete (positively valued, and no probability mass at zero) lead time distributions,

limt→∞ P(OH,B1,B2,...,Bn,R)(t) = π(OH,B1,B2,...,Bn,R) exists and is well defined.

Proof: Follows the same ideas as two priority class case, and, therefore the proof is omitted.

Theorem 1.2 In steady state, for discrete or continuously distributed lead times with finite mean

T , where there is no point mass at zero, the system of balance equations to be solved is the same

as the balance equations of the problem with exponentially distributed lead time with rate µ = 1/T .

Hence the solution to steady state probabilities under CTMC setting with parameter µ = 1/T will

be the solution to the main problem.

Proof: Follows the same ideas as two priority class case, and, therefore the proof is omitted.

The main contribution of this paper is to provide an efficient algorithm, namely Modified Bridge

Algorithm-2 (MBA(2)), to solve the optimization problem for n-priority demand classes. This

algorithm is developed to solve for two customer class case, which in turn is used recursively to

determine steady state OH probabilities corresponding to an n-priority demand class case, as well

as within the search algorithm to determine optimal threshold levels.
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Before presenting the analysis for the general n-priority demand class case, we study three

priority demand classes and show how the dynamics of the system differ from the two demand

classes case and provide an optimization scheme that uses the main framework of the two priority

demand classes setting. Also, presenting the three customer case before the general priority class

solution is necessary since the proof for the general optimization scheme requires an induction

approach based on the three customer class solution.

The remainder of this thesis is organized as follows. We begin by describing the model and

system dynamics for the three priority class case. In section 3, we describe our solution approach

for the three class case in detail, developing a special technique to reduce the dimensionality of

the problem. Then we derive exact steady state OH probabilities for given policy parameters and

threshold levels, and from these we calculate the corresponding service levels associated with each

customer class. Also in this section we describe an optimization algorithm that requires only two

passes for the calculation of threshold levels that minimize total system inventory. In section 4,

we describe the solution approach for the general multiple priority demand class, introducing the

MBA(2) algorithm that significantly simplifies the solution procedure. Finally, we present a series

of theoretical results that allow us to use MBA(2) recursively in the context of Bridge Algorithm-n

and Optimal Greedy Line Search-n for n-priority class case.

Remarks:

1. The rest of the section is based on a CTMC framework due to Theorem 1.2. In other words,

for a given discrete or continuously distributed lead time with finite mean T , where there is

no point mass at zero, µ is set to be 1/T . We solve the system for exponentially distributed

lead times with this rate µ.

2. Most of the notational complexity of this section is required for the proofs. The solution

procedure and optimization algorithms are quite simple to understand and implement.
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2 The Model for Three Priority Demand Class

Previously, we had labeled the customers in increasing priority as type-1, type-2,..., and type-n.

But for three priority class case, as we similarly did for two class case, let us represent the customers

as silver, gold and platinum. The platinum customers contract for the highest fill-rate while the

silver customers contract for the lowest. Hence, the followed policy is:

Threshold Rationing Policy:

• On-hand stock (OH) > Sg : satisfy all customer demands on a FCFS basis;

• Sp < OH 6 Sg : satisfy gold and platinum demands on a FCFS basis but backorder silvers’ ;

• 0 < OH 6 Sp : satisfy platinum demands but backorder both gold andsilver demands;

• OH = 0 : backorder all types of demands.

Threshold Backorder Clearing Mechanism:

• an incoming unit from resupply system will satisfy an existing platinum backorder, if one

exists;

• an incoming unit from resupply will satisfy an existing backorder of type ζ customer, where

ζ ∈ {silver, gold} only if OH meets the critical level for that class. Otherwise, it is added to

on-hand stock. Note that critical levels for gold and silver are Sp and Sg respectively, where

incoming orders of those types are stopped when OH drops to those specified threshold levels.

Our objective is to determine threshold parameters (Ss, Sg, Sp) that minimize the total inven-

tory investment Ss while satisfying fill-rate constraints for each customer type. The fill-rates are
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functions of the threshold parameters (Ss, Sg, Sp). The optimization problem can be written as:

min Ss

s.t.

βs(Ss, Sg, Sp) > cs

βg(Ss, Sg, Sp) > cg

βp(Ss, Sg, Sp) > cp

and Ss > Sg > Sp > 0.

At an arbitrary point in time, the system state information required to implement the policy

can be characterized by (OH, Bs, Bg, Bp, R). From the PASTA principle:

βs = 1− P∞(OH 6 Sg);

βg = P∞(Sp < OH 6 Sg);

βp = P∞(0 < OH).

2.1 Transition Diagram

Transitions from one state to another are shown in Figure 1 for a sample of selected states. We

use (Ss, Sg, Sp) = (7, 4, 2) for our example. In Figure 1, to ease visualization, different symbols are

used to represent states based on the value of OH.

As long as OH is at least Sg + 1, states are represented with circles. The system experiences

demand at a rate of λ = λs + λg + λp, and all three demand types are satisfied immediately on a

FCFS basis. When OH drops to the level Sg, then we stop serving silver demands and they are

backordered. The transitions will take place towards the right on the Bs-axis whenever a silver

demand is realized, increasing Bs by 1. On the other hand, there will be a downward movement

at a rate λg + λp. When a gold or platinum arrival occurs, OH decreases by 1 unit until it drops

to level Sp. The set of states corresponding to Sp < OH 6 Sg are represented with squares.
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Figure 1: State transition diagram for 3 customer class case

When OH drops to Sp, then any incoming demand will cause an increase in the backorder level

of its type except for platinum demands, which are served as long as OH is positive. Those states

where only platinum customers are served, are represented by triangles. Note that when OH 6 Sp,

the transitions take place in a three dimensional space. For example, whenever a silver (resp. gold)

demand occurs, it will cause a movement on Bs-axis (resp. Bg-axis) causing an increase in its

backorder level. Transitions in the Bs and Bg direction occur at rates of λs and λs respectively.

When OH is zero, then any incoming demand will cause an increase in the backorder level

of its type. Those set of states are represented by diamonds. Note that triangles and diamonds

correspond to states in a three dimensional space.

Consider states (1, 2, 0, 0, 8), (1, 4, 1, 0, 11) and (0, 4, 1, 1, 13) in Figure 1, represented by numbers

3, 4 and 5 respectively. Those all correspond to states OH < Sp. When a unit is received from

resupply, it will cause an upward transition which increases OH by 1. On the other hand, when a
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demand of type silver,gold or platinum occurs, then there will be a transition rightward, forward

or downward respectively. Here, we define forward transition as the one that corresponds to an

increase in Bg on Bg-axis.

Next, consider (2, 1, 0, 0, 6), represented by number 2 in Figure 1. An incoming unit from

resupply is added to on-hand stock causing an upward transition that makes silver backorder

unsatisfied. On the other hand, for the state (2, 0, 1, 0, 6), represented by number 1 in the figure,

an incoming unit is used to satisfy an existing gold backorder, which causes a backward transition.

3 Solution Procedure for Three Priority Class Setting

Before going into the analysis for three priority class setting, let us first consider the values Ss−Sg

and Ss − Sp that any feasible solution to the problem should satisfy.

3.1 Determination of the minimum values of Ss − Sg and Ss − Sp in a feasible

solution

Proposition 3.1 Consider two cases for a given resupply rate µ:

a) three customer demand classes with threshold levels (Ss, Sg, Sp) and arrival rates (λs, λg, λp);

b) two customer demand classes with threshold levels (Ss−Sp, Sg−Sp) and arrival rates (λs, λg+

λp).

Denote on-hand stock for the former and the latter cases as OH1 and OH2 respectively. Then

P∞(OH1 = Sp + k) = P∞(OH2 = k) for k = 1, . . . , Ss − Sp.

Proof: Consider three customer demand class case, and let (OH1, Bs1
, Bg, Bp, R1) be the repre-

sentation of a system state for a given (Ss, Sg, Sp). Let us group the states into one set according

to following transformation:

(Bs1
, R1) =

⋃
(OH1, Bs1

, Bg, Bp, R1) (1)
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For a given (Bs1
, R1), the above operation is to unite all the states into one group that have the

same (Bs1
, R1) value. Notice that for R1−Bs1 6 Ss−Sp, (Bs1

, R1) corresponds to a unique state

(OH1, Bs1
, Bg, Bp, R1) = (Ss −R1 + Bs1

, Bs1
, 0, 0, R1) rather than a union of several states.

In addition, let us consider the two demand class case with threshold levels

(Ss − Sp, Sg − Sp), and arrival rates (λs, λg + λp). Let us represent the states as

(OH2, Bs2
, Bg+p, R2).

Then there is a one-to-one matching between state space of two customer demand class setting

(OH2, Bs2
, Bg+p, R2) and (Bs1

, R1) according to the following transformation:

(Bs1
, R1) 1:1←→ (OH2, Bs2

, Bg+p, R2) (2)

=
(
(Ss − Sp −R1 + Bs1

)+, Bs1
, (R1 −Bs1 − Ss + Sp)+, R1

)

and the dynamics of the system are identical for both cases (i.e. jump probabilities and rates from

one state to another). In other words, the two customer demand class case with threshold levels

(Ss − Sp, Sg − Sp), and arrival rates (λs, λg + λp) is an exact characterization of the above system

in Equation (1) resulting from a grouping operation.

By using Equations (1) and (2),

(OH2, Bs2
, Bg+p, R2) =

(
(Ss − Sp −R1 + Bs)+, Bs1

, (R1 −Bs − Ss + Sp)+, R1
)

≡ (Bs1
, R1)

=
⋃

(OH1, Bs1
, Bg, Bp, R1)

Hence,

P∞(OH2, Bs2
, Bg+p, R2) =

9



= P∞
(
(Ss − Sp −R + Bs)+, Bs1

, (R−Bs − Ss + Sp)+, R1
)

= P∞(Bs1
, R1)

=
∑

P∞(OH1, Bs1
, Bg, Bp, R1)

Recall that R1−Bs1
< Ss−Sp for OH1 > Sp, therefore there is a unique state (OH1, Bs1

, Bg, Bp, R1)

corresponding to state (Bs1
, R1). In addition, it is also true that OH2 > 0 for R2−Bs2

< Ss−Sp.

As a result, we have the following relation for OH1 > Sp,

P∞
{

(OH2, Bs2
, Bg+p, R2) =

(
Ss−Sp−R1 + Bs1

, Bs1
, 0, R1

)}

= P∞(Bs1
, R1)

= P∞
{

(OH1, Bs1
, Bg, Bp, R1) = (Ss −R1 + Bs1

, Bs1
, 0, 0, R1)

}
.

(3)

Hence the following relationship holds:

P∞(OH1 = Sp + k) = P∞(OH2 = k) for k = 1, . . . , Ss − Sp.

Furthermore, for (OH1, Bs1
) = (Sp, Bs1

), R1−Bs1
= Ss−Sp. Hence, it is also true that there

is a unique state

(OH1, Bs1
, Bg, Bp, R1) = (Sp, Bs1

, 0, 0, Ss − Sp + Bs1
),

corresponding to a state (Bs1
, R1) = (Bs1

, Ss − Sp + Bs1
). In addition, it is also true that for

(Bs2
, R2) = (Bs1

, Ss − Sp + Bs1
),

(OH2, Bs2
, Bg+p, R2) = (0, Bs1

, 0, Ss − Sp + Bs1
).
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Therefore, we also have the following:

P∞
{

(OH2, Bs2
, Bg+p, R2) = (0, Bs1

, 0, Ss − Sp + Bs1
)
}

= P∞
{

(OH1, Bs1
, Bg, Bp, R1) = (Sp, Bs1

, 0, 0, Ss − Sp + Bs1
)
}

.

(4)

Corollary 3.1 For a given set of (Ss, Sg, Sp) and system parameters (λs, λg, λp, µ),

(βs)1 = P∞(OH1 > Sg) = P∞(OH2 > Sg − Sp);

(βg)1 = P∞(Sp < OH1 6 Sg) = P∞(OH2 > 0);

where P∞(OH2 = k) is the solution to two demand class case with threshold levels (Ss−Sp, Sg−Sp)

and system parameters (λs, λg + λp, µ) ≡ (λs, λg+p, µ). Hence,

(βs)1 = (βs)2;

(βg)1 = (βg+p)2.

Proof: Follows directly from Proposition 3.1.

Lemma 3.1 Consider the three demand class setting with corresponding fill-rate requirements

cs, cg, and cp. Denote S̃s∗ and S̃(g+p)∗ as the threshold levels, found by applying Optimal Greedy Line

Search algorithm to a two customer demand class setting with system parameters (λs, λg + λp, µ)

and fill-rate constraints cs, cg. Then any feasible solution (Ss, Sg, Sp) to the three customer case
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must satisfy:

Ss − Sp > S̃s∗;

and

Ss − Sg > S̃s∗ − S̃(g+p)∗.

Proof: For each feasible solution (Ss, Sg, Sp) = [(Ss)2+Sp, (Sg)2+Sp, Sp] to the original problem,

there corresponds a feasible solution [(Ss)2, (Sg)2] to a two customer demand class setting with

parameters (λs, λg + λp) and fill-rate constraints cs, cg due to Corollary 3.1.

If (Ss, Sg, Sp) = [(Ss)2 + Sp, (Sg)2 + Sp, Sp] is feasible, then [(Ss)2, (Sg)2] is feasible. Then,

Ss − Sp = [(Ss)2 + Sp]− Sp

= (Ss)2,

and

Ss − Sg = [(Ss)2 + Sp]− [(Sg)2 + Sp]

= (Ss)2 − (Sg)2.

But it was shown in the previous discussions of Optimal Greedy Line Search algorithm that for

a two customer class setting, any feasible solution [(Ss)2, (Sg)2] should satisfy (Ss)2 − (Sg)2 >

Ss∗ − S(g+p)∗, and (Ss)2 > Ss∗. Hence we conclude,

Ss − Sp = (Ss)2 > Ss∗,

Ss − Sg = (Ss)2 − (Sg)2 > Ss∗ − S(g+p)∗.

Lemma 3.2 For a given set of (Ss, Sg, Sp) and system parameters (λs, λg, λp, µ), the steady state

probabilities of states corresponding to OH > Sp and (Bg, Bp) = (0, 0) can be found by applying

the Bridge Algorithm to a two demand class setting with thresholds (Ss − Sp, Sg − Sp) and system
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parameters (λs, λg + λp, µ)

Proof: For OH > Sp, the lemma is the immediate result of Proposition 3.1 and Equation (3).

Next, it is left to show for the case (OH, Bg, Bp) = (Sp, 0, 0). But it was also previously shown in

Equation (4) that

P∞
{

(OH2, Bs2
, Bg+p, R2) = (0, Bs1

, 0, Ss − Sp + Bs1
)
}

= P∞
{

(OH1, Bs1
, Bg, Bp, R1) = (Sp, Bs1

, 0, 0, Ss − Sp + Bs1
)
}

.

From Lemma 3.2, it is clear that the residual difficulty of the three priority demand class case

lies in computing P∞(OH = k) for k 6 Sp.

3.2 Grouping states on a (Bs, Bg) plane

For k = 1, . . . , Sp, observe that

P∞(OH = k) =
∞∑

j=0

P∞
(
OH = k, Bs + Bg = j

)
.

It is sufficient, therefore, to compute steady state probabilities of the system being in aggregate

states of the form {OH = k, Bs + Bg = j}, for k = 1, . . . , Sp and j = 0, 1, . . ..

In order to determine corresponding fill-rates for each customer demand class, we do not need to

solve steady state probabilities of all states at once. What we need is the corresponding steady state

OH probabilities to determine different class fill-rate measures. For a given (OH, Bp) we group the

states (OH, Bs, Bg, Bp, R) into sets such that Bs + Bg = k, for k = 0, 1, . . .. and OH 6 Sp.

The main goal in doing so is to decrease the dimensionality of the state space. Later we will

show that this modified system correctly represents the original system. In order to clarify the

ideas, let us refer to Figure 2. Two specific examples are shown, one for OH = 1 and one for

Bp = 1. For OH = 1, the idea is first to categorize the system states (OH,Bs, Bg, Bp, R) such that
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Figure 2: Labeling states

Bs + Bg = k,for k = 0, 1, . . ., and label them k. The same operation is also applied for Bp = 1.

Recall that Figure 2 represents a system for threshold levels (Ss, Sg, Sp) = (7, 4, 2). For example,

for a set (OH, Bp) = (1, 0), let us consider state (1, 0, 0, 0, 6) which is labeled as 0. If a silver

customer demand occurs, then Bs will increase by 1, and new system state becomes (1, 1, 0, 0, 7).

On the other hand, if a gold customer demand occurs, then this order is also backordered, and new

state becomes (1, 0, 1, 0, 7). On the other hand, if a platinum customer demand occurs, then that

order is immediately satisfied from on-hand stock, decreasing OH by one, resulting in a system

state (0, 0, 0, 0, 7). However, if a unit is received from resupply, then this unit is added to on-hand

stock. There will be a upward transition into state (2, 0, 0, 0, 6). Notice that states (1, 1, 0, 0, 7) and

(1, 0, 1, 0, 7) are both indexed by 1 in the figure. For OH < Sp, any type of silver or gold demand

will increase the state index by 1, while a unit receipt from resupply or a platinum demand arrival

has no effect on this index. This only changes OH or Bp levels.

Next, for OH 6 Sp we group the states on a (Bs, Bg) plane that have the same labels and

represent the system states as (OH,Bs⊕g, Bp, R). So it becomes
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Figure 3: State transition diagram after grouping

(OH,Bs⊕g, Bp, R) ≡
⋃

Bs+Bg=Bs⊕g

(OH,Bs, Bg, Bp, R). (5)

The resulting transition diagram can be seen in Figure 3. In the figure, those states are repre-

sented as circled shapes, i.e. circled triangles and circled diamonds. To make the s ⊕ g operation

clearer, the set of indexed states in Figure 3 corresponds to the same ones as shown in Figure 2.

3.3 Simplification of State Representations

Working in four and five dimensional settings can be confusing and the notational complexity

increases the difficulty of analysis. Therefore, for a given (Ss, Sg, Sp) we present a transformation
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Figure 4: Simplified state transition diagram after grouping

performed on the five dimensional

(OH, Bs, Bg, Bp, R) representation for OH > Sp and another performed on the four dimensional

(OH, Bs⊕g, Bp, R) representation for OH 6 Sp.

For OH > Sp, the state random variable for the simplified transition diagram can be represented

as (X,Y ) , where

X = Sg −OH;

Y = Bs.
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As a result, for the relation (OH,Bs, Bg, Bp, R) ≡ (X, Y ), we have the following one-to-one trans-

formation between the grouped (Fig. 3) and the simplified transition diagram (Fig. 4):

(
X, Y

)
=

(
Sg −OH, Bs

)
for OH > Sp;

(
OH, Bs, Bg, Bp, R

)
=

(
Sg −X,Y, 0, 0, X + Y + Ss − Sg

)
forX < Sg − Sp.

On the other hand, for OH 6 Sp, for the relation (OH, Bs⊕g, Bp, R) ≡ (X, Y )s⊕g, we have the

following one-to-one transformation between the grouped and the simplified transition diagram:

(
X,Y

)s⊕g =
(
Sp −OH + Bp, Bs⊕g

)
for OH 6 Sp;

(
OH,Bs⊕g, Bp, R

)
=

(
(Sp −X)+, Y, (X − Sp)+, X + Y + Ss − Sp

)
.

Let us conclude the above discussions by writing the final result relationship between the

simplified and the original state variables (OH, Bs, Bg, Bp, R). Using Equation (5), for a given

(Ss, Sg, Sp):

(
X,Y

) ≡ (
Sg −X, Y, 0, 0, X + Y + Ss − Sg

)
for X < Sg − Sp;

(6)
(
X, Y

)s⊕g ≡
⋃

Bs+Bg=Y

(
(Sp −X)+, Bs, Bg, (X − Sp)+, X + Y + Ss − Sp

)
.

The resulting transition diagram is shown in Figure 4. For the (X, Y ) representation, column

index Y represents the number of existing silver backorders, while it represents the total silver

and gold backorders in the (X, Y )s⊕g representation. Notice that bi-directional transitions between

columns occur only when OH is equal to a threshold level.
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Figure 5: Portion of flows on state (0, 1)s⊕g

Remark: It is not possible to write down the steady state balance equations involving states

(0, j)s⊕g, j > 1 from studying Figure 4. If the current state is (0, j)s⊕g ≡ (Sp, j, 0, 0, Ss − Sp + j),

then when a unit is received from resupply, it will be added to OH stock and the new system state

becomes

(Sp + 1, j, 0, 0, Ss − Sp + j − 1) ≡ (Sg − Sp − 1, j).2

For all other cases, the unit will be used to fulfill an existing gold backorder since Bg > 0 for

Bs < j, resulting in a system state (0, j − 1)s⊕g. Related transitions shown in Figure 4 can be

seen more explicitly in Figure 5. Therefore, in steady state, total flow from state (0, 1)s⊕g into

states (0, 0)s⊕g and (Sg − Sp − 1, j) is equal to π(0,1)s⊕gµR(0,1)s⊕g . However, the split of this flow

among states (0, 0)s⊕g and (Sg−Sp−1, j) cannot be determined from studying the simplified state

transition diagram alone. We will explain the procedure of writing the balance equations for states

(0, j)s⊕g, j > 1 in the next section.

3.4 Calculation of Steady State Probabilities under

(OH, Bs⊕g, Bp, R) Setting

Next, we determine the steady state probabilities corresponding to OH 6 Sp. Steady state proba-

bilities π(Sp,k,0,0,Ss−Sp+k) for k > 1, are known due to Lemma 3.2. Note that (0, 0)s⊕g corresponds

2Recall that (i, j) corresponds to a simplified state representation for OH > Sp.
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to a unique state (Sp, 0, 0, 0, Ss−Sp) in the original representation (other ones generally correspond

to a union of more than one states). Hence, steady state probability π0,0)s⊕g = π(Sp,0,0,0,Ss−Sp) is

also known due to Lemma 3.2.

The following theorems are analogous to the one that was stated for two priority class setting:

Theorem 3.1 In steady state, the following equation holds:

π(1,0)s⊕g · µ ·R(1,0)s⊕g = π(0,0)s⊕g · λp · [X(0)
1 ]s⊕g

where [X(0)
1 ]s⊕g = P(1,0)s⊕g

[
τ(0,0)s⊕g(1) < min{τ(0,1)s⊕g(1), τ(0,1)(1)}].

Proof: See Appendix 1.

The above theorem allows us to calculate π(i,0)s⊕g , i > 2, recursively from the following balance

equations by having the knowledge of π(1,0)s⊕g :

π(i,0)s⊕g · [λ + µ ·R(i,0)s⊕g

]
= π(i−1,0)s⊕g · λp + π(i+1,0)s⊕g · µ ·R(i+1,0)s⊕g

The following theorem establishes the relation of π(1,j)s⊕g with π(0,j)s⊕g and π(i,j−1)s⊕g for i, j >

1. Eventually, this allows us to obtain π(i,j)s⊕g , i > 2, values recursively from the balance equations

on a given column j.

Theorem 3.2 In steady state, the following equation holds for j > 1:

π(1,j)s⊕gµR(1,j)s⊕g = π(0,j)s⊕gλpX
(j)
1 +

∞∑

i=1

π(i,j−1)s⊕g λs+g [X(j)
i ]s⊕g

where [X(j)
i ]s⊕g = P(i,j)s⊕g

[
τ(0,j)s⊕g(1) < min{τ(0,j+1)s⊕g(1), τ(0,j+1)(1)}].
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Proof: See Appendix 2.

The next section establishes the procedure of calculating π(0,j)s⊕g , j > 1 from balance equations.

3.5 Calculating π(0,j)s⊕g , j > 1 from Balance Equations

Proposition 3.2 For a generic state π(0,j)s⊕g , j > 1, the following relation holds:

π(0,j)s⊕g

(
λs + λg + λp + µR(0,j)s⊕g

)
=

= π(0,j−1)s⊕g

(
λs + λg

)

+ π(1,j)s⊕g µ R(1,j)s⊕g

(7)

+ π(Sg−Sp−1,j) (λg + λp)

+
(
π(0,j+1)s⊕g − π(Sp,j+1,0,0,Ss−Sp+j+1)

)
µ R(0,j+1)s⊕g .

Proof: For a given set of (Ss, Sg, Sp) and system parameters (λs, λg, λp, µ), π(0,0)s⊕g ≡ π(Sp,0,0,0,Ss−Sp)

can be calculated by using Lemma 3.2. Now, let us consider a generic state (0, j)s⊕g, j > 1. Recall

that

(0, j)s⊕g ≡
⋃

Bs+Bg=j

(Sp, Bs, Bg, 0, Ss − Sp + j).

We decompose the RHS of above equation as:

⋃

Bs+Bg=j

(Sp, Bs, Bg, 0, Ss − Sp + j) =
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=
{

(Sp, j, 0, 0, Ss − Sp + j)
} ⋃ { ⋃

Bs+Bg=j
Bs<j

(Sp, Bs, Bg, 0, Ss − Sp + j)

}
.

If the current state is (0, j)s⊕g ≡ (Sp, j, 0, 0, Ss − Sp + j), then when a unit is received from

resupply, it will be added to OH stock and the new system state becomes (Sp + 1, j, 0, 0, Ss−Sp +

j − 1) ≡ (Sg − Sp − 1, j).3 For all other cases, the unit will be used to fulfill an existing gold

backorder since Bg > 0 for Bs < j, resulting in a system state (0, j − 1)s⊕g. Using those relations,

we get

π(0,j)s⊕g = π(Sp,j,0,0,Ss−Sp+j) +
∑

Bs+Bg=j
Bs<j

π(Sp,Bs,Bg ,0,Ss−Sp+j). (8)

Now π(1,0)s⊕g can be determined by using Theorem 3.1. Also, based on the balance equations

on the first column, we can obtain the π(i,0)s⊕g , i > 1, values recursively.

Now, refer to Figure 4 and using Theorem 3.1, write the balance equation for a generic state

π(0,j)s⊕g :

π(0,j)s⊕g

(
λs + λg + λp + µR(0,j)s⊕g

)
=

= π(0,j−1)s⊕g

(
λs + λg

)

+ π(1,j)s⊕g µ R(1,j)s⊕g

+ π(Sg−Sp−1,j) (λg + λp)

+
(
π(0,j+1)s⊕g − π(Sp,j+1,0,0,Ss−Sp+j+1)

)
µ R(0,j+1)s⊕g .

The last term follows from the relation in Equation (8). Equation (7) allows π(0,j+1)s⊕g to be

computed knowing all other terms in the equation.
3Recall that (i, j) corresponds to a simplified state representation for OH > Sp.
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The only thing left is to calculate [X(j)
i ]s⊕g values, which are used in Theorems 3.1 and 3.2.

After that we are ready to determine steady state OH probabilities.

3.6 Solving for [X
(j)
i ]s⊕g

Let us define the corresponding transition probabilities in the DTMC for i > 1 as follows:

[α(j)
i ]s⊕g = P

[
ξ1 = (i− 1, j)s⊕g | ξ0 = (i, j)s⊕g

]
;

[β(j)
i ]s⊕g = P

[
ξ1 = (i + 1, j)s⊕g | ξ0 = (i, j)s⊕g

]
;

[γ(j)
i ]s⊕g = P

[
ξ1 = (i, j + 1)s⊕g | ξ0 = (i, j)s⊕g

]
.

Recall that,

[X(j)
i ]s⊕g = P(i,j)s⊕g

[
τ(0,j)s⊕g(1) < min{τ(0,j+1)s⊕g(1), τ(0,j+1)(1)}].

Now, refering to Figure 4 we write the following recursion for [X(j)
i ]s⊕g:

[X(j)
1 ]s⊕g = [α(j)

1 ]s⊕g + [β(j)
1 ]s⊕g [X(j)

2 ]s⊕g;

and for k > 1,

[X(j)
k ]s⊕g = [α(j)

k ]s⊕g [X(j)
k−1]

s⊕g + [β(j)
k ]s⊕g [X(j)

k+1]
s⊕g.

The above recursions have the same form as for the two-demand class setting, for which we

have proven that a closed form solution exists. Therefore, let us define a set function f as:

f :
(
λ′, λ′′, µ, R0

) 7−→ (
X,R

)
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where for all i > 1, j > 0:

R(i,j) = R0 + i + j;

α
(j)
i =

µR(i,j)

λ′ + λ′′ + µR(i,j)
;

β
(j)
i =

λ′

λ′ + λ′′ + µR(i,j)
;

γ
(j)
i =

λ′′

λ′ + λ′′ + µR(i,j)
;

and for all j = 1, 2, . . . ,

X(j)
1 = α

(j)
1 +

∞∑

u=1

α
(j)
u

(∏u−1
v=1 β

(j)
v α

(j)
v

)

b
(j)
u−1b

(j)
u

;

X(j)
k =

∏k
v=1 α

(j)
v

b
(j)
k

+
β

(j)
k b

(j)
k−1

b
(j)
k

X(j)
k+1, for k > 1

where

b
(j)
0 = 1,

b
(j)
1 = 1,

b
(j)
k = b

(j)
k−1 − β

(j)
k−1α

(j)
k b

(j)
k−2 for k > 2.

According to the above set function f , we have

(
Xs⊕g,R

)
= f(λp, λs + λg, µ, Ss − Sp). (9)
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For the simplified state representation π(i,j)s⊕g . i, j > 0, necessary balance equations are given

by:

1. For π(i,0)s⊕g , i = 2, · · · ,Mmax:4

π(i,0)s⊕g · [λ + µ ·R(i,0)s⊕g

]
= π(i−1,0)s⊕g · λp + π(i+1,0)s⊕g · µ ·R(i+1,0)s⊕g ;

2. For π(0,j)s⊕g , j > 1:

π(0,j)s⊕g

(
λs + λg + λp + µR(0,j)s⊕g

)
=

= π(0,j−1)s⊕g

(
λs + λg

)

+ π(1,j)s⊕g µ R(1,j)s⊕g

+ π(Sg−Sp−1,j) (λg + λp)

+
(
π(0,j+1)s⊕g − π(Sp,j+1,0,0,Ss−Sp+j+1)

)
µ R(0,j+1)s⊕g ;

3. For π(k,j)s⊕g , k > 2, j > 1:

π(k−1,j)s⊕g · [λ + µ ·R(k−1,j)s⊕g

]
=

= π(k−2,j)s⊕g · λp + π(k,j)s⊕g · µ ·R(k,j)s⊕g + π(k−1,j−1)s⊕g · (λs + λg
)
.

4Mmax will be defined later.
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3.7 Determining steady state OH probabilities

Let us summarize the steps to determine steady state OH probabilities in Figure 4 for a given

value of threshold parameters (Ss, Sg, Sp) and system parameters (λs, λg, λp, µ). Although this is

an infinite state system, we do not need to solve all the steady state probabilities for all practical

problems. For example, in order to capture at least 99.9% of the probabilities, we can use the

following quantity as a bound in our algorithm: Mmax = Poissinv
(
0.999, (λs + λg + λp)/µ

)
.

Define Bridge Algorithm-n as the one that corresponds to solving OH probabilities for n-demand

class setting.

Remark: From now on, for both three and multiple priority demand classes cases, while deter-

mining steady state OH probabilities for a given threshold levels, we will assume that Ss > Sp > Sp

and S1 > S2 > . . . > Sn. This is a valid assumption since if Si = Si+1 for some 1 6 i 6 n − 1,

then this system is equivalent to a system with thresholds
(
S1, . . . , Si, Si+2, . . . , Sn

)
and system

parameters (λ1, . . . , λi +λi+1, λi+2, . . . , λn, µ). Hence the original problem can be transformed into

a system such that S1 > S2 > . . . > Sn. This is mainly done to simplify the proofs.

Bridge Algorithm-3:

1. Apply Bridge Algorithm-2 to a two class setting with threshold levels

(Ss − Sp, Sg − Sp) with parameters (λs, λg + λp, µ), and represent the obtained (simplified)

steady state probabilities as π(i,j)′ . Then:

a) π(k,0) = π(k,0)′ for k = −1,−2, · · · ,−(Ss − Sg),

b) π(i,j) = π(i,j)′ for 0 6 i 6 Sg − Sp − 1, and 0 6 j 6 Mmax,

c) π(Sp,j,0,0,Ss−Sp+j) = π(Sg−Sp,j)′ for j > 0,

d) π(0,0)s⊕g = π(Sg−Sp,0)′ ;

2. Use Theorem 3.1 to calculate π(1,0)s⊕g ;

3. Set

a) λ = λs + λg + λp;
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b)
(
Xs⊕g,Rs⊕g

)
= f(λp, λs + λg, µ, Ss − Sp);

4. Calculate π(i,0)s⊕g recursively for i = 2, · · · , Mmax from balance equations;

π(i,0)s⊕g · [λ + µ ·R(i,0)s⊕g

]
= π(i−1,0)s⊕g · λp + π(i+1,0)s⊕g · µ ·R(i+1,0)s⊕g

5. Calculate π(0,1)s⊕g from the balance equation in (7);

6. Set j = 1;

While 1 6 j 6 Mmax:

• Use Theorem 3.2 to calculate π(1,j)s⊕g ;

• Calculate π(k,j)s⊕g recursively from balance equations for

2 6 k 6 Mmax − (Ss − Sp);

π(k−1,j)s⊕g · [λ + µ ·R(k−1,j)s⊕g

]
=

= π(k−2,j)s⊕g · λp + π(k,j)s⊕g · µ ·R(k,j)s⊕g + π(k−1,j−1)s⊕g · (λs + λg
)

• Calculate π(0,j+1)s⊕g from balance equation in (7);

• Set j = j + 1.

7. πOH=Sg−k = π(k,0) for k = −1,−2, · · · ,−(Ss − Sg);

8. πOH=i =
∑Mmax

j=0 π(Sg−i,j) for Sp < i 6 Sg;

9. πOH=i =
∑Mmax

j=0 π(Sp−i,j)s⊕g for 0 < i 6 Sp;

10. πOH=0 = 1−∑Ss

k=1 πOH=k.

3.8 Determining the Optimal Threshold Levels (Ss∗, Sg∗, Sp∗)

Our main goal is to find the minimum inventory investment Ss∗ such that (Ss∗, Sg, Sp) satisfies

fill-rate constraints for all customer classes. Due to Lemma 3.1, any feasible solution (Ss, Sg, Sp)

26



to a three customer case should satisfy:

Ss − Sp > S̃s∗;

Ss − Sg > S̃s∗ − S̃(g+p)∗,

where (S̃s∗, S̃(g+p)∗) are the threshold levels, found by applying Optimal Greedy Line Search al-

gorithm to a two customer demand class setting with parameters (λs, λg + λp, µ) and fill-rate

constraints cs, cg.

Let,

∆′∗ = S̃s∗ − S̃(g+p)∗;

∆′′∗ = S̃(g+p)∗.

Next, among the set of feasible solutions (Ss, Sg, Sp), let us fix ∆′∗ = Ss−Sg, ∆′′∗ = Sg −Sp, and

then determine the optimal value of Sp. In other words, for a given set of (∆′∗,∆′′∗), we seek to

find the smallest value of Ss such that Sp = Ss−∆′∗−∆′′∗, and (Ss, Sg, Sp) satisfies the platinum

constraint. The following analog of the proposition for a two customer class case will be used

for this purpose. This also allows us to calculate the steady state probabilities of the transition

diagram only once.

Proposition 3.3 For a given set of system parameters (λs, λg, λp, µ), if ∆′ = Ss − Sg and ∆′′ =

Sg − Sp are kept constant for two cases, say
[
(Ss)0, (Sg)0, (Sp)0

]
and

[
(Ss)1, (Sg)1, (Sp)1

]
, then

π0
(i,j) = π1

(i,j) ∀i, j;

π0
(i,j)s⊕g = π1

(i,j)s⊕g ∀i, j.

Note that what those states refer to, in terms of real system states (OH,Bs, Bg, Bp, R), depend

on the actual values of (Ss, Sg, Sp) in the two cases.

Proof: Proof will be given later for general n-demand class setting.
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An upper bound for the total inventory investment to satisfy all constraints is given by

Ss
UB = Poissinv(cp, λ/µ), where λ = λs + λg + λp.

Hence, if threshold levels are set to (Ss
UB, 0, 0) then all constraints are satisfied while all customer

types are receiving the same amount of platinum service. That is βs = βg = βp > cp.

On the other hand, if we set Ss = Ss
UB, Sg = Ss

UB −∆′∗, and Sp = Ss
UB −∆′∗ −∆′′∗ then the

following lemma proves that all constraints are satisfied. In this case, silver and gold customers

receive their appropriate levels of services while platinum customer receive higher service than

required. We are going to base our optimal search algorithm on this.

Lemma 3.3 For Ss
UB = Poissinv(cp, λ/µ), where λ = λs + λg + λp, if we set Ss = Ss

UB, Sg =

Ss
UB −∆′∗, and Sp = Ss

UB −∆′∗ −∆′′∗, then all constraints are satisfied.

Proof: We now demonstrate starting point that (Ss
UB, Ss

UB −∆′∗, Ss
UB −∆′∗ −∆′′∗) is feasible.

It is true that (∆′∗ + ∆′′∗, ∆′′∗, 0) satisfies cs and cg constraints by construction due to Proposition

3.1. Intuitive explanation is as follows: for 0 < OH 6 ∆′′∗, incoming gold and platinum customers

are satisfied on a FCFS basis while for OH = 0, an incoming unit from resupply is added to OH

stock only after all existing gold and platinum backorders are satisfied. Hence, this is equivalent to

a system of two customer demand classes with arrival rates (λs, λg + λp) and fill rate constraints

(cs, cg).

Hence, provided fill rates have the following relationships cg > βs > cs and cp > βg = βp > cg

for the threshold values (∆′∗ + ∆′′∗, ∆′′∗, 0). On the other hand, Ss
UB > ∆′∗ + ∆′′∗ since (Ss

UB, 0, 0)

provides βs = βg = βp > cp.

Let w = Ss
UB −∆′∗ −∆′′∗, then it is also true that

(∆′∗ + ∆′′∗ + w,∆′′∗ + w,w) = (Ss
UB, Ss

UB −∆′∗, Ss
UB −∆′∗ −∆′′∗)

also satisfies cs and cg constraints since we are providing more stock to the system. On the other

hand, let us consider (Ss
UB, 0, 0) that already satisfies all fill rate constraints. By providing more
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inventory to be used by gold and platinum customers, (Ss
UB, Ss

UB − ∆′∗, Ss
UB − ∆′∗ − ∆′′∗) is

guaranteed to satisfy cg and cp constraints. As a result, from the above discussion we can conclude

that (Ss
UB, Ss

UB −∆′∗, Ss
UB −∆′∗ −∆′′∗) satisfies all fill rate constraints.

The above lemma shows that (Ss
UB, Ss

UB − ∆′∗, Ss
UB − ∆′∗ − ∆′′∗) is feasible by construction.

Recall that among the set of feasible solutions (Ss, Sg, Sp), we fix Ss − Sg = ∆′∗, Sg − Sp = ∆′′∗,

and then determine the minimum value of Sp. In other words, for a given set of (∆′∗, ∆′′∗), we

seek to find the smallest value of Ss such that Sp = Ss −∆′∗ −∆′′∗, and (Ss, Sg, Sp) satisfies the

platinum constraint.

The relationship between the platinum fill-rate provided and OH probability as

βp = 1− P
(
OH = 0

)
= P

(
OH > 0

)
,

and platinum constraint to be satisfied is βp > cp.

Let us apply Bridge Algorithm-3 to the threshold levels (Ss
UB, Ss

UB − ∆′∗, Ss
UB − ∆′∗ − ∆′′∗).

So, the sum of steady state probabilities on each row of the simplified diagram corresponds to the

steady state OH probability that the row refers to. For example, if we consider row 1s⊕g, then

that row corresponds to OH = Sp − 1. Let πrow is⊕g =
∑

j π(i,j). Hence, πOH=Sg−1 = πrow 1s⊕g =
∑

j π(1,j)s⊕g . In a similar way that we derived optimal algorithm for two demand case, from this

discussion, it is clear that we need the index of total number of rows necessary to satisfy the platinum

constraint. In other words, starting from initial value of βp
temp = βg = P∞(OH > Ss

UB −∆′∗), we

continue to sum the row probabilities until βp
temp > cp is satisfied for the first time. Then in the

final situation, the corresponding number of rows that are used will give us the minimum value of

Sp to satisfy the gold constraint. Therefore it will be the minimum Sp∗ for a given set of (∆′∗, ∆′′∗)

due to Proposition 3.3, which makes it possible to express Sp∗ independent of the total inventory

investment Ss for a given set of (∆′∗, ∆′′∗).

The following algorithm summarizes the necessary steps to find the optimal inventory investment

using only a single pass:
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Optimal Greedy Line Search-3:

Step 1: Set Ss
UB = Poissinv(cp, λ/µ), where λ = λs + λg + λp;

Step 2: Apply Optimal Greedy Line Search-2 algorithm to a two customer demand class

setting with parameters (λs, λg+λp) and fill-rate constraints cs, cg to determine (S̃s∗, S̃(g+p)∗).

– Set ∆′∗ = S̃s∗ − S̃(g+p)∗;

– Set ∆′′∗ = S̃(g+p)∗.

Step 3: Apply Bridge Algorithm-3 to the threshold levels

(Ss
UB, Ss

UB −∆′∗, Ss
UB −∆′∗ −∆′′∗);

Step 4:

– Set βp
temp = βg = P∞(OH > Ss

UB −∆′∗ −∆′′∗);

– set i = 0;

– While βp
temp < cp;

∗ βp
temp = βp

temp + πrow is⊕g ;

∗ i = i + 1;

Step 5:

– Set Sp∗ = i;

– Set Sg∗ = Sp∗ + ∆′′∗;

– Set Ss∗ = Sp∗ + ∆′′∗ + ∆′∗.

Step 6: Actual service levels provided to all customer types are given by:

– βs = P∞(OH > Ss
UB −∆′∗);

– βg = P∞(OH > Ss
UB −∆′∗ −∆′′∗);

– βp = βp
temp .

Lemma 3.4 For a given set of (Ss, Sg, Sp) threshold values, if the system does not satisfy platinum

fill rate constraint cp, then decreasing Sg or Sp while keeping Ss constant will still not satisfy the

cp constraint.
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Proof: Will be given later for general n demand class setting.

Theorem 3.3 Denote the threshold levels found by applying Optimal Greedy Line Search-3 as

Ss∗, Sg∗ and Sp∗. There is no (Ss, Sg, Sp) such that Ss < Ss∗ and all fill-rate constraints are

satisfied. Hence, the Optimal Greedy Line Search-3 provides an optimal inventory investment Ss∗

that satisfies all fill-rate constraints.

Proof: Let us denote the set of ∆ values obtained by applying Optimal Greedy Line Search-3

algorithm as ∆′∗, ∆′′∗ and ∆′′′∗, where ∆′′′∗ = Sp∗. By construction, ∆′′′∗ is the minimum value of

Sp∗ for a given set of (∆′∗, ∆′′∗). It is clear from the algorithm that while keeping ∆′∗,∆′′∗ fixed,

any selection of ∆′′′ < ∆′′′∗ will violate cp constraint. Hence, for ∆′′′ = ∆′′′∗ − 1, set of threshold

values (Ss∗ − 1, Sg∗ − 1, Sp∗ − 1) is infeasible due to the violation of cp constraint.

Now, let us assume that there exists (Ss, Sg, Sp) such that Ss < Ss∗ and satisfies all fill-rate

constraints. Then, (Ss∗ − 1, Sg, Sp) is also feasible since Ss 6 Ss∗ − 1 and we are allocating more

inventory to be used by the system.

Let u = Ss∗ − Ss where u > 1. In order (Ss, Sg, Sp) to be feasible, the following relationship

should hold due to Lemma 3.1:

Ss − Sp > ∆′∗ + ∆′′∗;

Ss − Sg > ∆′∗.

Therefore,

Ss∗ − Sp > ∆′∗ + ∆′′∗ + u = Ss∗ − Sp∗ + u;

Ss∗ − Sg > ∆′∗ + u = Ss∗ − Sg∗ + u.
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From the above relationships, we get

Sp∗ − Sp > u;

Sg∗ − Sg > u.

Now, if (Ss∗ − 1, Sg∗ − 1, Sp∗ − 1) is infeasible due to the violation of cp constraint, then

(Ss∗− 1, Sg∗−u, Sp∗−u) and, hence, (Ss∗− 1, Sg, Sp) are also infeasible due to Lemma 3.4. (That

is because, for a given system inventory Ss∗ − 1 we are allocating more units to be used by silver

and gold customers which in turn leads to a lower service rate for platinum customers). But this

contradicts the previous conclusion that (Ss∗ − 1, Sg, Sp) is feasible. Therefore, there cannot be

any (Ss, Sg, Sp) such that Ss < Ss∗ and satisfies all fill-rate constraints.

4 General Multiple Priority Demand Class Solution

For the general n-demand classes, we will use the original representation for customer types. Hence,

the customers are represented as 1, 2, . . . , n in terms of their priorities, where customer type-1 and

type-n have the lowest and the highest priorities, respectively. Recall that the optimization problem

can be written as:

min S1

s.t.

βi(S1, S2, . . . , Sn) > ci for i = 1, 2, . . . , n

and S1 > S2 > . . . > Sn > 0.

From the PASTA principle, we have:

βi = P∞(OH > Si+1) for i = 1, 2, . . . , n− 1; and

βn = P∞(OH > 0).
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Next, in order to simplify the solution method and use the main ideas developed for the

Bridge Algorithm-2 for the n demand classes case, we first present a Modified Bridge Algorithm-2

and then use this within the above Bridge Algorithm-3 .

Modified Bridge Algorithm-2:

INPUT: π̃′, π̃′′, λ′, λ′′, λ̃, µ, R0, Mmax

where, π̃′, π̃′′ : 1× (Mmax + 1) vector,

1. Set
(
X,R

)
= f(λ′, λ′′, µ, R0) by using Equation (9);

2. Set π(0,0) = π̃′0;

3. Calculate π(1,0) from the following equation:5

π(0,0) λ′ X(0)
1 = π(1,0) µ R(1,0);

4. For i = 2 : Mmax, calculate π(i,0) recursively from the following (balance) equations:

π(i−1,0) (λ′ + λ′′ + µ R(i−1,0)) = π(i−2,0) λ′ + π(i,0) µ R(i,0);

5. Calculate π(0,1) from the following (balance) equation:

π(0,0) (λ′ + λ′′ + µ R(0,0)) = π̃′′0 λ̃ + π(1,0) µ R(1,0) + (π(0,1) − π̃′1) µ R(0,1);

6. Calculate π(1,1) from the following equation:6

π(1,1) µ R(1,1) = π(0,1) λ′ X(1)
1 +

Mmax∑

i=1

π(i,0) λ′′ X(1)
i ;

7. For i = 2 : Mmax, calculate π(i,1) recursively from the following (balance) equations:

π(i−1,1) (λ′ + λ′′ + µ R(i−1,1)) = π(i−2,1) λ′ + π(i−1,0) λ′′ + π(i,1) µ R(i,1);

5This follows from Theorem 3.1.
6This follows from Theorem 3.2.
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8. For j = 2 : Mmax,

a) Calculate π(0,j) from the following (balance) equations:

π(0,j−1) (λ′ + λ′′ + µ R(0,j−1)) = π(0,j−2) λ′′ + π̃′′j−1 λ̃

+ π(1,j−1) µ R(1,j−1)

+ (π(0,j) − π̃′j) µ R(0,j);

b) For i = 2 : Mmax, calculate π(i,1) recursively from the following (balance) equations:

π(i−1,j) (λ′ + λ′′ + µ R(i−1,j)) = π(i−2,j) λ′ + π(i−1,j−1) λ′′ + π(i,j) µ R(i,j);

c) Calculate π(1,j) from the following equation:

π(1,j) µ R(1,j) = π(0,j) λ′ X(j)
1 +

Mmax∑

i=1

π(i,j−1) λ′′ X(j)
i .

Let us define the above algorithm as a set function:

Π = MBA(2) (π̃′, π̃′′, λ′, λ′′, λ̃, µ, R0, Mmax),

where MBA(2) stands for Modified Bridge Algorithm-2 and Π is the resulting steady state proba-

bility vector. Now, let us rewrite the Bridge Algorithm-3 using Modified Bridge Algorithm-2 :

34



Bridge Algorithm-3:

INPUT: Ss, Sg, Sp, λs, λg, λp, µ

1. Use Palm’s Theorem to calculate πOH=Sg+k for k = 1, 2, . . . , Ss−Sg according to the following

formula:

πOH=Sg+k = Poisspdf
(
Ss − Sg − k, (λs + λg + λp)/µ

)
;

2. Set

π̃′0 = Poisspdf
(
Ss − Sg, (λs + λg + λp)/µ

)
;

π̃′′0 = Poisspdf
(
Ss − Sg − 1, (λs + λg + λp)/µ

)
;

π̃′j = π̃′′j = 0 forj = 1, 2, . . . , Mmax;

λ′ = λg + λp;

λ′′ = λs;

λ̃ = λs + λg + λp;

R0 = Ss − Sg;

Mmax = 100 ∗ Poissinv
(
0.999, (λs + λg + λp)/µ

)
;

3. Set Π̄ = MBA(2) (π̃′, π̃′′, λ′, λ′′, λ̃, µ, R0, Mmax);

Hence:

a) π(i,j) = π̄(i,j) for 0 6 i 6 Sg − Sp − 1, and 0 6 j 6 Mmax;

b) π̃′j = π̄(Sg−Sp,j) for 0 6 j 6 Mmax;7

c) π̃′′j = π̄(Sg−Sp−1,j) for 0 6 j 6 Mmax;

d) πOH=Sg−k =
∑Mmax

j=0 π(k,j) for 0 6 k 6 Sg − Sp − 1;

7This relation will be proved later during the discussion of Bridge Algorithm-n.
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Then set:

λ′ = λp;

λ′′ = λs + λg;

λ̃ = λg + λp;

R0 = Ss − Sp;

Mmax = Mmax − (Sg − Sp);

4. Set Π̄ = MBA(2) (π̃′, π̃′′, λ′, λ′′, λ̃, µ, R0, Mmax);

Hence:

a) π(i,j)s⊕g = π̄(i,j) for 0 6 i 6 Sp − 1, and 0 6 j 6 Mmax;

b) πOH=Sp−k =
∑Mmax

j=0 π(k,j)s⊕g for 0 6 k 6 Sp − 1;

5. Set πOH=0 = 1− ∑Ss

i=1 πOH=i.

The following proposition allows us to use Modified Bridge Algorithm-2 recursively in the context

of Bridge Algorithm-n to determine steady state probabilities corresponding to n customer demand

classes.

Proposition 4.1 For a given resupply rate µ, consider two cases:

a) n customer demand classes with threshold levels (S1, S2, . . . , Sn) and arrival rates (λ1, λ2, . . . , λn);

b) k, k > 2 customer demand classes with threshold levels (S1−Sk+1, S2−Sk+1, . . . , Sk−Sk+1)

and arrival rates (λ1, λ2, . . . , λk−1,
∑n

u=k λu).

Denote state vectors for the former and the latter cases as

(OHa, B1a
, B2a

, . . . , Bna
, Ra)

and

(OHb, B1b
, B2b

, . . . , B(k−1)b
, B(k)+(k+1)+···+(n)b

, Rb),
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respectively.

Then, for j = 1, . . . , S1 − Sk+1:

P∞(OHa = Sk+1 + j, B1a
= v1, B

2a
= v2, . . . , B

(k−1)a
= vk−1, 0, 0, . . . , 0, Ra = vR)

= P∞(OHb = j, B1b
= v1, B

2b
= v2, . . . , B

(k−1)b
= vk−1, 0, Rb = vR).

Hence,

P∞(OHa = Sk+1 + j) = P∞(OHb = j) for j = 1, . . . , S1 − Sk+1.

Proof: See Appendix 3.

Corollary 4.1 Consider two cases:

(a) n customer demand classes with threshold levels (S1a
, S2a

, . . . , Sna
) and system parameters

(λ1, λ2, . . . , λn, µ);

(b) n customer demand classes with threshold levels (S1b
, S2b

, . . . , Snb
) and system parameters

(λ1, λ2, . . . , λn, µ);

If Sia − Si+1a
= Sib − Si+1b

for all 1 6 i 6 k, k 6 n− 1, then

P∞(OHa = Sk+1a
+ j) = P∞(OHb = Sk+1b

+ j) for j = 1, . . . , S1a − Sk+1a
.

Proof: Let us consider two systems (for a fixed resupply rate µ):

1) (S1a − Sk+1a
, S2a − Sk+1a

, . . . , Ska − Sk+1a
) with arrival rates (λ1, λ2, . . . , λk−1,

∑n
u=k λu),

and denote on-hand stock as OH ′.

2) (S1b −Sk+1b
, S2b −Sk+1b

, . . . , Skb −Sk+1b
) with arrival rates (λ1, λ2, . . . , λk−1,

∑n
u=k λu), and

denote on-hand stock as OH ′′
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The above systems are identical, therefore P∞(OH ′ = j) = P∞(OH ′′ = j) for all j. By applying

Proposition 4.1 to the parts (a) and (b) of Corollary 4.1, we get

P∞(OHa = Sk+1a
+ j) = P∞(OH ′ = j),

P∞(OHb = Sk+1b
+ j) = P∞(OH ′′ = j) for j = 1, . . . , S1a − Sk+1a

.

As a result, we have the following

P∞(OHa = Sk+1a
+ j) = P∞(OHb = Sk+1b

+ j) for j = 1, . . . , S1a − Sk+1a
.

Proposition 4.2 For a given set of system parameters (λ1, λ2, . . . , λn, µ), if ∆1, ∆2, . . . , ∆n−1,

are kept constant for two cases, say
(
S1a

, S2a
, . . . , Sna)

and
(
S1b

, S2b
, . . . , Snb)

, S1a 6 S1b
and

∆ia = Sia−S(i+1)a
= Sib−S(i+1)b

= ∆ib for 1 6 i 6 n−1, then for each state of
(
S1a

, S2a
, . . . , Sna)

there corresponds a unique state in
(
S1b

, S2b
, . . . , Snb)

for which the following relation holds:

πA = πB

where

z = S1b − S1a
;

A =
(
OHa = j, B1a

= v1, B
2a

= v2, . . . , B
(n−1)a

= vn−1, B
(n)a

= vn, Ra = vR

)
;

B = (OHb = j + (z − vn)+, B1b
= v1, B

2b
= v2, . . . , B

(n−1)b
= vn−1,

B(n)b
= (vn − z)+, Rb = vR

)
.

Proof: If ∆1, ∆2, . . . ,∆n−1 values are kept constant, then for two cases it is clear that the rela-

tionship between A and B is one-to-one.
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Now, consider a generic state

A =
(
OHa = j, B1a

= v1, B
2a

= v2, . . . , B
(n−1)a

= vn−1, B
(n)a

= vn, Ra = vR

)
,

and suppose that some event occurs which causes a transition to a state

A′ =
(
OHa = j′, B1a

= v′1, B
2a

= v′2, . . . , B
(n−1)a

= v′n−1, B
(n)a

= v′n, Ra = v′R
)
.

Since ∆1,∆2, . . . , ∆n−1 are kept constant, considering state

B =
(
OHb = j + (z − vn)+, B1b

= v1, B
2b

= v2, . . . , B
(n−1)b

= vn−1,

B(n)b
= (vn − z)+, Rb = vR

)
,

the same event will cause a transition to a state B′ for which the same relationship between A

and B is still preserved among A′ and B′ as follows:

B′ =
(
OHb = j + (z − v′n)+, B1b

= v′1, B
2b

= v′2, . . . , B
(n−1)b

= v′n−1,

B(n)b
= (v′n − z)+, Rb = v′R

)
. (10)

In order to make this clearer, let us suppose vn = 0 and S(k+1)a 6 j 6 Ska
. Hence,

A =
(
OHa = j, B1a

= v1, B
2a

= v2, . . . , B
(n−1)a

= vn−1, B
(n)a

= 0, Ra = vR

)
,

and

B =
(
OHb = S1b − S1a

+ j, B1b
= v1, B

2b
= v2, . . . , B

(n−1)b
= vn−1,

B(n)b
= 0, Rb = vR

)
.

Let us also suppose that a type-i customer demand occurs for which i < k. Then according to

the proposed policy, since S(k+1)a 6 j 6 Ska
< Sia , that demand is backordered and new state

becomes,
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A′ =
(
OHa = j, B1a

= v1, B
2a

= v2, . . . , B
ia = vi + 1, . . . , Bka

= vk,

. . . , B(n−1)a
= vn−1, B

(n)a
= 0, Ra = vR + 1

)
.

Considering the state B, since OHb = S1b − S1a
+ j and S(k+1)a 6 j 6 Ska

< Sia ,

S(k+1)a
+ S1b − S1a 6 OHb = S1b − S1a

+ j

6 Ska
+ S1b − S1a

< Sia + S1b − S1a
.

Since ∆ia = Sia − S(i+1)a
= Sib − S(i+1)b

= ∆ib for 1 6 i 6 n− 1, we have

S1a − Sia =
i−1∑

m=1

∆ia =
i−1∑

m=1

∆ib .

Therefore,

Sia + S1b − S1a
= S1b −

i−1∑

m=1

∆ia

= S1b −
i−1∑

m=1

∆ib

= Sib ,

providing us the following relation

OHb = S1b − S1a
+ j < Sib .

Hence, when a type-i customer demand occurs, that demand is backordered and new state becomes,

B′ =
(
OHb = S1b − S1a

+ j, B1b
= v1, B

2b
= v2, . . . , B

ib = vi + 1, . . . , Bkb
= vk,

. . . , B(n−1)b
= vn−1, B

(n)b
= 0, Ra = vR + 1

)
.

As a result, the same relationship between A and B is still preserved among A′ and B′ as in
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Equation (10). Other kind of events and the resulting transitions follow similar ideas, therefore

omitted.

Furthermore, the rates of flow from A to A′ and B to B′ are identical. Therefore, the balance

equations to be solved is identical for those two cases. As a result, the steady state probabilities

πA and πB are identical.

Corollary 4.2 Consider two cases:

a) k, k > 2 customer demand classes with threshold levels (S1, S2, . . . , Sk) and system parameters

(λ1, λ2, . . . , λk, µ),

b) k, k > 2 customer demand classes with threshold levels (S1 +z, S2 +z, . . . , Sk +z) and system

parameters (λ1, λ2, . . . , λk, µ), for z > 1.

Denote the on-hand stock for the former and the latter cases by OHa and OHb respectively. Then,

P∞(OHa = j) = P∞(OHb = z + j) for j = 1, . . . , S1.

Proof: For j > 0, it is true for both cases that Bka
= Bkb

= 0. Then by using Proposition 4.2

for which the one-to-one transformation between two cases are

A =
(
OHa = j, B1a

= v1, B
2a

= v2, . . . , B
(k−1)a

= vk−1, B
(k)a

= 0, Ra = vR

)
;

B = (OHb = j + z, B1b
= v1, B

2b
= v2, . . . , B

(k−1)b
= vk−1, B

(k)b
= (0, Rb = vR

)
,

we get

P∞(OHa = j) = P∞(OHb = z + j) for j = 1, . . . , S1.
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Figure 6: Simplified state transition diagram after grouping for general priority demand classes

4.1 Updating Threshold Level Steady State Probabilities from Balance Equa-

tions

Let us refer to Figure 6, and consider a generic state (0, j)1⊕···⊕k, j > 1. Recall that

(0, j)1⊕···⊕k ≡
⋃

B1+···+Bk=j

(Sk+1, B1, . . . , Bk, 0, . . . , 0, S1 − Sk+1 + j).
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We decompose the RHS of above equation as:

⋃

B1+···+Bk=j

(Sk+1, B1, . . . , Bk, 0, . . . , 0, S1−Sk+1+j) =

=

{ ⋃

B1+···+Bk=j
0<Bk6j

(Sk+1, B1, . . . , Bk, 0, . . . , 0, S1 − Sk+1 + j)

}

⋃ { ⋃

B1+···+Bk−1=j
Bk=0

(Sk+1, B1, . . . , Bk, 0, . . . , 0, S1 − Sk+1 + j)

}
.

If the current state is

(0, j)1⊕···⊕k ≡
{

(Sk+1, B1, . . . , Bk, 0, . . . , 0, S1 − Sk+1 + j) |

B1 + · · ·+ Bk−1 = j, Bk = 0
}

,

then when a unit is received from resupply, it will be added to OH stock and the new system state

becomes

{
(Sk+1 + 1, B1, . . . , Bk, 0, . . . , 0, S1 − Sk+1 + j) |B1 + · · ·+ Bk−1 = j, Bk = 0

}
,

which is ∈ (Sk−Sk+1− 1, j)1⊕···⊕k−1. For all other cases, the unit will be used to fulfill an existing

type-k backorder since B1+· · ·+Bk = j and 0 < Bk 6 j, resulting in a system state (0, j−1)1⊕···⊕k.

Using those relations, we get

π(0,j)1⊕···⊕k =
∑

B1+···+Bk=j
0<Bk6j

π(Sk+1,B1,...,Bk,0,...,0,S1−Sk+1+j)

+
∑

B1+···+Bk−1=j
Bk=0

π(Sk+1,B1,...,Bk,0,...,0,S1−Sk+1+j). (11)
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For the sake of notational simplicity, let us use the following terms:

π̃′j =
∑

B1+···+Bk−1=j
Bk=0

π(Sk+1,B1,...,Bk,0,...,0,S1−Sk+1+j),

(12)

π̃′′j = (Sk − Sk+1 − 1, j)1⊕···⊕k−1.

Hence the first term on the RHS of Equation (11) can be expressed as:

∑

B1+···+Bk=j
0<Bk6j

π(Sk+1,B1,...,Bk,0,...,0,S1−Sk+1+j) = π(0,j)1⊕···⊕k − π̃′j .

Now, referring to Figure 6 and Equation (12), write the balance equation for a generic state

π(0,j)1⊕···⊕k :

π(0,j)1⊕···⊕k

(
λ′ + λ′′ + µR(0,j)1⊕···⊕k

)
= π(0,j−1)s⊕gλ′′

+ π(1,j)1⊕···⊕k µ R(1,j)1⊕···⊕k

(13)

+ π̃′′j λ̃

+
(
π(0,j+1)1⊕···⊕k − π̃′j

)
µ R(0,j+1)1⊕···⊕k .

From the above equation, we can confirm that Step 8.a of MBA(2) provides a correct calculation

of threshold level steady state probabilities for a general priority demand class scenario.
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Remark: According to Figure 6, it is shown that conditioned on the current state (0, j)1⊕···⊕k,

when there is a demand of any type that belongs to type-m, m ∈ {k + 1, . . . , n}, then there will be

a transition into state (1, j)1⊕···⊕k, based on the implicit assumption that Sk+1 > Sk+2 + 1.

However, for the case Sk+1 = Sk+2 + 1, the balance equation stated in Equation (13) is still

correct and it does not create any problem in the implementation of MBA(2) in Bridge Algorithm-n

and Optimal Greedy Line Search-n algorithms. This is because in both of the Bridge Algorithm-n

and Optimal Greedy Line Search-n algorithms, MBA(2) is used recursively to determine P∞(OH =

z), Sk+1 < z 6 Sk at each kth iteration. And, as was proved earlier, we have the following relation

between each iteration:

(Sk − Sk+1, j)1⊕···⊕k =

{ ⋃

B1+···+Bk=j
Bk+1=0

(Sk+2, B1, . . . , Bk, Bk+1, 0, . . . , 0, S1 − Sk+2 + j)

}
;

Hence,

π(Sk−Sk+1,j)1⊕···⊕k =
∑

B1+···+Bk=j
Bk+1=0

π(Sk+2,B1,...,Bk,Bk+1,0,...,0,S1−Sk+2+j).

If the current state belongs to the set

{ ⋃

B1+···+Bk=j
Bk+1=0

(Sk+2, B1, . . . , Bk, Bk+1, 0, . . . , 0, S1 − Sk+2 + j)
}

,

then when a unit is received from resupply it will be added to on-hand stock which causes an

upward transition in Figure 6.

Therefore, if Sk+1 = Sk+2 + 1 then the second term in the balance equations of (13) will be

written in terms of

∑

B1+···+Bk=j
Bk+1=0

(Sk+2, B1, . . . , Bk, Bk+1, 0, . . . , 0, S1 − Sk+2 + j),
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which is equivalent to π(Sk−Sk+1,j)1⊕···⊕k . Hence, the expression in (13) is still correct.

4.2 Calculating π̃′j at the k − 1th grouping operation

In the previous section, at the kth grouping operation, the balance equations contain the term π̃′j ,

which is given as:

π̃′j =
∑

B1+···+Bk−1=j
Bk=0

π(Sk+1,B1,...,Bk,0,...,0,S1−Sk+1+j).

Now, let us assume that grouping operations have been performed only for m = 1, . . . , k − 1.

Hence we have representations for (i, j)1⊕···⊕m for m = 1, . . . , k−1. Let us also suppose that steady

state probabilities are already determined for those states. Then, the state (Sk − Sk+1, j)1⊕···⊕k−1

corresponds to:

(Sk − Sk+1, j)1⊕···⊕k−1 ≡
⋃

B1+···+Bk−1=j

(Sk+1, B1, . . . , Bk−1, 0, . . . , 0, S1 − Sk+1 + j).

Hence,

π(Sk−Sk+1,j)1⊕···⊕k−1 =
∑

B1+···+Bk−1=j

π(Sk+1,B1,...,Bk−1,0,...,0,S1−Sk+1+j).

But this is equivalent to π̃′j that is given above. Therefore, when we consider the balance

equations written for the kth grouping operation in Equation (13), we can conclude that

π(Sk−Sk+1,j)1⊕···⊕k−1 = π̃′j . (14)
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4.3 Calculating X1⊕···⊕k at the kth grouping operation

Let us refer to Figure 6 and consider the states OH 6 Sk+1. According to the figure, grouping

operations have been performed only for m = 1, . . . , k. Hence, the downward and rightward rates

(for states OH 6 Sk+1) are denoted as λ′ and λ′′ respectively.

In a similar way as we have defined for two and three priority class, let us define the following

one step transition probabilities:

[α(j)
i ]1⊕···⊕k = P

[
ξ1 = (i− 1, j)1⊕···⊕k | ξ0 = (i, j)1⊕···⊕k

]
;

[β(j)
i ]1⊕···⊕k = P

[
ξ1 = (i + 1, j)1⊕···⊕k | ξ0 = (i, j)1⊕···⊕k

]
;

where for all i > 1, j > 0:

[α(j)
i ]1⊕···⊕k =

µR(i,j)1⊕···⊕k

λ′ + λ′′ + µR(i,j)1⊕···⊕k

;

(β(j)
i )1⊕···⊕k =

λ′

λ′ + λ′′ + µR(i,j)1⊕···⊕k

.

And define,

[X(j)
i ]1⊕···⊕k = P(i,j)1⊕···⊕k

[
τ(0,j)1⊕···⊕k(1) < min{τ(0,j+1)1⊕···⊕m(1) : m = 1, . . . , k}].

Now, write the recursions for [X(j)
i ]1⊕···⊕k :

[X(j)
1 ]1⊕···⊕k = [α(j)

1 ]1⊕···⊕k + [β(j)
1 ]1⊕···⊕k [X(j)

2 ]1⊕···⊕k;

and for k > 1,

[X(j)
k ]1⊕···⊕k = [α(j)

k ]1⊕···⊕k [X(j)
k−1]

1⊕···⊕k + [β(j)
k ]1⊕···⊕k [X(j)

k+1]
1⊕···⊕k.
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In addition, for i > 1, j > 0, R(i,j)1⊕···⊕k = S1−Sk+1 + i+j. Therefore, the above recursions are

identical to the ones studied previously. Hence, the set function f defined in Equation (9) provides

the correct values for a given set of inputs as follows:

(
X1⊕···⊕k,R1⊕···⊕k

)
= f(λ′, λ′′, µ, S1 − Sk+1).

Due to the above relations, it is also legitimate to use Theorems 3.1 and 3.2 in the context of

MBA(2) algorithm. Hence, we can conclude that MBA(2) is a general algorithm that can be used

recursively for a general priority class solution.

4.4 Determining Steady State OH probabilities for (S1, S2, . . . , Sn)

Let us consider n-priority demand class with threshold levels (S1, S2, . . . , Sn) and system parame-

ters (λ1, λ2, . . . , λn, µ). Next, we provide the Bridge Algorithm-n for general priority class scenario

by using MBA(2) recursively:

Bridge Algorithm-n:

INPUT: S1, S2, . . . , Sn, λ1, λ2, . . . , λn, µ

Step 1: Set λ =
∑n

v=1 λv and use Palm’s Theorem to calculate πOH=S2+k for k = 1, 2, . . . , S1−
S2 according to the following formula:

πOH=S2+k = Poisspdf
(
S1 − S2 − k, λ/µ

)
;
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Step 2: Set

π̃′0 = Poisspdf
(
S1 − S2, λ/µ

)
;

π̃′′0 = Poisspdf
(
S1 − S2 − 1, λ/µ

)
;

π̃′j = π̃′′j = 0 for j = 1, 2, . . . , Mmax;

λ′ = λ− λ1;

λ′′ = λ1;

λ̃ = λ;

R0 = S1 − S2;

Mmax = 10.Poissinv
(
0.999, λ/µ

)
;

Sn+1 = 0;

k = 2;

Step 3: While k 6 n;

Set:

a) Π̄ = MBA(2) (π̃′, π̃′′, λ′, λ′′, λ̃, µ, R0, Mmax);

b) π(i,j) = π̄(i,j) for 0 6 i 6 Sk − Sk+1 − 1, and 0 6 j 6 Mmax;

c) π̃′j = π̄(Sk−Sk+1,j) for 0 6 j 6 Mmax;8

d) π̃′′j = π̄(Sk−Sk+1−1,j) for 0 6 j 6 Mmax;

e) πOH=Sk−v =
∑Mmax

j=0 π(v,j) for 0 6 v 6 Sk − Sk+1 − 1;

8Follows from Equation (14).
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Then set:

πOH=Sk−v =
Mmax∑

j=0

π(v,j) for 0 6 v 6 Sk − Sk+1 − 1;

λ̃ = λ−
k−1∑

v=1

λv;

λ′ = λ−
k∑

v=1

λv;

λ′′ =
k∑

v=1

λv;

R0 = S1 − Sk+1;

Mmax = Mmax − (Sk − Sk+1);

k = k + 1;

Step 4: Set πOH=0 = 1−∑n
v=1 πOH=v.

In the next section, we provide a computationally efficient algorithm to determine threshold

levels (S1∗, S2∗, . . . , Sn∗) that provides the minimum system stock S1 that satisfies all fill-rate

constraints. Note that Bridge Algorithm-n is used implicitly in the Optimal Greedy Line Search-n.
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4.5 Determining the Optimal Threshold Levels (S1∗, S2∗, . . . , Sn∗)

Optimal Greedy Line Search-n:

INPUT: c1, c2, . . . , cn, λ1, λ2, . . . , λn, µ

Step 1: Set S1
UB = Poissinv(cn, λ/µ), where λ =

∑n
k=1 λk;

Step 2: Set

a) ∆1∗ = 1 + Poissinv(c1, λ/µ);

b) β1 = Poisscdf
(
∆1∗ − 1, λ/µ

)
;

Step 3: Set

a)

π̃′0 = Poisspdf
(
∆1∗, λ/µ

)
;

π̃′′0 = Poisspdf
(
∆1∗ − 1, λ/µ

)
;

π̃′j = π̃′′j = 0 forj = 1, 2, . . . , Mmax;

λ′ = λ− λ1;

λ′′ = λ1;

λ̃ = λ;

S2 = S1
UB −∆1∗;

R0 = ∆1∗;

Mmax = Mmax −∆1∗;

b) Π = MBA(2) (π̃′, π̃′′, λ′, λ′′, λ̃, µ, R0, Mmax);

c) i = 0;

β2
temp = β1;

While β2
temp < c2;
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∗ β2
temp = β2

temp + πrowi;

∗ i = i + 1;

d) ∆2∗ = i;

e) β2 = β2
temp;

f) z = 2;

Step 4: While z 6 n− 1;

a) Set

π̃′j = π(∆z∗,j) for 0 6 j 6 Mmax;

π̃′′j = π(∆z−1,j) for 0 6 j 6 Mmax;

λ̃ = λ−
z−1∑

k=1

λk;

λ′ = λ−
z∑

k=1

λk;

λ′′ =
z∑

k=1

λk;

Sz+1 = S1
UB −

z∑

k=1

∆k∗;

R0 =
z∑

k=1

∆k∗;

Mmax = Mmax −∆z∗;

b) Set Π = MBA(2) (π̃′, π̃′′, λ′, λ′′, λ̃, µ, R0, Mmax);

c) i = 0;

βz+1
temp = βz;

While βz+1
temp < cz+1;

∗ βz+1
temp = βz+1

temp + πrowi;

∗ i = i + 1;
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d) ∆z+1∗ = i;

e) βz+1 = βz+1∗
temp ;

f) z = z + 1;

Step 5: Apply Corollary 4.2 to normalize and then set Sk∗ =
∑n

v=k ∆v∗ for 1 6 k 6 n.

Now, we are ready to prove that MBA(2) provides a feasible solution for each priority class (in

an orderly fashion) at each iteration in the above The Optimal Greedy Line Search-n algorithm.

In other words, when it is solved for z = m − 1, then the temporary solution (S1
UB, S2, . . . , Sm)

satisfies all fill rate constraints with βm = . . . = βn > cn, while β1, . . . , βm−1 are just enough to

meet fill rate constraints c1, c2, . . . , cm−1.

Theorem 4.1 MBA(2) provides a feasible solution for each priority class at each iteration in the

above The Optimal Greedy Line Search-n algorithm.

Proof: Consider three cases:

(a) n customer demand classes with threshold levels (S1, S2, . . . , Sn) and system parameters

(λ1, λ2, . . . , λn, µ);

(b) k, k > 2 customer demand classes with threshold levels (S1−Sk+1, S2−Sk+1, . . . , Sk−Sk+1)

and system parameters (λ1, λ2, . . . , λk−1,
∑n

u=k λu, µ);

(c) k, k > 2 customer demand classes with threshold levels (S1, S2, . . . , Sk) and system parame-

ters (λ1, λ2, . . . , λk−1,
∑n

u=k λu, µ).

Denote the on-hand stock for those cases by OHa, OHb and OHc respectively. Applying Propo-

sition 4.1 to (a) and (b), we get

P∞(OHa = Sk+1 + j) = P∞(OHb = j) for j = 1, . . . , S1 − Sk+1.
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Then using Corollary 4.2 for (b) and (c), we get

P∞(OHc = Sk+1 + j) = P∞(OHb = j) for j = 1, . . . , S1 − Sk+1.

From the above relationships, we get

P∞(OHa = Sk+1 + j) = P∞(OHc = Sk+1 + j) for j = 1, . . . , S1 − Sk+1.

Hence, this shows that at each iteration MBA(2) provides a feasible solution for a particular

class. For example, for type-k priority class, βk = P∞(OHa > Sk+1 + j) and MBA(2) provides a

feasible solution by solving case (c).

Theorem 4.2 Let us denote the threshold levels found by applying the Optimal Greedy Line Search-

n algorithm as (S1∗, S2∗, . . . , Sn∗). There is no (S1, S2, . . . , Sn) such that S1 < S1∗ and satisfies

all fill-rate constraints. Hence, the Optimal Greedy Line Search-n provides an optimal inventory

investment S1∗ that satisfies all fill-rate constraints.

Proof: The proof is by induction. As we have already proved, the induction hypothesis holds for

m = 3.

Assume it holds for m = 3, . . . , n − 1 customer classes. In other words, Optimal Greedy Line

Search-m gives the optimal inventory investment for m = 4, . . . , n− 1 customer classes.

Let us denote the set of ∆i∗ values obtained by applying Optimal Greedy Line Search-n algo-

rithm as ∆1∗, . . . ,∆n∗ where ∆i∗ = Si − Si+1.

Conjecture: Any feasible solution (S1, S2, . . . , Sn) to a n demand classes case will satisfy

S1 − Sm+1 >
m∑

i=1

∆i∗ for 1 6 m 6 n− 1. (15)
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For 1 6 m 6 n − 1, let us consider the system of m customer demand classes with thresh-

old levels (S1 − Sm+1, S2 − Sm+1, . . . , Sm − Sm+1) and arrival rates (λ1, λ2, . . . , λm−1,
∑n

u=m λu).

Corresponding fill rate constraints are c1, . . . , cm.

By the induction hypothesis, the Optimal Greedy Line Search-m gives the optimal inventory

investment for m = 4, . . . , n−1 customer classes. Hence, the minimum inventory investment for the

m customer demand classes is given by (S1 − Sm+1)∗ =
∑m

i=1 ∆̃i∗, where ∆̃i∗ values are obtained

by the algorithm. Therefore, any feasible solution (S1−Sm+1) will satisfy (S1−Sm+1) >
∑m

i=1 ∆̃i∗.

But those ∆̃i∗ values are the same ∆i∗ values obtained by the Optimal Greedy Line Search-n

algorithm applied to an n customer demand classes case. Therefore, the conjecture should hold for

any feasible solution to an n customer demand classes.

It is clear from the Optimal Greedy Line Search-n algorithm that while keeping ∆1∗, . . . , ∆n−1∗

fixed, any selection of ∆n < ∆n∗ will violate the cn constraint. Therefore, for ∆n = ∆n∗ − 1, the

system will be infeasible for the corresponding threshold values (S1∗ − 1, S2∗ − 1, . . . , Sn∗ − 1).

Now, let us assume that ∃ (S1, S2, . . . , Sn) such that S1 < S1∗ and satisfies all fill-rate con-

straints. Let u = S1 − S1∗ where u > 1.

Then (S1∗−1, S2, . . . , Sn) is also feasible since S1 6 S1∗−1 and we are providing more inventory

to be used by the system.

From Equation (15),

S1 − Sm+1 >
m∑

i=1

∆i∗ for 1 6 m 6 n− 1.

Therefore,

S1∗ − Sm+1 >
m∑

i=1

∆i∗ + u = S1∗ − Sm+1∗ + u for 1 6 m 6 n− 1.

=⇒ Sm+1∗ − Sm+1 > u, u > 1.

Consider (S1∗− 1, S2∗− 1, . . . , Sn∗− 1) which is infeasible due to the violation of cn constraint.

Then (S1∗ − 1, S2, . . . , Sn) is also infeasible since for a given system stock, we are allocating more
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units to be used by type-1, type-2,. . ., type-n-1 customers which leads to a lower service rate for

type-n customer that was already receiving lower service than cn.

But this contradicts the previous conclusion that (S1∗ − 1, S2, . . . , Sn) is feasible. Therefore,

there cannot be any (S1, S2, . . . , Sn) such that S1 < S1∗ and satisfies all fill-rate constraints.

5 Numerical Analysis

In this section, as we did for the two priority class case, we compare the performance of the proposed

inventory rationing policy with the current industry practices, namely round-up and separate stock

strategies. In Table 1, we analyze the situation for various service contracts. We want to observe

the trade off pattern between different strategies. Service contracts are based on fill-rate constraints

for each customer class. Corresponding total inventory levels are presented for each policy. In Table

2, for the same scenarios presented in Table 1, we present the corresponding threshold levels for

each priority class as well as the actual fill-rates provided to them.

Table 1: Optimal target stock levels under different stocking policies

Fill-rate Constraints Target Stock Level

λs λg λp T cs cg cp Threshold rat. Sep. stock Round-up

3.0 1.5 1.0 10 60% 80% 95% 60 67 68

3.0 1.5 1.0 4 60% 80% 95% 26 32 31

3.0 1.5 1.0 2 60% 80% 95% 15 18 18

5.0 3.0 3.5 4 60% 85% 90% 51 59 56

2.8 0.56 0.28 10 60% 80% 90% 40 45 45
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Table 2: Actual provided fill-rates under Threshold Rationing Policy

Threshold levels Provided Fill-rates

λs λg λp T Ss Sg Sp βs βg βp

3.0 1.5 1.0 10 60 2 1 63.9 % 86.0 % 97.9 %

3.0 1.5 1.0 4 26 2 1 63.7 % 87.2 % 98.3 %

3.0 1.5 1.0 2 15 2 1 68.9 % 90.4 % 98.9 %

5.0 3.0 3.5 4 41 2 0 65.2 % 92.3 % 92.3 %

2.8 0.56 0.28 10 40 1 0 64.5 % 93.3 % 93.3 %

In Table 1, for the first three scenarios different order lead times are considered in order to see

their effect on the target system stock. The first scenario has the longest lead time. In this case,

the separate stock policy is superior to the round-up policy. This implies that the benefit from the

pooling effect is diminished by providing 95% fill-rate to all three customer types for such a long

lead time. On the other hand, for T=4 we can see that round-up policy becomes advantageous over

the separate stock strategy while both policies give the same target stock level for T=2. However,

as can easily be seen, the threshold rationing policy is superior to both of the other strategies in

all the scenarios.

In Table 2, we provide the corresponding actual fill-rates that each priority class customer is

experiencing along with the threshold levels obtained by the Optimal Line Search-3 algorithm for

threshold rationing policy. One can see that in all cases, the actual fill-rates are greater than what

those customers have contracted for as service agreements. The fourth and fifth scenarios have very

interesting results. Both of these cases have a Sp threshold level of zero, which means we do not need

to allocate additional inventory for platinum customers over the gold ones because gold customers

are already receiving fill-rates greater than the platinum fill-rate constraints. Additionally, when all

the cases are considered, we can see that allocation of even a few units for higher priority customers

according to the proposed policy has significant impacts on the fill-rates provided. For example, for

the first scenario, demands from all three customer classes are satisfied on a first come-first serve

basis as long as on-hand stock is greater than 2, where the target system stock is 60. The silver
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fill-rate is 63.9% for this setting. Those 2 units which are allocated for the use of gold and platinum

customers serve as a great protection for the incoming demands of those higher priority class. This

protection, in combination with the backorder clearing rules, increases the fill-rates from 63.9% to

86.0%. Furthermore, an additional protection of 1 unit for platinum customers increases its fill-rate

all the way up to 97.9%.

5.1 Comparison with the Existing Heuristics

The only published heuristic related to our model, known to us, is that presented by Dekker et al.

[1] and Deshpande et al. [2]. Both consider only fixed lead time for replenishment orders under the

two priority demand class setting. Although Deshpande et al. [2] use a different reasoning for the

heuristic approach, they obtain essentially the same result. Therefore, in this part of the analysis,

we will focus on the performance of heuristics with respect to our exact analysis for two priority

demand class setting.

The idea is quite simple. In order to determine the service level for both customer classes,

Dekker et al [1] use the following reasoning. At an arbitrary point in time t, inventory position

is equal to Ss. By time t + T , where T is the lead time duration, all the outstanding orders will

have arrived. Therefore, stockout for silver customers will occur if and only if the total demand

during [t, t + T ) is greater than or equal to Ss − Sg. Total demand during a lead time is Poisson

distributed with parameter (λs + λg)T ; therefore the fill-rate for silver customers is given by

βs =
Ss−Sg−1∑

i=0

e−(λs+λg)T [(λs + λg)T ]i

i!
(16)

On the other hand, in order to calculate the service level for gold customers, the hitting time

concept of Nahmias and Demmy [3] is used. H is denoted as the non-negative random variable

representing the time until the first Ss−Sg demands have arrived. Then, at time t+T , a stockout

for gold will occur if H < T and the gold demand during [t + H, t + T ) is greater than or equal to

Sg. Since total demand process is a Poisson Process with parameter λs +λg, H is Erlang-(Ss−Sg)

distributed with parameter λs + λg.

Conditioning on H, fill-rate for gold customers can be obtained by

58



βg = 1−
∫ T

0
(λs + λg)Ss−Sg ySs−Sg−1

(Ss − Sg − 1)!
e−(λs+λg)y

·
{

1−
Sg−1∑

i=0

e−λg(T−y)[λg(T − y)]i

i!

}
dy (17)

On the other hand, in order to get a tractable solution, Deshpande et al. [2] analyze the

same system with an alternative backorder clearing mechanism and then use the threshold values

obtained from this setting in the original system. Interestingly, their alternative clearing mechanism

turns out to be same system as given by Dekker et al. [1].

Deshpande et al. [2] also provides a simplified version of the expression in Equation (17) by the

following reasoning. Given that a demand arrival occurs, the probability of it being a gold demand

is p g = λg

λs+λg . In order to observe a stockout for gold customers at time t + T , first, total demand

during [t, t + T ) should be at least Ss and then total gold arrivals during [t + H, t + T ) should be

greater than or equal to Sg. In addition, provided that total demand during some interval is n, the

probability of having exactly ni gold demands is a simple binomial expression,

Binom (p g; n; ni) =
n!

n!(n− ni)!
(p g)ni(1− p g)n−ni .

Then, Equation (17) is equivalent to

βg = 1−
∞∑

x=Ss

x−Ss+Sg∑

z=Sg

Binom (p g; x− Ss + Sg; z) · Poisspdf[x, (λs + λg)T ].

However, there are problems with this reasoning, hence it is only an approximation. The first

reason is that it does not take into account the proposed threshold rationing policy; it assumes that

the first Ss − Sg demands are satisfied immediately regardless of their type. Secondly, it ignores

the fact that the sequence of events affects system state at a particular point in time. These can
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be explained by the following examples:

Example 1: Let us consider the system with Ss = 10, Sg = 5, and at time t, OH = 4, and there

are no backorders of any type. This also implies that there are 6 units in resupply. Also let us assume

that there is a sequence of 5 silver demands and the [Ss− Sg = 5]th demand occurs at time t + H.

This is followed by a sequence of 6 gold demands, and 6 units receipt from resupply, in that order.

Note that those 6 units are the ones that are in resupply at time t. According to this information

and the proposed rationing policy, at time t+T , OH inventory will be equal to 4, which implies that

there is no stockout situation for gold customers. System state is (OH, Bs, Bg, R) = (4, 5, 0, 11).

On the other hand, according to the proposed heuristic above, since total demand during

[t, t + T ) is 11, which is more than Ss, and since there are more than Sg = 5 gold demands during

[t + H, t + T ), there should be a stockout situation for gold customers at time t + T . However, this

contradicts the fact that OH stock at time t + T is 4.

Example 2: Let us consider the same initial state at time t as the previous example (OH, Bs, Bg, R) =

(4, 0, 0, 6). Now consider the following events in their respective order: sequences of 5 silver de-

mands, receipts of 3 units from resupply, 6 gold demands, and receipts of 3 units from resupply.

As a result, system state at time t + T is (OH, Bs, Bg, R) = (2, 3, 0, 11), which is different than

the previously obtained state (OH, Bs, Bg, R) = (4, 5, 0, 11). However, during [t, t + T ), in both of

the examples, there are a total of 5 silver demands, 6 gold demands, and receipts of 6 units from

resupply. As can be seen here, the sequence of events affects the system state, a fact ignored by

the heuristic approach.

Now, let us refer to the heuristic results provided by Dekker et al. [1]. The information in Table

3 is taken from their paper.
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Table 3: Numerical examples due by Dekker et al. (1998)

Ss Sg λs λg T βg exact βg approx.

2 1 2.727 0.273 0.5 96.5 % 93.7 %

3 2 5.455 0.545 0.5 99.7 % 98.3 %

4 1 1.5 1.5 0.5 96.8 % 96.2 %

10 2 6.0 6.0 0.5 98.1 % 96.3 %

For all the cases shown in Table 3, the lead time T is fixed at a half-period, and, arguably

the heuristic approach provides a reasonably good approximation of the gold fill-rate. In order to

investigate the accuracy of the heuristic approach, we implement a controlled experiment for which

λs = λg = 1.5 for all scenarios.

Table 4: Comparison of the heuristic with an exact solution

Ss Sg λs λg T βg exact βg approx.

4 2 1.5 1.5 0.5 98.6 % 97.8 %

5 2 1.5 1.5 1 96.1 % 92.5 %

9 2 1.5 1.5 2 96.6 % 92.9 %

11 1 1.5 1.5 3.5 77.0 % 62.2 %

18 2 1.5 1.5 5 94.2 % 85.2 %

26 3 1.5 1.5 8 96.0 % 79.7 %

32 2 1.5 1.5 10 91.0 % 73.1 %

We can see from the results presented in Table 4, that as long as lead time is sufficiently short,

the heuristic provides a reasonable approximation. However, as soon as the lead time exceeds 3.5

periods, we observe a significant deviation from the true fill-rate figures.

Furthermore, Deshpande et al. [2] also perform a set of experiments for different values of λs/λg

ratio for a given lead time duration, and obtain what appear to be nice results for their optimization

problem. However, as we can observe from the above results that the heuristic approach does not

provide a good approximation in general. This is mainly due to the fact that, not only demand
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rates ratio λs/λg and lead times are important but also λsT and λgT values are important.
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6 APPENDICES

Appendix 1

Theorem 3.1: In steady state, the following equation holds:

π(1,0)s⊕g · µ ·R(1,0)s⊕g = π(0,0)s⊕g · λp · [X(0)
1 ]s⊕g (18)

where [X(0)
1 ]s⊕g = P(1,0)s⊕g

[
τ(0,0)s⊕g(1) < min{τ(0,1)s⊕g(1), τ(0,1)(1)}].

Proof: We are going to use similar arguments to those used in two priority class setting.

Recall that we assumed the limiting probabilities of the levels, computed using Palm’s The-

orem, that contain states (0, 0), and (0, 1) are non-negligible. This guarantees that steady state

probabilities for those states are non-negligible. Hence, state (0, 1) is recurrent.

Let us define a cycle as the sequence of transitions starting from state (p, r) until re-entering it

for the first time. Recall that the expected number of direct transitions from state (i, j) to state

(s, t) for a defined cycle will be given by:

E(p,r)[Z(i,j),(s,t)] =
∞∑

m=1

P(p,r)[τ(p,r)(1) > m + 1, ξm = (i, j), ξm+1 = (s, t)]

=
∞∑

m=1

{
P(p,r)[ξm+1 = (s, t) | ξm = (i, j), τ(p,r)(1) > m + 1]

·P(p,r)[ξm = (i, j), τ(p,r)(1) > m + 1]
}

=
∞∑

m=1

{
P [ξm+1 = (s, t) | ξm = (i, j), τ(p,r)(1) > m + 1]

·P(p,r)[ξm = (i, j), τ(p,r)(1) > m + 1]
}

= P(i,j),(s,t)

∞∑

m=1

P(p,r)[ξm = (i, j), τ(p,r)(1) > m + 1]

= P(i,j),(s,t) · ν(i,j) (19)
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Thus the expected number of transitions from state (1, 0)s⊕g to state (0, 0)s⊕g in a cycle, defined

as the sequence of transitions starting from state (0, 1) until re-entering it for the first time, will

be:

E(0,1)[Z(1,0)s⊕g ,(0,0)s⊕g ] = ν(1,0)s⊕g · P(1,0)s⊕g ,(0,0)s⊕g (20)

=
∞∑

m=1

P(0,1)[τ(0,1)(1) > m + 1, ξm = (1, 0)s⊕g, ξm+1 = (0, 0)s⊕g]

=
∞∑

m=1

{
P(0,1)[τ(0,1)(1) > m + 1, ξ1 = (0, 0), ξm = (1, 0)s⊕g, ξm+1 = (0, 0)s⊕g]

+ P(0,1)[τ(0,1)(1) > m + 1, ξ1 6= (0, 0), ξm = (1, 0)s⊕g, ξm+1 = (0, 0)s⊕g]
}

=
∞∑

m=1

P(0,1)[τ(0,1)(1) > m + 1, ξ1 = (0, 0), ξm = (1, 0)s⊕g, ξm+1 = (0, 0)s⊕g],

since P(0,1)[τ(0,1)(1) > m + 1, ξ1 6= (0, 0), ξm = (1, 0)s⊕g, ξm+1 = (0, 0)s⊕g] = 0.

In addition, during a cycle at some point in time, the process should have passed through states

(0, 0)s⊕g and (1, 0)s⊕g sequentially for any direct visit from state (1, 0)s⊕g to (0, 0)s⊕g. In addition,

in order to prevent multiple counts for the same event, we condition the event after passing through

states (0, 0)s⊕g and (1, 0)s⊕g sequentially as follows:

E(0,1)[Z(1,0)s⊕g ,(0,0)s⊕g ] = ν(1,0)s⊕g · P(1,0)s⊕g ,(0,0)s⊕g
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=
∞∑

m=1

m−1∑

k=0

P(0,1)

[
τ(0,1)(1) > m + 1, ξ1 = (0, 0), ξk = (0, 0)s⊕g, ξk+1 = (1, 0)s⊕g,

(
τ(0,1)s⊕g(1) > m + 1 | ξk+1 = (1, 0)s⊕g

)
, ξm = (1, 0)s⊕g, ξm+1 = (0, 0)s⊕g

]

=
∞∑

m=1

m−1∑

k=0

{
P(0,1)

[
τ(0,1)(1) > m + 1,

(
τ(0,1)s⊕g(1) > m + 1 | ξk+1 = (1, 0)s⊕g

)
,

ξm = (1, 0)s⊕g, ξm+1 = (0, 0)s⊕g
∣∣ τ(0,1)(1) > k + 1,

ξ1 = (0, 0), ξk = (0, 0)s⊕g, ξk+1 = (1, 0)s⊕g
]

·P(0,1)

[
τ(0,1)(1) > k + 1, ξ1 = (0, 0), ξk = (0, 0)s⊕g, ξk+1 = (1, 0)s⊕g

]}
.

By the Markov property applied to the conditional probability above, we have:

E(0,1)[Z(1,0)s⊕g ,(0,0)s⊕g ] =

=
∞∑

m=1

m−1∑

k=0

{
P

[
τ(0,1)(1) > m + 1,

(
τ(0,1)s⊕g(1) > m + 1 | ξk+1 = (1, 0)s⊕g

)
,

ξm = (1, 0)s⊕g, ξm+1 = (0, 0)s⊕g | τ(0,1)(1) > k + 1, ξk+1 = (1, 0)s⊕g
]

·P(0,1)

[
τ(0,1)(1) > k + 1, ξ1 = (0, 0), ξk = (0, 0)s⊕g, ξk+1 = (1, 0)s⊕g

]}

=
∞∑

m=1

m−1∑

k=0

{
P(1,0)s⊕g

[
τ(0,1)(1) > m− k, τ(0,1)s⊕g(1) > m− k, ξm−k−1 = (1, 0)s⊕g,

ξm−k = (0, 0)s⊕g
]

·P(0,1)

[
τ(0,1)(1) > k + 1, ξ1 = (0, 0), ξk = (0, 0)s⊕g, ξk+1 = (1, 0)s⊕g

]}
.

Because state (0, 1) is recurrent, the expression is finite and so by Fubini’s Theorem we may

reverse the order of summation,

E(0,1)[Z(1,0)s⊕g ,(0,0)s⊕g ] =
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=
∞∑

k=0

∞∑

m=k+1

{
P(1,0)s⊕g

[
τ(0,1)(1) > m− k, τ(0,1)s⊕g(1) > m− k,

ξm−k−1 = (1, 0)s⊕g, ξm−k = (0, 0)s⊕g
]

·P(0,1)

[
τ(0,1)(1) > k + 1, ξ1 = (0, 0), ξk = (0, 0)s⊕g, ξk+1 = (1, 0)s⊕g

]}

=
∞∑

k=0

{
P(0,1)

[
τ(0,1)(1) > k + 1, ξ1 = (0, 0), ξk = (0, 0)s⊕g, ξk+1 = (1, 0)s⊕g

]

·
∞∑

m=k+1

P(1,0)s⊕g

[
τ(0,1)(1) > m− k, τ(0,1)s⊕g(1) > m− k,

ξm−k−1 = (1, 0)s⊕g, ξm−k = (0, 0)s⊕g
]
}

.

A change in variable, h = m− k, results in:

E(0,1)[Z(1,0)s⊕g ,(0,0)s⊕g ] =

=
∞∑

k=0

{
P(0,1)

[
τ(0,1)(1) > k + 1, ξ1 = (0, 0), ξk = (0, 0)s⊕g, ξk+1 = (1, 0)s⊕g

]

·
∞∑

h=1

P(1,0)s⊕g

[
τ(0,1)(1) > h, τ(0,1)s⊕g(1) > h, ξh−1 = (1, 0)s⊕g, ξh = (0, 0)s⊕g

]
}

.

The inner summation is equal to something with which we are familiar:

∞∑

h=1

P(1,0)s⊕g

[
τ(0,1)(1) > h, τ(0,1)s⊕g(1) > h, ξh−1 = (1, 0)s⊕g, ξh = (0, 0)s⊕g

]

= P(1,0)s⊕g

[
τ(0,0)s⊕g(1) < min{τ(0,1)(1), τ(0,1)s⊕g(1)}]. (21)

In addition, equation (21) does not depend on k. Consequently, we can write:

E(0,1)[Z(1,0)s⊕g ,(0,0)s⊕g ] =
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= P(1,0)s⊕g

[
τ(0,0)s⊕g(1) < min{τ(0,1)(1), τ(0,1)s⊕g(1)}]

·
{ ∞∑

k=0

P(0,1)

[
τ(0,1)(1) > k + 1, ξ1 = (0, 0), ξk = (0, 0)s⊕g, ξk+1 = (1, 0)s⊕g

]
}

= P(1,0)s⊕g

[
τ(0,0)s⊕g(1) < min{τ(0,1)(1), τ(0,1)s⊕g(1)}] · E(0,1)[Z(0,0)s⊕g ,(1,0)s⊕g ]

= P(1,0)s⊕g

[
τ(0,0)s⊕g(1) < min{τ(0,1)(1), τ(0,1)s⊕g(1)}] · ν(0,0)s⊕g · P(0,0)s⊕g ,(1,0)s⊕g .

(22)

If we combine equations (20) and (22), we get:

ν(1,0)s⊕g · P(1,0)s⊕g ,(0,0)s⊕g =

= ν(0,0)s⊕g · P(0,0)s⊕g ,(1,0)s⊕g · P(1,0)s⊕g

[
τ(0,0)s⊕g(1) < min{τ(0,1)(1), τ(0,1)s⊕g(1)}].

(23)

Dividing both sides of equation (23) by the expected cycle length E(0,1)τ(0,1)(1), we get:

π̃(1,0)s⊕g · P(1,0)s⊕g ,(0,0)s⊕g =

= π̃(0,0)s⊕g · P(0,0)s⊕g ,(1,0)s⊕g · P(1,0)s⊕g

[
τ(0,0)s⊕g(1) < min{τ(0,1)(1), τ(0,1)s⊕g(1)}].

(24)

In addition, the relationship between the DTMC steady state probability π̃i(based on jump

probability) in the imbedded M.C. and CTMC steady state probability πi is given by:

πi =
π̃i · ωi

Σj π̃j · ωj
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where ω(i) is the mean time spent in state i.

Using the above relation in Equation (24) results in:

π(1,0)s⊕g · µ ·R(1,0)s⊕g =

= π(0,0)s⊕g · λp · P(1,0)s⊕g

[
τ(0,0)s⊕g(1) < min{τ(0,1)(1), τ(0,1)s⊕g(1)}].

Appendix 2

Theorem 3.2: In steady state, the following equation holds for j > 1:

π(1,j)s⊕gµR(1,j)s⊕g = π(0,j)s⊕gλpX
(j)
1 +

∞∑

i=1

π(i,j−1)s⊕g λs+g [X(j)
i ]s⊕g (25)

where [X(j)
i ]s⊕g = P(i,j)s⊕g

[
τ(0,j)s⊕g(1) < min{τ(0,j+1)s⊕g(1), τ(0,j+1)(1)}].

Proof: We provide a brief sketch of the proof since most of the arguments follow similar analysis

to the two priority demand class setting. Therefore, proofs for same arguments will be omitted, and

the results will be written directly. Let us define the cycle as the sequence of transitions starting

from state (0, j + 1) until re-entering it for the first time (provided that (0, j + 1) is recurrent).

Due to the structure of the transition diagram, before each one-step transition from (1, j)s⊕g

to (0, j)s⊕g, there must have been a matching one step transition from one of the set {(0, j)s⊕g} ∪
{(i, j − 1)s⊕g : i > 1} into the set {(i, j)s⊕g : i > 1}. In other words, for each one step transition

from (1, j)s⊕g to (0, j)s⊕g, previously there must had been exactly one transition of the form:

(0, j)s⊕g −→ (1, j)s⊕g or (i, j−1)s⊕g −→ (i, j)s⊕g for some i > 1, which is not followed by a visit

to state (0, j + 1)s⊕g in a cycle. This is because, before each one-step transition from (1, j)s⊕g
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to (0, j)s⊕g, there may be several transitions from one of the set {(0, j)s⊕g}∪ {(i, j− 1)s⊕g : i > 1}
into the set {(i, j)s⊕g : i > 1} due to the usage of the bridge between (0, j)s⊕g and (0, j + 1)s⊕g.

As a result,we have the following form:

E(0,j+1)[Z(1,j)s⊕g ,(0,j)s⊕g ] = ν(1,j)s⊕g P(1,j)s⊕g ,(0,j)s⊕g (26)

=
∞∑

m=1

P(0,j+1)

[
τ(0,j+1)(1) > m + 1, ξ1 = (0, j), ξm = (1, j)s⊕g, ξm+1 = (0, j)s⊕g

]

= A1 + B1

where

A1 =
∞∑

m=1

m−1∑

k=0

{
P(0,j+1)

[
τ(0,j+1)(1) > m + 1, ξ1 = (0, j), ξk = (0, j)s⊕g,

ξk+1 = (1, j)s⊕g,
(
τ(0,j+1)s⊕g(1) > m + 1 | ξk+1 = (1, j)s⊕g

)
,

ξm = (1, j)s⊕g, ξm+1 = (0, j)s⊕g
]}

,

and

B1 =
∞∑

i=1

∞∑

m=1

m−1∑

k=0

{
P(0,j+1)

[
τ(0,j+1)(1) > m + 1, ξ1 = (0, j), ξk = (i, j − 1)s⊕g,

ξk+1 = (i, j)s⊕g,
(
τ(0,j+1)s⊕g(1) > m + 1 | ξk+1 = (i, j)s⊕g

)
,

ξm = (1, j)s⊕g, ξm+1 = (0, j)s⊕g
]}

.

The above expressions for A1 and B1 have the same forms as in the proof of Theorem 3.1. Using

similar analysis, we can obtain

A1 = ν(0,j)s⊕g · P(0,j)s⊕g ,(1,j)s⊕g

·P(1,j)s⊕g

[
τ(0,j)s⊕g(1) < min{τ(0,j+1)(1), τ(0,j+1)s⊕g(1)}], (27)
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and

B1 =
∞∑

i=1

ν(i,j−1)s⊕g · P(i,j−1)s⊕g ,(i,j)s⊕g

·P(i,j)s⊕g

[
τ(0,j)s⊕g(1) < min{τ(0,j+1)(1), τ(0,j+1)s⊕g(1)}].

(28)

Combining Equations (26), (27) and (28),

ν(1,j)s⊕g P(1,j)s⊕g ,(0,j)s⊕g =

= ν(0,j)s⊕g · P(0,j)s⊕g ,(1,j)s⊕g

· P(1,j)s⊕g

[
τ(0,j)s⊕g(1) < min{τ(0,j+1)(1), τ(0,j+1)s⊕g(1)}]

+
∞∑

i=1

ν(i,j−1)s⊕g · P(i,j−1)s⊕g ,(i,j)s⊕g

· P(i,j)s⊕g

[
τ(0,j)s⊕g(1) < min{τ(0,j+1)(1), τ(0,j+1)s⊕g(1)}].

Dividing both sides of the above equation by the expected cycle length

E(0,j+1)τ(0,j+1)(1), and then using the relationship between the DTMC steady state probability

π̃i(based on jump probability) in the imbedded M.C. and CTMC steady state probability πi, we

get

π(1,j)s⊕gµR(1,j)s⊕g = π(0,j)s⊕gλpX
(j)
1 +

∞∑

i=1

π(i,j−1)s⊕g λs+g [X(j)
i ]s⊕g (29)

where [X(j)
i ]s⊕g = P(i,j)s⊕g

[
τ(0,j)s⊕g(1) < min{τ(0,j+1)s⊕g(1), τ(0,j+1)(1)}].
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Appendix 3

Proposition 4.1: For a given resupply rate µ, consider two cases:

a) n-customer demand classes with threshold levels (S1, S2, . . . , Sn) and arrival rates (λ1, λ2, . . . , λn);

b) k, k > 2 customer demand classes with threshold levels (S1−Sk+1, S2−Sk+1, . . . , Sk−Sk+1)

and arrival rates (λ1, λ2, . . . , λk−1,
∑n

u=k λu).

Denote state vectors for the former and the latter cases as

(OHa, B1a
, B2a

, . . . , Bna
, Ra)

and

(OHb, B1b
, B2b

, . . . , B(k−1)b
, B(k)+(k+1)+···+(n)b

, Rb)

respectively.

Then for j = 1, . . . , S1 − Sk+1:

P∞(OHa = Sk+1 + j, B1a
= v1, B

2a
= v2, . . . , B

(k−1)a
= vk−1, 0, 0, . . . , 0, Ra = vR)

= P∞(OHb = j, B1b
= v1, B

2b
= v2, . . . , B

(k−1)b
= vk−1, 0, Rb = vR).

Hence,

P∞(OHa = Sk+1 + j) = P∞(OHb = j) for j = 1, . . . , S1 − Sk+1.

Proof: For the n customer demand classes case, let us group the states into one set according to

following transformation:

(B1a
, B2a

, . . . , B(k−1)a
, Ra) =

⋃
(OHa, B1a

, B2a
, . . . , Bna

, Ra) (30)

For Ra −∑k−1
i=1 Bi1 6 S1 − Sk+1, (B1a

, B2a
, . . . , B(k−1)a

, Ra) corresponds to a unique state
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(OHa, B1a
, B2a

, . . . , Bna
, Ra) = (S1 −Ra +

k−1∑

i=1

Bi1 , B1a
, B2a

, . . . , B(k−1)a
, 0, 0, . . . , 0, Ra),

rather than a union of several states.

In addition, let us consider k, k > 2 customer demand classes with threshold levels (S1 −
Sk+1, S2 − Sk+1, . . . , Sk − Sk+1) and arrival rates (λ1, λ2, . . . , λk−1,

∑n
u=k λu). Denote the state

vector as
(
OHb, B1b

, B2b
, . . . , B(k−1)b

, B(k)+(k+1)+···+(n)b
, Rb

)

Then there is a one-to-one matching between state space of k, k > 2 customer demand class

setting
(
OHb, B1b

, B2b
, . . . , B(k−1)b

, B(k)+···+(n)b
, Rb

)
and

(B1a
, B2a

, . . . , B(k−1)a
, Ra) according to the following transformation:

(B1a
, B2a

, . . . , B(k−1)a
, Ra) 1:1←→ (

OHb, B1b
, B2b

, . . . , B(k−1)b
, B(k)+···+(n)b

, Rb
)

=
(
(S1 − Sk+1 −Ra +

k−1∑

i=1

Bia)+, B1a
, B2a

, . . . , B(k−1)a
, (Ra −

k−1∑

i=1

Bia − S1 + Sk+1)+, Ra
)
.

(31)

and the dynamics of the system are identical for both cases (i.e. jump probabilities and rates from

one state to another). In other words, k, k > 2 customer demand classes with threshold levels

(S1 − Sk+1, S2 − Sk+1, . . . , Sk − Sk+1) and arrival rates (λ1, λ2, . . . , λk−1,
∑n

u=k λu) is the exact

characterization of the above system resulted from a grouping operation.

By using Equations (30) and (31),

(
OHb, B1b

, B2b
, . . . , B(k−1)b

, B(k)+(k+1)+···+(n)b
, Rb

)
=
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=
(
(S1 − Sk+1 −Ra +

k−1∑

i=1

Bia)+, B1a
, B2a

, . . . , B(k−1)a
,

(Ra −
k−1∑

i=1

Bia − S1 + Sk+1)+, Ra
)

≡ (B1a
, B2a

, . . . , B(k−1)a
, Ra)

=
⋃

(OHa, B1a
, B2a

, . . . , Bna
, Ra)

Hence,

P∞
(
OHb, B1b

, B2b
, . . . , B(k−1)b

, B(k)+(k+1)+···+(n)b
, Rb

)
=

= P∞
(
(S1 − Sk+1 −Ra +

k−1∑

i=1

Bia)+, B1a
, B2a

, . . . , B(k−1)a
,

(Ra −
k−1∑

i=1

Bia − S1 + Sk+1)+, Ra
)

≡ P∞(B1a
, B2a

, . . . , B(k−1)a
, Ra)

=
⋃

P∞(OHa, B1a
, B2a

, . . . , Bna
, Ra).

It is true that Ra −∑k−1
i=1 Bia 6 S1 − Sk+1 for OHa > Sk+1, therefore there is a unique state

(OHa, B1a
, B2a

, . . . , Bna
, Ra) corresponding to state

(B1a
, B2a

, . . . , B(k−1)a
, Ra). It is also true that OHb > 0 for Rb − ∑k−1

i=1 Bib 6 S1 − Sk+1. As a

result, we have the following relation for OHa > Sk+1,

P∞
{(

OHb, B1b
, B2b

, . . . , B(k−1)b
, B(k)+···+(n)b

, Rb
)

=
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= (S1 − Sk+1 −Ra +
k−1∑

i=1

Bia , B1a
, . . . , B(k−1)a

, 0, Ra
)}

= P∞(B1a
, B2a

, . . . , B(k−1)a
, Ra)

= P∞
{

(OHa, B1a
, B2a

, . . . , Bna
, Ra) =

= (S1 −Ra +
k−1∑

i=1

Bia , B1a
, B2a

, . . . , B(k−1)a
, 0, 0, . . . , 0, Ra)

}
.

(32)

Hence, the following holds: Then for j = 1, . . . , S1 − Sk+1:

P∞(OHa = Sk+1 + j, B1a
= v1, B

2a
= v2, . . . , B

(k−1)a
= vk−1, 0, 0, . . . , 0, Ra = vR)

= P∞(OHb = j, B1b
= v1, B

2b
= v2, . . . , B

(k−1)b
= vk−1, 0, Rb = vR).

Furthermore, for (OHa, B1a
, B2a

, . . . , B(k−1)a
= (Sk+1, B1a

, B2a
, . . . , B(k−1)a

),

Ra −
k−1∑

i=1

Bia = S1 − Sk+1.

Hence, it is also true that there is a unique state

(OHa, B1a
, B2a

, . . . , Bna
, Ra) =

= (Sk+1, B1a
, B2a

, . . . , B(k−1)a
, 0, 0, . . . , 0, S1 − Sk+1 +

k−1∑

i=1

Bia),

corresponding to the state

(B1a
, B2a

, . . . , B(k−1)a
, Ra) = (B1a

, B2a
, . . . , B(k−1)a

, S1 − Sk+1 +
k−1∑

i=1

Bia).
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In addition, it is also true that for

(B1b
, B2b

, . . . , B(k−1)b
, Rb) = (B1a

, B2a
, . . . , B(k−1)a

, S1 − Sk+1 +
k−1∑

i=1

Bia),

(
OHb, B1b

, B2b
, . . . , B(k−1)b

, B(k)+···+(n)b
, Rb

)
=

= (0, B1a
, B2a

, . . . , B(k−1)a
, 0, S1 − Sk+1 +

k−1∑

i=1

Bia).

Therefore, we also have the following:

P∞
{(

OHb, B1b
, B2b

, . . . , B(k−1)b
, B(k)+···+(n)b

, Rb
)

=

= (0, B1a
, B2a

, . . . , B(k−1)a
, 0, S1 − Sk+1 +

k−1∑

i=1

Bia)
}

= P∞
{

(OHa, B1a
, B2a

, . . . , Bna
, Ra) =

= Sk+1, B1a
, B2a

, . . . , B(k−1)a
, 0, 0, . . . , 0, S1 − Sk+1 +

k−1∑

i=1

Bia)
}

.

(33)
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