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Abstract

We discuss several different search directions which can be used in primal-dual
interior-point methods for semidefinite programming problems and investigate their
theoretical properties, including scale invariance, primal-dual symmetry, and whether
they always generate well-defined directions. Among the directions satisfying all but at

most two of these desirable properties are the Alizadeh-Haeberly-Overton, Helmberg-
Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro, Nesterov-Todd, Gu, and
Toh directions, as well as directions we will call the MTW and Half directions. The
first five of these appear to be the best in our limited computational testing also.
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1 Introduction

This paper is concerned with interior-point methods for semidefinite programming

(SDP) problems and in particular the various search directions they use and their
properties. We consider the SDP given in the following standard form:

(SDP ) minX C • X
Ai • X = bi, i = 1, . . . ,m

X � 0,

where all Ai ∈ SIR
n×n, b ∈ IR

m, C ∈ SIR
n×n are given, and X ∈ SIR

n×n. Here
SIR

n×n denotes the space of n × n symmetric matrices, and X � 0 indicates that

X is symmetric positive semidefinite. The notation P • Q represents the usual inner
product Trace (P T Q) =

∑
ij PijQij on n×n matrices, and the Frobenius norm ‖P‖F :=

(P •P )1/2 is the associated norm. We assume that the set {Ai} is linearly independent.
The dual problem associated with (SDP ) is:

(SDD) maxy,S bT y∑m
i=1

yiAi + S = C

S � 0,

where y ∈ IR
m and S ∈ SIR

n×n.

We have stated our semidefinite programming problems with the Ai’s and C arbi-
trary members of SIR

n×n, and then the variables X and S also range over this space.
For many applications, the Ai’s and C lie in a subspace consisting of block-diagonal
symmetric matrices with a certain fixed block structure, and then X (without loss of

generality) and S (from the constraints) can be restricted to the same subspace. All
that follows is also valid when we consider such a subspace (in particular, the direc-
tions we propose will automatically lie in this subspace), but we treat the “dense” case
for simplicity. If the subspace consists of diagonal matrices, then (SDP ) and (SDD)

reduce to a linear programming (LP) problem in standard form and its dual (with the
vectors x and s embedded as the diagonal entries of diagonal matrices X and S).

SDPs have a wide range of applications in both continuous and combinatorial op-

timization (we refer the reader to [37] and [6] for an extensive list of applications).
Interior-point methods for their solution were pioneered by Alizadeh [1] and Nesterov
and Nemirovskii [25, 26] independently. These methods were primal; more efficient
algorithms use a primal-dual approach. For a comprehensive list of publications con-

cerned with both algorithms and applications and related software, see the semidefinite
programming home pages maintained by Alizadeh [2] and Helmberg [8].

Several different primal-dual interior-point algorithms for SDP have been proposed,
differing in their overall strategy (path-following or potential-reduction, for example),

whether they restrict the iterates to lie in a neighborhood of the central path, whether
they employ a predictor-corrector technique, whether they require all iterates to be
feasible, etc. All these are concerns of similar algorithms for LP. But there is another

aspect of such methods for SDP that does not arise in LP: how the search directions
are defined. In LP, although there are variants that use different right-hand sides
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(target-following versus path-following, for example), the left-hand side of the linear
system used by (almost) all primal-dual methods is the same, and arises from finding

a Newton step for a nonlinear system representing primal and dual feasibility plus
perturbed complementarity. This is no longer the case for SDP, as we shall see in the
next section. The primary reason for the occurrence of different search directions is

that symmetric matrices do not commute! As we will see, if all the symmetric matrices
arising in a problem commute, almost all directions proposed yield the same solution
(this is the case for the SDP problem corresponding to an LP problem, when all the
matrices are diagonal and thus commute).

Our concern in this paper is with the various search directions that have been
proposed in the literature, as well as some others that are suggested here. We are
concerned with specific directions, rather than the families that have been introduced
by Kojima, Shindoh, and Hara [13], Monteiro and Zhang [19, 38, 22, 20], Monteiro

and Tsuchiya [21], and Tseng [34] (and the very general family, including all of these,
introduced by Kojima, Shida, and Shindoh [15]). However, many of the specific direc-
tions we consider do lie in these families; in particular, out of the twenty directions we

address, six lie in the Monteiro-Zhang and nine in the Monteiro-Tsuchiya families (with
some overlap). The other directions are mostly defined by a linear system that arises
from considering Newton’s method for some nonlinear system. For this reason, we do
not consider other members of the Kojima-Shindoh-Hara or Tseng primal-dual families

than the basic ones, since these families do not have this motivation. We also do not
consider the Gauss-Newton direction recently proposed by Kruk et al. [16], which is
based on a least-squares solution to an over-determined linear system rather than the
exact solution to a square system.

We provide motivation for the directions we discuss and investigate their basic
properties. We suggest that these desirable properties be considered in designing new
directions for use in interior-point methods for SDP. (See also the related paper of

Tunçel [36], who studies two particular properties, primal-dual symmetry and scale
invariance, in the general context of conic programming.)

We are not concerned here with convergence questions of methods using these direc-
tions, which depend heavily on other aspects of the algorithms such as neighborhoods

and step sizes. Convergence results for short-step path-following methods were given
in [13, 19, 20, 21, 34, 38]. For a very general global convergence result for short-step
algorithms and references to the literature, see Kojima, Shida, and Shindoh [15]; they
give a bound of O(

√
n ln(1/ε)) iterations to obtain ε-optimal solutions given a suitable

starting point, which applies to all the families of search directions described above.
Kojima et al. also provide a figure showing the relationship between these families of
search directions. Convergence results for long-step algorithms can be found in Mon-

teiro [19] (who proves a bound of O(n3/2 ln(1/ε)) iterations for two particular search
directions), in Monteiro and Zhang [22] (who extend the results of [19] and estab-
lish a bound of O(n ln(1/ε)) iterations for another search direction) and Monteiro and
Tsuchiya [21] (who give a bound of O(n3/2 ln(1/ε)) iterations for all directions in a sub-

class of the Monteiro-Tsuchiya family). Ji, Potra, and Sheng [12] describe the literature
on local convergence and prove convergence of Q-order 1.5 or 2 for predictor-corrector
algorithms using certain search directions from the Monteiro-Zhang family. Nor do we
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discuss the amount of computational work involved in computing our search directions
in much detail; see Monteiro and Zanjacomo [24] and Toh [32] for flop counts for some

of these directions.
In Section 2 we discuss the central path and how directions might be defined to

approximate a sequence of points on the path. We also introduce some notation and

various notions of geometric mean. The following section describes the Monteiro-Zhang
and Monteiro-Tsuchiya families and, in order to develop them, the idea of scaling. Sec-
tion 4 then gives twenty different primal-dual search directions. Each is defined as the
solution of a linear system of equations, and Section 5 discusses how these equations

can be solved efficiently. We then turn to an investigation in Section 6 of a number of
desirable properties for a search direction for SDP to possess, including that it should
extend the well-known primal-dual direction for LP; it should give a predictable de-
crease to the duality gap if the current iterate is feasible; it should yield a well-defined

direction at any iterate; it should satisfy certain scale invariance properties; and it
should be symmetric between the primal and dual. We also discuss several other at-
tractive properties. We list the directions that satisfy all but a very small number

of these properties: they include the Alizadeh-Haeberly-Overton [3], Helmberg-Rendl-
Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro [9, 13, 19], and Nesterov-Todd
[27, 28, 31] directions, as well as two recently proposed by Gu [7] and Toh [32], and
directions we call the MTW and Half directions in addition. The first five of these

appear to be the best in our limited computational testing also; this, and our recom-
mendations, are discussed in the concluding Section 7.

2 The central path and preliminaries

Most interior-point methods for semidefinite programming are based (if only loosely)

on approximating a sequence of points on the central path. Assuming that both (SDP )
and (SDD) have strictly feasible solutions, we define this path as the set of solutions
(Xν, yν , Sν) for ν > 0 to the central path equations

Ai • X = bi, for i = 1, . . . ,m,∑m
i=1 yiAi + S = C,

XS = νI
(1)

(together with the requirement that X and S be symmetric positive definite). Existence

is guaranteed by general results of Nesterov and Nemirovskii [25, 26]; see also Kojima,
Shindoh, and Hara [13]. Note that the first two block equations above are linear, while
the third is mildly nonlinear. Hence a Newton step seems a natural idea for an iterative

algorithm. Unfortunately, the residual map, for which a zero is sought, takes an iterate
(X, y, S) ∈ SIR

n×n × IR
m × SIR

n×n to a point in IR
m × SIR

n×n × IR
n×n (since XS − νI

is in general not symmetric), which is a space of higher dimension, and so Newton’s
method cannot be applied directly.

A natural remedy is to rewrite the last equation so that the resulting residual lies
in SIR

n×n. For example, it could be written as S − νX−1 = 0 or X − νS−1 = 0
(corresponding to S + νF ′(X) = 0 or X + νF ′(S) = 0, where F (U) := − ln detU is
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the standard n-self-concordant barrier for the symmetric positive semidefinite cone).
However, the inverse map is not as smooth as the bilinear map (X,S) → XS, partic-

ularly as the solution is approached. Hence other symmetrizations are desirable. We
will discuss two general families in the next section, and several specific methods in
Section 4.

We devote the rest of this section to introducing some useful notation and defini-
tions. Henceforth, we will usually denote by (X, y, S) the current iterate, not necessar-
ily feasible, but with X and S symmetric positive definite. We therefore use (X̃, ỹ, S̃)
for generic solutions. As is customary, lower-case Roman letters denote vectors and

upper-case letters denote n × n matrices; we reserve K, L, P , and Q (Q will usually
be orthogonal) for not necessarily symmetric matrices, with all other letters denot-
ing members of SIR

n×n. We write U1/2 to denote the symmetric positive semidefinite
square root of the symmetric positive semidefinite matrix U . We use lower-case Greek

letters for scalars, and script letters for linear operators on (usually symmetric) matri-
ces. In particular, A : SIR

n×n → IR
m is defined by

AU := (Ai • U)m
i=1, (2)

with adjoint A∗ : IR
m → SIR

n×n; then

A∗y =
m∑

i=1

yiAi. (3)

We will use r and R for residuals. We define

rp := b −AX, (4)

Rd := C −A∗y − S, (5)

which are zero if the current iterate is feasible. Each direction will be denoted by
(∆X,∆y,∆S) ∈ SIR

n×n × IR
m × SIR

n×n.
Several of our directions will be Newton steps for nonlinear systems of the form

AX̃ = b,

A∗ỹ + S̃ = C,

Θ(X̃, S̃) = 0,

(6)

where the last equation is some symmetrization of X̃S̃ − νI = 0. (We will refer to
such a direction as the Newton step for Θ(X̃, S̃) = 0, with the other equations of (6)

implicit.) Hence the direction will satisfy the system

A∆X = rp,
A∗∆y + ∆S = Rd,

E∆X + F∆S = REF ,
(7)

where the operators E = E(X,S) and F = F(X,S) are the derivatives of Θ with respect
to X̃ and S̃ respectively, evaluated at (X,S), and REF = REF (X,S) = −Θ(X,S).
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Such a general derivation of search directions was considered also in Monteiro and
Zanjacomo [24].

For some directions it will be more convenient to introduce another variable Z ∈
SIR

n×n and to consider the system

A∆X = rp,
A∗∆y + ∆S = Rd,

E∆X − 2GZ = RE ,

F∆S + 2HZ = RF ,

(8)

for certain operators E, F , G, and H, again depending on X and S. (The factor 2 and
the minus sign will make the notation later simpler.)

All such operators E through H will take SIR
n×n into itself. Almost always they

are of the form EU = (PUQT + QUP T )/2, so we will find it convenient to have a
special notation for this operator (it corresponds to the symmetric Kronecker product
introduced by Alizadeh, Haeberly, and Overton [3], and we will use a similar notation).

In fact, we will extend its definition to all of IR
n×n:

(P � Q)K :=
1

2
(PKQT + QKT PT ), (9)

but most of the time we regard it as an operator from SIR
n×n to itself. In this case,

the adjoint operator is defined as usual by E∗U • V = U • EV for all U , V , and it is
easy to see that

Q � P = P � Q, (P � Q)∗ = PT � QT ,

so that P � Q is self-adjoint if P and Q are symmetric. If moreover P and Q are

positive definite, then

(P � Q)U • U = Trace (PUQU) = Trace (P 1/2UQ1/2Q1/2UP 1/2) = ‖P 1/2UQ1/2‖2

F ,

so that P � Q is also positive definite. If P is nonsingular,

(P � P )−1 = P−1 � P−1,

but there is no simple expression for (P � Q)−1 in general. Note that I � I is the
identity operator. We write E−∗ for the inverse of the adjoint of E, or equivalently the

adjoint of its inverse, assuming it exists, and similarly for F , G, and H.
Assuming that E is nonsingular, we find that (7) has a unique solution iff the m×m

Schur complement matrix AE−1FA∗ is nonsingular, and in this case the solution can
be found from

(AE−1FA∗)∆y = rp −AE−1(REF − FRd),
∆S = Rd −A∗∆y,
∆X = E−1(REF − F∆S).

(10)

Similarly, assuming E and H are nonsingular, we see that (8) has a unique solution iff
AE−1GH−1FA∗ is nonsingular, and in this case the solution can be found from

(AE−1GH−1FA∗)∆y = rp −AE−1(RE + GH−1(RF − FRd)),
∆S = Rd −A∗∆y,
∆X = E−1(RE + GH−1(RF −F∆S)).

(11)
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We will discuss solving systems defined by the linear operators E and H (in order to
compute the Schur complement matrices and the right-hand sides) in Section 5, after

introducing our directions.
For every such method for obtaining a search direction, there is a corresponding

dual method defined as follows — roughly by interchanging the roles of X and S.

First, the problem (SDD) can be rewritten in the form of (SDP ) in terms of the
variable S̃, say as (SDP ). An iterate (X, y, S) for (SDP ) and its dual can be viewed
as an iterate (S, y̌,X) for (SDP ) and its dual. (If X is not feasible in (SDP ), then
y̌ cannot be chosen so that (y̌, X) is feasible in the dual of (SDP ), so that it is not

well-defined. But it can be seen from (7) and (8) that ∆X and ∆S are independent of
y, which only affects ∆y, so the choice is not important.) We then apply our method
to (SDP ) and its dual at the iterate (S, y̌,X) to get the direction (∆S,∆y̌,∆X).
The dual direction is then (∆X,∆y,∆S), where ∆y is chosen so that the second

equation of (7) is satisfied. If a method is defined by (7) with a certain E(X,S),
F(X,S), and REF (X,S), then the dual method is again determined by (7), but using
E ′(X,S) := F(S,X), F ′(X,S) := E(S,X), and R′

EF (X,S) := REF (S,X), i.e., X and

S are interchanged. A similar statement holds for methods determined by (8).
We call a method primal-dual symmetric if the dual direction always coincides with

the original direction. Actually, we need to be a little more careful. Several methods
leave the direction undefined at certain iterates, since the corresponding equations

have no or multiple solutions due to singularity. We say the method is primal-dual
symmetric if any solution to the equations “defining” the direction also solves the
equations “defining” the dual direction.

A method given by (7) is clearly primal-dual symmetric if E(X,S) = F(S,X) and

REF (X,S) = REF (S,X). These conditions are sufficient but not necessary, since
the last equation of (7) can be written in many equivalent ways, and sometimes the
particular form may not exhibit the desired symmetry. However, they often suffice

to show primal-dual symmetry in our examples. Similarly, a method given by (8)
is certainly primal-dual symmetric if E(X,S) = F(S,X), G(X,S) = −H(S,X), and
RE(X,S) = RF (S,X).

To conclude this section we define two geometric means and hence several functions

of X and S that will be useful in what follows. Given symmetric positive definite U
and V , the unique matrix J satisfying

JU−1J = V

is called the metric geometric mean of U and V , denoted U#V [4, 11]. It is easy to

see that U#V = V #U = (U−1#V −1)−1, that U#V = U1/2V 1/2 = V 1/2U1/2 if U and
V commute, and that

U#V = V 1/2(V −1/2UV −1/2)1/2V 1/2

= U1/2(U−1/2V U−1/2)1/2U1/2.

We define

W := X#S−1 = X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2, (12)
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so that WSW = X. W is the scaling matrix defined by X and S; see Nesterov and
Todd [27, 28] and Todd, Toh, and Tütüncü [31]. Let

T := W−1 = X−1#S, (13)

so that TXT = S. Next we define

V := W 1/2SW 1/2 = W−1/2XW−1/2; (14)

V is the spectral geometric mean of X and S. We denote

J := X#S, (15)

so that JS−1J = X, and let
K := JS−1 = XJ−1 (16)

(note that K is not necessarily symmetric).

3 The Monteiro-Zhang and Monteiro-Tsuchiya

families

Here we describe two general symmetrization schemes and use them to define the
property of scale invariance.

The first technique we discuss is due to Monteiro [19] and Zhang [38] (see also
Monteiro and Zhang [22] and Monteiro [20]): choose a nonsingular matrix P ∈ IR

n×n

and replace X̃S̃ = νI by
HP (X̃S̃) = HP (νI) = νI, (17)

where HP := P � P−T so that

HP (Q) =
1

2
(PQP−1 + P−T QT PT ). (18)

Hence, if we regard P as fixed (although it may be a function of X and S), the Newton
step for (17) is the solution of

A∆X = rp,

A∗∆y + ∆S = Rd,
1

2
(P∆XSP−1 + P−T S∆XP T ) + 1

2
(PX∆SP−1 + P−T ∆SXP T ) = RP ,

(19)
with RP := νI − (PXSP−1 + P−T SXPT )/2. This is of the form (7), with

E := P � P−T S, F := PX � P−T , (20)

and

REF := RP = νI − 1

2
(PXSP−1 + P−T SXPT ). (21)

Directions arising in this way are called members of the Monteiro-Zhang (MZ) family.
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We can alternatively pre- and post-multiply the last equation of (19) by P T and
P , to get an equivalent system of the form (7), where now

E := S � M, F := MX � I, (22)

and

REF := νM − 1

2
(MXS + SXM), (23)

with
M := P T P.

These equations also arise directly as the Newton system for

1

2
(MX̃S̃ + S̃X̃M) = νM. (24)

The second formulation shows that the same direction results if we replace P by QP

for any orthogonal Q, since M is thus unchanged. Hence we can remove the ambiguity
by requiring P to be symmetric positive definite, P = M 1/2. The reformulation also
shows an alternative parametrization of the Monteiro-Zhang family in terms of M .

The choice of P or M often depends on the current iterates X and S; we sometimes
write P (X,S) or M(X,S) to highlight this dependence. Four particular choices for P
and M are: P = M = I, giving the Alizadeh-Haeberly-Overton (AHO) direction
[3]; P = S1/2, M = S, giving the Helmberg-Rendl-Vanderbei-Wolkowicz [9]/ Kojima-

Shindoh-Hara [13]/ Monteiro [19] (H..K..M) direction; P = X−1/2, M = X−1, giving
the dual H..K..M direction [13, 19]; and P = W−1/2, M = W−1, where W is the scaling
matrix of (12), giving the Nesterov-Todd (NT) direction [27, 28, 31].

The H..K..M direction was independently introduced by Helmberg et al., whose

motivation was symmetrizing the direction ∆X resulting from applying Newton’s
method to the asymmetric equation X̃S̃ = νI, and by Kojima et al., whose moti-
vation came from a more general scheme for generating symmetric search directions

based on subspaces of skew-symmetric matrices. Monteiro rediscovered the direction
based on the motivation above. The dual H..K..M direction is also a member of the
Kojima-Shindoh-Hara family and, as we have seen, of the MZ family. It was also dis-
cussed by [13, 19]. Alizadeh et al. based their direction directly on applying Newton’s

method to X̃S̃ + S̃X̃ = 2νI. Finally, Nesterov and Todd’s direction is a specialization
to SDP of a general primal-dual symmetric scheme for generating search directions for
certain conic problems, to be used in path-following or potential-reduction methods.
It was shown to be in the MZ family by Todd-Toh-Tütüncü [31], and to be in the KSH

family by Kojima-Shida-Shindoh [14].
It is easy to see that the AHO and NT directions are primal-dual symmetric, while

small examples show that the H..K..M (and hence the dual H..K..M) direction is not.

However, the dual of any direction in the MZ family is also in the family: merely
replace P = P (X,S) by [P (S,X)]−T or M = M(X,S) by [M(S,X)]−1.

There is another way to view the MZ family, which will be very important in our
future discussions. We consider a change of variables in problem (SDP ), where X̃ is
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replaced by X̂ := PX̃PT . In terms of these variables, (SDP ) becomes

(ŜDP ) minX̂ Ĉ • X̂

ÂX̂ = b,

X̂ � 0,

where Ĉ := P−T CP−1, and Â and Â∗ are defined from {Âi := P−T AiP
−1} as in (2)

and (3). The dual of this problem is

( ̂SDD) maxŷ,Ŝ bT ŷ

Â∗ŷ + Ŝ = Ĉ

Ŝ � 0,

which can easily be seen to result from (SDD) by the change of variables where (ỹ, S̃)
is replaced by (ŷ := ỹ, Ŝ := P−T S̃P−1).

Note that, if (∆X,∆y,∆S) denotes the direction that solves (19) at (X, y, S),

then the scaled direction (∆X̂,∆ŷ,∆Ŝ) := (P∆XP T ,∆y, P−T ∆SP−1) at (X̂, ŷ, Ŝ) =
(PXPT , y, P−T SP−1) solves

Â∆X̂ = r̂p,

Â∗∆ŷ + ∆Ŝ = R̂D,
1

2
(∆X̂Ŝ + Ŝ∆X̂) + 1

2
(X̂∆Ŝ + ∆ŜX̂) = νI − 1

2
(X̂Ŝ + ŜX̂),

where r̂p := b − ÂX̂, R̂D := Ĉ − Â∗ŷ − Ŝ, so it is the AHO direction for the scaled
problem. Hence each MZ direction can be viewed as the result of scaling by P , taking
the AHO direction, and then unscaling.

A subclass of the MZ family, called the MZ* or TTT family, consists of those
members of the MZ family for which E−1F is self-adjoint, or equivalently [31], for which
PXPT and P−T SP−1 commute. In terms of M = P T P , this is the class for which
MXS is symmetric. This includes the H..K..M, dual H..K..M, and NT directions, but

not in general the AHO direction.
It is now simple to define the notion of scale invariance. A method for defining a

search direction for semidefinite programming is called P -scale-invariant if the direction

at any iterate is the same as would result from scaling the problem and the iterate by
an arbitrary nonsingular P , using the method to determine the direction for the scaled
problem, and then scaling back. It is called Q-scale-invariant if this is true when we
restrict ourselves to scalings defined by orthogonal matrices P . Once again we need

to be a little careful, in case the method does not define the direction uniquely. We
say the method is scale-invariant if, whenever we scale any solution to the equations
“defining” the direction for the original problem, the result is a solution to the equations
“defining” the direction for the scaled problem.

(A helpful way to view this is for the case where all Ai’s, C, and hence X and S
are diagonal matrices, so that (SDP ) is a linear programming problem. In order that
P define a transformation preserving this structure, it must have the structure of a

permutation matrix, but with arbitrary nonzero entries. Then a method is P -scale-
invariant if it is invariant under permutation of the diagonal components of X and
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under arbitrary positive scalings of these components. Since such a P is orthogonal iff
all its nonzero entries are ±1, a method is Q-scale-invariant if it is invariant under per-

mutations of the diagonal components of X. Thus the simplex method using Dantzig’s
most negative reduced cost rule is Q-scale-invariant, while using a steepest-edge rule
it is P -scale-invariant.)

Now we describe another general symmetrization scheme, due to Monteiro and
Tsuchiya [21]. Recall that the dual H..K..M direction is the Newton direction for the
first two equations of (6) and

1

2
(X−1/2X̃S̃X1/2 + X1/2S̃X̃X−1/2) = νI.

At the current iterate, the left-hand side becomes X1/2SX1/2. We can therefore con-
sider the Newton direction for the first two equations of (6) and

X̃1/2S̃X̃1/2 = νI. (25)

Note the difference from the equation above; here we are explicitly taking into account
the change in P = P (X̃, S̃), rather than holding it fixed.

To derive the corresponding Newton step, we need to see how X̃1/2 varies as a
function of X̃. Letting Ũ denote (temporarily) the function X̃1/2 of X̃, and letting

Ũ ′[H] denote its derivative in the direction H, we find from Ũ Ũ = X̃ that

Ũ Ũ ′[H] + Ũ ′[H]Ũ = H.

Hence the Newton system consists of the first two equations of (8) together with

∆X − X1/2Z − ZX1/2 = 0,

X1/2∆SX1/2 + X1/2SZ + ZSX1/2 = νI − X1/2SX1/2.

We can also equivalently write these equations as

∆X − X1/2Z − ZX1/2 = 0,

∆S + SZX−1/2 + X−1/2ZS = νX−1 − S,
(26)

which is an instance of (8) with

E := F := I � I, G := X1/2 � I, H := S � X−1/2,

and
RE := 0, RF := νX−1 − S.

Following Monteiro and Zanjacomo [24], we call this the X-MT direction; a similar
S-MT direction (the dual direction) arises from interchanging the roles of X and S

above.
Monteiro and Tsuchiya obtain a family of directions by first scaling, then applying

the X-MT method, and then unscaling. We call this the MT (or X-MT) family. If
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instead we use the S-MT method, we obtain the S-MT family. If we scale by P as in
the MZ family, equations (26) are replaced by

P∆XP T − (PXP T )1/2Z − Z(PXP T )1/2 = 0,

P−T ∆SP−1 + P−T SP−1Z(PXP T )−1/2 + (PXP T )−1/2ZP−T SP−1 = R′

P .
(27)

with R′

P := ν(PXP T )−1 − P−T SP−1.
Let us pre- and post-multiply the first equation by P−1 and P−T respectively, and

the second by P T and P respectively. Let us also write Z for P−1ZP−T . Finally, we

define
N := P T (PXPT )−1/2P

and note that XN = P−1PXPT (PXPT )−1/2P = N−1PT P . Then it is not hard to
see that (27) is equivalent to

∆X − XNZ − ZNX = 0,
∆S + SZN + NZS = νX−1 − S.

(28)

Now we have
E := F := I � I, G := XN � I, H := S � N, (29)

with again
RE := 0, RF := νX−1 − S. (30)

We note that the MT family can be parametrized as well by N as by P , since any
symmetric positive definite N arises in this way from P = (NXN)1/2. Again this

means that P and QP , for any orthogonal Q, define the same direction (since N is
unchanged), so that we may remove the ambiguity by choosing P to be symmetric
positive definite.

Particular members of the MT family are: P = I, N = X−1/2, giving the X-MT
direction; P = X−1/2, N = X−1, giving the dual H..K..M direction; and P = S1/2,
N = W−1, giving the NT direction. We can also choose P = (SXS)1/2, N = S, which
allows us to solve the second equation in (28) for Z and substitute the result in the

first equation; this gives the equation for the H..K..M direction (not previously known
to belong to the (X-)MT family). Monteiro and Tsuchiya also mention the choice
P = W−1/2, N = W−1/2V −1/2W−1/2, leading to a direction we shall call the MTW
direction. We will also discuss two other members of this family in the next section.

There is also a subfamily of these directions, called the MT*-family, for which
Monteiro and Tsuchiya prove stronger convergence results. These are those members
of the MT family for which (PXP T )1/2P−T SP−1 + P−T SP−1(PXPT )1/2 is positive

definite, or equivalently for which NXS + SXN is positive definite. This holds if
(PXPT )1/2 and P−T SP−1 commute, or if N 1/2XN1/2 and N−1/2SN−1/2 commute;
hence the H..K..M, dual H..K..M, NT, and MTW directions are included.

While the dual of any direction in the MZ family is also in this family, it is not

known whether the same is true for the MT family. For instance, it is unclear whether
the S-MT direction lies in the MT (or X-MT) family, while it obviously lies in the
S-MT family.
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4 Twenty primal-dual search directions

Here we describe a great variety of different search directions. The first six are in the

MZ family while the next six are in or motivated by the MT family; then there are
three “simple” directions and finally five more motivated by other Newton systems.
Simple examples show that these twenty directions are all different in general.

All are given by linear systems of the form of (7) or (8), so we usually just give
some motivation and then the specific choices of the operators and residuals. Along
the way we will discover another useful property for search directions in SDP.

The first four directions are by now well known. They belong to the MZ family and

satisfy equations (7). We describe the nonlinear Newton system that generates them
and the resulting operators and residual.

AHO [3]. This is the Newton step for

1

2
(X̃S̃ + S̃X̃) = νI.

It corresponds to taking

E = S � I, F = X � I, REF = νI − 1

2
(XS + SX).

H..K..M [9, 13, 19]. This is the Newton step for

1

2
(SX̃S̃ + S̃X̃S) = νS

(we have chosen the system corresponding to (24)). Here we have

E = S � S, F = SX � I, REF = νS − SXS.

Alternatively, so that E doesn’t need to be inverted, we can use

E = I � I, F = X � S−1, REF = νS−1 − X.

Dual H..K..M [13, 19]. This is the Newton step for

1

2
(X−1X̃S̃ + S̃X̃X−1) = νX−1,

again corresponding to (24). (This can be written more symmetrically with the above
as (XS̃X̃ + X̃S̃X)/2 = νX, and the system defining the direction will be equivalent.)
Here we have

E = S � X−1, F = I � I, REF = νX−1 − S.

We will not give dual versions of all the methods we will introduce, but this and the
S-MT direction will be given because they have been previously defined.

NT [27, 28, 31]. This is the Newton step for

1

2
(TX̃S̃ + S̃X̃T ) = νT
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(recall that T = W−1, the inverse of the scaling matrix), again corresponding to (24).
(This can be written in the alternative form (WS̃X̃ + X̃S̃W )/2 = νW , and the system

defining the direction will be equivalent.) Hence we have

E = S � W−1, F = W−1X � I, REF = νW−1 − 1

2
(W−1XS + SXW−1).

However, it turns out (see [31]) that an equivalent formulation uses

E = I � I, F = W � W, REF = νS−1 − X.

(Indeed, the latter form of the equations was the way the direction was introduced in
[27, 28]; it was not clear that the resulting direction lay in the MZ family.) We can also
pre- and post-multiply by T , to get another form with F = I, or by T 1/2 = W−1/2, to

get a symmetric primal-dual form, but the formulation above requires no inversion of E.
However, for future reference, we do want to point out another symmetric primal-dual
form, where we pre- and post-multiply the last-mentioned formulation by V 1/2. Then

we find

E = V 1/2W−1/2 � V 1/2W−1/2, F = V 1/2W 1/2 � V 1/2W 1/2, REF = νI − V 2.

The next two directions were recently introduced by Gu [7] and Toh [32], based

on a characterization by Gu of the TTT (or MZ*) family, itself a restatement of a
characterization by Monteiro and Zhang [22]. Suppose X1/2S1/2 = QxΣQT

s , with Qx

and Qs orthogonal and Σ diagonal. Then the TTT family (in the case that all diagonal
entries of Σ are distinct) corresponds to those P that can be written as

P = B̂Σ−1/2QT
s S1/2 = B̂Σ1/2QT

x X−1/2

for some diagonal positive definite B̂. The H..K..M, NT, and dual H..K..M directions
correspond to B̂ equal to Σ1/2, the identity, and Σ−1/2 respectively. The choices
recommended by Gu and Toh are designed to make P T P or the 3 × 3 block matrix in
(7) better conditioned. Let Φ (Ψ) be the diagonal matrix so that the rows of Φ−1QT

s S1/2

(Ψ−1QT
x X1/2) have unit length.

Gu [7]. Choose B̂ = Φ−1Σ1/2 so that P = B̂Σ−1/2QT
s S1/2 has rows of unit length.

Set

M = P T P = S1/2QsΦ
−2QT

s S1/2

and then

E = S � M, F = MX � I, REF = νM − 1

2
(MXS + SXM).

Toh [32]. Choose B̂ = Φ−1/2Ψ1/2 and P = B̂Σ−1/2QT
s S1/2. (Then, according to

[32], P and P−T have rows of the same lengths.) Set

M = P T P = S1/2QsΣ
−1Φ−1ΨQT

s S1/2
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and then E, F , and REF as above.

Next we proceed to the members of the Monteiro-Tsuchiya family. First we have
the X-MT direction:

X-MT [21]. This is the Newton step for

X̃1/2S̃X̃1/2 = νI.

We have a system of the form (8) with

E = F = I � I, G = X1/2 � I, H = S � X−1/2

and

RE = 0, RF = νX−1 − S.

This corresponds to P = I and N = X−1/2.

MTI. Our next direction is also in the MT family, corresponding to P = X1/2

so that N = I. However, there is another motivation which we will see later, so we
discuss it now. The X-MT direction involves some square roots. Let us write the last
two equations defining the direction as

∆X − X[X−1/2Z] − [ZX−1/2]X = 0,

∆S + S[ZX−1/2] + [X−1/2Z]S = νX−1 − S.

Now we replace [X−1/2Z] by Z, and pretend that it is symmetric, so that we also

replace [ZX−1/2] by Z. The result is of the form of (8), with

E = F = I � I, G = X � I, H = S � I

and
RE = 0, RF = νX−1 − S.

These are also the formulae resulting from setting P and N as above in the MT family.

We have already considered several members of this family. P = I, N = X−1/2

gives the X-MT direction, while P = X1/2, N = I yields the MTI direction. Also,

P = X−1/2, N = X−1 gives the dual H..K..M direction, P = S1/2, N = W−1 gives
the NT direction, and, as mentioned in the last section, P = (SXS)1/2, N = S
leads to the H..K..M direction. There are two other choices we will discuss. First,
given the range of P ’s above, it seems worthwhile to consider also P = S−1/2, which

corresponds to N = J−1 (recall that J is the metric geometric mean of X and S as
defined in (15)). Second, as mentioned by Monteiro and Tsuchiya, another reasonable
choice is P = W−1/2 (so that X and S are both scaled to V ), which corresponds to

N = X−1#W−1.

MTJ. Here we choose P = S−1/2 and N = J−1 so that

E = F = I � I, G = XJ−1 � I, H = S � J−1
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and
RE = 0, RF = νX−1 − S.

MTW [21]. Here we choose P = W−1/2 and N = W−1/2V −1/2W−1/2 = X−1#W−1

so that

E = F = I � I, G = X(X−1#W−1) � I, H = S � (X−1#W−1)

and

RE = 0, RF = νX−1 − S.

The other two directions motivated by the MT family are the dual X-MT direction,
the S-MT direction, and another direction discovered by Monteiro and Zanjacomo [24]
using a Cholesky factorization of S.

S-MT [21, 24]. This is the Newton step for

S̃1/2X̃S̃1/2 = νI,

which gives a system of the form (8) with

E = F = I � I, G = X � S−1/2, H = S1/2 � I

and
RE = νS−1 − X, RF = 0.

S-Chol-MT [24]. This is the Newton step for

L̃T
s X̃L̃s = νI,

where L̃sL̃
T
s = S̃ is the Cholesky factorization of S̃. Let us use P temporarily for L̃s

and Q[H] for its derivative with respect to S̃ in the direction H. Then we find

PQ[H]T + Q[H]P T = H.

Thus the Newton direction satisfies the first two equations of (8) together with

LT
s ∆XLs + LT

s XQ + QT XLs = νI − LT
s XLs,

∆S − LsQ
T − QLT

s = 0,
(31)

where Ls is the Cholesky factor of S and Q is an auxiliary lower triangular matrix
variable. Note that the first equation can equivalently be written

∆X + XQL−1

s + L−T
s QT X = νS−1 − X.

We now introduce three “simple” directions. The first is just the primal-dual version
of the primal direction that results from taking a Newton step for the primal barrier

problem. We can view it as taking a Newton step for another equation describing the
central path.
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Primal [25, 26, 1]. This is the Newton step for

S̃ − νX̃−1 = 0.

It satisfies the linear system (7) with

E = νX−1 � X−1, F = I � I, REF = νX−1 − S.

Alternatively, to avoid the inversion of E, we can equivalently choose

E = I � I, F =
1

ν
X � X, REF = X − 1

ν
XSX.

Finally, a formulation that looks a little more symmetric between X and S uses

E = νX−1/2 � X−1/2, F = X1/2 � X1/2, REF = νI − X1/2SX1/2. (32)

Benson et al. [5] have pointed out that for certain applications, where the Ai’s and

C are very sparse, S and even S−1 are much sparser than X. In this case it might be
very worthwhile to consider the Dual direction, the Newton step for

X̃ − νS̃−1 = 0.

It satisfies the linear system (7) with

E = I � I, F = νS−1 � S−1, REF = νS−1 − X.

It turns out that ∆y and ∆S are independent of X, so there is very little computational
penalty for having a dense X matrix. This direction shares theoretical properties with
the Primal direction (of which it is the dual) and will not be considered further.

Half. This direction is not a Newton step to our knowledge. It is motivated by
trying to symmetrize (32), or a similar version of the equation defining the Dual direc-
tion, or alternatively symmetrizing the Newton system (for not necessarily symmetric
matrices) coming from X̃S̃ − νI = 0. This direction was also discussed by Tseng [34].

It has the form of (7) with

E = S1/2 � S1/2, F = X1/2 � X1/2, REF = νI − 1

2
(X1/2SX1/2 + S1/2XS1/2).

Again there is an equivalent form with E the identity:

E = I�I, F = S−1/2X1/2�S−1/2X1/2, REF = νS−1−1

2
(S−1/2X1/2SX1/2S−1/2+X).

IHalf. This direction is also not a Newton step, but is again a simple symmetriza-
tion of the Primal system. It has the form of (7) with

E = X−1/2�X−1/2, F = S−1/2�S−1/2, REF =
ν

2
(X−1/2S−1X−1/2+S−1/2X−1S−1/2)−I.
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Again there is an equivalent form with E the identity:

E = I�I, F = X1/2S−1/2�X1/2S−1/2, REF =
ν

2
(S−1+X1/2S−1/2X−1S−1/2X1/2)−X.

The last group of directions we consider is motivated, directly or indirectly, by

taking a Newton step. We first note that, since the metric geometric mean J of (15) is
symmetric positive definite, J2 = νI iff J =

√
νI, and this holds iff XS = νI. Hence

we consider

J. This is the Newton step for
J̃2 = νI,

where J̃ := X̃#S̃. Recall the defining equation for J̃ : X̃ − J̃S̃−1J̃ = 0. Hence, if
U [Hx,Hs] denotes the derivative of J̃ at (X,S) in the directions Hx for X̃ and Hs for

S̃, we have

Hx − JS−1U [Hx,Hs] − U [Hx,Hs]S
−1J + JS−1HsS

−1J = 0.

But to get the Newton step, we want to choose Hx = ∆X and Hs = ∆S so that the
resulting U := U [Hx,Hs] satisfies

JU + UJ = νI − J2.

This Lyapunov equation can be solved directly, to give U = (νJ−1−J)/2. Substituting

this into the linking equation, we find that the corresponding direction satisfies (7) with

E = I � I, F = K � K, REF =
ν

2
(KJ−1 + J−1KT ) − X.

where we recall that K := JS−1 = XJ−1. Note the similarities of this system to that
defining the NT direction. Indeed, F is defined by K rather than W , but we still have
KSKT = JS−1J = X = WSW , and (KJ−1 + J−1KT )/2 = (JS−1J−1 + J−1S−1J)/2
is the mean of two matrices similar to S−1. However, there is a crucial property of the

NT direction not possessed by the J direction.
Recall that almost all of our directions are motivated by taking a Newton step to

satisfy the feasibility equations for the primal and dual together with some nonlinear

equation. There is no a priori reason why we should expect that

(X + ∆X) • (S + ∆S) = νn,

which certainly follows if the nonlinear equation X̃S̃−νI is satisfied exactly by the next
iterate. However, this does indeed hold for several directions, as long as the current
iterate is feasible. In this case, rp and Rd are zero, so the feasibility equations imply

that ∆X • ∆S is zero. Then the equation above is equivalent to

S • ∆X + X • ∆S = νn − X • S. (33)

We shall say that a direction predicts the duality gap if it satisfies (33). For example,
if we take the last equation defining the NT direction,

∆X + W∆SW = νS−1 − X,
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and take its inner product with S, we obtain exactly (33). As we shall see, this same
happy coincidence occurs for almost all our directions. However, taking the inner

product of the last equation defining the J direction with S gives

S • ∆X + (KT SK) • ∆S =
ν

2
S • (JS−1J−1 + J−1S−1J)− X • S,

which is not (33). A slight modification of the J direction restores this property:

J2. We merely interchange K and KT in the equations defining the J direction.

Hence we obtain the solution to (7) with

E = I � I, F = KT � KT , REF = νS−1 − X.

Our next direction replaces the metric geometric mean J by the spectral geometric
mean:

V. This is the Newton step for

Ṽ 2 = νI, (34)

where Ṽ = W̃−1/2X̃W̃−1/2 = W̃ 1/2S̃W̃ 1/2. Let us write V ′[Hx,Hs] (W ′

1/2
[Hx,Hs]) for

the derivative of Ṽ (W̃ 1/2) in the direction (Hx,Hs) at (X,S). Then we find

V ′[Hx,Hs] = −W−1/2W ′

1/2
[Hx,Hs]W

−1/2XW−1/2

+W−1/2HxW−1/2 − W−1/2XW−1/2W ′

1/2
[Hx,Hs]W

−1/2,

and

V ′[Hx,Hs] = W ′

1/2
[Hx,Hs]SW 1/2 + W 1/2HsW

1/2

+W 1/2SW ′

1/2
[Hx,Hs].

We want to choose (∆X,∆S) = (Hx,Hs) so that the resulting V ′[Hx,Hs] satisfies

V V ′[Hx,Hs] + V ′[Hx,Hs]V = νI − V 2,

to get the Newton step for (34). This Lyapunov system can be solved directly to give
V ′[Hx,Hs] = (νV −1 − V )/2. Hence, letting Z denote W ′

1/2
[∆X,∆S], the Newton step

satisfies the first two equations of (8) as well as

W−1/2∆XW−1/2 − W−1/2XW−1/2ZW−1/2 − W−1/2ZW−1/2XW−1/2 = 1

2
(νV −1 − V ),

W 1/2∆SW 1/2 + W 1/2SZ + ZSW 1/2 = 1

2
(νV −1 − V ),

or
∆X − XW−1/2Z − ZW−1/2X = 1

2
(νS−1 − X)

∆S + SZW−1/2 + W−1/2ZS = 1

2
(νX−1 − S),

which is (8) with

E := F := I � I, G := XW−1/2 � I, H := S � W−1/2
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and

RE :=
1

2
(νS−1 − X), RF :=

1

2
(νX−1 − S).

V2. We can obtain a variant of this direction by proceeding as in the first derivation of

the MTI direction to eliminate the square roots. We treat ZW−1/2 as a new variable,

denoted Z in what follows, and ignore the fact that it is not symmetric to obtain the
first two equations of (8) and

∆X − XZ − ZX = 1

2
(νS−1 − X)

∆S + SZ + ZS = 1

2
(νX−1 − S),

so that
E := F := I � I, G := X � I, H := S � I,

with RE and RF as above. Note that this is exactly the system defining the MTI
direction except that the nonzero right-hand side RF there is now distributed between
RE and RF .

SXS. The final direction we consider is the Newton step for

S̃X̃S̃ = νS̃

(compare with the motivation for the H..K..M direction). It follows that the direction
solves the first two equations of (7) together with

S∆XS + SX∆S + ∆SXS − ν∆S = νS − SXS,

or

∆X + X∆SS−1 + S−1∆SX − νS−1∆SS−1 = νS−1 − X,

which is (7) with

E := I � I, F := S−1 � (2X − νS−1), REF := νS−1 − X.

Before ending the section, we consider a modification of the SXS direction. Suppose
we take the Newton step for

S̃X̃S̃ = νS.

(We can view this as perturbing the right-hand side of the linear system defining the

Newton step for SXS = 0, rather than first perturbing the nonlinear system and then
computing the Newton step.) Then we obtain the direction solving (7) with

E := I � I, F := 2S−1 � X, REF := νS−1 − X. (35)

Except for the factor 2, this is exactly the system defining the H..K..M direction.

Suppose the current iterate is dual feasible, so that RD = 0. Then the solution to
this new system is (∆X,∆y/2,∆S/2), where (∆X,∆y,∆S) is the H..K..M direction.
Hence any iterative method that combines this direction with a line search that takes

a fraction of the step to the boundary (separately for the primal and the dual) will
generate exactly the same iterates as if it used the H..K..M direction. In this way,
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we can view the H..K..M method as a perturbed Newton method for SXS = 0, with
nonstandard step-size control. The situation can be compared to the solution of the

scalar equation s2 = 0, which has a singular Jacobian at the solution. The Newton
iteration leads to linear convergence, while doubling the Newton step (corresponding
to replacing the direction given by (35) with the H..K..M direction) leads to the exact

solution in one step.

5 Computation of the search directions

In all cases, we will compute the search direction (∆X,∆y,∆S) through (10) or (11).
This involves obtaining the m × m matrix B := AE−1FA∗ or B′ := AE−1GH−1FA∗

and evaluating the right-hand sides. Each entry of B or B′ is calculated from

Bij = Ai • (E−1FAj) or B′

ij = Ai • (E−1GH−1FAj), (36)

and since application of F or G to a matrix is straightforward for all methods, it suffices
to show how to solve

EU = R and HU = R (37)

for arbitrary R ∈ SIR
n×n and those E and H arising in our methods.

The matrices required to define E, F , G, and H are easily computed. Inverses, such
as X−1 in the Primal direction, are best evaluated using Cholesky factorization, while
square roots, such as X1/2 in the Half direction, require an eigenvalue decomposition.
Geometric means, like W , V , and J , require Cholesky factors and one or two eigen-

value or singular value decompositions; see [31] for an efficient way to compute W (or
similarly J). All of these calculations require O(n3) arithmetic operations, and in the
dense case will take negligible time compared to the computation of B or B′ (which
requires O((m + n)mn2) arithmetic operations).

Let us therefore turn to the solution of systems of the form (37) arising in our
methods. For eight of them (H..K..M, NT, Primal, Half, IHalf, J, J2, and SXS), H
does not appear and E can be taken to be the identity, so no such systems need to be

solved. For three of them (AHO, MTI, and V2), either H does not appear and E is
of the form S � I, or E is the identity and H = S � I. For S-MT, E is the identity
and H = S1/2 � I. For the remaining directions (dual H..K..M, Gu, Toh, X-MT,
MTJ, MTW, and V), either H does not appear and E is of the form S � M for some

symmetric positive definite M , or E is the identity and H = S � M for some such M .
(The attentive reader will have noticed that the S-Chol-MT direction is missing from
this list. This requires the solution of a triangular Lyapunov system (see [24]) and will
not be addressed further in this section; the order of complexity is the same as the

methods here, with slightly smaller constants.) Let us consider these cases in turn.
For the first nontrivial case, we need to solve (S � I)U = R, or equivalently

SU + US = 2R.

Let us compute the eigenvalue decomposition QDQT of S, where Q is orthogonal and
D = diag(d1, · · · , dn) with all dj’s positive. Then, with Ū := QT UQ and R̄ := QT RQ,
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we get
DŪ + ŪD = 2R̄,

so that Ūij = 2R̄ij/(di + dj) for all i, j. Hence we calculate R̄, thence Ū , and lastly U .

A similar technique works for the next case, since S1/2 = QD1/2QT .
Finally we need to find the solution of

MUS + SUM = 2R,

where M is a symmetric positive definite matrix.We first compute an eigenvalue de-

composition of S to obtain S1/2 and S−1/2, and then rewrite the equation above as

M̂Û + ÛM̂ = 2R̂,

where M̂ := S−1/2MS−1/2, Û := S1/2US1/2, and R̂ := S−1/2RS−1/2. Now we proceed
as in the paragraph above. We find the eigenvalue decomposition Q̂D̂Q̂T of M̂ , where Q̂

is orthogonal and D̂ = diag(d̂1, · · · , d̂n) with all d̂j’s positive. Then, with Ū := Q̂T Û Q̂
and R̄ := Q̂T R̂Q̂, we get

D̂Ū + Ū D̂ = 2R̄,

so that Ūij = 2R̄ij/(d̂i + d̂j) for all i, j. Hence we obtain Û and thence U . Note that,
with P := S−1/2Q̂, R̄ = PT RP and U = PŪPT .

6 Properties of SDP search directions

Here we list a number of desirable properties for search directions in semidefinite pro-

gramming to enjoy, and check whether the directions of Section 3 possess these prop-
erties or not. It is somewhat laborious to check each direction for each property, and
so our proofs often consider just one or two representative cases.

When we state that a property is true for all our directions except A, B, and C,
we mean that all the directions in Section 3 except for these possess the property, and
the exceptional directions do not; the counterexamples in such cases are easy to find
using Matlab [18], and indeed we found that one example sufficed for all cases. If

the situation for the exceptional directions is unclear (counterexamples have not been
found), we write that the property holds for all our directions except possibly A, B,
and C. Similarly, if we state that a property holds for just the A, B, and C directions,
we mean to imply that it fails for all others in Section 3; if this is not known, we state

that the property holds for at least the A, B, and C directions.

Extends linear programming. We mentioned in the introduction that, when the
space SIR

n×n is replaced by the subspace of diagonal matrices, the resulting problems
are merely reformulations of linear programming problems. In this case, we would

expect that the search directions found for the corresponding semidefinite programming
problems would be the diagonal matrices defined by the usual primal-dual directions
of linear programming, i.e., would satisfy the first two equations of (7) and

S∆X + X∆S = νI − XS, (38)
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with all matrices diagonal. Hence we say that a direction possesses property (ELP)
if, whenever all Ai’s C, X, and S are diagonal, the resulting search direction satisfies

(38).

Proposition 6.1 Property (ELP) holds for all our directions except Primal and SXS.

Proof:

Let us prove this for all our directions in the MT family. Then, for some symmetric

positive definite N , the direction satisfies (28). But all choices for N corresponding to
directions in Section 3 are diagonal if X and S are. Hence the auxiliary matrix Z is
also diagonal, as the solution of a Lyapunov equation with diagonal matrices on the
left- and right-hand sides. Now by multiplying the first equation of (28) by S and the

second by X and adding, we get exactly (38), since the terms in Z cancel. The key
here, of course, is that diagonal matrices commute.

Predicts duality gap. Suppose our current iterate (X, y, S) is primal and dual
feasible. If we succeed in taking a full step, the next iterate will be (X + ∆X, y +

∆y, S + ∆S), and this will also be primal and dual feasible, with duality gap equal to

(X + ∆X) • (S + ∆S) = X • S + S • ∆X + X • ∆S,

since the directions ∆X and ∆S are orthogonal. We would like this to be equal to the
duality gap of the point aimed at, i.e., of the point on the central path with parameter
ν. Hence we say that a direction satisfies property (PDG) if we have

S • ∆X + X • ∆S = νn − X • S. (39)

Proposition 6.2 Property (PDG) holds for all our directions except Primal, IHalf, J,

and SXS.

Proof:

Again, we can check this straightforwardly for each case, but instead we will use a
more general technique.

In linear programming, the matrix AE−1FA∗ or AE−1GH−1FA∗ is replaced by
AXS−1AT , so we might expect E−1F or E−1GH−1F to act like XS−1. It is indeed the
case that E−1FS = X or E−1GH−1FS = X for most of our directions, but it appears
that a more fundamental property is that F∗E−∗S = X or F∗H−∗G∗E−∗S = X. We

say that a direction based on (7) has property (PDG’) if

F∗E−∗S = X, (E−∗S) • REF = νn − X • S;

similarly, a direction based on (8) has property (PDG”) if

F is nonsingular, G∗E−∗S = H∗F−∗X, (E−∗S) •RE + (F−∗X) •RF = νn−X •S.

By taking the inner product of the last equation of (7) with E−∗S, we find that a
direction possessing (PDG’) also enjoys (PDG). If we instead take the inner product of

the third equation of (8) with E−∗S and of the fourth equation with F−∗X and add,
we find that a direction with (PDG”) also possesses (PDG).
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Now we are ready to confirm property (PDG) for the entire MZ family. Here E has
the form S � M for some symmetric positive definite M , so that E is self-adjoint and

E−∗S = M−1. Also, F has the form MX � I, so F∗ = XM � I and F∗M−1 = X as
desired. Also, (E−∗S) • REF = M−1 • (νM − (MXS + SXM)/2) = νn − X • S,
which confirms (PDG’) and hence (PDG).

Next we consider the MT family. Here E = F = I�I, G = XN �I, and H = S�N
for some symmetric positive definite N . We find G∗E−∗S = (NX � I)S = (NXS +
SXN)/2, while H∗F−∗X = (S � N)X = (SXN + NXS)/2, so the two are equal.
Also, (E−∗S) • RE + (F−∗X) • RF = X • RF = X • (νX−1 − S) = νn − X • S, so we

have checked (PDG”) and hence (PDG).
Similar arguments confirm the property for all other directions except Primal, IHalf,

J, SXS, and S-Chol-MT. But we can check (PDG) for this last direction by taking the
inner product of the first equation of (31) with I and the second with X and adding.

(Note that while (PDG) fails for the IHalf and J directions, it holds for the Half and
J2 directions.)

Well-defined directions. We would like our method for computing directions
to give a unique search direction for every symmetric positive definite X and S and
surjective operator A. Given that we define our directions using (7) or (8) with E or E
and H nonsingular, this requires that, for all symmetric positive definite X and S,

AE−1FA∗ or AE−1GH−1FA∗ is nonsingular for all surjective A.

It is easy to see that this statement holds iff

E−1F or E−1GH−1F is positive (or negative) definite,

but not necessarily self-adjoint (see also Tseng [35]). We say that a direction satisfies
(WDD) if the latter holds for all symmetric positive definite X and S. Below we

determine for which of our directions (WDD) holds. Shida, Shindoh, and Kojima
[30] provide a nice approach to this question for the general KSH family, using the
concepts of maximal monotone and antitone affine subspaces of SIR

n×n × SIR
n×n, and

also determine via this technique that the H..K..M, NT, and Primal directions satisfy
(WDD) as does the AHO direction if XS + SX is symmetric positive definite. Our
approach relies on an analysis of the Schur complement matrix as above. Todd, Toh,
and Tütüncü [31] show that E−1F is self-adjoint and positive definite whenever it is

self-adjoint, so that all members of the MZ* or TTT family enjoy the (WDD) property.
Monteiro and Tsuchiya [21] show indirectly that all members of the MT* family give
well-defined directions, so that (WDD) holds. This family includes the H..K..M, dual
H..K..M, and NT directions, which are also in the MZ* family, but also the MTW

direction. Since their method was indirect, it was unclear whether the corresponding
operator E−1GH−1F in the last case was self-adjoint as well as positive definite; indeed,
from the form of G and H it seemed unlikely. The fact that the MTW operator does

have this property was surprising, and only discovered after numerical tests showed that
the Schur matrix was always symmetric. Thus in all cases where (WDD) is known to
hold, the Schur complement matrix is symmetric positive definite.
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Proposition 6.3 Property (WDD) holds for just the H..K..M, dual H..K..M, NT, Gu,
Toh, MTW, and Primal directions.

Proof:

For the H..K..M direction, E−1F = F = X � S−1, which is self-adjoint and positive
definite because X and S−1 are symmetric positive definite. For the dual H..K..M
direction, E−1F = E−1 = (S � X−1)−1 is self-adjoint and positive definite because its

inverse is, for reasons identical to those above. Clearly the NT direction has property
(WDD), since now E−1F = W � W which is self-adjoint and positive definite. The
same is true for the Primal direction, with E−1F = (1/ν)X �X. Direct arguments are
harder for the other directions.

To take care of the Gu and Toh directions, we note that by results of Gu [7] they
belong to the MZ* or TTT family, for which E−1F is self-adjoint and positive definite
by results of [31]. This class also contains the three directions considered above. Thus

we are left with just the MTW direction. This case follows from the lemma below.

Lemma 6.1 For the MTW direction, the operator E−1GH−1F is self-adjoint and pos-
itive definite.

Proof:

We give two proofs for this result. The first, simple argument is due to Shida [29],

based on ideas in [30]. The second, more involved proof also shows how to compute
GH−1R (or E−1GH−1FR) efficiently for any R, as required to find the MTW direction;
indeed, this turns out to be barely more expensive than computing just H−1R.

Recall that for this direction, E = F = I � I, G = XN � I, and H = S � N , with

N = X−1#W−1. We therefore have

NXN = W−1, NXNXNXN = S, (40)

from which we deduce that

XNS−1 = N−1W−1S−1 = N−1X−1W = WNW (41)

is symmetric positive definite.

Now E−1GH−1F = GH−1 is self-adjoint and positive definite if and only if HG =
HGH−1H is. But

HG = (S � N)(XN � I) =
1

2
(SXN � N + S � NXN)

=
1

2
(SXNS−1S � N + S � NXN)

=
1

2
(SWNWS � N + S � W−1)

using (41) and (40). This is clearly self-adjoint and positive definite.
For the second proof we consider GH−1R for an arbitrary R ∈ SIR

n×n. From

the previous section, to obtain U1 := H−1R, we find the eigenvalue decomposition
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Q̂D̂Q̂T of N̂ := S−1/2NS−1/2 (where D̂ = diag(d̂1, · · · , d̂n) with all d̂j’s positive), set
P := S−1/2Q̂ and R̄ = PT RP , and then

U1 = PŪPT , where Ūij = 2R̄ij/(d̂i + d̂j) (42)

for all i, j. Next we need

U2 := GU1 =
1

2
(XNU1 + U1NX) =

1

2
(P ((P−1XNP )Ū + Ū(PT NXP−T ))PT ). (43)

Let us now examine

P−1XNP = Q̂T S1/2XNS−1/2Q̂ = Q̂T S1/2XNS−1S1/2Q̂ = Q̂T S1/2WNWS1/2Q̂.

Now, using in turn WSW = X, (40), and (41), we obtain

(S1/2WNWS1/2)3 = S1/2WNWSWNWSWNWS1/2

= S1/2WNXNXNWS1/2

= S1/2WSN−1X−1WS1/2

= S1/2N−1S1/2

= N̂−1 = Q̂D̂−1Q̂T .

It follows that P−1XNP = D̂−1/3, so that

GH−1 = (P � P )D(P T � PT ),

with D the positive definite diagonal operator defined by

(DU)ij = Uij(d̂
−1/3

i + d̂
−1/3

j )/(d̂i + d̂j)

for all i, j. This is clearly self-adjoint and positive definite, concluding the proof.

We should add that for the AHO direction and indeed for all directions in the MT
and MZ families, it is known that the search directions are well-defined whenever the
iterate (X, y, S) lies in a wide neighborhood of the central path; see [30, 20, 21, 23]. In

addition, no problems have been reported in practical computation. Nevertheless, we
find it somewhat disturbing that a method may fail to produce a search direction at a
strictly feasible iterate.

Let us also record here the status of the Schur complement matrix for all our
directions.

Proposition 6.4 The Schur complement matrix is always symmetric for just the
H..K..M, dual H..K..M, NT, Gu, Toh, MTW, Primal, and SXS directions. It is also
positive definite for all but the last, which yields a symmetric positive definite Schur

complement matrix for all sufficiently small ν (below some tolerance depending on X
and S).
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Bounded system. Our directions are defined by systems of linear equations of

the form (7) or (8) for suitable E and F or E through H. However, some of these
systems are not defined at a solution to the (SDP ) and its dual, where X and S are
only positive semidefinite. In particular, W and J are not defined at such solutions.
However, instead of making a strong condition that the system be defined at such

a solution, we ask instead whether the systems (or equivalent restatements of them)
remain bounded as X and S converge to positive semidefinite matrices. Clearly this is
true for those defined at the solution, such as the AHO and Half directions, but it is
also true for the NT, Gu, and other directions.

Proposition 6.5 The bounded system property holds for at least the AHO, H..K..M,
dual H..K..M, NT, Gu, X-MT, MTI, S-MT, and Half directions.

Proof:

This is clear for the AHO and Half directions; it is also apparent for the H..K..M
direction if we employ the first definition of E and F , and thus in a similar way

for the dual H..K..M direction. For the NT direction, we use the last mentioned
choice of E and F . Note that W−1/2V W−1/2 = S, so V 1/2W−1/2 = Q′

sS
1/2 for some

orthogonal Q′

s, and similarly V 1/2W 1/2 = Q′

xX1/2 for some orthogonal Q′

x. Now
EU = Q′

sS
1/2US1/2(Q′

s)
T , whose Frobenius norm is at most ‖S‖F times that of U , and

similarly for FU . For the Gu direction, recall that P has rows of unit norm, so the
entries of M are bounded by n. For the X-MT direction, we eliminate the X−1/2 in H
by pre- and post-multiplying by X1/2. The proofs for the other directions are similar.

Alizadeh et al. [3] show that not only is the linear system for the AHO direction
defined at the solution, but that if strict complementarity and primal and dual nonde-

generacy hold there, then the coefficient matrix is nonsingular. Numerical tests suggest
that this fails for all others among our directions. One might hope that the nonsingu-
lar result holds for the Half direction, since its linear system is defined at the solution
and is similar. However, this is not the case. The argument below assumes familiarity

with [3]. Following the reasoning there, we find that the diagonal matrix with entries
λi + λj that arises in the AHO direction is replaced by one with entries

√
λiλj for the

Half direction, and similarly for the diagonal matrix depending on the ωi’s. It follows

that the matrix ST JS in [3] will generally be singular for the Half direction at the
solution, since the diagonal matrices Φ and Γ do not have enough positive diagonal
entries between them.

Scale invariance. We discussed P - and Q-scale invariance in Section 3. Roughly,
P -scale invariance (PSI) holds if a direction is invariant under arbitrary congruence

transformations on X (and corresponding transformations on the data and S), while
Q-scale invariance (QSI) requires only invariance under orthogonal similarity transfor-
mations. Here we determine the scale invariance properties of our twenty directions.

Let us first note that it is possible to construct a scale-invariant method that uses
a direction that is not scale-invariant, based on a suitable initialization. Indeed, let
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us suppose we have some technique for producing an initial iterate (X0, y0, S0) for
our problem (SDP ) such that X0S0 = µ0I for some µ0 > 0 (the iterate need not be

feasible). Suppose also that the initialization technique is scale-invariant, so that given
(ŜDP ) the method would return (PX0P

T , y0, P
−T S0P

−1). Then a scale-invariant
method can be devised by applying the initialization technique to get (X0, y0, S0),

defining P := µ
1/4

0
X−1/2, and then applying the basic method (using the direction

that may not be scale-invariant) to the problem (ŜDP ) scaled by this P , starting at

the scaled point (PX0P
T , y0, P

−T S0P
−1) = (µ

1/2

0
I, y0, µ

1/2

0
I). However, we find it

more pleasing to use a direction that is itself scale-invariant.

Proposition 6.6 Property (PSI) holds for just the H..K..M, dual H..K..M, NT, MTW,

Primal, and SXS directions.

Proof:

Let us prove this for the H..K..M and MTW directions. For the first, we need to
show that, if (∆X,∆y,∆S) is the H..K..M direction for the original problem (SDP )

at (X, y, S) (or satisfies the equations defining this direction, which is the same since
this direction is well-defined), then (∆X̂,∆ŷ,∆Ŝ) := (P∆XP T ,∆y, P−T ∆SP−1) is
the H..K..M direction (or equivalently satisfies the defining equations) for the scaled
problem (ŜDP ) at (X̂, ŷ, Ŝ) = (PXP T , y, P−T SP−1). Clearly this direction satisfies

the first two equations of the scaled (7), and since

∆X +
1

2
(X∆SS−1 + S−1∆SX) = νS−1 − X,

we have

P∆XP T +
1

2
((PXPT )(P−T ∆SP−1)(P−T SP−1)−1 + (P−T SP−1)−1(P−T ∆SP−1)(PXPT ))

= ν(P−T SP−1)−1 − (PXP T ),

which is the third equation of the scaled (7). (A similar but more general argument
for an arbitrary member of the MZ family defined by M = M(X,S) shows that (PSI)

holds if M transforms like S, i.e., if M(X̂, Ŝ) = P−T MP−1; this holds for the H..K..M,
dual H..K..M, and NT directions.)

Turning now to the MTW direction, we know that this satisfies the first two equa-
tions of (8) as well as

∆X − XNZ − ZNX = 0,
∆S + SZN + NZS = νX−1 − S,

where N := X−1#W−1. Hence, by pre- and post-multiplying by P and P T (first

equation) and by P−T and P−1 (second equation), and writing (∆X̂,∆ŷ,∆Ŝ) :=
(P∆XP T ,∆y, P−T ∆SP−1) and (X̂, ŷ, Ŝ) = (PXP T , y, P−T SP−1), we obtain

∆X̂ − X̂N̂ ′Ẑ − ẐN̂ ′X̂ = 0,

∆Ŝ + ŜẐN̂ ′ + N̂ ′ẐŜ = νX̂−1 − Ŝ,
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where N̂ ′ := P−T NP−1 and Ẑ := PZP T . These are the appropriate third and fourth
equations of (8) for the scaled problem, with auxiliary variable Ẑ, as long as N̂ ′ is the

appropriate N matrix for the scaled problem, i.e., as long as

N̂ ′ = N̂ := N(X̂, Ŝ) := X̂−1#Ŵ−1, (44)

with Ŵ the scaling matrix for the scaled iterates X̂ and Ŝ. (That is, again we want N

to transform like S.) The defining equation for Ŵ is Ŵ ŜŴ = X̂, so that Ŵ = PWP T .
Then, since NWN = X−1, we find by pre- and post-multiplying by P−T and P−1 that

N̂ ′Ŵ N̂ ′ = X̂−1,

which shows that (44) is satisfied and completes the proof.

Let us illustrate what goes wrong for the AHO direction. The key point is that the

third equation of (7) is now

1

2
(∆XS + S∆X) +

1

2
(X∆S + ∆SX) = νI − 1

2
(XS + SX),

and under our scaling, XS transforms to X̂Ŝ = PXSP−1 while SX transforms to
ŜX̂ = P−T SXPT , and similarly for the terms on the left-hand side, and these do not

combine gracefully. They do in the case that P = P−T , i.e., when P is orthogonal.
Indeed we have

Proposition 6.7 Property (QSI) holds for all our directions except S-Chol-MT.

Proof:

Let us check this for our directions in the MZ and MT classes. The others follow using

similar arguments.
Each of our MZ directions satisfies the first two equations of (7) and

S∆XM + M∆XS + MX∆S + ∆SXM = 2νM − MXS − SXM.

Hence the scaled direction (∆X̂,∆ŷ,∆Ŝ) := (Q∆XQT ,∆y,Q∆SQT ) satisfies the first

two equations of the scaled (7) at the scaled point (X̂, ŷ, Ŝ) = (QXQT , y,QSQT ) as
well as

Ŝ∆X̂M̂ + M̂∆X̂Ŝ + M̂X̂∆Ŝ + ∆ŜX̂M̂ = 2νM̂ − M̂X̂Ŝ − ŜX̂M̂,

where M̂ := QMQT . Hence it is only necessary to check that, for our choices of M =
M(X,S), M̂ equals M(X̂, Ŝ). This certainly holds for M = I (so that M̂ = QQT = I),
M = S, M = X−1, and M = W−1, since as we saw in the proof above, Ŵ = QWQT

so that Ŵ−1 = QW−1QT . This takes care of the AHO, H..K..M, dual H..K..M, and

NT directions. For the Gu and Toh directions, note that the scaled square roots X̂1/2

and Ŝ1/2 are just QX1/2QT and QS1/2QT respectively. It follows that for the scaled
problems, Qx and Qs are premultiplied by Q and Σ is unchanged. Hence Φ and Ψ are

unchanged, and then it is easy to see that in both cases, M̂ is the appropriate M for
the scaled problems.
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For our MT directions, it is similarly only necessary to check that, for our choices
of N = N(X,S), N̂ := QNQT equals N(X̂, Ŝ). This clearly holds for N = I, but it is

also easily seen to hold for N = X−1/2, N = J−1, and N = X−1#W−1. The proof for
the S-MT direction is similar.

Coincidence of directions. We have already noted that all our directions are
different in general, but that for problems arising from linear programming, all but two
give the same direction. It is natural to ask if there are other situations where some of

the directions coincide, in particular when the iterates lie on the central path.
First we consider a slightly more general case, where our iterates X and S commute.

In this case, by making an orthogonal scaling, we can assume that they are both
diagonal. Note that we are not assuming that all the Ai’s are diagonal also.

If X and S are diagonal, so are X−1, S1/2, etc., W , J , and K. Indeed, W = K =
X1/2S−1/2. It follows that the NT, Half, IHalf, J, and J2 directions all coincide in this
case.

Next, it is easily seen that the orthogonal matrices Qx and Qs that arise in the Gu
and Toh directions reduce to the identity with Σ = X1/2S1/2. Hence Φ = S1/2 and
Ψ = X1/2. Thus, for both the Gu and Toh directions, the matrix M reduces to the
identity, so both yield the AHO direction. Let us now consider the MTI direction. One

of the equations in its linear system, ∆X − XZ − ZX = 0, can be readily solved, to
give Zij = ∆Xij/(Xii+Xjj). Substituting this into the other equation and multiplying
the ijth term by (Xii + Xjj)/2 yields the equation for the AHO direction. A similar
analysis holds for the V2 direction.

Hence we have

Proposition 6.8 If X and S commute, the AHO, Gu, Toh, MTI, and V2 directions

coincide, as do the NT, Half, IHalf, J, and J2 directions. These two directions are
different, and all our remaining directions are also distinct from each other and different
from these two in general.

Proof:

It is only necessary to point out that the directions under discussion are all Q-scale-
invariant, so the reduction to the diagonal case above is valid. The other directions

can be shown to be different using simple examples.
Next we specialize further to the case that we are on the central path, so that

X = µS−1 for some positive µ. In this case it is easily seen that W = X1/2S−1/2 =

µ1/2S−1 = µ−1/2X. Then the last equation satisfied by the AHO direction, S∆X +
∆SX + ∆XS + X∆S = 2νI − XS − SX can be rewritten

S(∆X + W∆SW ) + (∆X + W∆SW )S = 2νI − XS − SX,

which holds iff ∆X + W∆SW = νS−1 − X, so the direction coincides with the NT

direction. This proves that the two classes of five directions each collapse to a single
direction on the central path. Similar arguments show

Proposition 6.9 If the current iterate is on the central path, all our directions except
possibly the Primal and SXS directions coincide; if further the iterates are primal and
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dual feasible, then the Primal and SXS directions are scalar multiples (possibly different
for the primal and dual parts) of all our other directions. In case the current iterate

is on the central path and ν is equal to X • S divided by n so that X = νS−1, then all
our directions coincide, and if further the iterates are primal and dual feasible, then all
our directions equal the zero direction.

Primal-dual symmetry. We have already defined this property: a direction is

primal-dual symmetric (PDS) if it is equal to its dual. We have

Proposition 6.10 Property (PDS) holds for just the AHO, NT, Toh, Half, IHalf, J,
V, and V2 directions.

Proof:

This is clear from the corresponding linear systems for the AHO, Half, IHalf, and V2
directions. It is easily seen to hold for members of the MZ family if, whenever M results
from X and S (in that order), M−1 results from S and X. Hence the NT direction

is primal-dual symmetric, since it corresponds to M = W−1, and the scaling matrix
corresponding to S and X is W−1. (We can also argue directly from the simpler linear
system with E = I � I, F = W � W .) From the form for M = P T P in the Gu and
Toh directions, we can see that primal-dual symmetry will hold if B̂ for S and X is

the inverse of B̂ for X and S, and this holds for the Toh direction. (Σ is the same for
S and X as for X and S.)

For the J direction, we note that J is unchanged when X and S are interchanged,

while K is replaced by its inverse. Primal-dual symmetry then follows by pre- and
post-multiplying the equation defining the direction by K−1 and K−T respectively.

Finally, for the V direction, notice that if we replace the auxiliary variable Z by
W−1/2ZW−1/2, then we can change G to X � W 1/2 and H to SW 1/2 � I. Then our

equations become just those for the dual direction.

From the criteria so far, one direction stands out. Only the NT direction extends

linear programming, predicts the duality gap, gives a well-defined direction, is P - as
well as Q-scale-invariant, and is primal-dual symmetric. Moreover, the corresponding
Schur complement matrix is symmetric and positive definite, and (at least in one form)
the direction enjoys the bounded system property.

Four directions satisfy all but one property: the H..K..M, dual H..K..M, and MTW
directions satisfy all but primal-dual symmetry, while the Toh direction has all but P -
scale invariance. The AHO and Half directions enjoy all except well-defined directions
and P -scale invariance, while the Gu direction satisfies all but P -scale invariance and

primal-dual symmetry. All other directions fail at least three of the properties we have
discussed.

However, there is another property that seems important, although it is not as

well-defined. This is that the direction arise in some sense from taking a Newton step
for some system.

Newton system. The basic property here (NS) is that the direction be the Newton
step for some possibly locally-defined nonlinear system. Here by locally defined we

32



mean that the nonlinear system can depend on the current iterate. One great advantage
of having a direction satisfy this property is that a Mehrotra-type predictor-corrector

step [17] can be used in an algorithm for semidefinite programming using this direction
[3]. From the derivation of the directions, we have

Proposition 6.11 Property (NS) holds for all our directions except possibly Half,
IHalf, J2, and V2.

(Here and below we say “possibly” or “at least” because there could be another for-
mulation of the defining equations for a direction of which we are unaware showing it
to be a Newton step.)

Of course, the full benefit of Newton’s method is its asymptotic convergence rate,
for which the nonlinear system to which Newton’s method is applied should be globally

defined. We say the semi-strong Newton system (SSNS) property holds if the direction
satisfies the Newton system (possibly with the right-hand side perturbed) for some
fixed nonlinear system, defined for all positive definite X̃ and S̃.

Proposition 6.12 Property (SSNS) holds for at least the AHO, X-MT, S-MT, S-
Chol-MT, J, V, and SXS directions.

Finally, we say the strong Newton system (SNS) property holds if the fixed nonlinear
system is defined in a neighborhood of any pair of symmetric positive semidefinite X̃
and S̃ (and hence also in a neighborhood of the solution).

Proposition 6.13 Property (SNS) holds for at least the AHO and SXS directions.

These properties show the AHO direction in a much better light. Note also that,

according to the discussion at the end of Section 4, if we allow the use of a nonstandard
step size (doubling the step for the dual part of the direction), then we can view the
H..K..M direction as satisfying (SSNS) and (SNS), and similarly the dual H..K..M
direction.

7 Concluding remarks

We have tested methods based on all these directions computationally on a limited set
of problems, basing our code on SDPT3 [33]. In order to compare all the directions,
we did not use the Mehrotra predictor-corrector variant for any direction, and we used
the default step sizes and the default rule for updating the parameter ν. (In particular,

we do not impose any requirement that the iterates lie in some neighborhood of the
central path. Other authors have had some success with some of the directions which
performed poorly in our tests, using step size rules to enforce some such neighborhood

requirement.) We tested the methods on five random problems for each of seven
different problem classes ((1) to (7) in [33]) of reasonable size.
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Of the twenty methods (based on the twenty directions of Section 4), the best were
those based on the AHO, Toh, Gu, H..K..M, and NT directions, roughly in that order,

as far as robustness and accuracy were concerned. All of these achieved the desired
accuracy of 10−6 in primal and dual feasibility and duality gap for all but at most
two of the 35 problems, and often much higher precision. The next best methods were

based on the MTW, dual H..K..M, and Half directions, but these failed to achieve the
desired accuracy on between 10 and 15 of the 35 problems.

In terms of generating some iterates that were quite close to the central path, the
AHO method was excellent, the Toh method very good, the Gu method good, and the

Half and J2 methods fair. The other methods with good performance kept well away
from the boundary but did not approach the central path closely.

With respect to the number of iterations to solve the problems, the top five methods
were fairly close, with a slight advantage to the AHO method. In terms of time, the

other methods were better, because less computation was required to obtain the Schur
complement matrix (using its symmetry) than for the AHO method.

The top five methods were all among those satisfying all but at most two of the

properties discussed in Section 6. (It is also interesting to note that all are members
of the MZ family.) It is hard to argue with the excellent computational results of the
AHO method, and the fact that (among the good directions) this is the only one known
to have the strong Newton system property might help to explain this. On the other

hand, for several problem classes very high accuracy is not required, and then the Toh
direction (fast and robust, very accurate, only failing P -scale invariance) and the NT
direction (fast and robust, reasonably accurate, with the best theoretical properties)
seem attractive. It is also very possible that the best direction to use depends on the

problem class; some authors (see, e.g., Helmberg et al. [10] and Benson et al. [5]) have
reported excellent behavior for the H..K..M and dual directions for certain relaxations
of combinatorial optimization problems.
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