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Abstract. let P = {pl,pz,...,pn} be an independent point-set in Rd

(i.e., there are no d+l oh a hyperplane). A simplex determined by d+1
different points of P is called empty if it contains no point of P in
its interior. Denote the number of empty simplices in P by fd(P).
Katchalski and Meir pointed out that fd(P) 2 (nél). Here a random
construction Pn is given with fd(Pn) < K(d)(g), where K(d) is a

constant depending only on d. Several related questions are investigated.

TThis work was finished when both authors were on leave from the
Mathematical Institute of the Hungarian Academy of Science, 1364 Budapest,
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1. INTRODUCTION

We call a set P of n points (n 2 d+l) in the d-dimensional
Fuclidean space Rd independent if P contains no d+l on a hyperplane.
We call a simplex determined by d+1 different points of P empty if the
simplex contains no point of P in its jnterior and denote the number of
empty simplices of P by fd(P), or briefly f(P).

Katchalski and Meir [KM] asked the following question: Given an
independent set P of n points in Rd, what can one say about the
values of f(P)? If P consists of the vertices of a convex polytope,
then clearly f(P) = (dil)' So the interesting question is to find a lower

bound for f(P). Define
f4(n) = min{f(P): [Pl =n, PC R independent}.

They proved that there exists a constant K > 0 such that for all n 2> 3,

(1) (1) < fyn) < Ka®,

and in general, for every independent P C Rd, |P| = n

-1
(2) (") < £4(P).

(The case d = 1 has no importance, obviously fl(P) =n-1.) The aim of
this paper is to give bounds for fd(n) and to consider several related
questions.

Our paper is organized as follows. In section 2 we state the upper

bound for fd(n). Section 3 contains the results about the number of empty



k-gons in the plane. In section 4 we deal with a related question: how
many points are needed to pin the interiors of the empty simplices?
Finally sections 5-12 contain the proofs.

A preliminary version of this work was presented in the 2nd Austrian

Ceometric Conference in Salzburg, 1985.

2. RANDOM CONSTRUCTIONS

Theorem 2.1. lLet AC Rd be a convex, bounded set with nonempty
interior. Choose the points Pys---sPy randomly and independently from A

with uniform distribution. Then we have for the expected value of f(F)
E(# empty simplices in P) ¢ K(z).

Here K 1is very large:

d d-1
) 2 d-1 9
= 2 2 d! d 2

K w2 g 1k rord+1)? < e
i=1

but independent of the shape of A! It is very likely that this value can

2
be decreased, e.g., when A 1is a ball we can prove K < dd .
d2 n
Corollary 2.2. fd(n) <d (d).

The example of Katchalski and Meir gives in (1) that K < 200. Corollary
2.2 yields K < 16. The following random construction gives a much better

upper bound. Let 11,12,...,In be parallel unit intervals on the plane,

Ii = {(x.y): x =1, 0 {y < 1}. Choose the point p, randomly from Ii

with uniform distribution. Let Pn = {pl,...,pn}. Then



Theorem 2.3. E(fz(Pn)) = 2n2 + O(n log n).

On the other hand we have

Theorem 2.4. Let P C IR2 be an independent point-set with IPl = 1.

Then

n‘2 - 0(n log n) ¢ fz(P).

We have to remark here that G. Purdy [Pu] announced f2(n) = O(ng) without
proof. H. Harborth [Ha] pointed out that f2(n) = n2—5n + 7 for

n = 3,4,5,6,7,8,9 but not for n = 10 because f2(10) = B8.

3. [EMPTY POLYGONS ON THE PLANE

More than 50 years ago Erdds and Szekeres [ES] proved that for every
integer k 2 3 there exists an integer n(k) with the following property:
If PC R2, [P] > n(k) and P is independent, then there exists a subset
ACP such that |A| =k and conv A is a convex k-gon.

We call a k-subset A of P empty if conv A contains no point of
P in its interior. Erdds [Er] asked whether the following sharpening of
the Erdos-Szekeres theorem is true. Is there an N(k) such that if
|p] 2 Nk), PC R2 independent, then there exists an empty k-gon with
vertex set A C P. He pointed out that N(4) = 5 (= n(4)) and [Ha] proved
that N(5) = 10 (while n(5) = 9). A proof of the existence of N(k) was
presented at a combinatorial conference in 1978 but it turned out to be
wrong. This is no wonder because Horton [Ho] proved that N(7) does not
exist. The question about the existence of N(6) 1is still open; a recent

example of Fabella and O’Rourke [FO] shows twenty-two independent points in

the plane without an empty hexagon.



Example 3.1. (Horton [Ho]). This is a squashed version of the
well-known van der Corput sequence. We will define by induction a pointset
Q(n) where n is a power of 2. In Q(n) each point has positive integer
coodinates and the set of the first coordinates is just {1,2,....n}. To
start with let Q(1) = {(1,1)} and Q(2) = {(1,1),(2.2)}. When Q(n) is

defined, set
Q(2n) = {(2x-1.y): (x,y) € Q(n)} U {(2x,y+d ): (x.¥) € Q(n)}

where dn is a large number, e.g., dn = 3" will do.
Now denote by fk(P) the number of empty k-gons in P and let
fk(n) = min{fk(P)Z PC R2 independent, |P| =n}. So f3(n) is just

fz(n) defined in the previous section. Though fk(P) can be as large as

(ﬁ), Example 3.1 shows the following estimations.

Theorem 3.2. When n is a power of 2, then

(3) £3(n) ¢ 2n°
(4) £imn) ¢ 30°
(5) f5(n) < 2n2
© 2@ ¢ 50
(7) fk(n) =0 for k2 T.

We remark that the random example of Theorem 2.3 gives a quadratic

upper bound on fk(n), too. The only lower bounds we can prove are

Theorem 3.3.

®) fm) 2507 -om). 2w 2 Il

The second inequality here is implied by N(5) = 10.



4. THE COVERING NUMBER OF SIMPLICES

Let P be an independent set of points in Rd. We say that Q C Rd
is a cover of the simplices of P if for every (d+l)-tuple {pl""’pd+1}
C P there exists a q € Q with q € int conv{pl,...,pd+1}. Denote by

d

g(P) the minimum cardinality of a cover and let gd(n) = max{g(P): PC R,
|P| = n}. Katchalsky and Meir [KM] proved that gz(n) = 2n-5 and

g3(n) < (n—l)z. Actually they proved
gz(P) = 2|P| - (# vertices of conv P) - 2.
Though such an exact result seems to be elusive in higher dimensions, we

can determine the asymptotic value of gd(n).

Theorem 4.1.

o nd/2 - 1) if d is even

([ay2]) * ol¥2ly i 4 is odd

holds for any fixed d when n - .

Corollary 4.2. g4(n) = (g) + 0(n).

The constructions and proofs will be given in section ll.

The high value of gd(n) is a bit surprising (at least for the
authors), because it was proved in [BF] and [Bé] that there exists a
positive constant c(d) (c(2) = 1/27, c(d) > d_d) with the following
property. For any pointset P C Rd, ]PI = n there exists a point

contained in at least c(d)(dil) simplices of P.



5. THE DISTRIBUTION OF VOLUMES OF RANDOM SIMPLICES

Consider a bounded convex set A C Rd wih Vol(A) > 0. Choose
randomly and independently the points P+ Pgyq from A with uniform

distribution.
Lemma 5.1. There exists a C = C(d) > O such that for every
0<v<1l, h>0

Prob(v < Vol(pl,...,pd+1)/Vol(A) < vth) < Ch

where Vol(pl,...,pd+1) is a shorthand for Vol(conv{pl,...,pd+1}).

Proof. A theorem of Fritz John [Jo] says that there exist two

concentrical and homothetic ellipsoids E, and E2 with E, CAC E2 and

1 1
E2 C dEl' As an affine transformation does not change the value of
Vol(pl,...,pd+1)/Vol(A) we may assume that E1 and E2 are balls of

radius ry and T, and Ty < drl. Define LA to be the volume of the

d-dimensional unit ball, i.e., Wy = wd/2(r(g-+1))—1. Let 0< t < t+a

and denote the Euclidean distance between aff(pl,...,pi) and Pi4q by
D.. Then
i
i-1
Yi-172 d+1-i d+1-i
Prob(t < D, < t+a) { ———— (w c(t+a) -w .t )
i = d+1-i d+1-i
Vol(A)
holds for every i = 1,...,d; the right hand side is the volume of the

difference of two cylinders. Hence we have



a ot e @11V W Wdrg a |2
PI‘Ob(t < Di < t+a) g ;—2— (;—2-) Wd VOI(A) + O((r—z‘) )

<2 (Eydtt odglg 0(%;)).

Ty To

The choice of Py and pj is independent so we have

(2) Prob(ti < Di < t,+a holds for i =1,...,d)
t, d-1 t, d-2 t 2 2
a .d, 1 2 d-1, ,d7 .d7+d a
¢ @D D - S Ma v,
2 2 2 2 2
_..1 .
Now Vol(pl,...,pd+1) = (d!) DD, ¢ ... ¢ Dy Hence (9) yields
(10) Prob(v < Vol(pl,...,pd+1)/Vol(A) < v+h)
2 2 2 2
d-1_d-2 d” ,d7+d
< J ... I X; Ko e xd_12 d dxldx2...dxd
x.,=0 X =
1 d
where the integration is taken for (xl,...,xd) with

veVol(A) < rgxl...xd(d:)”l < (v+h)Vol(A). Because 0 < x; - dlvry

d
- Vol A/(xl"'xd—l) < hd!(Vol A/r2)/(x1...xd_1) we have [ dx; =

hd!(Vol A/rg)/(xl...xd_l). Hence the right-hand-side of (10) equals

2 2 |
(28 @ dyqy Yol Ay o ;o2 4l ax . ax
4 ok, <2 o<x. <2 1 d-2 1 d-1
© _Ta, 9%t xgq-1€
o
d 2

=22 /(a-1)1 - Coh < 2a)%4 n.



6. PROOF OF THEOREM 2.1

For given pl,...,pd_’_1 choose the points pd+2,...,pn randomly.

Define pn(v) = Prob(Vol(pl,...,pd+1) < v). Obviously we have

n-d—-1

H
ey
~~

oy

<
Nt

Prob(pl,...,pd+1 is empty) du(v)

n-d-1

o

Cﬂ
~~

[S

<
St

C dv = C/(n-d).

Hence

ECEP)) € () g = a7 (@)

7. PROOF OF THEOREM 2.3

Consider the points A = (i,x), B = (i+a,y), and C = (i+k,z) where
k=ath > 3. Llet m= |y~x+(a/k)(z—x)|, i.e., the distance between B
and Ii+a N [AC]. Choose randomly a point pj on Ij’ (i < j < i+k,

j # i+a). Then

Prob(ABC is an empty triangle)

(1 - 29(1 -2 g)...(1—(a—1)§)(1—(b-1)%-...(1 - %5

I

m m m m m _m

exp(~(DZ - (D) = exp(-(k-2)n/2).

il

Now choose the points Py (1 <i {n) randomly. We obtain

[17aN

i) J T exp(~(k-2)m/2)dxdydz

Prob{p.p., . P. is empty)
171+a"i4k 0<x<1 O<y<1 0<z<1

1

i~

2 J  exp(—(k-2)m/2)dm < 4/(k-2).
0<m<1/2



Hence we have

E(f(P)) {n-1 + 2= 3 > 4/(k-2)
1¢i<n 3¢k<n—i 1<adk
el 3 (ke HED _ngv 3 (ke )/(k2)

3<kin 3<ksin

+4 3 (nk#l) = O(n log n) + 2n°.

8. A LEMMA ON GRAPHS

Lemma 8.1. Let G be a graph on the vertices {1,2,....n}.

Suppose

that there exist no four vertices i < j < k < & such that (i,k), (i.2).

and (j.2) € E(G). Then

(11) [E(G) | < 3n[logyn].

Proof: Let E(G)
i-1

E(G)) U ... E(G;) U ... where 1< < [1og2n]

and E(G,) = {(wv): 1<u<v<n 27 <vul ol (u,v) € E(Q)}.

Split E(Gi) into three parts U, D and T:

U= {(u,v): (u,v) € E(Gi) and I w such that u < w < v
and (w,v) € E(Gi)}
D = {(u,v): (u,v) € E(Gi) and dw such that u < w<v
and (u,w) € E(Gi)}
and T =

E(Gi) - U - D.
Clearly UND=¢, U, D and T do not contain a circuit.

their cardinality is at most n-1.

Hence
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We note that (11) can be improved to [n 10g2 n], and there exists a
graph ¢® with [E(@)] 2 n(10g2n—2) which fulfills the constraints of

Lemma 8.1.

9. PROOF OF THEOREM 2.4

Consider the points Pyse--oPy € Rz and an arbitrary line e C RZ.

Let a4 be the projection of p; on e. We can choose e such that
q # qj' We can suppose that 9 lays between q;_1 and 9441
(eventually reordering the indeces.)

Let Gu and Gd be two graphs on vertices {ql,...,qn} such that

E(Gu) = {qiqj: every pp for i <k < j 1is below the [pipj] and
only (at most) one pipkpj triangle is empty}
E(Gd) = {(qiqj)i every py for i <k < j is above the [pipj] and

only (at most) one of the triangles pipkpj is empty}.

It is easy to see that Gu and Gd fulfills the constraints of Lemma 8.1.
Indeed, suppose on contrary (qiqk)’ (qiqe)’ (qjqe) € E(Gu). Then one can
findan j', i< j' <¢j anda k', k<{k'<¢2 such that the triangles

pipj,pe and PPy . P, are empty, contradicting P;P, € E(Gu). Hence

f(P) = = #(empty triangles with vertices P;P P i <k < j)
1<i<j<n pRd
n
> 2(3) - [B(6) | - [E(GY)]

n2 - O(n log n).
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10. PROOF OF 3.2

Let P be a pointset on the plane, consider u; .U, € P with
u, = (xl,yl), u, = (x2,y2). We say that the line segment [ul,u2]
connecting uy and u, is empty from below if the interior of the
X X,

"infinite triangle” with vertices Uy, (—li_—’ ~-©0) contains no point of

P. Emptiness from above is defined analogously. Denote by h;(P) and
h;(P), respectively the number of segments in P empty from below and
above.

Consider Q(2n) from Example 3.1. Q(2n) splits in a natural way into
two parts: Q+(n) and Q (n) where Q+(n) = {(2x,y+dn)= (x.y) € Q(n)}
and Q (n) = {(2x-1,y): (x.y) € Q(n)}. The next two statements are

obvious.
(12) 1If ug .y € Q(2n) and [ul,u2] is empty from below in Q(2n)

then either U, € Q (n) or uy € Q (n) and u, € Q+(n) and

+ ——
le—x2| =1 or u, €Q (n) and u, € Q (n) and le—x2| = 1.

(13) h,(Q(2n)) = hy(Q (n)) + 2n-1.
Using induction (13) implies that

(14) h;(Q(n)) < 2n.

Q(n) is centrally symmetric and so

(15) h3(Q(n)) < 2n.
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Now call a triple (ul,uz,us) € Q(n) empty from below all the three line
segments [uluz],[ulug],[u2u3] are empty from below and denote by
hg(Q(n)) the number of triples of Q(n), that are empty from below.

Clearly,
h53(Q(2n)) = hy(Q (n)) + n -1

hence by induction

h;(Q(n)) < n.

To prove (3),(4).....(7) we can use induction and the facts
established about h;,h;,h; and h;. For instance, we can estimte

fé(Q(Zn)) in the following way:

ra(2n)) = £(Q (m) + 15@ (a)n
+ h3(Q"(n))BA(Q7(n)) + nhi(Q (m)) + £4(Q (m))

< 2t%(Q(m)) + 6o,

which shows that f4(Q(2n)) < 12n2.

The proofs of (3), (5). (6) are similar.

11. PROOF OF 3.3

Consider an arbitrary n—element set P on the plane, and assume no

three points of P are on a line.

Lemma 11.1. Suppose u,v,a,b € P and the segments [u,v] and [ab]
intersect (in an interior point). Then there exist a'.,b’ € P such that

uva'b' is an empty quadrilaterial with a diagonal [uv].
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Proof. Trivial: if the uva triangle is empty then take a' =a if
not let a' € P be the nearest to [uv] point from the interior of the

triangle uva.

Now define a graph G with vertex set P. A pair {u,v} CP is an
edge of G if [uv] is not a diagonal of any convex empty quadrilateral
of P. By the above Lemma G must be a planar graph hence the number of
its edges is at most 3n—6. All other pairs are contained in an empty

quadrilateral hence f4(P) 2 %-((g) - (3n-6)).

12. Proof of 4.1.

First we give the upper bound. Our main tool is Radon’s theorem [DGK]

which we need in the following form.

Lemma 12.1. Let x Rd be the vertices of a simplex S

1 ®a+1 €
and let L be a line not parallel to any one of the facets of S. Then
there exists a line L' parallel to L such that L' NS = [ab] and

a € relint Fa and b € relint Fb with Fa and Fb disjoint faces of S.

Proof. Consider the projection of S SERERRE S| onto the subspace

orthogonal to L and apply Radon’s theorem in that subspace.

We use the lemma in the following way. Pick a line L not parallel
to any affine subspace spanned by at most d points of P. Choose e > O
small enough and let v be a vector parallel to L and Ilvll = e. We

define a covering system Q as follows:



when d is odd, and

when d is even.

Now we give a construction for the lower bound. Let p(i) =
(1,12,...,id) € Rd, i=1,...,n and set P = {p(i): i=1,...,n}. P 1is
the set of vertices of the cyclic polytope [Mc,Gr]. We will use certain

properties of the cyclic polytope without explanation. Consider first the

case when d 1is odd. Define

g = {{11, ’1d+1} C {1, ,n} ia < 141 for
. d+1
1{agfd and 125 = 125‘1+1 for 1 B¢ —5—}
So the members of the family & are unions of sequences of {1,2,....n}
of even length. Clearly
d-1
n 2
7] = a+1 —-O[n ]

2
We claim that the simplices conv{p(i): i € F}, F € ¥ are pairwise
disjoint. Let Fl’F2 € F with F1 = {il""’id+1}’ F2 = {jl,...,jd+1}

and let k be the minimal element of the symmetric difference FlAFZ’

k € Fl’ say. Clearly k = i2a—1’ i.e., its order in F1 is odd.
Consider the hyperplane H passing through the vertices

{p(i): 1 € F1~{k}}. We claim that H separates conv F1 and conv F2'

The equation of H is
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1 X4 X3
1 i id
H(Xl,xz,...,xd) = det . .1 1 =0
1 4
a1 0 ta+l
. . N 2 d
where the row corresponding to k is missing. Set f(t) = H(t,t™,...,t ),

this is a polynomial in t of degree d. Then f(is) =0 for is # k,
i.e., its roots are exactly {il,...,id+1}\{k}. Let, say f(k) > 0. Then
the sign of f(t) is negative for every integer t > k except for those
with t=1_. So H(x) >0 for x € {p(i): i € Fl} and H(x) £ 0 for

x € {p(i): 1 € F2}. Thus we obtained |%| pairwise disjoint simplices.
To cover them requires at least that many points so gd(n) > 1#].

The case d 1is even is similar. We define
Q= {p(i): i = 1.2,....n2} U {v,-v}

where v is in general position with respect to p(i) and Illvll is large
enough. This means that each facet of M = conv{p(i): i = 1,....n-2} is

visible from either v or -v. As it is well-known [Gr,Mc], @ has

ds2 - 1

(dgg) + O(n ) facets F ...,Fs. Now in the following set of

1°
simplices no two have a common interior point:
{conv(Fi U {v}): Fi is visible from v}
U {conv(Fi U {v}): Fi is visible from -v}
U {conv{p(il),...,p(id+1): 1¢ i < i, < ... < i Cigeyg = n—-2,

i

op = lgp-y*1 for B = 1,...,d/2}.

2p-1
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This set of simplices shows that the simplices of Q cannot be covered by

less than 2(d22) + o(nY
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2 - 1) points. Details are left to the reader.
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