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Abstract

We consider the following mazimum disjoint paths problem (MDPP). We are given a large
network, and pairs of nodes that wish to communicate over paths through the network — the
goal is to simultaneously connect as many of these pairs as possible in such a way that no two
communication paths share an edge in the network. This classical problem has been brought
into focus recently in papers discussing applications to routing in high-speed networks, where
the current lack of understanding of the MDPP is an obstacle to the design of practical heuristics.

We consider the class of densely embedded, nearly-Fulerian graphs, which includes the two-
dimensional mesh and many other planar and locally planar interconnection networks. We
obtain a constant-factor approximation algorithm for the maximum disjoint paths problem for
this class of graphs; this improves on an O(logn)-approximation for the special case of the
two-dimensional mesh due to Aumann—Rabani and the authors. For networks that are not
explicitly required to be “high-capacity,” this is the first constant-factor approximation for the
MDPP in any class of graphs other than trees.

We also consider the MDPP in the on-line setting, relevant to applications in which connection
requests arrive over time and must be processed immediately. Here we obtain an asymptotically
optimal O(logn)-competitive on-line algorithm for the same class of graphs; this improves on
an O(lognloglogn)-competitive algorithm for the special case of the mesh due to Awerbuch,
Gawlick, Leighton, and Rabani.






1 Introduction

We consider the following mazimum disjoint paths problem (MDPP). We are given a large
network, and pairs of nodes that wish to communicate over paths through the network —
the goal is to simultaneously connect as many of these pairs as possible in such a way that
no two communication paths share an edge in the network. This problem is well-known to
be computationally difficult. Deciding whether all pairs can be so connected is one of Karp’s
original NP-complete problems [11]; it remains NP-complete even when the underlying graph
is the two-dimensional mesh [13].

Our interest in this problem comes from two main sources. First, establishing disjoint paths
is fundamental to routing in high-speed networks (see for example the applications mentioned in
[5, 7, 19], as well as applications to optical routing in [1, 2, 22]). Although the types of routing
problems that arise in such settings tend to have additional side constraints (e.g. connections
have limited duration and can bring varying amounts of “profit”), the formulation described in
the first paragraph contains the essence of virtually all such real-life routing problems in which
each connection consumes a large fraction of the bandwidth on a link. As such, the current lack
of understanding of the disjoint paths problem is a major obstacle to the design of practical
heuristics. Indeed, [5] notes that in practice, the greedy algorithm tends to be used for routing,
despite its bad performance on a number of very common interconnection patterns. Moreover,
robust ways are known for converting algorithms for the MDPP into algorithms that can handle
connections of limited duration or variable value [4]; thus, the difficulties contained in these
more elaborate routing problems seem to stem mainly from the intractability of the MDPP.

This problem is also of basic interest in algorithmic graph theory. A lot of work has been
done on identifying special cases of the disjoint paths problem that can be solved in polynomial
time, or for which simple min-max conditions can be stated; see the survey by Frank [9]. Much
less work has been done, however, on approximation algorithms for the MDPP; we are interested
in extending the classes of graphs for which good approximations can be obtained.

1.1 Our Results

To be precise, let G = (V, F') be a graph on n vertices and 7 = {(s1,%1),. .., (Sk, )} a collection
of terminal pairs — pairs of vertices of G. We say that 7 is realizable in GG if there exist mutually
edge-disjoint s;-t; paths, for i = 1,..., k. The problem is then to find a realizable subset of 7
of maximum cardinality.

Our first main result is a constant-factor approximation for the maximum disjoint paths
problem in the class of densely embedded, nearly-FEulerian graphs (defined below), which in-
cludes many common planar and locally planar interconnection networks. This improves on
an O(logn)-approximation for the case of the two-dimensional mesh due to Aumann and Ra-
bani [2] and an O(logn)-approximation for a class of planar graphs including the mesh due to
the authors [12]. Our present algorithm makes use of variants of a number of the techniques
developed in our earlier paper [12].

The assumption that we know all the terminal pairs in advance is not reasonable in situations
in which connection requests between pairs of nodes arrive over time and must be processed



immediately. In such a setting, it makes sense to consider on-line routing algorithms. Such
an algorithm is given the graph G, terminal pairs arrive in an arbitrary order, and for each
such pair it must irrevocably reject it, or assign it a path in G. As is standard, we refer to the
approximation ratio achieved by an on-line algorithm as its competitive ratio; such an algorithm
is said to be c-competitive if its competitive ratio is at most c.

Our second main result, then, is an O(logn)-competitive randomized on-line algorithm for
the MDPP in densely embedded, nearly-Eulerian graphs. This improves on an O(lognloglogn)-
competitive algorithm for the special case of the two-dimensional mesh due to Awerbuch,
Gawlick, Leighton, and Rabani [5]; moreover, [5] proves that no randomized on-line algo-
rithm for the two-dimensional mesh can be better than Q(logn)-competitive, implying that
our algorithm is asymptotically optimal.

We feel that the size of the constants in our algorithms as presented here, while not astro-
nomical, pushes them outside the range of immediate practical utility. It is important to note,
however, that the previous best bounds — both off-line and on-line — for the two-dimensional
mesh [2, 5, 12] involve similarly large constants inside the O(-) notation. Moreover, some of
the ideas used by the algorithms here may well be of use in designing practical heuristics. In
particular, they suggest convenient ways of handling networks that are mesh-like in structure,
without placing many requirements on the “fine structure” around each node in the network.

1.2 Previous Work

Much of the previous work on this problem has dealt with the case in which each path consumes
only a small fraction of the available bandwidth on an edge; this can be modeled by requiring
Q(logn) parallel copies of each edge. In this case, the randomized rounding technique of Ragha-
van and Thompson [21, 20] can be used to obtain an off-line constant-factor approximation.
Awerbuch, Azar, and Plotkin give an on-line O(logn)-competitive algorithm for this case [3],
which they show is asymptotically tight for deterministic on-line algorithms.

As noted in [5] however, there are many applications in which each communication path
consumes a large fraction of the available bandwidth on a link; thus it makes sense to consider
approximation algorithms for graphs without a large number of parallel edges. The results here
are much more restricted. For trees with parallel edges, Garg, Vazirani, and Yannakakis [10]
obtain an off-line 2-approximation (the maximization problem is NP-complete, though deciding
realizability is easy); Awerbuch et. al. [5] give an O(logd)-competitive randomized on-line algo-
rithm for trees of diameter d, extending an earlier result of Awerbuch et. al. [4]. Essentially the
only approximation results known for graphs other than trees are those mentioned earlier for
the mesh and related planar graphs [2, 5, 12]. Thus our result here is the first constant-factor
approximation for any class of graphs other than trees, when one does not require ©2(logn)
parallel copies of each edge.

A different approach is taken in papers of Peleg and Upfal [19] and Broder, Frieze, and Upfal
[7] (see also Broder et. al. [6]). Here the underlying graph G is assumed to have strong expansion
properties; in this case one can prove that any set of terminal pairs of at most a given size must
be realizable in G, and that corresponding paths can be found in (randomized) polynomial
time. The results in [7] are strong enough that they implicitly provide a polylogarithmic



approximation for the MDPP in sufficiently strong expanders of bounded degree.

Cases in which the MDPP can be solved in polynomial time are surveyed in [9]; here we only
discuss two specific results that we will use. First, suppose G is planar, the terminals 7 lie on
a single face of G, and the pair (G, 7) satisfies the following parity condition: the augmented
graph formed by adding to G the edges corresponding to 7 must be FEulerian. In this case, a
theorem of Okamura and Seymour [18] says that the realizability of 7 in G can be decided in
polynomial time; and in fact the following cut condition is sufficient for realizability: one cannot
remove j edges from G and separate more than j terminal pairs. A linear-time algorithm for
this problem has recently been obtained by Wagner and Weihe [29]. We will use an extension of
the Okamura—Seymour, due to Frank [8], which concerns the case in which the parity condition
does need not to hold on the face containing the terminals.

We also use a theorem of Schrijver [27] that provides an algorithm for finding vertex-disjoint
paths in a graph embedded on a compact surface ¥, such that the paths satisfy given homotopy
constraints.

1.3 Extensions of Our Results

In the on-line algorithm we assume that (i) all connections have infinite duration, and (ii) all
connections have the same “value” (i.e. our objective function could have been a weighted sum
of the set of pairs we accept, rather than an unweighted sum). There are general transformation
techniques due to Awerbuch et. al. [4] that allow us to convert our results to on-line algorithms
that can handle connections of limited duration and variable value, at the cost of additional
logarithmic terms in the competitive ratio. (We pay O(logT) and O(log P), where T" and P
are the ratios between the largest and smallest durations and values respectively.)

Also, for any fixed value of d, it is not difficult to use the techniques developed here to
obtain a constant-factor off-line approximation and an O(logn)-competitive on-line algorithm
for the MDPP on the d-dimensional mesh.

2 Sketch of the Algorithms

The on-line and off-line algorithms have a number of similarities; to give the reader a sense of
their structure, we give a sketch of them here for the special case of the two-dimensional mesh.
(Note that we are still obtaining improved bounds in this case.) We begin with the on-line
algorithm, which is somewhat easier.

So suppose that G is the two-dimensional mesh. We partition G in the natural way into
disjoint subsquares of dimensions logn X logn each. The algorithm makes an initial random
decision whether to route short connections (of length less than clogn, for a constant ¢ that
is, say, greater than 12) or long connections (of length at least clogn). The case of short
connections is not very difficult.

We handle long connections as follows. For a given logn x logn subsquare S, we call the

block of nine subsquares centered at S its enclosure. We first choose a maximal collection C of
subsquares subject to the condition that their enclosures be disjoint. We call a subsquare in C



a cluster. We now only route connections both of whose ends lie in such clusters; if we choose
C using a randomized algorithm such as [15], we can ensure that we are, in expectation, within
a constant factor of optimal after doing this.

Let C; denote one cluster in C, and D; its enclosure. For each subsquare of G that does not
belong to the enclosure of some C;, we add it to its closest enclosure D; (ties broken according
to some fixed rule); now the union of the enclosures is all of . We now build a simulated
graph N on the set of enclosures, by contracting each enclosure into a single node; i.e. we
join two if they touch. In this simulated graph, all capacities are at least logn, since if two
enclosures touch then there are at least logn edges in their common boundary. This is very
useful, since the on-line algorithm of Awerbuch, Azar, and Plotkin [3] (the “AAP algorithm”),
which requires large capacity edges, can now be applied to A.

When given a request (s;,;), our algorithm accepts it if (i) no connections have yet left
the clusters containing s; and ¢;, and (ii) the AAP algorithm running on the graph AN accepts
the connection (s;,?;). The crucial point is that we argue that our algorithm can route any
connection it accepts as follows. The “global route” in A specified by the AAP algorithm
consists of a sequence of neighboring enclosures; from this, we would like to produce a path in
G using the natural crossbar structures in each enclosure. To guarantee that this routing in &
is feasible, we have to run the AAP algorithm on a “scaled-down” version of N'. We divide each
capacity down by an appropriate constant; the resulting network has at most ¢logn capacity
entering each node for a small constant ¢, and therefore the enclosures are large enough to
handle all such accepted connections.

To argue that the resulting algorithm is O(logn)-competitive we view it as being obtained
from the “cooperation” of two maximization algorithms, A; and A,. A is specified by rule
(i); it only allows one terminal to leave each cluster. Aj is the AAP algorithm running on
the scaled down version of /. We claim each of these algorithms is O(log n)-competitive. A,
comes with this guarantee since no more than O(logn) connections can leave a single cluster.
To show Ay is O(log n)-competitive, we extend the AAP analysis to networks where edges have
only elogn capacity for a fixed ¢ > 0, and show that the algorithm is O(logn)-competitve
against a fractional off-line solution. Thus Az is O(logn)-competitive against the optimum in
N (not scaled down), which by construction is an upper bound on the optimum in G. Now, why
is the combined algorithm O(logn)-competitive? We charge each rejected connection to the
algorithm that rejected it. One of the algorithms A; is charged for at least half the rejections;
but then the number of accepted connections must be at least 1/0(logn) times this amount, or
it would contradict the performance guarantee of A;. (Note that the O(logn) bound depends
crucially on the fact that each of A; and Ay bases its decision at each step on what has been
jointly accepted so far.)

In the off-line algorithm (see Section 6), we must be much more aggressive than algorithm
A at getting connections out of individual clusters. In particular, we extend our simulated
network so that it captures the notion of local routing out of a cluster, as well as the notion
of global routing between clusters. Thus, we define the following simulated network A/* which
contains A as a subgraph. Recall that A" had one node z; for each cluster C; € C. We form
N’ by simply attaching C; to z; using an edge from z; to each boundary node of C;. The edges
between nodes of A will still have capacity ©(logn); but other edges (with at least one end in



the clusters) will have unit capacity.

An algorithm of Raghavan based on randomized rounding [21, 20] is sufficient to obtain a
constant-factor approximation to the MDPP when all capacities are (logn). In our case, this
is fine for the high-capacity subgraph A, but problematic within the clusters, where edges have
unit capacity. Nevertheless, we show in Section 6 that by running Raghavan’s algorithm on
N, we can find alternative edge-disjoint routes out of the clusters for a constant fraction of the
terminal pairs it selects. This is accomplished by analyzing the escape problem induced in each
(square) cluster by the terminals that want to get out to the high-capacity subgraph A. Since
an escape problem in a mesh is completely characterized by the rectangular cuts, of which there
are only polynomially many, we can show by a simple summation that with high probability a
constant fraction of the selected terminals can in fact escape to the boundary.

Finally, we can use the crossbar structures in the enclosures to connect the ends of these
local “escape paths” with the paths in A returned by the randomized rounding algorithm; in
this way we obtain a feasible routing for a set of terminal pairs whose size is within a constant
factor of optimal.

3 Densely Embedded Graphs

We begin with a definition. If H is a graph and X C V(H), let H[X] denote the subgraph
induced by the vertices of X, and 6(X) denote the set of edges with one end in X and the other
in V(H)-X.

Definition 3.1 A graph H is an a-semi-expander if for every X C V(H) for which |X| <
TIV(H)|, we have |6(X)| > a/[X].

We wish to define a class of graphs that generalizes the two-dimensional mesh; to this end,
we point out the following properties of the mesh.

(i) It is a planar graph with bounded degree, and (aside from one “exceptional face”) it is
Eulerian and has bounded face size.

(ii) It is an a-semi-expander, for a constant & > 0 based on the ratio of the two side lengths
of the mesh.

(iii) Square sub-meshes of the mesh satisfy (i) and (ii).

In the arguments to follow, it is quite cumbersome — though not technically difficult — to
deal with “exceptional faces” of the type in (i). Thus, for most of the paper we will work with
the more restricted class of uniformly densely embedded graphs, where all faces have bounded
size; and we will assume further assume that G is Eulerian. In Section 7, we show how to handle
graphs with an exceptional face; in this way, our class of graphs will include the two-dimensional
mesh.

First we need some preliminary topological definitions. Let ¥ denote a compact orientable
surface; it is well-known (see e.g. [16]) that ¥ may be obtained from the 2-sphere by attaching a
finite number of handles. We use the terms disc (homeomorph of [0, 1]x[0, 1]), arc (homeomorph
of [0,1]), curve (continuous image of [0,1]) and closed curve (continuous image of S'). By a



Y-disc, we mean a subset of ¥ homeomorphic to a disc. Qur definition of graph embedding is
standard; a face of an embedded graph G is a connected component of ¥ — G, and we say G is
strongly embedded if the closure of each face is a Y-disc, and each face is bounded by a simple
cycle of G.

Our class of graphs is defined to satisfy analogues of properties (i), (ii), and (iii) locally. For
u,v € V, let d(u,v) denote the least number of edges in a u-v path, and B,(v) = {u : d(u,v) <
r}. Then

Definition 3.2 A graph G = (V, F) is uniformly densely embedded with parameters o, A\, A,
and £ if:

(i) G is strongly embedded on a compact orientable surface ¥, it has mazimum degree A,
and each face is bounded by at most £ edges.

(ii) For each r < Alogn and each v € V, the drawing of G[B,(v)] is contained in a X-disc.
(iit) For each r < Xlogn and each v € V, the graph G[B,(v)] is an a-semi-expander.

Thus, for the remainder of the paper aside from Section 7, we will assume that G is a simple
Eulerian graph that is uniformly densely embedded on a surface 3 with parameters a, A, A,
and £. In Section 7, we show how our algorithms can be adapted to handle graphs satisfying
the following weaker definition; it is the same as the definition above, except that we allow an
exceptional face.

Definition 3.3 A graph G = (V, F) is densely embedded and nearly-Eulerian with parameters
a, A, A, and £ if:
(i) G is strongly embedded on a compact orientable surface ¥ and has mazimum degree A.

(i) G contains a face ®* such that all faces other than ®* are bounded by at most { edges,
and every vertex not incident to ®* has even degree.

(ii) For each r < Alogn and each v € V, the drawing of G[B,(v)] is contained in a X-disc.
(iit) For each r < Xlogn and each v € V, the graph G[B,(v)] is an a-semi-expander.

The classes of graphs satisfying these definitions are incomparable to the class considered in
our earlier paper [12]. The semi-ezpansion condition above will be shown to imply the uniformly
high-diameter condition of [12] (see Lemma 3.4); however, in the current paper, we only require
planarity and semi-expansion locally, and essentially no restrictions are placed here on the
“global” structure of the graph. The examples of uniformly high-diameter graphs constructed
in [12] are densely embedded as well; and in Section 3.2 we will discuss some related classes of
graphs that are densely embedded.

3.1 Some Basic Properties

We now show that our definition implies G has some additional mesh-like properties. First of
all, for any v € V and r < Alogn, the fact that G[B,(v)] is a bounded-degree semi-expander
implies that the set B,(v) has size at least quadratic in r; by also using the planarity of G[B,(v)],
one can show an analogous upper bound. We summarize this as follows.



Lemma 3.4 There are constants a and 3 depending only on a and A such that the following
holds. For each r < Mogn and each v € V, we have ar? < |B,(v)| < gr.

Proof. Fix r < Aogn and v € V, and let S = B,(v). To see the lower bound, note that for
any ¢ <7, if z; = |B;(v)|, then by the semi-expansion of H we have

«

R T
T, > T 1+A—1

Ti-1-

For at least a,/z;_1 edges leave B;_1(v), and at most A — 1 are incident to any one vertex. Let
v = x=7; now one verifies by induction that z; > 11—61/21'2:

1 1
z; > EI/Z(Z' - 1) 4+ Zz/z(z' -1)

- %I/Q(i S )i+ 3)

1 5.
> — 22,
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To see the upper bound, we observe that G[5] is planar and has diameter at most 2r. Let
n = |S]. By the Lipton-Tarjan planar separator theorem [14], there is a set of at most 47 + 1
vertices whose removal breaks H into components each of size at most %n Let X be a union

of these components of size between in and %n Then

ay/n
3 < ay/|X]|
|6(X)]

<
< (A-1)r+1)

from which the result follows. m

We introduce some additional notation. If S C V, let w(.5) denote the set of vertices of §
incident to an edge in ¢(5), and S° = S—m(5). Observe that removing 7(.5) from S disconnects
it from the rest of the graph, and 7(B,(v)) consists of vertices at exactly distance r from v. If
C is a connected subset of G — 5, we use I'(S, C') to denote the (unique) connected component
of G — S containing C. The set of vertices in 7(5) which have a neighbor in I'(\S,C') will be
called the segment of 7() bordering C' and denoted o(5,C'). Finally, we say that a set S C V
is simple if G — 5 is connected.

The following two facts are quite useful; the first essentially relates the size of the “perimeter”
of a set B,(v) (r < Alogn) to its radius.

Lemma 3.5 Let ¢ > 1 and r a positive integer be such that cr < Alogn. Then for some 1’
2
between r and cr, we have |1(B,(v))| < -5

c—l.,r'

Proof.  Since m(B,/(v)) C {u : d(v,u) = '}, the sets 7(B,(v)), 7(Br41(v)), ..., (B (v)) are
all disjoint and contained in B.,(v). Since |B.,(v)| < Bc*r?, one of these sets has size at most

ﬁ-cfl-r.l




Using this, we show that we can extend any small enough set U to a simple set with at most
a constant-factor increase in its radius.

Lemma 3.6 There is a constant £ such that the following holds. Let U C B,(v), where r <
%/\log n. Then there is a component ' of G — U and a planar simple set U’ such that U C U’ C
Bepr(v), G-U"=T, and o(U,I') = o(U',T).

Proof. Choose 1’ between r and 2r so that |7(B,(v))| < 4pr. Let Uy = B,:(v), and G — Uy
have components I'y,...,T,.

Now set s = 8a~1/2a71 A and £ = 25+ 2. We claim that all but one of the components I';
are contained in Bg,(v). For suppose not; then for i # j there are w € T'; and w’ € T'; such that
w and w’ are each at distance s from Ug, Bs(w) C I';, and B,(w') C I';. Now consider the edge
cut of size at most 43Ar formed by §(Up); one of the two spheres Bs(w) and Bs(w'), say the
latter, is contained in a small component of this cut in G[Bg,(v)]. But then the semi-expansion
of G[Bg,(v)] requires that 43Ar > ay/|Bs(w’)|, which is a contradiction since by Lemma 3.4
we have |By(w')| > as?.

So for some i, only I'; is not contained in B¢, (v). Now let T}, ..., T, denote the components
of G — Uj; so T'; is contained in one of these, say I}, and T%, .. .,Fg are all contained in Bg,(v).
Thus we have

U'=UU|JT% C Be(v).
i>1
In particular, U’ is planar since £&r < Alogn, and it is simple since G—U’ has only the component
I'}. Thus U’ satisfies the conditions of the lemma. m

Finally, we show a general property of planar graphs H with small face size: if the distance
between two nodes in H is large, than the value of any edge cut which contains both in the
same segment of its boundary must also be relatively large.

Lemma 3.7 Let H be a planar graph, with distinguished faces ®1,...,®, bounded by cycles
Q1,-..,Q, respectively. Suppose that all faces other than ®4,...,®, are bounded by at most £
edges, and for a constant d’' and all i # j we have d(Q;,Q;) > d'.

Let U C V(H) and v,w € o(U,C) for some component C of G — U. Then

16(0)] > min(¢~ d’, £~ d(v, w)).

Proof. Let S = o(U,C) C U. In the graph H[U], S lies on a single facial cycle Q. Traversing Q)
in a clockwise direction starting at v, we encouter faces Ry,..., R, whose boundaries contain
vertices both of U and of H — U.

Suppose that among the {R;} there are two distinct large faces ®,, and ®,,,. Choose such
a pair for which R, = ®,,, Ry = ®,,/, and R. ¢ {®;} for ¢ < ¢ < b. Let P denote the
corresponding maximal subpath of ¢) whose internal vertices are incident only to faces R., for
¢ < ¢ < b. Then among every { consecutive vertices of P, there must be one incident to an
edge in 6(U); since |P| > d’ by the hypotheses of the lemma, this implies the claimed bound.



Otherwise, there is a single large face ®,, among the { R;}; note that ®,, may appear several
times on the traversal of (). Now there are two sub-paths of () from v to w, which we denote
Py and P;. Since v, w border the same component of H — U, the face ®,, does not appear in a
traversal of one of Py or P — suppose it is Py. So as above, among every £ consecutive vertices
of Py, there must be one incident to an edge in §(U); and we have |Py| > d(v,w). m

3.2 Related Classes of Graphs

In this section, we show a natural construction which produces uniformly densely embedded
graphs; it is related to the definition of geometrically well-formed graphs in our earlier paper
[12]. The material in this section is independent of the rest of the paper.

We wish to define a notion of a surface being locally planar, in the following sense. Let X
be a compact orientable surface, embedded in R®. For z € ¥, let B/(z) denote the set of all
points of ¥ whose distance from z (as measured on X) is at most d. We say a set X C ¥ is flat
if there are positive constants vg,7; and a 3-disc D such that

(i) X C D.

(ii) If Bi(z) C X, then the surface area of Bi(z) is at least yos? and at most 7;s%.

(iii) If D’ C D is a ¥-disc whose boundary has length s, then the surface area of D’ is at

most 7152.

Of course all these properties hold if ¥, for example, is the unit sphere in R®. We say that
Y is (r,70,71)-locally flat if it is orientable, and for all z € ¥ and positive s < r, the set Bl(z)
is flat.

Now we say that a graph is locally well-formed if it is drawn on a locally flat surface, and
each face has geometrically about the same (small) size.

Definition 3.8 A graph H drawn on Y islocally well-formed with parameters A, £, vo,71, po, P1
if it has mazimum degree A and there is an r > 0 such that

(i) ¥ is (rlogn,yo,71)-locally flat,

(i) The mazimum face size in the drawing of H is {, and

(iii) for each face ® of Gi there is an x € § so that B), .(z) C ® C B .(z).

poT

We now want to show that every locally well-formed graph is uniformly densely embedded.
To show this, the following routine lemma is useful: in Definition 3.1 it is enough to require
semi-expansion for cuts that produce only two components.

Lemma 3.9 H is an a-semi-expander if and only if the condition of Definition 3.1 holds for
all sets X for which H[X]| and H — X are both connected.

Proof. Suppose H satisfies Definition 3.1 for all sets X with H[X] connected. Then consider
X with H[X]is not connected, and let I';,...,I', be its components. Then

Sl > a3 /0l > ayloitil



Now suppose H satisfies Definition 3.1 for all sets X for which both H[X] and H — X are
connected; we show it satisfies it for all sets X with possibly only H[X] connected. Let X be
a set of the latter kind, and I'y,...,I', the components of H# — X. Now if one of the I'; has
size greater than %n, then since (U;x;I';) U X meets the semi-expansion condition, so does X.
Otherwise, for each i we have |§(T;)| > a\/|T;], whence

B(X)] > a 3 /Il > ay/1x].
| ]

Proposition 3.10 If G is locally well-formed with parameters A, £, 0,71, po, p1, then there are
positive constants a and A such that G is uniformly densely embedded with parameters a, A, A,

and £.

Proof. Let G be locally well-formed with the given parameters. Then for any v € V, if
s < py'logm, the set By(v)is contained in B’ logn (V) and hence in a ¥-disc. Now let X C B,(v);
we wish to show that it satisfies the semi-expansion requirement in G[Bs(v)]. By Lemma 3.9,
we may assume that both G[X] and G[Bs(v) — X] are connected. Thus ¢§(X ) lies on a single
face of G[X]. Let ¢ = |§(X)|; then there is a closed curve I on ¥ of length at most pirg that
bounds a Y-disc containing X. Thus, X is contained in a disc of area at most y;p372¢%. But
each face in G[X] has area at least yop?r?, so X has at most y1p3v5 " pg 2¢* faces, and hence at

most £ times this many vertices. m

In a series of papers proving, among other things, that the disjoint paths problem for a
fixed number of terminal pairs is solvable in polynomial time [26], Robertson and Seymour
make use of another notion of “denseness” of surface embeddings — namely representativity.
It turns out that our definition of uniformly densely embedded graphs could also have been
expressed in these terms. We say that a closed curve on ¥ is null-homotopic if it is homotopic
to a point; it is well-known (see e.g. [24]) that a closed curve is null-homotopic if and only if
it is contained in a Y-disc. Now we say that a drawing of G on ¥ is c-representative [24, 25] if
any non-null-homotopic closed curve on ¥ meets the drawing of G at least ¢ times.

In this terminology, we could have replaced the condition that each G[B,(v)] (r < Alogn)
be contained in a X-disc by the condition that the drawing of G be Q(logn)-representative.
More precisely,

Proposition 3.11 If G satisfies parts (i) and (iii) of Definition 3.2, and the drawing of G is
(A logn)-representative, then there is a constant N such that G is uniformly densely embed-
ded with parameters o, X', A, and £. Conversely, if G is uniformly densely embedded with
parameters a, A, A, and £, then there is a constant X' such that the drawing of G is (X logn)-
representative.

Proof. The converse statement is easier. If G is uniformly densely embedded with parameters
a, X\, A, and £, then any closed curve R on ¥ meeting (G at fewer than £~!\logn vertices meets
it only at vertices contained in By1ogn(v) for some v € V. Thus R is contained in a Y-disc and
is null-homotopic.
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Now suppose G satisfies parts (i) and (iii) of Definition 3.2, and the drawing of G is (A log n)-
representative. We must show that for some A, every G[By/iogn(v)] is drawn in a X-disc.
Choose )\ < %/\ and let U = Byi1ogn(v) for some v € V. We claim that every simple cycle
of G[U] is null-homotopic in ¥. For suppose not, and choose the shortest non-null-homotopic
cycle @ contained in G[U]. Say for simplicity that @ contains an even number of vertices,
VQyennyVhy..., U9k = Vg, and let Qg and ()1 denote the two sub-paths of ) with ends equal
to vy and vg. Now suppose there were some path P in G[U] with ends equal to vy and vy of
length less than k; then one of Q)g U P or ¢); U P would contain a non-null-homotopic simple
cycle of G[U] of length less than 2k, contradicting our choice of . Thus & < 2X logn, and so
|Q| < 4X'logn < Alogn. Now since G is strongly embedded, there is a simple closed curve R
on Y, meeting GG at precisely the vertices of (), that is homotopic to @ in X; but since R meets
G fewer than Alogn times, it is null-homotopic in . This contradicts our assumption that ¢
is non-null-homotopic.

Thus G[U] contains only null-homotopic simple cycles. By Theorems (11.2) and (11.10) of
[24], this implies that G[U] is contained in a X-disc. m

4 Pre-Processing the Graph

Much of the algorithm described in Section 2 for the mesh can be applied in the general case.
Of course, we cannot define “squares” in GG anymore; but we can use sets of the form B,(v)
instead, and we have seen above that these behave in much the same way. We similarly may
choose a maximal set of mutually distant spheres and grow enclosures around them. There
are two immediate problems with this approach. (1) We used the natural crossbars inside a
mesh for routing; do these enclosures have similar crossbars inside them? (2) Where is the
high-capacity simulated network A7

To build crossbars inside the enclosures we use the Okamura-Seymour theorem [18], analo-
gously to a construction in our earlier paper [12]. To define the high-capacity simulated network
N we want to grow the enclosures out until they touch. However, at this point their boundaries
might not be “smooth” enough to allow us to build crossbars inside them; additionally, there
is no reason for enclosures that do touch to have Q(logn) edges in their common boundary.

Nevertheless, it is still possible to build a simulated network A, as follows. We grow
enclosures that have smooth boundaries, and are large enough that they contain large crossbars,
but we keep them mutually distant from one another. Then we define the notion of a Voronoi
partition of G to allow us to determine which clusters are “neighbors”; we define the simulated
network A by putting Q(logn) parallel edges between neighboring clusters (whether or not
they have that many edges in the common boundary of their Voronoi regions).

We show that the collection of these paths “represents” the graph G well enough that it
can be used as the network A. In particular, we need to show that all paths accepted by the
simulated network can be routed in GG. For this we make use of a theorem of Schrijver [27];
we show that there exist Q(logn) paths in G between the neighboring enclosures, such that all
paths between all pairs are mutually disjoint.

We make no attempt to optimize constants here. Set A\g = A, and choose positive constants

11
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Figure 1: Building the simulated network

A1, Az, .. .s0 that Aj 11 < A; (the exact relationship between these constants is easy to determine
from the analysis below). A connection (s;,%;) is short if d(s;,t;) < Azlogn and long otherwise.
Our on-line algorithm makes an initial random decision, whether to route short connections or
long connections. The case of short connections is fairly straightforward, and will be discussed
in Section 5. In this section, we are concerned with pre-processing the graph for routing long
connections.

4.1 Clusters and Enclosures

We wish to choose a maximal set of mutually distant vertices around which to grow clusters.
Let G" denote the graph obtained from G' by joining w and v if d(u,v) < r. We first run a
randomized version of Luby’s maximal independent set algorithm [15] in G*2!°8"_ That is, each
vertex picks a random number between 1 and j, where j is large enough that the probability
of ties is small. If » has a number higher than any of its neighbors’, it enters the Mis and its
neighbors drop out. We then iterate.

12



Let M denote the resulting m1s. For any z € V, some vertex within Aslogn of it will
enter M on the first iteration if the largest number chosen in Bij,10gn(2) is chosen by a
vertex in By, logn(2). This happens with constant probability, by Lemma 3.4. Moreover, if
d(z,y) > Azlogn, then these events are independent for z and y. Thus,

Lemma 4.1 Let z,y € V be such that d(z,y) > Azlogn. Then with constant probability there
are u,v € M such that d(z,u) < Aslogn and d(y,v) < Aslogn.

Around each v € M we now grow a cluster of radius roughly Aslogn, and an enclosure
around each cluster, with “smooth” boundaries. We need the following facts. Let H denote an
arbitrary graph, and @ a simple cycle of H. For u,v € @, let dg(u,v) denote the shortest-path
distance from u to » on ¢ — that is, the length of the shorter of the two u-v paths on ).

Definition 4.2 We say that @ is e-smooth if for all u,v € ) we have edg(u,v) < d(u,v).

Definition 4.3 If U and W are two subsets of V(H), we say that U is ¢'-close to W if for
each w € U there is a w € W such that d(u,w) < ¢'|W].

The following fact is quite similar to, but more general than, Theorem 4.4 of our earlier
paper [12]; the proof is very similar as well. In effect, it says that given a cycle @ in a planar
graph H that encloses (in the sense of homotopy) the “hole” formed by some internal face, then
for a small ¢ > 0 we can find a cycle @’ of no greater length that is e-close to @, (e)-smooth,
and also encloses this hole. See Figure 2.

We will use this theorem to smooth out the boundaries of the clusters and the enclosures
around them.

Theorem 4.4 For each ¢ > 0 the following holds. Let H be a planar graph drawn in R?, ®
the outer face of H, and ®' an internal face of H. Let ) a simple cycle of H that is non-null-

homotopic in the cylinder R? —(®U®'). Then in polynomial time one can find an <1i€) -smooth

simple cycle Q' such that
()11 < 1],
(i1) Q' is e-close to @, and
(iii) Q' is also non-null-homotopic in R* — (& U 9).

Proof. For u,v € @, let [u,v]g denote the shorter of the two u-v paths contained in @ (ties
broken arbitrarily). Let r = |Q], € = 73=> and A denote the cylinder R%Z - (dU ).

If @ is not e-smooth, then there are u,v € () such that
gdg(u,v) > d(u,v). (1)
Moreover, we can efficiently find such a u and » so that there is a shortest u-v path P,, in
H that is vertex-disjoint from @ (for example, the pair u,v satisfying (1) for which |Py,| is

minimum).
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outer face ®

inner face ®’

Figure 2: Smoothing a cycle

Now one of the two simple cycles [u, v]gU Py, and (@ — [u, v]g) U Py, is not null-homotopic
in A; and each is shorter than (). We thus update @, replacing it with the cycle from among
these two that is not null-homotopic.

We now iterate this process of “slicing off” parts of () using short paths through H. Since
the length of the cycle decreases with each iteration, this process must terminate in a cycle
@' that is &-smooth. Moreover, each iteration maintains the invariant that the current cycle is
non-null-homotopic in A. Thus, we only have to verify that the final cycle is e-close to Q).

This is clearly true after the first iteration: since |Py,| < &dg(u,v) < €|Q], every vertex on
the updated cycle can reach a vertex of @ by a path of length at most ¢|@Q|. Now, let @; denote
the cycle obtained after ¢ iterations of slicing off. As long as portions of ¢) remain on @);, we
say that we are in the “first phase”; other phases will be defined below. In the first phase, @;
consists of alternating intervals Q;1, Pi1, Qi2, ..., Qir, Psr, where @;; C @, and the interval Q;]
of () lying between @);; and @); ;41 has been sliced off by P;;. We can show by induction on the

number of iterations that |P;;| < £|Q};| — as was true after the first iteration.

This is done by the following case analysis. In the (i + 1) iteration, we find a new path;
there are three cases to consider.
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1. One end of P lies on @;; and the other on @;i, where possibly j = k. Then the property
clearly continues to hold, since | P| is at most ¢ times the number of current cycle vertices
cut off, which is in turn at most the number of original vertices of ) between the endpoints

of P.

2. One end of P lies on P;; and the other on @ (so P;; is lengthened). Suppose that the
amount of original cycle cut off in addition to Q;] is equal to z, and the amount of F;;
that is cut off by P is y. Then if Py, ; denotes P;; after this iteration, we have

Pyl < eley
|P| < &(z+y)
|Piv1il = [P+ P~y
< QG +rty) -y
< &(|Qy] +2)

3. One end of P lies on P;; and the other lies on P (so P glues some of the new paths
together). There are two subcases.

i) j = k. Then |P;;| goes down while |@);;| is not affected, so the property still holds.
il 8 J

(ii) 7 # k. Again suppose that the amount of original cycle cut off in addition to Q;]
and @), is equal to z, the amount of P;; cut off by P is y, the amount of P, cut off
by P is z, and the new interval is denoted P;4, ;. Then

|Pi;| < 5‘@2;‘
[Pl < 2|Qk]
|P| < Ez+y+2)
|Piv1il = [Pl + [Pl + | Pkl —y - 2
< e(|Qytetyt et |Qul) -y -2
< a(|Qy| + o+ Q4D

If the iterations come to an end before the end of the first phase, then indeed @’ is e-close
< £|Q]. Otherwise,
consider the iteration in which the first phase comes to an end. By analogous arguments, we
obtain a cycle Q! such that |Q1| < £|Q| and every vertex on Q' can reach @ by a path of length
at most £]Q)|.

to () — any vertex on P;; can reach () by a path of length at most E‘Q;»j

Each phase now proceeds exactly like the previous one, except that it begins with a cycle
whose length has been reduced by at least a factor of £. Thus when the process terminates, all
vertices on ' will be able to reach @ by a path of length at most

o0

Q> & =¢|Q|.

=1
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Thus Q' is e-close to Q). m

We use the following procedure to build the clusters and the enclosures around each node
vin M. Let K, = B, 10gn(?).

(i) Choose a radius r between 2A5;logn and 3A5logn so that |B,(v)] < 98A5logn. Set
Cy = By(v).

(ii) Now extend C, to a simple set as in Lemma 3.6; since Az > 2¢As5, no C), is grown enough
that it overlaps any other by this process.

(iii) We now apply the e-smoothing algorithm of Theorem 4.4 to the facial cycle @, of G[C,]
containing 7(C,). Here H,, = G[By,10gn(v)] — K plays the role of H, and the “hole” left by the
deletion of K? plays the role of the internal face ®'. Now for a constant ¢ the resulting cycle @,
is e-smooth in this subgraph H, of G, and it is also ;=_-close to @),. If we choose ¢ < mﬁlﬁ7
then since @), is initially at least 91—5|QU| away from K,, we know that any path with both ends

on @' that passes through K, must have length at least %|QU| > %|Q;| Thus, there are no
“short cuts” between vertices of Q! that make use of K,; hence Q! is in fact e-smooth in G.

The smooth cycle Q! encloses a set S of vertices containing K,. Update C), to be this set

S.

We now grow an enclosure D, D C), by the same three-step process, except that we now
use the constant A4 in place of A5, and the set C'? in place of K¢ as the internal face ®'. Thus,
we have clusters of radius & Az log n, enclosures of radius & Aylog n, and they are separated by
a mutual distance of = Azlogn.

Following the outline of Section 2, we now must build crossbar structures in the enclosures
to replace the natural crossbars of the mesh. We build crossbars using an extension of the
Okamura—Seymour theorem [18] due to Frank [8], along the same lines as was done in [12]. To
be precise,

Definition 4.5 If X C V, we say a crossbar anchored in X is a set of edge-disjoint paths,
each with both ends in X, such that every pair of paths meets in at least one vertex.

Let 7, = 7(D,), and ¢, the facial cycle of D, containing 7,. We wish to build a crossbar in
G[D, — C?], anchored in 7, of size at least a constant fraction of |7,|. For a large enough
constant k depending on ¢, we choose a set S of |7,|/k vertices on 7, spaced about k apart. Let
us require that |S] = 2 mod 4; so for each u € S we can identify a unique “antipodal” vertex @
in 5, and we can then choose one vertex from each antipodal pair so that every second vertex
in S is chosen. Let 7/ denote the set of chosen vertices.

We now set up a disjoint paths problem in the (planar) graph G[D, — C?], with the set 7,
of terminal pairs equal to all (u, ) for u € 7.

Lemma 4.6 7, is realizable in G[D, — C?].

Proof. Say that a cut is non-trivial if it separates at least one pair of terminals. In a planar
graph with all terminal pairs on a single face ®, and in which all vertices not incident to ® have
even degree, Frank’s extension [8] of the Okamura-Seymour theorem [18] says that the following
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strict cut condition is sufficient for the realizability of the terminal pairs: every non-trivial cut
has more capacity than the number of terminal pairs it separates.

Now, writing G, = G[D, — C?], we essentially have such a disjoint paths problem: all
terminal pairs in 7, belong to the outer facial cycle ¢, of G,; and G, has even degree everywhere
but on this cycle ¢, and on the inner facial cycle ¢, left by the deletion of C'?. Thus, to satisfy
the hypotheses of the theorem we need only modify GG, so that it contains no odd-degree vertices
on t,. Now there are necessarily an even number of such odd vertices on ¢,, and we can remove
sub-paths between consecutive pairs of such vertices so as reduce each of their degrees by 1
(and reduce all other degrees on ¢, by either 0 or 2).

Following this modification, (G, has even degree everywhere but on the face ¢, containing
the terminal pairs; so by Frank’s theorem it is now enough to verify the strict cut condition.
For this we use Lemma 3.7. Write G,, = G[D,, — C?]; note that the only faces of GG, that are
bounded by more than ¢ edges are the outer face bounded by ¢,, and the inner face left by the
deletion of C'J. Moreover, these two faces are a distance at least (Ay — 4)5) logn apart.

It is enough to consider non-trivial cuts of the form 6(U) with both G,[U] and G, — U
connected. For such a set U, there must be two vertices v,w € 7(U) such that v,w € ¢,.
Suppose that the distance from » to w in G, is d; then by Lemma 3.7, we have

|6(0)] > min(£7d, €7 ( Ay — 4)5) logn)).

Since the facial cycle ¢, is e-smooth, the number of terminal pairs disconnected by 6(U) is at
most e~1d/k. Since d < 8\4log n, taking k > 8¢~ 1lA4(Ay — 4)A5)7! ensures that the strict cut
condition will be satisfied. m

Now in the set of paths realizing 7,, let Y;* denote the u-@# path. Then the collection {Y*}

is a crossbar, since every pair of such paths must cross in the plane drawing of G[D, — C?].

4.2 The simulated network A

We now construct a simulated network; the nodes of this network are the clusters, which we
represent by the vertices in M. We define a neighbor relation on the clusters using the notion
of a Voronoi partition; two clusters will be joined by an edge in A if they are neighbors in this
sense.

Let H be a graph and S C V(H). We fix a lexicographic ordering < on the elements of §.
For s € 5, let

Us ={veG:Vs €85 :d(v,s) <d(v,s') and Vs' < s:d(v,s) < d(v,s)}.

That is, U, is the set of vertices that are at least as close to s as to any other s', with ties
broken based on <.

Definition 4.7 The Voronoi partition V(H, S) of H with respect to S is the partition {Us : s €
St

The following fact is immediate.

17



Lemma 4.8 For each s € S, H[Us] is connected.

Proof. Suppose v € U,; we claim that any shortest s-» path P is contained in U;. For suppose
not, and let ' € P be the closest vertex to s that lies in Uy for some s’ # s. Then d(s',v) <
d(s,v), and in fact d(s’,v) < d(s,v) if s < s'. It follows that v € Uy, a contradiction. m

We can now build a graph N(H,5) on the vertices in S, joining two if their Voronoi cells
share an edge.

Definition 4.9 The neighborhood graph of S in H, denoted N(H,S), is the graph with vertex
set S, and an edge (s,s") iff there is an edge of H with endpoints in Us and Uy

The simulated graph we use will be the neighborhood graph N (G, M) with every edge given
capacity & Aglogn. Let V and N denote V(G, M) and N (G, M) respectively, and N (7) the

graph NV in which each edge is given capacity 7.

The following two facts about N are easy to establish. First, by the maximality of M, we
have

Lemma 4.10 For allv € M, U, C Bxj1ogn(?).

Proof. Suppose u € U, but d(v,u) > Azlogn. Then d(v',u) > Aglogn for all v' € M; this
contradicts the fact that M is a maximal independent set in G*31°8" m

This, along with Lemma 3.4, implies
Lemma 4.11 The degree of a vertex in N is at most A’ < 16a~13.

Proof. Let U denote the neighbors of v in A/, including v itself. Then by Lemma 4.10,

U uu C B2/\3 logn(‘v)7
uelU

and hence

U,| < 4ﬁ/\210 Zn.
Z| 3108
uel

But around each uw € U there is a disjoint ball of radius %/\3 logn, which contains at least

a):log? n/4 vertices. Thus |U| < 16a~!3. =

We now attempt to make explicit a sense in which the network N (@(logn)) “represents”
the graph G sufficiently well: for any pair of neighboring Voronoi cells U,,,U,,, we show that at
most O(logn) paths in the optimal routing can cross an edge in §(U,,U,,).

Lemma 4.12 [f (s;,1;) € 7, let ¥(si,t;) denote the pair of clusters containing (s;,t;). There
is a constant v such that for any realizable subset T' of T, ¥(7") can be routed in N(ylogn).
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Proof. Set v = 93(A”X5 + A3). For each s;-t; path P in the optimal routing, construct the
following path for (u;,v;) in N'— when P crosses from U,, into U,s, add an edge from w to
w’. Now consider how many paths in our constructed routing use the edge (w,w’). Each such
corresponds to a path in the original routing that used an edge in 8(Uy,,U,). We can’t bound
the size of this set directly, since it could be quite “meandering.” But consider the following
argument. §(Uy,Uy) C Baxglogn(z) for some vertex z € G thus there is some r between
2A3logn and 3A3logn so that |7(B,(z))| < 98A3logn. So at most this many paths with both
ends more than r away from z can use edge in §(U,,,U, ). But closer than this, there are at
most A3 clusters, each of which is the origin of at most 985 logn paths. m

4.3 Inter-Cluster Paths

The goal of this part is, for a constant Ag, to construct Aglog n disjoint paths between each pair
of enclosures D,,, D,, where (v,w) is an edge in N. This will allow us to convert a routing in
the simulated network A'(Aglogn) into actual disjoint paths in . Recall that the outer facial
cycle of G[D,] is denoted ¢,, and it contains a set 7/ of vertices evenly spaced at distance .

Theorem 4.13 There exist vertez-disjoint paths in G, each with ends in sets T, and otherwise
disjoint from all D,, such that for (v,w) € N, there are at least Aglogn such paths with one
end in 7, and the other in T),.

Proof.  The proof is based on the following theorem of Schrijver [27]. Let ¥; be a surface
(possibly with boundary), H a graph embedded on X, and {A%:i=1,...,k} a set of disjoint
curves on Y4 each of which is either closed or anchored at vertices of H on the boundary of ¥;.
The problem is to find vertex-disjoint paths and cycles {P*} in G so that P is homotopic to
A* for each i.

Call a collection of curves R on ¥, essentialif it consists either of a single closed curve that
is not null-homotopic, or it is a finite union of curves each with endpoints on the boundary of
Yy. Schrijver [27] proves that such vertex-disjoint paths and cycles exist if for each essential
collection of curves R, there are curves { B'}, where B’ is homotopic to A, such that R intersects
the drawing of H more than it intersects the curves {B'}. (The main result of [27] is in fact a
necessary and sufficient condition; this weaker statement suffices for our purposes. Additionally,
[27] is stated for the special case of surfaces without boundary, but the extension we use here
follows immediately from [27].)

Say that a curve is G-normal if it meets the drawing of GG only at vertices, and define its
G-length to be the number of times it meets the drawing. For each v, v’ that are neighbors in
N, we draw a G-normal arc A,, on ¥ with endpoints v and v'. We can ensure that all these
arcs are disjoint, since each U, is connected, and for each (v,v") € E(N), there is at least one
edge of G with endpoints in ¢, and U,. Choose a small constant Ag < |7/|/A’ (say, less than
%anA’_QA_Q/\glx\Z; the reason for this will become clear below). Now suppose we have in
fact Aglog n copies of each A/, all running “parallel” to one another. By pushing them apart
appropriately, we can assume that each arc runs through a different vertex in 7 and 7/,. Let

Ay denote the G-normal arc that runs through « € 7} and «’ € 7/,.
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pull out these crossings

Figure 3: Pulling out a crossing

Define G’ to be the graph obtained by deleting D¢ for each v € M. We now cut X along
the facial cycles ¢, to obtain ¥/, a surface with boundary. Note that G’ is properly embedded
on Y. The theorem is now a consequence of the following claim. m

Claim 4.14 There exist vertex-disjoint paths P, in G' such that P, is homotopic to Ay, .

Proof. If curves R and R’ are homotopic, we write R ~ R’. We extend this notation to finite
collections of curves R, R’ in the obvious way. Following notation of Schrijver [27], the number
of crossings of R and Ry is denoted cr(Rg,R1), and we define

mincr(Ro, R1) = min{cr(Ry, Ry) : Ro ~ Ry, R1 ~ R}

By the theorem of Schrijver [27] given above, the desired paths exist if for each essential
collection of curves R on Y/, one has

cr(R,G') > > miner(R, Ayy). (2)

(u,u’)

Note that in verifying this inequality, we may assume R is G’-normal, and that R has no
self-crossings.

For a collection of curves R, define its indez to be

(R, G') - Z mincr(R, Ay ).

(u,u’)
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So it is enough to consider collections of curves R whose index is minimum in their homotopy
class, and to show that such R in fact have positive index.

Set r = %A‘la&l/Z/\4 log n. We claim that no G-normal closed curve of G-length less than
2r can enclose a set of the form D,. For if it did, then D, could be disconnected by an edge
cut of size less than aal/?\, log n, which is not possible since |D,| > Ey/\?l log2 n. From this it
follows that any G’-normal closed curve of GG'-length less than 2r must be null-homotopic in X',

Note that we can view the expression cr(R,G’) — 2w (R, Ayy) as a sum over the
finitely many arc-components of R; if the value of this expression is not positive, we show how
modify the curves A,,s so that it increases. We do this by considering each arc-component of
R in turn. Let R denote a single arc-component of R; we consider two cases, based on the

G'-length of R.

Case 1. cr(R,G’) < r. Then R must have both endpoints on the same facial cycle (it
is too short to touch two such cycles, and if it were a closed curve it would have to be null-
homotopic, by the above argument.) But then it is easy to produce arcs {A],} for which
cr(R,G') > Yy cr(R, A7) since @, is e-smooth.

Case 2. cr(R,G’) > r. Again, we just have to exhibit arcs A/ , ~ Ay, lying on X' so that

cr(R,G') > Z cr(R, AL, (3)

(u,u’)

without increasing the number of crossings of these arcs with the other components of R. If
the set {A,,} satisfies (3), we are done; otherwise, we show how to modify this set of arcs so
that it does. See Figure 3.

If the set {A,,/} does not satisfy Inequality (3), then there is some interval R’ of R of
G'-length r for which (3) is violated. Let us consider such an R’.

Observe that each arc A,, has G’-length at most 2A\3log n, and hence at most A"?\glogn
of these arcs can meet R/, since at most A’? pairs of clusters have at least one end close enough
to R'. Now suppose the total number of crossings of these arcs with R’ exceeds

(23 log n)(A”?Xglog n)

T

< cr(R,G).

Then some arc A, meets R’ more than 2A3logn/r times, and hence the interval of A,
between some pair of consecutive crossings with R’ has G'-length less than r.

Suppose that this pair of consecutive crossings occurs at vertices w and w’. Let R” denote
the G'-normal curve formed from this interval of A, and the portion of R’ between w and w’.
R" has G'-length less than 2r, and so it must be null-homotopic by the argument given above.

Now, since R has minimum index over all curves in its homotopy class, the portion of A
between w and w’ meets G’ at least as many times as the portion of R’ between w and w’. We
can therefore modify A, so that it Tuns along R’ for this interval. This does not increase the
G'-length of A,,; and it decreases the number of crossings of R — as well as R (since it has
no self-crossings) — with A,,.

Thus this process terminates; when it does, we have a set of arcs {A/,} for which Inequal-
ity 3 holds. m
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Let us denote one such path with ends u and «' by Z,,,. Moreover, we have u € 7, and
u' € 7/,, and they are ends of paths Y, and Yﬁl respectively. Denote by Z,,/ the concatenation
of the three paths Y*, Z,,/, and Jf/.

5 The On-Line Algorithm

5.1 Routing Short Connections

Recall that a connection is short if d(s;,t;) < Azlogn. Our algorithm made an initial random
decision, whether to accept only short connections or only long connections. To handle short
connections, we require the following two facts.

Proposition 5.1 Let H = (V, F) be an arbitrary graph of diameter d. Then there is a deter-
ministic on-line MDPP algorithm that is 2 - max(d, /| E|)-competitive.

Proof. Let m = |F|. The algorithm maintains a sequence of graphs Hy, Ho, ... as follows. Hy =
H. The algorithm always routes the first request on a shortest path Py, and sets Hy = Hy — Py.
In general, when presented with request (s;,?;), the algorithm routes it on a shortest path P;
in H; if d(s;,t;) < y/min H;. It then sets H,y; = H; — P;. Let p denote the total number of
paths routed by the algorithm.

Let d’ = max(d,/m). Consider any routing for 7, consisting of paths @1,...,Q,. At most
d' of the @) ; intersect each P;, since the @; are all edge-disjoint and |P;| < d'. Also, at most \/m
of the @); fail to intersect any of the P;, since the pair (s;,¢;) associated with ¢); must have been
rejected by the on-line algorithm, and hence |@;| > y/m. Thus we have ¢ < d'p + /m < 2d'p.
|

Lemma 5.2 Let r < Mlogn, U C B,(v) for some v € V, and T' a set of terminal pairs in
U. Then the maximum size of a subset of T' that is realizable in Bgg2,(v) is within a constant
factor of the mazimum size of a subset of T' that is realizable in G.

Proof. First choose a radius r’ between 2r and 3r for which |7(B,(v)| < 987'. Then construct
a simple set extension of B,/(v) as in Lemma 3.6; and e-smooth its outer facial cycle to obtain
aset U' D U contained in Byg,(v). Let U” C Bge2, denote a simple set extension of Bge (), as
in Lemma 3.6. For a constant ', we can pick a set S of vertices on the outer facial cycle of U’
spaced k' apart, and use Frank’s theorem [8] as in Lemma 4.6 to construct a set of edge-disjoint
paths connecting “antipodal” pairs in 9, such that all paths stay within U — U’. Note that
we must take care to ensure that the parity condition is met, since the outer facial cycle of
J" can contain odd-degree vertices. But this is handled as in the proof of Lemma 4.6: we
remove sub-paths of this cycle between consecutive pairs of the (necessarily even number of)

odd-degree vertices; U" is large enough that the strict cut condition will remain satisfied.

Consider the set of paths in a realization of a maximum-size subset of 7’ in . If at least
half these paths never leave U’, we are done. Otherwise, of the paths that meet 7(U’), we
can select a constant fraction of pairs of paths that can all be connected along the outer facial
cycle of U’ to different vertices in S. We can then use the crossbar of the previous paragraph

22



to connect all of these pairs together; the resulting paths are within a constant fraction of the
maximum number achievable in G, and they do not leave U”. m

The algorithm for short connections is now as follows. We run a randomized version of
Luby’s algorithm, this time in G*11°87, Let M’ denote the resulting mi1s. With constant
probability, both ends of a short connection are within @/\1 logn of the same v € M’', as in
Lemma 4.1. We now let U, denote B), 1,5,/16¢2(v) and only route connections both of whose
ends lie in the same U,. To route such connections, we run the algorithm of Proposition 5.1 in

each B, logn(v); by Lemma 5.2, this is within O(logn) of optimal in each U,.
2

5.2 The AAP Algorithm

If H is a graph with n nodes in which each edge has capacity at least log 2n, then there is an
on-line MDPP algorithm of Awerbuch, Azar, and Plotkin [3] that achieves a competitive ratio of
2log 4n. For our purposes, we need a strengthening of this “AAP algorithm” — we want only
to require capacities to be elogn, for any ¢ > 0, and to be competitive against the fractional
optimum.

Proposition 5.3 If all edge capacities are at least (¢logn + 1 + ¢€), there is a deterministic
on-line MDPP algorithm that is 0(21/E log n)-competitive against the fractional optimum.

Proof. We follow the AAP algorithm and its analysis very closely. We vary a little from their
notation, since we only deal here with routing a maximal number of requests, each of infinite
duration. Thus, the i*P request is specified by a pair (s4,1;) of terminals. We define the “profit”
of the connection to be n; thus the total profit obtained by the on-line algorithm is simply n
times the number of terminal pairs routed.

Define p = 2'*1/%n, so we have
elogp=clogn+1+e.
Let u. denote the capacity of edge e; thus we can assume that for all e,
U > €log .

With this value of u, we now run the AAP algorithm — for the sake of completeness, we state
this algorithm here.

Forj=1,2,...,k:
Define A to be the fraction of u. consumed by paths already routed.
Define ¢i = uo(p** — 1).
For a request (s;,%;), route it on any path P satisfying >~ .p ul—ecg < n.
If no such path is available, then reject the request.
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First we argue why the relative load on an edge will never exceed 1. At the moment before
this happened, on edge e say, we had

4 1 1
Al>1—-—2>1- .
Ue elogp
Thus
J
Ce — ,uAé—l
U,
1——1
> IM alogp_l
Y - R R VN
= S 1=2n-1
> n.
So we have )
C]
—“>n
ue

and thus the connection could not have used this edge.

Suppose there are a total of £ requests. Let A denote the set of requests routed by the AAP
algorithm. Then we show

211 /% Jog 4 Z n> E iand (4)
jeA e

As in the proof in [3] we show this by induction on the number of admitted requests, via proving
that if the algorithm admits the " request, we have

Zcé"’l — < 2" enlog p.

So consider edge e on the j* path used by the AAP algorithm. We have
ci‘H — cg = U, (NAJE(QIOg‘L/“E — 1)) .
Now the exponent on the 2 is at most 1/, and for z € [0,1/¢] we clearly have 2% — 1 < 21/ . 2.

Thus

¢l < ue-u’\é-Ql/s-logu/ue

e =

IuAi . 21/5 . IOgIUJ

J
= 21/510gul&+1‘|

Ue

Summing over all edges gives the desired bound.

Finally, we show that the expression

ek (5)
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is an upper bound on the profit of the fractional optimum minus the profit of the on-line
algorithm. ([3] shows this for the integer optimum, but the proof is essentially the same.)

Let Q denote the set of indices which were rejected by the on-line algorithm but for which
a positive fraction of the demand was routed by the optimum. For j € Q, suppose that the
fractional optimum uses paths le, ..., P7, with weights 7]1, .++,7;. Then since j was rejected
by the on-line algorithm, and the costs are monotonic in the indices, we must have

k1

n <
>
eEPJz

for any ¢, 7. Then for any edge ¢ we have

7

Y Ly,

U
i\j:e€ P e
and hence we have
yick+
7 J€E
22mm < Y
s i i eeP! €
722
E+1 J
< Qe > 2
e ijie€P! °

< chﬂ.
€

Combining the bounds in Equations (4) and (5), we obtain the claimed competitive ratio.
|

A lower bound of [3] implies that the factor of 2!/ is unavoidable for deterministic on-line
algorithms.

5.3 Routing Long Connections

Finally, we give the algorithm for routing long connections. First, we only consider terminal
pairs with both ends in sets of the form C, — denote this set of terminal pairs by Z3s. If
T* denotes a realizable subset of maximum size, then by Lemma 4.1, the expected number of
terminal pairs in 7* that belong to 7js is a constant fraction of |7*|. Thus we only lose a
constant factor in the competitive ratio by restricting attention to 7as.

Set Ag = Ag(1 — loén) (the reason for this definition will become clear below); we define an
on-line routing problem in the simulated network N(Aglogn). If s; € C,, then we define its
image in the “simulation” to be ¥ (s;) = v. The input will simply be the sequence of terminal
pairs (?¥(s;),¥(t;)), where (s;,1;) is the sequence of pairs presented to the algorithm running on
G. Our algorithm for the problem in the simulated network is as follow: we route (v, w) if (i)
the AAP algorithm on A (Aglogn) accepts (v, w), and (ii) no connection with an end equal to

either v or w has yet been accepted.
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Lemma 5.4 The above algorithm is O(logn)-competitive against the fractional optimum in

N(Aglogn).

Proof. Let X denote the set of connections accepted by the on-line algorithm, and let 4¢ denote
the fraction of connection 7 routed by the fractional optimum. Let Y; denote the connections
rejected because of rule (i), and Y; the connections rejected because of rule (ii). Then running
the AAP algorithm by itself on the subsequence of the input consisting of X and Y;, we see
that AAP would still reject all connections in Y3; hence 3 ;cy, ¥* < O(logn)|X|. Now consider
running rule (ii) by itself on the subsequence of the input consisting of X and Yj; rule (ii) would
still reject all the connections in Y;. The set of pairs (?(s;),%(t;)) in X UY; can be viewed as
the edges of a graph on M; rule (ii) is running the greedy algorithm for building a maximal
matching on this graph, and we know that optimum routing can put a fractional weight of
at most O(logn) on the subset of edges of this graph incident to any one vertex in M. Thus

Yiev, 7 < O(logn)|X|. Since Yieviiy, 7' < Yiev, V' + Yiev, 7' the bound follows. m

Our on-line algorithm in G simply runs the above simulation; whenever (?(s;),%(t;)) is
accepted, it routes the pair (s;,%;) in G using the paths constructed in Lemma 4.6 and The-
orem 4.13. The following lemma says that it will not run out of “bandwidth” while doing
this.

Lemma 5.5 The algorithm in G can route all the connections accepted by the simulation.

Proof. For each cluster C,, we explicitly reserve the path of the form Z,, that passes through
D, closest to Cy; let us denote this path by Z*. Now when the simulation accepts (1(s;), ¥(%;)),
it specifies a sequence of neighboring clusters C,, Cy,, ..., C,,, where v1 = ¥(s;) and v, = ¥(t;).

The algorithm in G routes (s;,1;) as follows. First it routes s; and #; out to their reserved
paths Z;Z(sg') and Z;Z(ti)' Then for each j = 1,...,r — 1, it chooses any path Z,, (u € Ty, and
u € Tu,4,) that is not one of the special reserved paths and that has not yet been used for
a previous terminal pair. In this way it obtains a sequence of such paths Z;,...,7,_;. Each
path crosses its successor at some vertex; thus they can be joined together to produce a path
from s; to t;. Since the simulation only accepts at most A;logn terminal pairs whose routes
use the edge in N from v to w, for any v, w € M, there are enough inter-cluster paths to route
all accepted terminal pairs. m

Finally, we have to show that optimum in G is not far from the optimum in the simulation.
This follows using Lemma 4.12. Since the on-line algorithm is O(logn)-competitive against
the fractional optimum in N(Aflogn), it is also O(logn)-competitive against the fractional
optimum in N (ylogn), which by Lemma 4.12 is at least as large as the maximum realizable

subset of 7. Thus,

Theorem 5.6 The on-line algorithm is O(logn)-competitive in any uniformly densely embed-
ded Fulerian graph G.
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5.4 A Digression: Combining Maximization Algorithms

The following section is fairly elementary, and not needed in the rest of the paper. However, we
feel it is worthwhile making more explicit the “combining” of on-line algorithms that is being
used in the proof of Lemma 5.4.

Let U denote a finite set, with 5¢,..., 5, subsets of U such that U = U;5;. Let d be the
least number such that for each u € U, we have

{i:ue€ S} <d. (6)
Let F; denote a collection of subsets of \9; closed with respect to inclusion. For U’ C 5;, define

pi(U") = max{|C|: C C U" and C € F;}.

Now, on-line algorithm A; (i = 1,...,n) is trying to find a “large” set in F;; it operates
as follows. The elements of some U’ C §; are presented to it any order, and on each element
the algorithm A; either accepts it or rejects it. Moreover, we assume that the state of A; is
completely determined by the set of elements it has accepted so far.

We say A; is c-competitive if on any ordered U’ C S;, A; returns a set T; of size at least
1. pi(U'). Let ¢* denote the maximum competitive ratio of any of the algorithms A;.

Now define
F={C:¥YiCnSY; € F}

and p(U’) to be the maximum size of a member of F contained in U’. We define the combined
algorithm A = A?_, A; as follows. As each u € U’ is presented to A, it accepts u iff for each i
such that u € 5;, A; accepts u. The total set accepted so far, intersected with .5;, serves as the
state for each A;.

Proposition 5.7 A is ¢*d-competitive.

Proof. Assume the algorithm A was presented with a set U’ and it returned X. Let Y denote
a member of F contained in U’ of maximum size; we show that |Y| < ¢*d|X|. Let R! denote
the elements of Y — X that were rejected by algorithm A;, J; = X NY NS;, and R, = J; U R
Note that Y = U; R;.

Now set U] = (X N S;) U R;. Order U] as it appears in U’, and present it as input to A;.
Then as in the running of the combined algorithm A, A; will accept precisely the set X N 9.
Since A; is ¢*-competitive, and R; C Y N S; € F;, we have

IR:| < ¢*]X N Sil.

We also have |Y| < Y. |R;|, and by Inequality (6) we have >, | X N .S;| < d|X|. Thus

V] <YTIRi| < e* > 1X N8| < c*d|X].

k3
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In the natural way, one can define a fractional version of the above model. Instead of a
collection F; of “allowable subsets” of §5;, we are now given an anti-blocking polytope P; C
[0,1]5! (if y € P; and = < y coordinate-wise, then & € P;). For U’ C S;, the function yu;(U’)
now gives the maximum fractional weight of a subset of U/, where the maximum is taken over
the polytope P;.

Then the proof just given carries over to show

Proposition 5.8 If each A; is ¢*-competitive against the fractional optimum, then A is c¢*d-
competitive against the fractional optimum.

The application to routing in the simulated network is clear. Algorithm Ag is the AAP
algorithm running in N (Ajlogn), and for each v € M, algorithm A, is the algorithm that allows
one request out of (', and then rejects all subsequent requests. By the previous section, our on-
line algorithm in A (A§logn) is simply the combined algorithm Ag A (AyenmrAy), ¢ = O(logn),
and d = 3. Thus the combined algorithm is O(log n)-competitive.

6 The Off-Line Algorithm

For the constant-factor off-line approximation, we use the same graph A as before. In A'(ylogn),
for any fixed constant -, one can obtain a constant-factor approximation to the MDPP by the
following randomized rounding algorithm of Raghavan [20]. First we solve the fractional relax-
ation of the MDPP instance (this can be done in polynomial time); from this, we obtain for each
terminal pair (s;,?;) a collection of paths P!, ..., P7 and associated weights y},...,y7 € [0,1]
such that z; = ), y! € [0,1]. We now pick a scaling factor p < 1; independently for each
terminal pair (s;,;) we route it on path P/ with probability uy/, and don’t route it at all with
probability 1 — pz;. If we do route it, we say that (s;,%;) has been rounded up. In [21, 20], it
is shown that with constant probability, no capacity is violated by the selected paths, and the
number of pairs that are rounded up is a constant fraction of the fractional optimum.

In particular, we require the following theorem from [20].

Theorem 6.1 (Raghavan) Let Xy, Xo,..., X, be independent Bernoulli trials with EX; = p;
and ¥ =5, X;; 50 EV =m =", p;. Then for 6 > 0 we have

)

Pr(¥ > (14 6)m] < W] .

We specialize this to the form in which we will use it as follows.

Corollary 6.2 Let 0 < pu < 1, and p1,...,p, € [0,1]. Let X{,X3,...,X] be independent
Bernoulli trials with EX} = pp; and V' = 37, X|. Let m = 3", p;. Then

Pri¥’ > m] < (ep)™.
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Proof. Apply the bound of Theorem 6.1 with m set to um and § set to u=! — 1. m

Let us consider how to use this randomized rounding approach in routing long connections
off-line. In the high-capacity network A, this rounding approach is fine; but to get a constant-
factor approximation we also have to be within a constant factor of the optimum in routing
terminals out of the clusters (in the on-line algorithm it was enough to route only one). To this
end, we build the following more complicated network N’. Let z, denote the node representing
v € M in the network A; we construct A by attaching C, to z, via an edge from z, to each
node in 7(C,). Let N'(y) denote the network A in which each edge between nodes of the
subgraph N has capacity 7, and all other edges have unit capacity.

We now run the randomized rounding algorithm on N’(A7logn), for a small constant A7 > 0.
With high probability the parts of all selected paths lying in the subgraph N(A7logn), taken
together, do not violate any capacity constraint; and the number of pairs that are rounded up is
within a constant factor of the fractional optimum. We now must convert the selected paths in
N'(A7logn) into s;-t; paths in G. We can use the technique of the previous section to produce,
for each selected pair (s;,t;), a “global” path P; that begins at 7'1’1}(51,) C m(Dy(s;)) and ends at
Toey C T(Dy(r))-

The real problem is how to find paths within the clusters such that each s; (resp. t;) that has
been rounded up can reach the endpoint of this associated global path on T’L’Z)(Sl‘) (resp. Tllp(ti)).
For this, the paths returned by the randomized rounding are of no value, since the edges of N
within the clusters €, have only unit capacity. Instead we argue as follows.

Let 5, denote the set of terminals in ), that are rounded up. Each is trying to “get out”
to its associated path that begins at 7). Recall that G, = G[D, — C?] has outer facial cycle ¢,,
and a set of vertices 7] spaced k apart on ¢,, each with an associated “antipodal” point on ¢,.

For a constant k1, we choose a set o/ of vertices spaced k1 apart on the outer facial cycle
Q! of G[C,]. First let us argue that it is enough to route the terminals in 5, to o] — for then
in GG, we can construct paths linking the vertices in ¢/, to the endpoints of the global paths in
7/, and build a crossbar through GG, in what remains. Specifically,

Lemma 6.3 There is a crossbar in G,, anchored in o] U 1), such that each vertex of ol U T, is
the endpoint of exactly one path in the crossbar.

Proof. This will be another application of Frank’s extension of the Okamura—Seymour theorem.
First we “cut open” the graph G, along a shortest path P* from ¢, to @ in the planar dual.
Now all terminals in o], U7, lie on a single face of the resulting graph. We now partition o], U7,
into antipodal pairs, with respect to the ordering induced by the facial cycle containing them.
Finally, we set up a disjoint paths problem with the set of antipodal pairs as terminals in this
“opened” copy of G,.

Observe that the capacity of any cut in the opened copy of GG, is at least half as large as a
cut separating the same set of terminals in G, — we can simply convert it to a cut in G, by
adjoining the edges removed from P*. Given this observation and the arguments of Lemma 4.6,
the verification of the strict cut condition is routine. m

Since the simulated network now requires only capacity A;logn, this crossbar can used to
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set up paths linking ¢!, to the endpoints of all global paths in 7/, while still preserving enough
paths for the simulated network to use for routing.

So this leaves us with the following escape problem. We are given the set 5, of terminals
that have been rounded up, and we want to route a large fraction of them to o, C 7(C)) via
disjoint paths. The following lemma, whose proof contains the central step of the algorithm,
says that this can be done. For simplicity we will prove the lemma for the special case of the
mesh, and then describe the extension to our more general class of graphs.

Lemma 6.4 For a sufficiently small (constant) value of u, there is a constant ¢ < 1 and sets
S! c Sy, such that

(i) if one end of a pair (s;,t;) belongs to U, S, then so does the other,
(i6) |U,S1] > elUy 5., and
(iii) each set S|, can be linked to o! C w(C),) via edge-disjoint paths.

Proof. We first prove this fact assuming that G is the two-dimensional mesh, each C), is a square
submesh, and a terminal can “escape” to any vertex on the boundary of C,. First observe the
following fact: an escape problem on a rectangular mesh is feasible if and only if, for all p, ¢,
any subrectangle of size p X ¢ contains at most 2(p+ ¢) terminals. To see this, note that we are
dealing with a maximum flow problem, and thus only have to verify the cut condition. On a
rectangular mesh, the smallest rectangle enclosing any connected cut has no greater capacity,
and contains at least as many terminals, as the original cut; thus the cut condition holds if and
only if it holds for all subrectangles.

Call a rectangle overfullif it violates the cut condition. What is the probability that a p x ¢
rectangle becomes overfull after the rounding? Before rounding, the total fractional weight it
contains is at most 2u(p + ¢) (since the un-scaled fractional flow is feasible). Thus, setting
v = (eu)?, the probability that the number of terminals exceeds 2(p + ¢) after rounding is at
most vPT¢, by Corollary 6.2.

This suggests the following algorithm to construct the set S/: we go through each s € 5,
deleting it if it is contained in any overfull rectangle — we also then delete its matching terminal
in some other cluster. This results in the set S!. What is the probability that s is contained in
an overfull rectangle? s is contained in pq rectangles of dimensions p X ¢, so the probability is
clearly bounded by the infinite sum

2
e — 7 .
N

s can also be deleted if its matching terminal is contained in an overfull rectangle, so the
probability of s being deleted is at most % By taking p small enough, we can make this
last expression a constant less than 1; this implies the lemma for the two-dimensional mesh.
We now describe the extension to uniformly densely embedded graphs in general. We now
have no way to define rectangles per se, but we define a round cut to be a set of the form
B.(u)NC,. Since by Lemma 3.4 a given u € C,, is only contained in O(r?) round cuts of radius
r, the following claim shows that the argument of the previous paragraph can be applied. m
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Claim 6.5 There is a constant & such that the following holds. If the capacity of every round
cut exceeds the number of terminals it contains by at least a factor of &1, then the escape problem
in C\, (with respect to o},) is feasible.

Proof. Suppose that the escape problem is not feasible; then there is some cut U such that
the number of terminals in U exceeds |6(U)|. Moreover, we can find such a U with both G[U]
and G[C, — U] connected.

Set & = ry +a2a7", & = 4AAE (B + '), and write p = |§(U)]. We will be done if we
can exhibit a round cut R containing U for which |6(R)| < &p.

Now if we contract G — U to a single vertex, we obtain a planar graph with maximum face
size k1 (as opposed to ; this is due to the large spacing of the vertices of ¢/,). So by Lemma 3.7,

the maximum distance between two points on 7(U) is at most kqp.

Next we claim that every vertex in U/ must be within distance a='/2a~'p of 7(U). The
reason for this is analogous to the proof of Lemma 3.6 — if not, then U would contain a ball
of more than this radius, which would contain more than a~'p? vertices; a contradiction since
6(U)] = p.

Thus for any u € 7(U), we have U C B,(u), where

r=(mta "=
Now by Lemma 3.5, there is an 7’ between r and 2r such that
|6(B,(u))] < 4B8AEL p.

Now let R O U denote the round cut B,/(u) N C,. Every edge of §(R) is an edge of either
0(Byi(u)) or of §(Cy, N R). The former quantity was just shown to be at most 43A&p. To
bound the latter quantity, note that any two vertices in 7(C, N R) are at most 27" < 4£{p apart;
since the facial cycle containing 7(C,) is e-smooth, this means that 7(C, N R) contains at most
4~ p vertices, and hence

6(Cy N R)| < 4Ae™ 1€ p.

The claim now follows since

6(R)| < AAL(B+e7")p = &p.

This gives a constant-factor approximation for long connections: if (s;,%;) is rounded up,
and s;,1; € U,5;, then we concatenate the paths from s; to 7(Cy,,)) (given by Lemma 6.4)
to m(Dy(s;)) (given by Lemma 6.3) to m(Dy,)) (given by the path in M (A7logn)), and now
symmetrically to m(Cy,)) and to ;.

We handle short connections recursively as follows. We run the above algorithm indepen-
dently on disjoint neighborhoods of each cluster C,, as provided by Lemma 5.2. Recall from
the proof of Lemma 5.2 that such neighborhoods consisted of sets U] > U! D C,, such that
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U/ — U} contained a crossbar for routing a constant fraction of all connections whose paths left
U!.

Now there is the following problem: G[U!], on which we run the algorithm recursively,
contains a large face. To take care of this, we can either invoke the more general algorithm of
the following section, or we can use the following trick. Let ¢} denote the outer facial cycle of
U!; suppose that it contains p vertices of even degree in G[U]] and ¢ vertices of odd degree. Let
H denote a two-dimensional mesh whose side lengths differ by at most 1 and whose outer face
has length 2p + ¢ + 4; we attach H to G[U!] by edges from the degree-3 vertices on the outer
face of H to the vertices of (). In order to make sure that the resulting graph is Eulerian, we
attach each even-degree vertex of () to two such vertices on the outside of H, and each odd-
degree vertex of () to one such vertex on the outside of H. In this way, we obtain an Eulerian
graph that is uniformly densely embedded — we now run the above algorithm on this graph,
obtaining a collection of edge-disjoint paths. Paths that do not leave U/ can be used directly
in G5 and we use the crossbar in U]’ — U/ to route a constant fraction of the connections whose
paths use the mesh H.

Call a connection “medium?” if it is now a long connection in this recursive call, and “small”
otherwise. Medium connections are handled as just described in the previous paragraph. Small
connections take place within clusters of size O(loglogn) and therefore can be simply solved to
optimality by brute force (again on disjoint neighborhoods provided by Lemma 5.2). We can
then take the largest realizable set we find among the long, medium, and small connections,
obtaining

Theorem 6.6 There is a constant-factor (off-line) MDPP approzimation in uniformly densely
embedded Fulerian graphs.

7 Graphs with an Exceptional Face

In this section, we sketch the extension of our algorithms to densely embedded, nearly-Eulerian
graphs. Recall from Definition 3.3 that such a graph satisfies the properties of a uniformly
densely embedded Eulerian graph, except that it is allowed to contain an “exceptional” face
®*, with facial cycle @* that may have length greater than £ and may contain vertices not of
even degree.

For the remainder of this section, let G denote a densely embedded, nearly-Eulerian graph
with parameters a, A, A, and £. For simplicity, we assume that the facial cycle @* is sufficiently
large that it is not contained in any set Byiogn(v); it is not difficult to remove this assumption.

The changes required in the algorithm come from the fact that there can now be a G-normal
curve joining two distant vertices in G that intersects G relatively few times — this is because
it can pass through the large face ®*. This has consequences in the proofs of Lemma 4.6 (and
its relatives) and Claim 4.14. However, by requiring the outer cycles of clusters and enclosures
to satisfy a more restrictive notion of e-smoothness, these facts will follow as before.

We define our more restrictive type of e-smoothness as follows. Let G/Q* denote the graph
G with a single additional node ¢* joined by length-0 edges to each vertex of the long facial
cycle @*. Then a small cut passing through two distant vertices, as described in the previous
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paragraph, does correspond to a short path in G/Q* — it simply makes use of the additional
node ¢*. Now it is straightforward to show that we need only require the outer cycles of the
clusters and enclosures to be e-smooth in the graph G/Q*; and this can be accomplished by
running the e-smoothing algorithm in this graph instead of in G.

This introduces a further difficulty, however. Say that we have just smoothed some cycle
@, obtaining a cycle @". While @’ will be e-close to the original cycle @ in G/Q*, there is no
reason why this means it will be e-close in G.

To handle this, we strengthen the statement of Theorem 4.4, as follows. For a vertex wu,
define the u-restricted distance d*(v,w) between two vertices v and w to be the minimum length
of a v-w path avoiding u. From the proof of Theorem 4.4, one sees that we can always find a
short path from the smooth cycle @’ back to the original cycle @ that avoids any prescribed
vertex; i.e. @' is e-close to @ with respect to any wu-restricted distance function. In particular,
Q' is e-close to @ in G/Q* with respect to the ¢*-restricted distance function; that is, @’ is
e-close to () in the original graph G.

Thus, we can obtain clusters and enclosures with boundaries which are e-smooth in G/Q*,
and which are not far from the original boundaries in G. The sets 7 will now consist of evenly
spaced vertices only on the part of an enclosure’s outer facial cycle that does not lie on ®*.
The proof of Lemma 4.6 now follows exactly as before. When we use Schrijver’s theorem to
construct inter-cluster paths, we also cut the surface 3 along the long facial cycle @* so as
to remove ®* from the surface. Now an essential curve can be anchored on the boundary of
®* as well as on the boundary of an enclosure; but this poses no problem since the enclosure
boundaries are e-smooth in G/Q*.

Once the simulated network AN has been set up, the on-line and off-line algorithms work
exactly as before. (In particular, Claim 6.5 follows without modification, since the large face
®* is incorporated into the hypotheses of Lemma 3.7.) Thus we have,

Theorem 7.1 There is an O(logn)-competitive on-line MDPP approzimation in any densely
embedded nearly-FEulerian graph.

Theorem 7.2 There is a constani-factor (off-line) MDPP approzimation in any densely em-
bedded nearly-Fulerian graph.
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