SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853

TECHNICAL REPORT NO. 873

October 1989

RANDOM USC FUNCTIONS,
MAX-STABLE PROCESSES
AND CONTINUOUS CHOICE

by

Sidney I. Resnick!
and Rishin Roy?

1Partially supported by NSF Grant MCS-8801034 and the Mathematical Sciences
Institute at Cornell University. Postal Address: School of Operations Research
and Industrial Engineering, Cornell University, Ithaca, NY 14853.

*Supported by the Johnson Graduate School of Management, Cornell University.
Postal Address: Johnson Graduate School of Management, Cornell University,
Ithaca, NY 14853.



Abstract

The theory of Random Utility maximization for a finite set of alternatives is generalized
to alternatives which are elements of a compact separable metric space T. We model the
random utility of these alternatives ranging over a continuum as a random process {Y;, t €
T} with upper semi-continuous (‘usc ) sample paths. The alternatives which achieve the
maximum utility levels constitute a random closed, compact set M. We specialize to a
model where the random utility is a max-stable process with a.s. usc paths. Further
path properties of these Processes are derived and explicit formulae are calculated for the

hitting and containment functionals of M. The hitting functional corresponds to the choice

probabilities.



1 Introduction

We describe a general approach to the modeling of probabilistic choice from a set of
alternatives whose cardinality need not be finite. We assume that the set of alternatives T' s
is a compact separable metric space. In concrete examples, T is usually the unit interval,
the unit square or the unit circle. We postulate that the preferences of an individual over
the range of alternatives are represented by a real-valued utility function. Individuals
are assumed to adhere to utility maximization as the criterion for selecting a particular
alternative. The randomness in the utility function is assumed since even if the choice
process is deterministic for a particular individual, the analyst is in general not cognizant
of its precise specification. ( For further discussions on this and on models of choice from
finite sets of alternatives, see McFadden(1981) ). To ensure that the choice problem is
well-defined, we assume that the random utility function has upper semicontinuous (usc)
realizations implying that the maximum level of utility is achieved by at least one alternative
in the space T.

The study of this problem is motivated by choices in sets which are not finite. A
potential area of application includes the issue of choice of retail store location where the
choice set may be modeled as a compact subset of R2. Lerman(1985) contains a discussion
on issues related to continuous choice sets in the context of choice for spatial alternatives.
Alternatively, a media manager selecting a time-slot in a media vehicle may be viewed
as facing a continuum of alternatives. The brand and quantity purchase decision of a

consumer may be modeled as choice from a compact subset of R™ where the n-vector x has

as its ¢** component the quantity of brand ¢ which is purchased. Note that here one would
be implicitly assuming that the brand and quantity purchase decision are simultaneously

executed.



The choice of mode of transportation may be dependent on the time of travel, which
can be viewed as alternatives which are elements of a closed interval in R, . In the area of
transportation demand forecasting, Ben—Akiva et.al.(1984) provide a comprehensive expo-
sition for spatial choice models based on the Continuous Logit model, which was derived
by taking limits of Logit choice probabilities for finite sets of alternatives as the size of
these sets tended to infinity ( cf. also Ben-Akiva and Watanada(1981) ). McFadden(1976)
initially derived the Continuous Logit model by defining an ‘ independence from irrelevant
alternatives ’ (ITA) principle for non-finite sets in terms of an absolute continuity condition
on the choice probability measures.

Section 2 contains the description of the general model with utility functions as random
elements of the space of upper semicontinuous functions on T denoted by US(T). The
topological preliminaries concerning US(T) and 7 (T'), the space of closed subsets of T, are
discussed. We then show that the set of alternatives which achieve the maximum utility
level, M, is a random element of 7(T') and deduce that the choice probabilities correspond to
the hitting functional of M ( cf. Matheron(1975), Salinetti and Wets(1986b) ). At this stage
the model is still very general, and in Section 3 we specialize to a model where the random
utility function is a max-stable process ( cf. de Haan(1984) ) on T with a.s. usc sample
paths. The use of max-stable processes in modeling continuous choice was ingeniously
proposed by Cosslett(1988) who selected a specific parametrization of a stationary moving—
maximum process ( cf. Balkema and de Haan(1988) ) with a.s. continuous paths to represent
the random utility functions. We develop characterizations of max-stable processes with
usc and continuous sample paths. Subsequently in section 4, by suitably projecting the
underlying Poisson random measure onto subspaces, we compute the functionals of M

which correspond to the choice probabilities. Then explicit characterizations are provided



for max—stable processes which result in M being a.s. singleton. Finally, by invoking results
on measurable selections we provide insight into how one can develop tractable choice models

in this framework and present some illustrative examples.
2 Preliminaries on US(T) and 7(T).

The space of non—negative upper semicontinuous ( usc ) functions on T' denoted US(T),
is a convenient setting for considering utility maximization with a continuous range of
alternatives. This is because a usc function on a compact set achieves its maximum. Recall
we assume that T is a compact Polish space. The o—algebra of Borel subsets is denoted by
B(T).

A standard topology for US(T) is the sup-vague topology ( cf. Vervaat(1988) ) which

has basis sets of the form

{feus(): V f(t) <z}

teK

and

{feusm) : \/ f(t) > =}

teGq

where K € 7(T'), the closed subsets of T', and G € §(T), the open subsets of T. We denote
by B(US) the usual Borel o-algebra on US(T), i.e. the o—algebra generated by open sets.

Henceforth we will use the abbreviation :

N (B) =\ f(t), Be B(T).

teB

If (2, A,P) is a complete probability space, we say that the map

£€: 00— US(T)



is a random usc function if it is a random element of (US(T'),B(US)). This means
§HBUS)) € 4.

To construct a random usc function proceed as follows. Suppose ¥ = {¥;,t € T} is a
separable stochastic process with values in [0,00) and that for almost all w € 0 we have
Yi(w) is an usc function of t. Modify ¥ so that all paths are separable and in US(T).
This change on a w-set of measure 0 produces a new version which we also call Y. This
Y is a random element of US(T) ( cf. Salinetti & Wets(1986a), Theorems 6.1, 6.2, and

Vervaat(1988), Theorem 7.2 ). To check this we need to verify

Y™ HfeUS(T) : fY(K)<z} € 4 (1)

Y HfeUs(T) : fY(@)>z} e A. (2)

forz e Ry, K € 7(T),G € G(T). If D is a separant for the separable process Y then

( Billingsley(1986) p. 550 ff., Ash & Gardner(1975), Kendall(1974) ) (2) above becomes
{w:YY(G,w)>z}={w:YY(GND,w) >z} 4

since D is countable. For (1) let G,, € G(T),Vn, and G, > K, Gy, | K. By upper semi-

continuity of paths

YY(Gn) | YY(K)

and so

{w:YV(K,w) <z} = U{w :YV(Gp,w) < z}

n

= U{w :YY(G,N D,w) < z} € 4}.

n

This argument also shows that YV(K), and YV(G) are random variables.



The following fact will be essential for using measurable selection theorems in the last
section. If Y(w) = {Y (t,w), t € T} is a random element of US(T), then Y is measurable,
i.e.

(t,w) — Y (t,w)
is measurable
B(T)x A~ B(Ry)

( cf. O’Brien, Torfs, Vervaat(1988), Salinetti & Wets(1986a) ).
This is checked as follows : Let {{G’S"),i < kn},n > 1} be a nested sequence of open

coverings of T and suppose diam(G‘(n) ) < 1/n. If we define fort € T

YOm =V rve?)

iteq™
then upper semi-continuity implies for t € T
Y @) LY (2).
To prove Y is measurable it is enough to prove Y () measurable. For z € R,

{tw) : YO (w) > 2y = |J ™ x{w:vV(GEM™,w) > 2} € B(T) x 4
1<i<ky,

since YV(GEn)) is a random variable whenever Y is a random element of US(T).
Recall 7 = F7(T) is the class of closed subsets of T. We may give 7 avtopology by

declaring the following collection as sub-basis sets of the topology :
{Fe¥ : FnK=¢}, {FeF : FNG # ¢}

for K € 7(T'), G € G(T). Since T is compact, Polish, 7(T') coincides with K(T'), the space

of compact subsets of T. Then the hit-miss topology defined above on 7(T') is the same as



the topology generated by the Hausdorff metric on K(T) ( ¢f. Vervaat(1988) ). Let B(7)
be the Borel o-algebra generated by the open subsets of 7. A random element of (7, 8(¥))
is a random closed set( RACS ) ( cf. Matheron(1975), Vervaat(1988) ) .

If feUS(T), then

F:={teT : fi)=f'(T)} € 7
For if t,, € F and t,, — 1o then since f(t,) = fV(T) we have by upper semicontinuity
fYUT) = limsup f(ta) < f(to) < f¥(T)

whence t; € F, showing F is closed.

Y = {Y;, t € T} is a random element of US(T), then define
Mw)={teT : Yi(w)=YY(T,w)}.

For each w € 1, M(w) is a closed subset of T, and in fact M : @ — ¥ is a random closed

set. To verify this it is enough to show
{w: Mw)e{Fe? : FNK#¢}}ec 4 (3)
for K € 7(T') ( cf. Wagner(1977), Vervaat(1988, Theorem 11.9) ). The set in (3) is
{w: MW)NK #¢} = {w : It € K s.t. Vi(w) > YV(T,w)}
and since the supremum of Y over K is achieved, the above is
{w:YY(K,w) >YVY(T,w)} € 4

since YV(K) and YV(T) are random variables.
We now summarize this discussion. We intend to model a random utility process

corresponding to alternatives in a compact Polish space T, by a stochastic process ¥ =

6



{Yi(w),t € T, w € Q}. We want Y to be a random element of US(T) since functions in
US(T) achieve their maxima. If Y has all paths separable and in US(T), then Y is a
random element of U'S(T') and enjoys the technical property of measurability. The set of
alternatives

M@)={teT : Y(w) =Y"(T,0)}

which provide the economic agent with maximum utility is a random element of ¥ (T); ie.
a random closed set.
For a utility maximizing agent, the probability of selecting an alternative from a non—

empty set K € F(T') is specified by the Choquet capacity, or hitting functional of M :
P[M[) K # ¢| = P| some alternatives in K maximize utility ]

As yet we have not yet specified any properties of the random utility process Y; except that
1t be a random element of US(T'). In the interests of developing tractable continuous choice

models, we specify in the next section that {Y;, t € T} is a max-stable process.

3 Max—Stable Random Utility Processes : Specification
and Path Properties

In this section we start from a Poisson process and specify a maz-stable process as a
functional of that Poisson process ( cf. de Haan(1984) ).
Let (U,U, p) be a complete probability space. Recall T is a compact, Polish space. Let

{Tk,k > 1} be the points of a homogeneous Poisson process with unit intensity so that

where E; is a sequence of iid unit exponentials. Suppose u; is a sequence of iid U-valued

rv’s with distribution p, independent of I'y. Then {(uk,I'x),k > 1} are the points of N, a



Poisson process ( PRM ) on U x [0, c0), with intensity measure pu(du,dz) = 1y(u)p(du) x
1{0,00)(2)(dz) ( Proposition 3.8, Resnick(1987) ). Let {f;,t € T} be a class of non-negative

functions with domain U which are Li(p) (ie. Vt €T, [;; fi(u)p(du) < co ). Then

Yt:\/f(uk)

t
E>1 T

is a max-stable process with index set T ( cf. de Haan(1984) ). The finite—dimensional
distributions of Y; are :
n n
P Lﬂl{Yi; < w(‘)}} = exp (— /U ¢\=/1 ﬂx—((,;z—)- p(du)) : (4)
fort; € T,20) > 0,i{ = 1,...,n. Cosslett(1988) and others specify their processes to
have Gumbel marginals. This can be achieved in our framework by a trivial logarithmic
transformation ¥; — InY;. Cosslett(1988), de Haan and Balkema(1988) considered a special
case of the max—stable model, namely the stationary max-moving average.
We may consider {f;,t € T} as a stochastic process on (U,U,p). This process always
has a separable version ( Ash & Gardner(1975), Billingsley(1986) ) which we also denote

by {f:,t € T'}. Thus, if the separant is D,
(T) = fY(TnD)

is measurable. Henceforth we assume that for all u € U, {f;(u), t € T} is separable. This
assumption does not change the finite-dimensional distributions (4).
Two basic results are the following : Let {Y;,¢ € T'} be a separable max-stable process

whose finite-dimensional distributions are given by (4) above. Then

(a) Y; is a.s. finite in any measurable set B C T iff

/ fY(T N D,u)p(du) < oo
U



(b) Assume fY(T) € L1(p), i.e. Y; is a.s. finite on T. Then {Y;,t € T} is stochastically

. . . . . L
continuous iff {f;,t € T'} is Ly(p)—continuous ( i.e. as t, — ¢, fz, 1) ft ).

To check (a) note that YV(B) < YV(T) and that by separability and (4)

—logP[YV(T) < z] = —logP[YY(TND)< 2]
= x’ILfV(TﬁD,u)p(du), z>0

and the result is immediate ( cf. de Haan and Pickands(1986) ). The result in (b) is Lemma
2 of de Haan(1984).

For the purpose of modeling the random utilities of the alternatives in T as a max-stable
process, it follows from the discussion in section 2 that we would like the utility process to
have usc realizations. The next theorem characterizes a.s. finite max—stable processes with
usc paths.

It is convenient to define
fu) = fY(Tow) = (TN D,u), uev
and recall that {f:(u), t € T'} is separable with separant D, for all u.

Theorem 3.1 Suppose f* € Li(p). If for p-a.a. ue U

t— fi(u)

is usc then {Y;,t € T} is separable with separant D and for a.a. w, Y.(w) € US(T).
Conversely, if Y = {Y;,t € T} has a.a. paths usc then' Y is separable with separant D and

for p—a.a. u
t ft (u)

18 usc.



Proof: Let N = 3’ €(y, r,) be the Poisson process with points {(ug,Tk), & > 1} and

mean measure 1y (u)p(du)ljo,c)(z)dz. Then for any § > 0,

BN (((wa): s o) = (/{(uxmu) /z>5}1v(u)p(du)) 1jo.0)(2)ds

Il

(1/9) [ £ @pdw) < oo
This implies E[#k : L%—;f’il > 8] < oo and consequently for all n
Qn = {0) : ; 1[f*1£:!)>n"’1](w) < OO}

satisfies P[{2,] = 1. Define

M, (w) = sup{k : f*lg“") > n71}
k

so that on Q,, M, (w) < co.
Now we proceed with the proof of the theorem.

(Sufficiency) For p-a.a. u € U, suppose f;(u) is usc in t. Let
Uy={ueU : f(u)eUS(T)}

so that p(U;) = 1. Define

Q. = {w : ux(w) € Uy, Vk}

so that
PO = p(LkJ[uk ¢ Uﬂ)
< Ek:p(Uf) =0
and
P[] =1



We show that for w € (N,0Q,) N Q,, Y (w) is usc. Pick to € T and consider two cases.

Case 1 : If Yy (w) > O, then there exists ng such that 1/ng < ¥;,(w) and since

€ (an) Q% € Qn,

we have
My, (w) < oo.
Thus
. . fe(ur(w))
limsupYi(w) = limsup _—_
25pYale) t—to k\z/1 Ty (w)

[ My, {w)
. ° fo(ur(w)) fi(ur(w))
= hﬂs::p ( V I‘klzw) )V( V Fklzw) H

k=1 E>Mp, (w)
[ /M, (w)
imsu - fe(ue(@)) f* (ur(w))
< lt-,top ( k\:/1 Tx(w) )V(MXO(W) T (w) ”

Mg (w)

limsup \/ M) ngt.

toto | gey Tk(®)

IA

Since ux(w) € Ui, fi(ux(w)) € US(T) for k = 1,..., M, (w), whence Vl,:{_[__fl"(w) flur(w)) o

Ir(w)
US(T). Therefore the previous expression is bounded above by
Mg (w)
\"/w feo (ur(w)) sl < (V fto(uk(w))) nol
k=1 Lr(@) B 1 Tr()
= Yy (w) \Vng" = Y (w)
since ng was chosen to satisfy ng' < ¥;, (w).
Case 2 : If w € (N, 2) N2 and Yy, (w) = 0, then for any n
My (w)
: fe(ue(w)) fi(ur(w))
msup Vi{w) = hmsup
bto ') t—to [( k\/l Ta(w) \ k>l\\'f/(w) Tg(w)

11



t—>i0

[ [Mn() up(w *{ug(w
< limew (v ___._ftlek;g)»)v( y mf;k;g)>>)}

k=1 k> M, ()
M, (w)
: fe(ur(w)) -1
< 1
e[ VARG Ve

IA

Yio (w) \/ nl=n1

and since n is arbitrary

limsup Y;(w) = Y3, (w) = 0.
t—'to

For either Case 1 or Case 2, we have shown that for w € (N, Q2,) NQ. and any tc € T
limsup Y3 (w) < Y3, (w),
t-+lg

whence t — Y3(w) is usc.
Conversely define

Qusc :={w : t — Yi(w) is usc}

and therefore we have P[Qysc] = 1. If f; f*(u)p(du) = O then f*(u) = O for p-a.e. u and
for all t € T, fi(u) = O for p-a.e. u. So for p-a.a. u: fi(u) is continuous in t. Hence

suppose henceforth that f;; f*(u)p(du) > 0. Then there exists ¢ > 0 such that

[0 = 9" p(dw) >0

Write ( cf. Balkema and de Haan(1988) )

Y*:( Vv 'f‘%%l)\/( V M)=ﬁv1@"

k:Tr<c k k:Tr>c Fk

so that Yt' is independent of Yt" by the complete randomness of the underlying Poisson

process.

12



Define E' := {w: N(U x [0,¢], w) = 1} and we have
P[E] = P[N({Ux[0,c])=1]
= EN(U x [0,c])exp{—-EN(U x [0,¢])} = ce™° > 0.

Define E" as the event

Eu _ [v Y,tn < 1]

teT

i

{w: N{(u,z) : 2> ¢, f7(u) > 1} = 0}
= {w: \/ M < 1}

ETp>e Lk

and we have

PE"] = P[N({(u,2) : o>, 1—%1 > 1} = 0]

- P (“ /{(u,z):z>c, L) 59y p(du)dx)
= e (= [ (@)= 9*) plaw) > o

Again from the complete randomness of N, E' and E" are independent so that P[E' N E"] >

0. Note that if w € E' then

i) = Lt
Forwe E'NE"
He) =Y @V ¥ () = Ly v )
whence

_ fe(uwi(w))\ jm
Y(w)V1 = WVK(W)\/l

fi(ui(w))
I‘1(w) \/

13



and therefore
Ty (w)(Yi(w) V 1) = fi(ua(w)) V T1(w).
Forwe E' N E" NQusc we have that Y;(w) is an usc function of ¢ and from the preceding

equation conclude fi(ui(w))V I'1{w) is usc in ¢t. This implies

P({f(w) \/T1 £ US(T)} N {E' 0 E"}] =0

Consequently,

Plfi(v)) \/T1 ¢ US(T) | E'NnE"] =0

Conditional on E' N E", (u1,T) has distribution p(du)c~'dz on U x [0,¢]. From this and

Fubini’s theorem we get

il

Plf(u)\VT1 ¢ US(T) | E'nE"] = ¢ [[0 , ( /{uevzf ) a5 p(du)) dz

= c"l‘/‘
[o

We conclude that for Lebesgue a.a. z € [0, ¢,

]p{u €U : fi(u)\/z ¢ US(T)}dz=0.
p({uel : fi(w)\/zgUS(T)}) =0

Now pick a sequence x, | 0, such that p{u e U : fi(u)V z, € US(T)} = 0. Then the sets
Az, ={ueU: fi(u)\/ 2, ¢ US(T)}

satisfy

Ao T Ao = {ue U fi(w) ¢US(T)}.

From monotone convergence p(Az,) T p(Ao) whence p(Ag) = 0 and we have our required

result.

14



It remains to prove that if V" has a.s. usc paths, then Y is a separablé random function.

Set

Qgep = {w : t— fi(ur(w)) is separable, Vk > 1}.
Since {f;, t € T'} is assumed separable
P[Q,.,] = 1.

We show for w € (,, 2n) N Qsep N Qusc that {Yi(w) : t € T} is a separable function with

separant D.

Suppose initially that Y;,(w) > O and let ny be an integer satisfying 1/no < Yi,(w).

Then
My, (w)
_ oy Jrlur(w))
Yto(w) - k\=/1 I‘k(w) .
Suppose for 1 < 55 < My, (w)
N fulus@)) _ fulun(@)
pe1  Tr(w) Ljo(w)

Since fi(uj,) is separable, there exist t,, € D, t, — o such that

Jtn (ujo(w)) Jto (ufo (w))
Yen (w) 2 I‘:io (w) - Pjo (w) .

Therefore
. feo (ujo («))
liminf V3, (w) > =522 = Y, (w).
i D) ol
Also, by upper semi—continuity,

limsup ¥, (w) < Yiy (),
n—00

whence

Vi (@) = Yio(w).

15



If on the other hand Y;,(w) = O then by upper semi—continuity
limsup Y, (w) < ¥iy() = 0
n—eo

so that again

Y, (@) = Y ().

This demonstrates separability.

Remark (1) : If we assume {Y;} is stochastically continuous or equivalently that {f;}
is L1(p)-continuous, then any countable set may serve as the separant. By mimicking the
construction of say Neveu(1965, p.92) or Ash and Gardner(1975), we observe that if {f;} is
Li(p)-continuous and t — f;(u) is p-a.e. usc, then there is a version of {f;}, call it {f7}
which is L1(p) continuous, p-a.e. usc and separable. Note that if the functions {f;} are
p—a.e. continuous in ¢t and fV(T,-) € Li(p) then {f;} is L1(p)—continuous and it follows that
{Y:} is stochastically continuous. To see this note that for any ¢, — t, f;.(-) — fi(-) p-a-e.
Li(p) f..

and from dominated convergence we get f;,

Remark (2) : Theorem 3.1 and the discussion in section 2 show how to construct a

max-stable process which is a random element of US(T).

The same methods allow one to give a criterion for sample path continuity. See Balkema
and de Haan(1988) for the max-moving average case. Continue to suppose {Yi,t €T} is

max-stable with spectral functions {f;, ¢ € T'} and that {f;} is separable with separant D.

Theorem 3.2 Y = {Y;,t € T} is almost surely continuous iff

@) f* = (T) = f"(TnD) € Li(p).

(ii) for p—a.a. ue U, t — fi(u) is continuous.

16



Proof : ( Sufficiency ) Given (i) and (ii) we get from Theorem 3.1 that Y (w) is usc for
a.a. w. To check that paths are also lower semi—continuous (lsc) and hence continuous,
observe that since arbitrary maxima of Isc functions are lsc, we have for any t; € T

i) = ey )

v

V fto(uk(w)) Yto(w)

k>1 T CTi(w)

for w € {w : f (ux(w)) is continuous on T, Vk > 1} i.e. for a.a. w. Thus for a.a. w,t —
Y;(w) is both usc and lsc.
Necessity : Almost sure continuity of paths implies a.a. paths are finite whence (1)

follows from (3.1). The proof of (ii) is very similar to the comparable part of Theorem 3.1.

The motivation behind considering max-stable random utility processes Y which are
random elements of US(T'), is twofold. First, it ensures that there exists an alternative
which achieves the maximum level of utility and secondly it allows utilities to vary discon-
tinuously over 7.

We note from the discussion in section 2 that {Y;,t € T}, a separable max-stable

process with a.s. usc sample paths on a complete probability space (£2, A4, P) is a measurable

stochastic process, i.e.
(w,t) — Yi(w) is A X B(T) measurable.

Similarly, by considering the spectral functions f = {f;,t € T} as a separable stochastic

process on the probability space (U, U, p) with usc realizations for p-a.a. v € U, we get

(u,t) — fe(u) is U x B(T') measurable.

17



We modify the paths of {f;,t € T} on the p-null set U ( see Theorem 3.1 ) so that
t — fi(u) is usc for all w € U, and it is clear that this modification does not affect
the finite-dimensional distributions (4) of {Y;,t € T}. This modification on a p-null set

simplifies matters related to the computations of the choice probabilities.

4 The Choice Probabilities

Consider a separable max-stable random utility process Y = {¥;,t € T} with a.s. usc
sample paths. Then from the discussion in section 2 it follows that Y is a random element
of US(T). This implies that M = {t : Y; = YV(T) } is a random element of F(T). In
cases where M consists a.s. of a single element, it is natural to imagine that the alternative
chosen is the one with maximum utility. In this case, the probability that an alternative is

chosen from a closed set K is
P[ choose an alternative in K | = P[M C K].

In cases where M(w) is not a.s. singleton, the situation for the analyst is complicated by the
fact that the rule “ pick the alternative with maximum utility » does not uniquely specify
an alternative. This creates an identification problem with respect to the sets containing
the utility maximizing alternatives. The ambiguity that results from this may be used
to develop models representing flexible preferences ( cf. Kreps(1979) ). Eventually we
will concentrate on understanding characteristics of max—stable processes which result in
unambiguous choice probabilities stemming from M (w) being a.s. singleton.

We first specify the distribution of the random set M by giving the hitting and contain-
ment functionals. (U, U, p) is a complete probability space, and we are given the functions

{ft(u),t € T} such that for each u € U, f(u) € US(T). Then from the discussion in Section
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(u,t) — fi(u) is U X B(T) measurable.

and for each u € U, the set

Mi(u)={teT : fi(v) = f*(u)}

is closed, where we recall that we set Vcr fi(-) = f*(-). Consequently from the analogous

discussion in Section 2, the closed set—valued map
M;:U — 7(T)
is a random element of (7 (T'), B(7(T))) with probability space (U, U, p); i.e. My (B(F(T)) €
u.
If K € 7(T) then define
K& = {ueU:3t, €K st fi,(u)> f(u), Vs € K}
= {ueU: fY(K,u) > f.(u),Vs € K}
= {ueU:Mpu) CK}={uelU: My(u)nK® = ¢}
= {ueU:Miu)nK*#¢}cl
K& = {ueU:3s,€K°st. fo,(u)> fi(u), Vi € K}
= {uelU:3s,€ K°s.t. fo,(v) > fY(K,u)}
= {uelU:Miu) CK}={ucU: M;u)nK=9¢}cl
K= = ( K> K(<))°
= {ueU:Mpu)NK #¢, Mf(u)NK® +# ¢} € U.

The underlying Poisson process (PRM(u)) on U X [0,00) of the max-stable process {Y;} is

N = Z €(u;,ry)
J
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where for B € U x B[0,00),

1, z€B
Ex(B)Z{ 0, z¢ B.

N has mean measure

p(du,dl) = 1y p(du) x 1jg,0)dT

Now consider the Poisson processes

Ngey = ZE(Ujst)l{ujeKP)} = N(- n K™ x [0,00))
J

Ng = Ze(u,-,r,-)l{ujeK«)} = N(- n K<) x [0,00))
J

Ny = Ze(ujffj)l{ujeKF)} = N(- n K x [0,00))
i

Then by the complete randomness of N : Ny (<), Ng(=) and Ng(>) are mutually indepen-

dent PRM’s with mean measure
pre) () = p(- N K) x [0,00))

for Nk (>) and the mean measures of Ny (<) and Ny (=) are defined similarly. ( Similar projec-
tions were employed in Resnick and Roy(1989) to derive choice probabilities for multivariate
extremal random utility processes ).

Define the random variables

St

*(U-Ic

Xgey = Liver™>)

=<
™

Ty
f*(ug

Sert’

X< = ek <y

=<

T
f*(ug
XK(_—:) psed V Fk )l{ukEK(=)}7

k




Then Xg (), Xg(<) and Xp (=) are independent random variables with distributions which

are of ®; extreme-value type :

P(Xgor < o = exp (~(1/a) [ S @lold)), => 0.

The distributions of Xy (=) and Xy (<) are similar, except that the domain of integration

varies according to the underlying sets K(<) or K(=). Also define the random variable
Xk = Xge) V Xge)
which is also ®; extreme~value distributed.

Theorem 4.1 Suppose {Y;,t € T'} is a separable maz-stable process with a.s. usc sample

paths, and f* € Li(p). The random closed set M is defined as
M:={t:Y; =Y"(T)}.
For an arbitrary K € 7(T),

o The containment functional( ¢f. Eddy and Trader(1982) ) is :

_ Jxe) 1*(u)p(du)
PIM C K= e o(de)

e The hitting function or Choquet capacity ( Matheron(1975) ) is :

TmK] = PMNK # ¢

= P[M C K] +PXp= > Xk V Xg)]

Jxe) [ (u)p(du)
Jv £*(v)p(du)

Proof: The event that alternatives exclusively in some K € F(T) achieve the maximum

utility level corresponds to the event [M C K| and has probability
PMC K|=P[Xge) > (XK(<) VXK(=))]
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— f ® (~(1/2) [0 £7(wp(dw)) (= (1/2) [y =) £ (w)o(du)) d[e(~072) [ " (e(aw);
0

_ Jge) f*(u)p(du)
Jo £*(w)p(du)

The other probabilities are calculated similarly ( cf. de Haan(1984), Resnick and Roy(1989) ).

Now we note that for max—stable utility processes the maximum value of utility realized
is independent of the alternative/s which actually attained this maximum utility level. For

finite T, a similar result in the context of multivariate extremal processes is in Resnick and

Roy(1989).

Corollary 4.1 Assume the hypotheses of the previous theorem. Then YV (T) and M are

independent.

Proof: We have that Y'V(T') is ®; extreme—value distributed with distribution function

P[YV(T) < 2] = exp (—-(l/z) /U f*(u)p(du)) 23>0

Now

P(Y'(T)<2)N(MNK #£9)] = Plz> (Xge) VXgm) > Xgio)]

f;;;z;{(*gz(pﬁt) exp{—z"1 /U F()p(du)}

= P[MNK #gPYV(T) < 2.

This gives the desired independence.

We now discuss when M(w) consists of a single element. We first review notation :

1) =V fi(w),

teT
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) e Ve =\ L)
Y'(w) t\G/TYt( ) k\z/]l o)
Mw) = {teT :Y(w)=YY(T,w)},

My(w) = {teT:fi(u)=1'(u)}

Theorem 4.2 {Y;,t € T} is a separable maz-stable process with a.s. usc sample paths,
and f*(-) € L1(p). Then

M(w) is a.s. singleton

iff for p~a.a. ue U

M;¢(u) is singleton .

Proof: Y (w) € US(T) iff f.(u) € US(T) for p-a.a. u. Without loss of generality, by
suitably modifying {f;} we assume that ¢ — f;(u) isusc in ¢ for all u € U.

(Sufficiency) Let
Uz ={u€eU: Mg(u) = {t,}; i.e. My(u) is singleton }

so that p(Uz) = 1. Then it follows that for any K € 7(T)

k=) ﬂUz = ¢
and hence p(K (<)) = 0. Therefore from the formulae in Theorem 4.1

PlXy= > Xk VXge)] =0.
and thus we conclude that for any K € 7(T') we have
P[M C K| = Tu[K] =P[M (K # ¢],

i.e. the hitting function coincides with the containment functional, and by Eddy and

Trader(1982)( Proposition 4.7 ), M is a.s. singleton.
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( Necessity ) Conversely we may suppose that [;; f*(u)p(du) > 0 and define
Qp =[Y* > 0]N {w : M(w) is singleton }

so that P[(p] = 1. Define E', E” as in Theorem 3.1 so that E' and E" are independent,
with P[E'n E"] > 0.

As before we have on E N E"

_ fi(w(w))
}’t(w)vl_ Pl(w) Vl‘

so that on Qp N E' N E" N [Veer Yy > 1] we have {t € T : fe(ui(w)) = f*(u1(w))} is
singleton. This follows from recalling that ¢ — f;(u3(w)) is usc in ¢ and hence Mj(u;(w))

is non—empty. Therefore defining the event
SING ={w:{teT: fi(ui(w)) = f*(u1(w))} is singleton }

we get

P[(SING *'nE nE"'n[\ Y, > 1] =o0.
teT

Since on E' we have Vier Y, = ﬁ%?—‘—l we conclude
P[{SING }¥*n {f*(u1) >4} | EnE"]|=0.

Conditional on E' = [N(U x [0,¢]) = 1] = [I'; < ¢ < I';] we have Ty uniformly distributed

on [0, c] so we have

0= c’1/ (/ . . p(du)) dz
[0.0] \J[{t:fe(u)=F*(u)}is not singleton |n[f*(u)>z]

whence for Lebesgue a.a. x

0=p{u:{t: fi(v) = f*(u)}is not singleton } N {u: f*(u) > z})
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and letting = | O through an appropriate sequence gives the desired result.

Remark (4) : Note that for Cosslett’s(1988) parametrization of the spectral functions

t,t € T} of a stationary max-moving average, M(u) is singleton V v € U, and hence for
f

his case M is a.s. singleton.

Given a max-stable random utility process with a.s. usc realizations, on the alternatives

space T', we now find a measurable way of identifying the alternative/s which actually attain

the maximum utility value.

From the discussion in the beginning of this section, we have that (u,t) fi(u) is

U x B(T) measurable, and for My : U — 7(T') we have
M;Y(B(7(T)) C U.

Then from a classical result on measurable selections ( cf. Wagner(1977), Theorem 4.1 )

there exists an U~measurable function h : U — T such that A~1(B(T)) C U and
h(u) € My (u).

Hence for any ue U
Fu(u)(u) = f7(u).

Suppose M is a.s. singleton, so that if
Us = {u € U : My(u) is singleton }

then p(Us) = 1. For u € Us, there exists t, € T such that M;(u) = {t,}. Soif his a
measurable selection and u € Us we have h(u) = t,,. This means all measurable selections
agree on Us, a set of p—measure 1. Conversely, if all measurable selections agree on a set

U4 of p—measure 1, My(u) must be singleton for v € Uy. We summarize :
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Corollary 4.2 If the hypotheses in Theorem 4.2 hold, then the following are equivalent :
1. M 1s a.s. singleton.
2. Mjg(u) is singleton for p—a.a. ue U.
3. There exists a U—measurable selection h : U — T such that
h(u) € My(u)
and h(-) s unique up to sets of p-measure 0. For any K € F(T) we have
K®) = p Y (K) = {u: h(u) € K}

and
g F(W)p(du)  Ju-1(x) Fu(w) (u)p(du)
P[MCK|= Ty F@pds) Ty fae(wp(ds) (5)

5 Complements and Examples

5.1 Max—-Stable Random Sup Measures and Max—Stable Processes

Let (€2, 4,P) be a complete probability space. and assume T is a compact, Polish space. A
function m : G(T) — R is called a sup measure if m(¢$) = 0 and for an arbitrary collection

of open sets (G;)jes € G(T)

m(|J G;) =V m(G))

jeJ JjEeJ
( cf. Vervaat(1988) ). Denote the collection of sup-measures on T by SM(T) and endow

it with the sup-vague topology which has the following collection as subbasis sets : for

(L‘ER+

{meSM(T): m(K)<z} , KeF(T),

{me SM(T): m(G) >z} , Ge (7).
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Let B(T) be the Borel o-algebra generated by the open subsets of SM(T). Then a mea-
surable function X : Q — SM(T) is called a random sup measure.
For a sup measure m, define its sup derivative as the mapping d¥m : T — R, where

dVmf(t) :== /\ m(G) = m({t})

Got

(cf. Vervaat(1988), O’Brien, Torfs, & Vervaat(1989) ). Then it follows that d¥m € US(T)
(cf. Vervaat(1988)). Assume US(T) is topologized by the sup-vague topology as described
in section 2.

Let X be a maz-stable random sup measure. By this we mean that X is a random sup
measure whose finite-dimensional distributions are max-stable. This implies there exists
a collection of Lebesgue integrable functions f(G,-) : [0,1] — R indexed by sets in §(7T)
such that for G; € §(T), z) >0,i=1,...,n:

n n
P[Q1 {X(G:) < DY) = exp (-— /[0,1] ,-\l/l —-‘-—f(i’;-i u) du)
( cf. Resnick(1987, Theorem 5.11) ). The random sup derivative of X, d¥X is a random
element of US(T) (cf. Vervaat(1988) ). If d¥ X (t) is non—degenerate for all ¢, then by virtue
of the max-stability of X, it follows that the sup derivative {d¥X(t),t € T'} is a max-stable
process.
Conversely suppose that Y = {Y¥;,t € T} is a max-stable process which is a random

element of US(T). Then it follows that Y'V(-) is a max-stable random sup measure.
5.2 Choice Probability Densities

Let U be complete metric subspace of R and T is a compact subset of R. Suppose h(u) is

monotone (say increasing) in u, implying that & is Lebesgue a.e. differentiable (cf. Hewitt
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& Stromberg(1965) ). Then for K = [a,b] C T

LSS e (we(du)
P Lot = o (@) (du)

Let p be Lebesgue measure. This implies for [a,t] C T we have

a | AT) i
@t Mt = e @

, Lebesgue a.e.

In general, we obtain from the transformation theorem for integrals that the probability

in (5) can be obtained by integrating over K, the density

()
Ju £*(u)p(du)

with respect to the measure p o A~1(dy).

5.3 Independence from Irrelevant Alternatives (IIA)

The IIA property for a compact, Polish choice set T is defined as follows : suppose 7} is a

compact subset of 7. Then for any K; € 7(T}), ¢ = 1,2 IIA prescribes that

PT[M c Kl] PT;[M - Kl]

Pr[M C Ky P, [MC K,

( cf. McFadden(1976) ), where P[] denotes the choice probability when the underlying

choice set is T'.

Then an inspection of equation (5) indicates that

Pr[M C K] Jxe [Y(T,u)p(du)

Pr[M C K] fK§>) fY(T, u)p(du)

is in general not equal to

Pr,[MC Ky] fK§>) fY(T1,u)p(du)
PTl[M C K2] - fK§>) fV(Tl,'u)p(du)'
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In situations where U = T and the specification of f is such that the selection function h(-)

satisfies

h(u) = u,
the choice probabilities will satisfy IIA.
5.4 Examples

Ezample (1) : Uniformly distributed random set M.

Suppose for any K € 7(T)
[ o, £ @heldw) = p(£0),
and set C = [; f*(u)p(du). Then

P[MC K] = @, K € 7(T).

For instance suppose U = T = [0,1]%, ||-|| is Euclidean distance, f;(u) = e~ lIt=2l* and p
is Lebesgue measure. Then h(u) =u, K(*) = K and f*(u) =1, and for t = W, i eT

P[M C [0,t]] = ¢t

i.e. M is uniformly distributed on [0, 1]2.

In general if p is Lebesgue measure on T' = U and f (u) has the unique maximum 1 at
u ( for a.a. u ), then K(*) = K and M is uniformly distributed.

Ezample (2) : Let U =T =[0,1], § € R is a constant and define

fe(u) = exp(=(1/2)[(u — 6)* + (t — u)?]).
p is Lebesgue measure. Then h(u) = u and for ¢t € [0, 1],

_B(t-0)+2(0)—1
P[M C [0,t]] = B(1-9)+e(6) -1’
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where ®(-) denotes the standard Normal distribution function.

Ezample (8) : Suppose U = T = [0,1] and p is Lebesgue measure. Define for 0 < 8 <

log 2,
— 1“|t"u'|> tE[O,l/Z)
il = { (1= |t —ul), te(1/2,1]
Then
[,71>) = [g,7], 0<q<r<(1/ef —1/2)
[rs]®) = ¢, (1/f —1/2) <r<s<1/2
{1/2y3) = (1/¢" - 1/2,1/2]
(5,2 = [s,¢], 1/2<s<t<1
and hence
P[MC [s,] = %—f 0<s<t<(1/e —1/2)
= 0, (1/ -1/2) <s<t<1/2
= -5 1/2<s<t<1
c =
P = (1/2) = L
where

1
C=¢+-—-1/2.
e+ 2ef /
6 Discussion

In this section we make some observations about the modeling framework analyzed above

and discuss some research questions which arise in this context.
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The choice of the spectral functions which are unimodal seem to be the obvious candi-
dates for modeling purposes. Thought is being given to the basic issue of how to system-
atically select spectral functions. If one assumes that the spectral functions are functions
of some underlying parameters 6 in some parameter space © then issues related to the
estimation of these parameters arise. This issue is left for future research. Cosslett(1988)
does look into the estimation issue for a specific parametrization of the spectral functions.

The measurable selection notion is really an existence result, and not constructive. What
it does provide though is insight into how one can construct a max-stable random utility
process model, and then identify the relevant domains of integration in the formulae for the
choice probabilities.

It may be possible to incorporate the model proposed in this essay in dynamic pro-
gramming models where the action space is compact, Polish. For instance proceeding in
a similar fashion as Rust(1988) ( where the action space is assumed to be finite ), the
¢ soctal surplus function ’ ( cf. McFadden(1981) ) corresponding to the action space T, is
just log[fy; f*(u)p(du)]. Investigations into this problem are subjects of ongoing research.
Also, it is often assumed in dynamic choice modeling that ezactly one action maximizes
utility ( for instance see Manski(1988) ). Hence it may be worth reiterating that in the
discussion above, this situation has been completely characterized for max—stable random
utility processes on compact Polish action spaces. Modeling the dynamic continuous choice

problem is underway.
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