SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853-3801

TECHNICAL REPORT NO. 1005

May 1992

ESTIMATION FOR
AUTOREGRESSIVE PROCESSES
WITH POSITIVE INNOVATIONS

by

Paul D. Feigin!
and Sidney L. Resnick?

IFaculty of Industrial Engineering and Management, Technion, IIT, Haifa, Israel. This
research was partially supported by the United States-Israel Binational Science
Foundation (BSF) Grant No. 89-00323/1.

2Partially supported by NSF Grant DMS 9100027 at Cornell University.



Estimation for Autoregressive Processes
with Positive Innovations

Paul D. Feigin*
Faculty of Industrial Engineering and Management
TECHNION — Israel Institute of Technology, Haifa 32000, ISRAEL

Sidney I. Resnick®'
CORNELL University, Ithaca, New York 14853-7501

May, 1992

Abstract

We consider stationary autoregressive processes of order p which have positive pa-
rameters and positive innovations. The main results concern the rate of consistency
of parameter estimators for the case p = 2. These estimators are defined in terms
of estimating equations. Relevant asymptotic theory is developed in the wider con-
text of vector autoregressive processes with positive innovations having a distribution
with regularly varying left or right tails. These weak convergence results may be of
independent interest.

Key words and phrases: autoregressive processes, estimating equations, con-
sistency, weak convergence of point processes, generalized martingales.

AMS 1980 subject classification: Primary — 62M10,62F12; Secondary —
60G55, 60G48, 60F17.

This paper is dedicated to the memory of Micha Yadin, our colleague and dear
friend.

*This research was partially supported by the United States-Israel Binational Science Foundation (BSF)
Grant No. 89-00323/1

tPartially supported by NSF Grant DMS 9100027 at Cornell University



1 Introduction

We consider the autoregressive process of order p, denoted by AR(p), with positive inno-
vations, and with positive autoregressive coefficients. These processes are defined by the
following relation:

p
Xo=S ouXeh+Zes t=0,£1,42,... (1.1)
k=1

where we assume that {Z,} is an independent and identically distributed sequence of random
variables with left endpoint of their common distribution being 0. We will make more specific
assumptions in Section 2 when we present our main results.

Based on observation of {Xo, X1, ..., Xn} we are interested in estimating the parameters,
and in determining the asymptotic properties of these estimators as n — 00.

The case of p = 1 was discussed by Davis and McCormick(1989). They used a Poisson
Random Measure (PRM) approach to obtain the asymptotic distribution of the natural
estimator in the positive innovation context when the innovations distribution, F, varies
regularly at 0 and satisfies a suitable moment condition. This estimator is

o= 2
X1

i=1

(1.2)

where A denotes the minimum operator.

For the case of p > 1, a straightforward generalization of (1.2) does not seem to perform
well-Andel (1989). Of course, one may ignore the special nature of the innovations and use
the Yule-Walker estimators (see, for example, Brockwell and Davis(1991)), but we show that
one can sometimes do better than the n'/? rate of convergence.

Andel (1989) considered the case p = 2 and suggested two estimators of (¢1, ¢2). One is
based on a maximum likelihood argument and is the one we consider here. This estimator
is obtained by solving equations which turn out to be examples of generalized martingale
estimating equations as described in Feigin(1991). Andel (1989) found by simulation that
this estimator converges at a faster rate than the Yule-Walker estimator.

Our main results are presented in Section 2. They establish the rate of consistency of the
estimators of ¢; and ¢, for the case p = 2 and so explain some of Andel’s findings. Also, for
the case p = 1, the asymptotic distribution result of Davis and McCormick(1989) is extended
by showing that the suitably normalized estimator also has a limit distribution when the
distribution, F, of the innovations is regularly varying at oo, and satisfies an inverse moment
condition.



In Section 3 the relevant weak convergence results for the AR(p) model are developed in
somewhat more generality than is immediately required for the p = 2 case. The proofs use
similar techniques to those of Davis and McCormick(1989), but extend the results in two
ways: (a) the vector autoregressive process is considered; and (b) they also allow the roles
of the conditions on the left and right hand tail of F' to be interchanged. These results form
the basis of the proofs of the theorems which are to be found in Section 4.

2 Main Results

After suggesting and motivating the estimators to be considered, we set out the conditions
under which the consistency results will hold. The model (1.1) is assumed in all that follows.

2.1 Estimating Equations (p = 2)

We define subsets of the time indices:

Tn(l) = {t 12<t<L n;Xt_l > (1 + 6)Xt__2} (21)
T.(2) = {t:2<t<mXi 2> (1+ X1} (2.2)

where § is a sufficiently small, but otherwise arbitrary, positive number.
Now define qAb(n) = (qgg"), &g’”‘))T to be the solution of

M (¢) = A (Xi— g1 Xeon — $3X;_2)=0; k=12 . (2.3)
teTn(k)

As long as the sets T,(k) are not empty, there will be a unique solution of (2.3).

One motivation for these two estimating equations comes from the maximum likeli-
hood analysis for the case in which Pr(Z; > z) = exp(—z). In this case, conditionally on
{Xo = 20, X_1 = x_1}, the likelihood is proportional to (using I(-) to indicate the indicator
function):

I (/n\(Xz — ¢ X1 — P2 Xi2) > 0) exp [951 En:Xt—l + ¢2 iXt—z} (2.4)

t=1

and the corresponding maximum likelihood estimator will be approximately determined by
solving the linear program (LP)

max(¢1 + ¢2) (2.5)



subject to
(]51Xt__1 -+ ¢2Xt__2 S Xt ; t= 1, R (26)

Note that the fact that 37 X;_;/ X7 Xi—2 ~ 1 in the stationary case justifies the simplified
(approximate) form of the objective function.

Now any bounded solution of (2.5, 2.6) must be at the intersection of two lines of the
form

$1 X1 + X2 = Xi 5 (2.7)

one with X;_; > X;—o and one with X; ;1 < X;_3. (The solution is unbounded if one of
these inequalities never holds.) From these considerations we arrive at the equations (2.3),
except that we only consider a subset of the lines defined by the value of § in (2.1, 2.2). In
our proofs we require that 6 > 0. Since § is arbitrarily small this restriction is not of great
practical importance. We are currently investigating whether letting & = 0 could change the
rate of consistency of the resultant estimators.

Another motivation for considering the estimating equations (2.3) comes from regarding
them as generalized martingale estimating equations. The development for general p is as
follows.

We denote by Z;(¢) the following:
Zi(p) =X — 01 Xoo1 — - — 6pXip (2.8)
Note that in (1.1) Z; = Z,(¢?) if ¢© is the true value of ¢.

We now employ some of the notation and definitions of Feigin(1991) concerning gen-
eralized martingales. We consider the process {Z;(¢)} as taking values in the semigroup
(R,A). In this space, we define the generalized expectation (€) as the left endpoint of the
distribution of the argument. In this context:

£ 7, () =0 (2.9)

since we have assumed that the left endpoint of the distribution of Z; is 0. The notation £P
designates the generalized expectation when the true value of the parameter vector is ¢.

In the semigroup (R, A) the martingales are defined by the successive minima of constant
£-expectation “increments”. In other words,

M (o)

Hl

Z\ Zi(9) (2.10)



is a martingale with increment expectation (according to 8"5) equal to zero. A martingale
equation for estimating ¢ is obtained by setting the martingale to its “expected” value:

MP(¢)=0 . (2.11)

Using martingale transforms we seek alternative martingales that will generate more
estimating equations. They can be obtained by adjusting the “t-th increment” of M(g")(qb)
by past (F_1) information. The equations (2.3) for M are obtained by defining the
“increments” U™ in place of Z;(¢) as follows:

UWL_{Ztﬁ4%4>%1+®XpMk
*)

oo otherwise for k=1,2 . (2.12)

In the analogy for the case of the AR(p) process with (ordinary) zero mean innovations
the least squares estimating equations are:

n

W)=Y XewZi(¢p)=0; k=1,....p . (2.13)

t=1

We note that each of the {ch")(qb)} are (ordinary) martingale sequences under PP, the
measure induced by the process {X;} when ¢ is the value of the vector of parameters in

1.1). The equation (2.11), based on M, ("), is therefore the analogue of the single equation
0

(n)
() = > Z() =0 (2.14)

in the ordinary setting. To obtain the martingales in (2.13) martingale transforms have been
used. The increments of Q(()") have also been adjusted (multiplied by X, ) by past (Fi_1)
information.

2.2 Conditions

We now set out the formal conditions under which the consistency results hold. Although
our main theorems only deal with the case p = 2, since much of the asymptotic theory is
developed for general p we also state the conditions for general p.

Condition M (model) The process {X; : t = 0,41,%2,...} satisfies the equations (1.1)
where {Z,} is an independent and identically distributed sequence of random variables
with essential infimum (left endpoint) equal to 0.



Condition S (stationarity) The coefficients ¢1,..., ¢, are non-negative and satisfy the
stationarity condition: ®(z) =1 — ¥} ¢;2" has no roots in the unit disk.
Condition L (left tail) The distribution F of the innovations Z; satisfies, for some a > 0:

F(sz)
F(s)

2. B(ZP) = & uPF(du) < oo for some 8 > a

1. lim,_o0 = z® for all z > 0;

Condition R (right tail) The right tail of the distribution F of the innovations Z; satis-
fies, for some a > 0:

1. m,—o 11—‘%%) = z~¢ for all z > 0;
2. B(Z7") = [ u=PF(du) < oo for some >

Some preliminary remarks concerning these conditions may help clarify their importance.

Remark 1 We consider only the case of non-negative autoregressive coeflicients, corre-
sponding to the first case discussed in Davis and McCormick(1989). Another approach,
possibly restricting Z; to having bounded support, 1s required for the more general case.

The stationarity condition together with the non-negativity of the autoregressive coef-
ficients leads to the condition that

bt tdp<l . (215)

This fact can quite easily be verified by contradiction by considering the process

P
me= N\ Xi—j; t=1,2,.... (2.16)

7=1
It is monotonically increasing if ¢; > 0; ¢ =1,...,pand ¢1 + -+ ¢, = L.

Remark 2 In Section 3, we will need the left or right tail conditions to show that for
an appropriate sequence ¢, ~ L(n)n'/* where L is slowly varying, we have weak
convergence of ¢n Arer, (k) Zt/Xt-k. The moment conditions are required in order to
ensure that the limit distribution is determined by the regularly varying tail, and not
by the other one. If one were not seeking to prove weak convergence results, but solely
bounds on rates of convergence, then one could possibly do away with these extra
conditions. At the moment our results are based on weak convergence of PRM’s, and
so we need these restrictions. Moreover, our hope is to eventually derive asymptotic
distributions for the estimates, and so we present our results with this goal in mind.



Remark 3 Condition L is satisfied if a density f of F exists which is continuous at 0 and
with f(0) > 0. In this case @ = 1. Another common case where Condition L holds is
for the Weibull distributions of the form F(z) =1 — exp{—z°}.

Remark 4 What does condition R mean when the tail of F' near 0 is also regularly varying?
We have

EzZ7? = /Ooo Pr[Z7" > z]dz (2.17)
= /Oo F(u)u"'du (2.18)
0

so if F is regularly varying near 0, the index being greater than J is suflicient to
guarantee Condition R. In other words, if both tails are regularly varying, then the
rate of convergence is determined by the tail with the smaller value index! If both tails
have the same index, determining the weak convergence theory becomes more delicate.

2.3 Theorems

We now state the two main theorems. We denote by &5(”) a solution of (2.3) and by ¢° the
true value of the parameter vector.

The first theorem deals with the rate of consistency of the estimators under the left tail
or right tail regular variation.

Theorem 1 Under conditions M,S, together with L or R, for the case p = 2, the solution
2 (n)

¢ ' of (2.3),for some choice of 6 small enough, satisfies:

Ln)n(@™ - 9) = 0,(1) ; (2.19)

where L(n) is a slowly varying function at oo.

For a < 2 this theorem shows that we can achieve a rate of consistency better than n'/?
which characterizes the Yule-Walker estimates. The quantity 6 that appears in the statement
of the theorem determines the estimating equations (2.3) through the definitions (2.1,2.2).

The second theorem deals with the case for p = 1 and shows that an exact limit theorem
is available when a right tail regular variation condition is available. The corresponding left
tail version is the original theorem proved by Davis and McCormick(1989).



Theorem 2 Under conditions M,S and R the estimator ™ of (1.2) satisfies
Pr (bn(qAS(") —¢9) > a:) — exp{—cz®} (2.20)

where

by = (-1—}_?-)? (n) (2.21)

and

¢= /0 ” (1 “TI0 - F(¢ls))) s~ ds. (2.22)

3 Asymptotic Theory

In sections 3.1 and 3.2 we discuss limit theory necessary for the understanding of the asymp-
totic behavior of our estimators of the autoregressive parameters. In Section 3.1 we assume
the innovation variables of the autoregression have distributions concentrating on [0, 00) with
regularly varying left tail and right tail controlled by a moment condition (Condition L). In
Section 3.2 we consider the reverse situation, namely that the right tail is regularly varying
and the left tail is controlled by a moment condition (Condition R). Joint limit distributions
are obtained for vectors built from minima of ratios of the X’s.

3.1 Left tail analysis in the multivariate case

Counsider a first order d-dimensional vector autoregression of the form
Xt - @Xt_1 + Zt. (31)

Here, for each t, X, is a d-dimensional column vector, Z, is d-dimensional with positive
components and {Z,} is iid and @ is a d x d matrix of non-negative coeflicients. We assume
the distribution of Z; is regularly varying near 0 so that there exists a Radon measure v on

[O’OO) Such t;ha;t f()I' T 6 {O, OO)
1. PI[Z] T

b 2, <ta] v([0,2]) (3.2)

(cf. Resnick, 1987, chapter 5). Here 1 is a column of ones of length d. The measure v has
the following homogeneity property: for ¢ > 0

v(t) =tv(") (3.3)



for some o > 0. Equivalently there exists a regularly varying sequence a,, with index —1/a
such that as n — oo
nPrla;'Z, € -] > v(:) (3.4)

in the sense of vague convergence of measures on [0, 00)%.

We also need a condition controlling the right tails of the Z’s and we assume there exists
B > a such that for y =1,...,d
EZ{, <oo . (3.5)

If the Perron-Frobenius eigenvalue of ® is less than 1, there is no trouble showing that
the unique solution of (3.1) is given by the convergent series

X, =397, (3.6)

=0

We now explore some limit theory useful for estimation of autoregressive coefficients.
From (3.4) we get an equivalent statement about weak convergence of point processes, namely

n

Zezt/an = Zejk (3.7)
t=1 k

in [0, 00)? and where the limit is Poisson with mean measure v (Resnick, 1987, page 154). The
following sequence of steps parallels the procedure given in Davis and McCormick (1989).

Define the approximations
q

X9 =392, (3.8)
7=0
and then an argument involving m-dependence shows that

tz_:; 6(051Zt,X$‘i)1) = ; e(jkaEeQ)) (3'9)

in M,([0,00)*®), the space of point measures on [0, o0)?, where {ch‘”} are iid and indepen-

dent of {jx} and Y@ < X9 We wish to show we can replace ¢ by co. As ¢ — oo we get
on the right side of (3.9)

; G YY) %: €Y 1) (3.10)

where {Y;} is jiid and independent of {ji} and ¥y = X. It remains to show, according
to Billingsley, 1968, Theorem 4.2, that for any f € Ck([0,00)%?), the space of continuous
functions with compact support on [0,00)%?, that for any 7 > 0

lim limsup Pr| 3 f(a7' Z4, X)) = 3 f(a7 24, Xy21)| > 0] = 0. (3.11)
t=1

470 n—oo t=1

This is accomplished as on page 242 of Davis and McCormick, 1989. So we have the following.



Proposition 3.1 Suppose (3.1)-(3.2) hold and that the series in (3.6) is convergent. Then
in M,([0,00)??) we have as n — 00

;E(a;1Zt,X¢_1) = ;€(jk,Yk) . (3.12)

The particular case we are interested in is the AR(p) process of (1.1). We may rewrite
this model in vector form by defining

X Zy
Xt—l 0
X, = : , Z;= . (3.13)
Xipt1 0
and
¢1 e ¢p
1 0 e 0
P = o1 0 --- 0 (3.14)
o 0 --- 1 0

Set d = p and suppose that conditions M,S, and L hold. Then (3.2-3.4) hold with
v(dzy,. .., de,) = eo(drs) - - - eo(dzp)azs™ dzy. (3.15)

In this setting, Proposition 3.1 informs us that in My([0, 00]*)

t; €Z.janX i) ™ Ek_: €J,.Y %) (3.16)

where a, = F~(1/n) and where the limit is Poisson with mean measure v X Pr[X; €
where now X = (X1, Xo,...,X2-p). In terms of the original one-dimensional variables, we
extract from this statement that

n

Z €(Zi/an,Xso1 s Xtmp) =7 zk: €50 Y 1) (3.17)

t=1

in M,([0,00)P*"), where the vectors {Y '} are iid with ¥ L (Xyo1,. .., Xi_p) and {Yi} is
independent of {jx}. The limit is Poisson with mean measure az*~'dz P1[Y; € .

We may elaborate the argument in Davis and McCormick (1989), page 242 to obtain

n

Z €(Z/(an X e—i) 1 Si<Pi X em1 e Kimp) =7 Z €n/Yrin<i<p Y &) (3.18)
k

i=1
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in M,([0,00)%).
Now define for any §6 > 0
To(k) = {1 <t <n:Xpk > (14 68) Vi g Xet} (3.19)
as was done for the case p = 2 in (2.1,2.2). Then since
Pr[X, = (1+6) Vioy 1 Xst) =0, i=1,...,p (3.20)

(which follows from the fact that the distribution of X, is continuous; see Proposition 2.1 in
Davis and Rosenblatt, 1991) we get by restricting the state space to

{(21, s 2oy Tty Tp) 2 Ti > (14 6) Vi 1 T-1, 25 € [0,00),7 # 1} (3.21)

that in (M,([0, 00)PT1))P

( Y. B an X)Xty Xemy)y L S SP) = (2’; U ¥i> (1+OVE, 1y Yol €/ Ve Y i) T S Sp)-

t€Tn(s)

(3.22)
The p point processes on the right side of (3.22) are independent because they are restrictions
of a Poisson process to p disjoint regions of the state space. Define

() = {1, y=) 1 y=i > (1 +8) Vicy g y-1}- (3.23)

The following proposition now follows by applying the functional which extracts the mini-
mum of the first components of the points from each point process.

Proposition 3.2 Suppose conditions M,S, and L hold. Then in [0,00)? we have

, |
(/\ t ,1§i§p):>(/\{-%:Y}c,->(1+6)V§’:1’,¢il/}d},1§i§p) (3.24)

teTn(i) ApAt—g

and the components of the limit are independent. The distribution of the ith component of
the limit 1s of Weibull type

PHAL + Y > (14 8) Vi s Y} > o] = expl—a [ 7 PrlY 1€ dgl). (3:29)
k ¢ i

Proof: Note

; 1[Yki>(1+6)Vf=1’g¢;Ykl]€(}‘k,Y}¢) (326)
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is Poisson with mean measure

0t Pr{Y 1 € ()N {(yors - 1up) i > (14 6) Vi vt)] (3.27)

We are now in a position to compute the limit distribution above:

PrA(E ¢ Yii > (1) Vi Yaa} > 2]
k 3

= exp{—// as® 'dsPr[Y, € dy, Y, € {i}7]}
{(s.y):3/yi<z}

= exp{—z° /{2‘}> y2 Pr[Y € dyl}. (3.28)

3.2 Influence of the right tail

In this section we discuss why the right tail may be important to a decision how to estimate
autoregressive coefficients. We present the limit theory which will underlie our approach.

Suppose we have an infinite order moving average process

X, =3 ¢Zj, t=0,%1,£2,... (3.29)

=0

where {Z,} are iid, non-negative with regularly varying tail probabilities as given in Condition
R. Define

by = (I__Lﬁ)h (n) . (3.30)

We assume the non-negative sequence {c;} satisfies
o0
Zc;‘ < 0o, forsomel <A <aAl (3.31)
=0

This guarantees the infinite series in (3.29) converges and also from Cline (1983)

. PrXy >t &
—_— = _S_ 2. .32
thm 12 > 1] ¢ (3.32)
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We seek weak convergence of the sequence of point processes 352, €(X, /bn,Z141) 1 the vague
topology on M,((0,00] x [0, 00)), the space of Radon point measures on (0, 00] x [0,00). We
proceed in a series of steps which parallel closely those employed by Davis and Resnick
(1985); see also the summary of the Davis and Resnick paper in Resnick (1987), pages 224ff.

First observe that the regular variation Condition R(1) is equivalent to weak convergence
of a sequence of point processes

> ezb = > € (3.33)
t=1 k

where the limit point process is Poisson with mean measure az=*'dz, z > 0. (Cf. Resnick,
1987, Proposition 3.21.) Fix an integer m and set

n

I, = ; E((ZemrrorZimm) b, Z2) (3.34)
so that I, is a random element of M,(([0,00]™ \ {0}) x [0,00)). Note that for any 6 >0
EL(Ui<icicm{(21,-- oy Zms Zma1) P 7 > 6,25 > 0}) (3.35)
- (T;)nPr[Zl > 8bp, Z > 8bp, Zs > 0] (3.36)
~ (T;) 5~ Pr[Z; > 6b,] — 0 (3.37)

as n — oo. Define basis vectors in R™ by e; = (0,...,1,...,0), with 1 in the [th spot,
1 <1< m. Define I’ by

n m

I = ZZ €t (Ze—1€1),Z¢) (3.38)

t=1 [=1
Let p be the vague metric on M,(([0,00]™ \ {0}) x [0,00)). Because of (3.35-3.37) we get,
as in the discussion of Resnick, 1987, page 233, that

p(I, I B0 . (3.39)
The weak limit behavior of I is the same as for the sequence
I::* - Zl lz e(by_Ltheth-}vl) (3.40)
t=1 =1

cf. discussion in Resnick, 1987, equation (4.81)). To verify this assertion we can write (set
q
k=t-1)

L= 32 €6 Zr €1, Zk11) (3.41)
I=1 k=1
m 0 m n
+ z Z e(br—l_lzkehzk-}‘l) - Z Z e(b,‘llee,,ZH,) (3'42)
=1 k=11 =1 k=n-I+1

= I +I11-1II (3.43)
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It is easy to check that
1150, 11to (3.44)
as n — oo and this verifies (3.40). Now the sequence of point processes

n

Ze(b;z—th,Zt.{.l,...,Z,.{,.m)? n Z ]—a (345)
t=1

being based on the stationary m + 1-dependent sequence
{(Z,...Ztym), —00 < t < 00}, is weakly convergent to a Poisson limit

Z e(jkfykl v“»Ykm) (3.46)
k

where {Yi,k > 1,1 <1 < m} are iid random variables with the same distribution as Z;
and are independent of the {jx} and where the limit Poisson process has mean measure
az~"1dz x Pr[(Z4,...,Zm) € -]. By projecting we then get in (M,(0, 0] x [0,00)))™ that

(Z € 20 Zen) D f(bglzz,zt+m)) = (Z €G¥in) 2 E(n,nm)) (3.47)
t=1 t=1 k k
and therefore from an easy mapping argument we have
(Z e(bngtel,Zt_,_l)’ cTt Z e(bTTIZzem,Zg+m)> = (Z e(jkelek1)7 ctt Z e(jkem’ykm)) . (3'48)
t=1 t=1 k k

Since addition is vaguely continuous we finally obtain

L= > chevi) (3.49)
=1 k
whence also .
I, = Z Z €(jk€1, Y1) (3.50)
=1 k
As on page 235 of Resnick, 1987, apply the mapping
m—1
(205 -+ Zm—1s2m) — (D €iZj> Zm) (3.51)
Jj=0

and Proposition 3.18 of Resnick, 1987 to (3.50) to obtain

n m—1
;6(551 Z;':(—)l cjZi—j-1,%t) = zk: g EGrer Vi 141)" (3'52)

Now one needs an argument justifying replacement of m by co. This is almost identical to
the one presented on page 237 of Resnick, 1987. We have proved the following proposition.
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Proposition 3.3 Suppose Condition R holds as does (3.31). Then we have,
in M,((0,00] x [0,00)), that

72

DG X,z = Eki

t=1

8

€Gper, i) (3'53)

Iy
o

and for any positive integer p we have in Mp(([0,00]P\ {o}) x [0, c0))

n O
Z e(b;:l(Xt_l,Xt_g,...,Xz_p),Zt) ¢ Z Z G(jk(clycl—l 7“'1Cl—-p+1)val) (3'54)
t=1 k 1=0

where for j < 0 we set ¢; = 0, {jx} are the points of a Poisson process with mean measure
ar™* N dzlg)(z) and {Yu, k > 1,1 > 0} are iid random variables with the distribution of
Zs.

The proof of the second claim in Proposition 3.3 follows as in Theorem 2.4 of Davis and
Resnick, 1985. —

We now use the fact that weak convergence holds when restricted to a subset of the
state space, provided the limit process has no points on the boundary of the subset with
probability 1. We thus conclude that

{ Z b (XimtonXtmp)iZ2) 1=1,... ,P} = {Z E E(GrlCrrmClopt1)sYit) 3 1=1,... 727}

teTn() k leCc(i)
(3.55)
where
C(?) = {l D041 > (1 + (S) Vi<j<pij#i cl—j+1} sfore=1,...,p . (356)

For example, if co > ¢ > ¢ > -+~ and ¢ = 0 for 2 < 0 and ¢; > 0 for 1 > 0, then
C(i) 2 {i — 1} for & small enough. This case is the appropriate one for the AR(1) process of
the type satisfying Condition M. For the result (3.55) to follow from (3.54) we require that
the set {l C Ol & (1 -+ 6) Vlsjsp;j;(;i Cz_j+1} = @

For the purpose of the limit theory for estimation we will need to divide Z; by b;' X,
in (3.55) in order to prove:

E €bnZe/ Xe—i :>Z Z €Yii/Ukci—it1)  * (3'57)

teTn(3) k leC(3)

We now consider how to justify this operation. Define the map

T : (0, 00] x [0,00) = [0, 00) (3.58)
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by
T(z,y)=ylz . (3.59)

Since T-1({1}) is not compact, we note from Proposition 3.18 of Resnick, 1987 that a trun-
cation of the state space will be necessary. The following argument parallels one presented
in Davis and McCormick, 1989. Choose M large and restrict the state space to the compact
set [M~!, 00] x [0, M]. Then from (3.55) we get that the further restrictions converge:

Z 1[6;1X¢_1>M—1,Zt§M]€(b;1Xt~1,Zt):>Z Z 1[jkcl-—i+1>M"1vy}elSM]e(jkcl—i+1»th) . (3'60)
t€Tn(d) k 1€C(i)

Because the state space is now compact, we may apply T' to get

3 1 - ez =Y, Y o> Var/lraroiss) - (3:61)
7' X1 >M =1, Ze M€ g2l kci—it1 >M 1Y <MYk /(Grci—i41)
1€Tn(4) o t Xi—iltn k 1eC(i) e *

Letting M — oo in the right side of (3.61), yields the right side of (3.57) and by Billingsley,
1968, Theorem 4.2 it suffices to show that for any f € Ck([0,00)) and n > 0

. b,Z, b, Z,
A}lm limsup P[] > f(th)l[.’ffr;i>M—l,Zt§M] — z )f(X t

e meeo teTn(i) i teTn(i

) >2]=0 . (3.62)
t—i

Suppose the support of f is [0,¢] and for simplicity assume f < 1. The probability on the
previous line is bounded by

- ant = ant
PI‘{Z—; f(Xt—-z)l[thrjz <M-1] > n] + PT[; f(Xt—i)1[Zt>M] > T]] (363)
= A+B . (3.64)
Now B is easily disposed of since
n ant
B < Pr{Ut___l[X <c¢ Z, > M|} (3.65)
t—i
< mmﬁzlgga>ﬁﬂ (3.66)
Xo
b, M
< < 3.67
< net < g (367
Xo . M
= —_ .6
nPr[bn > C] (3.68)
and from (3.32), as n — oo this is (3.69)
~ (const) (3 c§)M™* =0 (3.70)
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as M — o0.

To kill A we need to assume a bit more, namely that for some § > «
EZ[" <o (3.71)

in other words, Condition R(2). By an argument similar to the way we bounded B we have

A < apl <o Kooy (3.72)
Xo b,
< nPrlct < Xo 2y < eM™ (3.73)
bn 2
= nPrlc™t < XoZ7 g me)] (3.74)

Since Zi'1 (2 >Mc1] has a finite 3 moment, it follows from a result of Breiman, 1965 that
asn — oo the forgoing is asymptotic to

~ Z S EZT g1 gy (3.75)
— 0 (3.76)

as M — oo. This verifies the following statement.

Proposition 3.4 Suppose Condition R holds and that also (3.31) holds. Then in M,([0,00))

we have
Z €bnZi]/Xoi :?Z Z Vi /(rci—it1) - (3’77)
teTn(i) k leC(i)

In fact, for any p > 1, the following more general statement holds: In (My([0, 00)))? we have

{ Z ebn 5 =1 ..,p} = {Z Z €Yt/ Grer—iz1) izl,...,p} . (3.78)

teTn(z) k leC(s)

Both (3.77) and (3.78) assume ¢;_;41 > 0 for I € C(z) — this follows from the definition
(3.56).

Proof: Follows from the above with (3.78) being obtained by elaborating slightly the argu-
ment leading to (3.77). —
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4 Proof of Theorems

In this section we give the proofs of the theorems based on the weak convergence results just
established. The following lemma is the required conclusion of those results.

Lemma 1 Under conditions M,S, and L or R there ezists a 6 > 0 small enough and a
sequence of constants {¢.}, regularly varying with indez 1 e, for which:

Zy
Xk

angcn) ={n /\
teTn(k)

= Wir; k=1,2 (4.1)

where = denotes weak convergence.

Proof: The quantity & enters into the definition of T,(k). The conclusion of the lemnma for
the case of conditions M,S, and L is Proposition 3.2 with ¢, = 1/a,. We need only take care
that 6 is chosen so that (3.20) is true.

For the case of conditions M,S, and R the result follows from Proposition 3.4, namely
(3.77), with ¢,, = b,. We describe this derivation now.

First we consider properties of the ¢;’s for the AR(p) case. We set

®(z) =1~ i ¢:i7' (4.2)

i=1

and then since ®(z) has no roots in the unit disk (Condition S)

C(z) = i ;2 = <I>(1z) (4.3)

i=0

determines the sequence {c;} (Brockwell and Davis, 1991). In fact, on writing down the
equations for determining the ¢; in terms of the ¢;, we see that cg =1 and ¢; < 1for 3 > 1
when Conditions M and S hold. These results make use of the fact that ¢ + -+ ¢, < 1,
as indicated in Remark 1. Moreover, in the special case that {X;} is an autoregression of
order p given by the recursion (1.1) the ¢;’s will decrease exponentially fast and so (3.31) is
assured.

Thus far we have shown that the conditions of Proposition 3.4 hold. In order to interpret

the conclusion we need to ascertain C(7). Let us concentrate on the case p = 2. It is clear
from the definition (3.56) that ¢ — 1 € C(3), for ¢ = 1,2, if & is small enough. The latter
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follows from the fact that ¢, = 1 is the largest ¢;. Therefore, when we take the minimum
functional of the points in the state space on both sides of (3.77) we obtain

Y
% = N\ A

k 1ec(i) JkCl-i+1

(4.4)

In fact, for the case of the AR(p) of (1.1), we can conclude from (3.78) that

bn(/\ 2 A X‘fﬁp)#(/\/\ “u ,1_<_z'3p)- (4.5)

HECRS -
teTn(1) Ko teTn(p) k 1ec(i) JkCl-it1

(-

Proof of Theorem 1: Let (}5(“) be a solution of (2.3) and suppose that the two lines
that intersect are given by the indices t,(k) € Tn(k) ; k = 1,2. We assume that 6 is
chosen sufficiently small so that the sets T(k) increase indefinitely as n — oo. The latter
follows from the stationarity assumption (Condition S) which assures that there is a positive
probability that X,_1 > X;_ and a positive probability that X; ; < X .

Writing
A = 3" _ 40 (4.6)
we have that éﬁ(n) and A™ satisfy
) (n) n n
0= Zuw(@") = Zungy — A X1 — A Xipwy—a 5 k= 1,2 (4.7)
or
AP +UMAP = v (4.8)
UPAr + AP = v (4.9)
where, for k= 1,2,
Z
y = Sl 4.10
k th(k).—k ( )
Ulm = Xongy-orr 1 (4.11)

Xinty-k 140

Solving (4.8,4.9) we obtain

A U(")v(n)
ap - WU ) (4.12)

(- 0P
(%" - UOV)

(1-U0g”)

il

A (4.13)
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From (4.11) we can derive that

6 n n n n " n
(AT ) <Al AP < (i 41 (4.14)

The first inequality comes directly from studying the solutions (4.12,4.13). Indeed

6
Aﬁ"’ + A(zn) > Vl(n)(l - —) Vz(n)(l - *-——)] /1= 154 [V1(n) + Vz(n)] . (4.15)

1 +uize < by (4.16)
U1 + T < by (4.17)
for wuy,ug,b1,b > 0 (4.18)
and U, ug < (4.19)
is such that
T1+ 22 <b+b . (4.20)

This last result comes from considering the LP to maximize z1 + zz subject to (4.16,4.17).
(For example, looking at the dual LP gives the result easily.)

Moreover, further simple calculations from (4.12,4.13) will reveal that

n L) n 1 2
1Aw1s<w>+WU/P-Q33)} (4.21)
< LAy vy k=12 (4.22)

We proceed to show that V(™ + V™ cannot be too much larger than L™ + LV, where
L\ is the minimum of Z,/X,_s for ¢t € T,(k) — see (4.1). Indeed, let t;(k) be the index in
Tn(k) for which LfC") is achieved, and let, correspondingly,

o _ Xin(k)=3+k k

- k=12 . 4.23
k Xt;(k)——k ( )

For gAb(n) to solve (2.3) we require that
AP yumaAl < L (4.24)

<
Ut AP + A < LY
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(Otherwise the value of one or both of the M, é”)(&s(")) would be negative!) But for NN

to satisfy these inequalities, just like those in (4.16,4.17), we must have

AP + AP <LV 4 L8 (4.26)
This fact together with the first inequality in (4.14) proves that
5 n n n n n n
A V) < AP+ AL < (17 + 1Y) (4:27)
and therefore, from (4.22)
2
A < (122 W4+ LMy k=12 . 4.28
¢ 6

However from Lemma 1, anﬁc”) coverges weakly and so we conclude that
AP =0,(1); k=1,2 . (4.29)
This completes the proof of Theorem 1. —

Proof of Theorem 2: This proof comes again from Proposition 3.4. Since the convergence
in (3.77) is in M,([0,00)), the mapping from the point measures to the minima of the points
is an a.s. continuous functional (cf. Resnick, 1987, page 214 for related discussion) and
hence we get

R Y
b = - 4.30
" ¢/=\1 X {\, cjk (4.30)
Based on the fact that Y €;, is a Poisson process with mean measure ar™® ' and {Yi} is
iid and independent of the Poisson process, we can easily compute the distribution of the

limit in (4.30): For any = > 0 we have

Y Y

Pr[{\laﬁ >z] = EPr[gj—k- >z, forall k|{ju}] (4.31)
= EHPr[YM > cjez|{jn}] (4.32)
= Eg(l — F(cjix)) (4.33)
= EII;[ 9(z k) (4.34)

where we have defined a new function g by

s, 9}

g(u) = [I(1 = F(aw)).

=0
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Now write
EHg(.’E]k) = Ee—zzo(~10gg(xjk))
k

which is the Laplace functional of the Poisson process with points {7x} at the function
—log g(x-) and therefore

ETLo(xis) = exp{_-Jf”(l-e~t-k%g@mﬂ)au~a-ldu} (4.35)
- exp{-JCx(l-_g(xu)yxu-a—ldu} (4.36)
= exp{—cz} (4.37)
where -
¢ = — g(zu))au™*du = - — F(qgs)) | as™@ ds.
Jtren) [ (1-Tia- Few)

Recall in the AR(1) case that ¢ = ¢'. The gives us exactly the required result since

Jm g0 N2 (4.38)
t Xt—-l
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