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Abstract

A survey of the literature is presented on various statistical in-
ference problems and procedures associateékwith the following experimental
setting: Any level of dose of some treatment can be administered to each
experimental unit, and the observed response on each unit is binary
{("success" or "failure") with the unknown success probability being a
nondecreasing function of the dose-level. This function is referred to as
a quantal response curve. Both parametric and nonparametric models for a
quarital response curve are considered. 1In each case both single-stage and
sequential estimaﬁion procedures are reviewed in detail.

This survey was motivated by the following statistical selection prob-
lem: Suppose that there are available several treatments, and that each
one has associated with it a completely unknown quantal response curve.

For each curve define its gth quantile (ED100q) as the dose-level which cor-
responds to a "success” probability of g where ge (0,1) is specified. For
any prespecified g we wish to select the treatment associated with the
smallest ED100q. Some difficulties inherent in solving this selection prob-
lem, and possible approaches to devising statistical procedures for achiev-
ing the stated goal are discussed. We have not found satisfactory solutions
to these difficulties, and the problem is essentially open.

Keywords: Dose-Response; Quantal Bioassay; Sensitivity Experiments; Logistic
Model; Probit Model; Maximum Likelihood Estimation; Weighted Least-Squares
Estimation; Minimum (Modified) Chi-Square Estimation; Isotonic Estimation;
Nonparametric Estimation; Robust Estimation; Design of Experiments; Stochastic

Approximation; Up-and-Down Method; Segquential Designs; Multiple Comparisons;

Ranking and Selection; Indifference-Zone Approach.



1. Introduction

In many types of experimental research the treatment factor is quan-
titative in nature gnd an experimental unit to which a certain "dose" of
the treatment is administered either responds {a "success”) or does not
respond (a "failure") to the given dose, i.e., the response is guantal or
binary in nature. 1In biclogical applications such experiments are known

as guantal response assays (Finney 1978, Chs. 17-20) or sensitivity exper-

iments.
In a sensitivity experiment the probability of response is some un-—
known function of the dose~level x. We shall denote this probability by

p(x) and refer to it as the guantal response curve or the dose response

curve. In many applications it is reasonable to assume that p(x) is non-
decreasing (at least over the range of x of practical interest) with

p(-=) = 0 (note that usually the logarithm of the dose-level is used as the
x variable and thus negative x values are possible) and p(+«)=1. One can
conceive that each experimental unit in a population has some fixed unknown
tolerance and the administration of the treatment to that unit results in a
"response" if the dose-level exceeds its tolerance. In this context p(x)
can be thought of as the cumulative distribution function (cdf) of the tol-
erance values for the population and therefore it is sometimes referred to

as the tolerance distribution.

In some applications it may be desired to estimate or make other in-
ferences concerning the entire curve p(x) while in others the interest may
center on some selected point(s) on the curve. One such point on the curve
is the dose-level u that corresponds to 0.5 probability of response; de-

pending on the practical context, u is referred to as the median effective

dose (ED50) or‘the median lethal dose {LD50) or the median tolerance. More
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generally, the experimenter may be interested in the dose-level that stim-
ulates a response with probability g (the gth guantile of the tolerance

distribution) for some specified ge (0,1); we shall refer to this dose-level

as ED100Og and denote it by u(q) where
u(q) = inf {x:p(x)2qg}; (1.1)
note that u==u(0'5). Scmetimes the mean tolerance € is used instead of the
median tolerance u where
[~ -]
8 = J x dp(x); (1.2)
kX

if p(x) is skew-symmetric and if 6 exists then 6 =1yu.

We are interested in a selection problem that arises when we have

several different quantitative treatments with associated unknown quantal
response curves and it is desired to sglect the treatment which has the
"best" (in some appropriate sense) curve. For example, several drugs may
be available for curing a certain physiological disorder, the outcome on a
patient administered a certain drug being simply recorded as a "success"
(cured) or a "failure" (not cured). Although the therapeutic effectiveness
of each drug (as measured by its "success" probability) may be an increas-
ing function of its dose-level (at least over some restricted range) high
. doses may be undesirable because of accompanying toxic side~effects. There-
fore a medical researcher may wish to select that drug which induces a
success rate of 50% (say) at the lowest dose-level, i.e., the drug that is
associated with the smallest EDS5OC.

More formally, let Hl,Hz,...,Hk dénote}czz different populations
(treatments, drugs, etc.). Let Yi(X) denote an observation on K; at dose~
level x, which takes on the value 1 (ifb"success" or "response") or O (if

"failure™ or "no response") with probabilities



p{Yi'<x> =1} = p, (x)
and & (1si<k).
P{Yi(x) = 0} = l-pi(x)
o

Each pi(x) (1si<k) is assumed to be nondecreasing and continuous in x
with pi(-w)==o, pi(+°ﬂ =1, but is otherwise assumed to be completely un-
known. For specified ge (0,1) let uiq) denote the ED100g (cf. (1.1)) as-
sociated with Hi(lSj,Sk) and let ué%% < uégg € ... € uéig denote the or-
dered values of the uiq). The correct pairing between the uégg and
Hj(ls.i,j$]<) is assumed to be completely unknown. The goal of the exper-
imenter is to select the population (assumed to be unique) associated with,
say ué?%, which is here referred to as the "best" population. If the de-
cision procedure selects the "best" population then we say that a correct

selection (CS) is made.

Adopting the indifference-zone approach of Bechhofer (1954) to this

selection problem, we can state a requirement on the probability of a cor-

rect selection (P(CS)) as follows: Lety{é*,P*} be preassigned constants

1

- *
where §* > 0 and k” <P <1l. Consideration is restricted to those procedures

which guarantee the probability reguirement

B(CS) 2 P whenever uég)] - “[(?] > s*. (1.3)

A bit of reflection shows that there are many deep and subtle diffi-
culties associated with this selection problem some of which we now discuss.

(i) First {and the most obvious) point to note is that if the guantal
response curves cross each other, i.e., if there is treatment-dose inter-

action, then the population that is the "best" for one specified value of g
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need not be the "best" for some other specified value of g. However, if
it can be assumed that the pi(x) do not intersect (as would happren, e.g.,
if the pi(x) are members of a location parameter family and thus can be
obtained by parallel shifts of the same basic curve) then we have a uni-
formly (for all ge (0,1)) unique best population, say, H[l]. In this
case we have for all xe R that pr,q(x) 2 p; (x) for all i [1].

(ii) A second point to note is that the parameters of interest
uéq) must be estimated "backwards" by first estimating pi(x) at selected
values of x and then "interpolating" at a given value of q by a suitable
method. If the choice of x-values at which observations are made happens
to be unfortunate (e.g., if all of the x-values lie on one side of the un-
known uiq)) then it would be impossible to obtain a reliable estimate of
u;q) unless some additional assumption regarding the functional form of
pi(x) is made, e.g., one might assume the logistic or the probit model:
see §2. A more serious difficulty which arises because of this estimation
feature of the problem is the following.

(iiiy 1If the gquantal response curve pi(x) is almost "flat" in the

region of p;q) then the estimate of uiq) would be hicghly unreliable. Thus,

(

even if the uiq)—values for two populations differ greatly, say,

uég% - HE%S >> 5*, they would be virtually indistinguishable on the proba-
bility of response scale if the corresponding pi(x) curves are almost flat

in the interval (u(q) (q)) as shown in Figure 1.

(1] * %21



Figure 1

Almost Flat Quantal Response Curves
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To avoid this difficulty, an indifference-zone formulation analogous
to the one proposed by Sobel (1967) may be required. In this alternative

formulation a threshold separation is postulated not between uéig and

uéiil], but between the corresponding guantal response curves along the
vertical scale in the neighborhood of q.

If some specific functional form is assumed for the quantal response
curves then the results obtained from sampling outside the "trouble region”
of dose-level values can presumably be used to obtain information relevant
to selecting the population associated with ué?%. By using an appropriate
adaptive sequential sampling procedure it may be possible to avoid the
"trouble region" during the major (later) portion of sampling from each

population. However, if no specific functional form can be assumed for the

curves then one must minimally assume some positive lower bound on the

{c}) (q)

slopes of the curves in the region of interest, namely (“[17'u[k])°



(iv) It is interesting to note that if the guantal response curves

; T ; g
do not cross each other then it is not necessary to estimate the ui‘)

for
identifying the "best" pOpulatioq, and therefore the difficulties dis-
cussed under (ii) and (iii) do not arise. The selection problem in this
case can be "solved," at least in principle, by choosing an arbitrary dose~

level X and then using an appropriate Bernoulli selection procedure for

identifying the population associated with p[l](xg)==maxl<i‘<k pi(xo).

This situation is depicted in Figure 2.

Figure 2

Nonintersecting Quantal Responge Curves
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Since the existence of a uniformly "best™ population is guaranteed (and, in
fact, the same ordering between the uiq) is maintained for all values of q;
see Figure 2) under the assumption of nonintersecting curves it suffices to
take observations on all populations at the same dose-level xg- The popu-

lations can then be thought of as Bernoulli with success probabilities

pi(xo), i=1,2,...,k. Thus the selection problem reduces to the classical
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one of selecting the Bernoulli population associated with the largest success
probability.

A large number of procedures have been proposed in the literature for
the classical Bernoulli selection problem, any one of which could be applied
in the present context; we refer the reader to the article by Bechhofer and
Kulkarni (1982) for a review of this literature and a complete bibliography.
In particular, a new closed adaptive sequential procedure proposed in this
article appears particularly attractive because of its many desirable prop-
erties.

The main obstacle in implementing the approach just outlined is the
choice of Xy Wwith an unfortunate choice of Xq it is possible to have
p[l](xo) differ very little from the next largest pi(xo) making it impossi-
ble to guarantee (1.3). Ideally one would like to choose Xy SO that
p[lj(xo) - pi(xo) > A* for all i%l whenever u[(g)] - uéE)JZcS* where A¥ > 0
is known. Then one could use a Bernoulli selection procedure which guaran-
tees thev{A*,P*}-requirement (see (5) of Sobel and Huyett (1957)). However,

in general, it is not possible to choose x_ in such a manner without any

0
knowledge of the pi(-)'s.

(iv) Finally a key feature common to many practical problems involving
inferences concerning one or more quantal response curves is that the

observations are costly. As a result, experimenters must work with rela-

tively small samples. However, with small samples it is not feasible to ob-

tain good nonparametric estimates of the pi(x)° Thus one may be forced to
assume some parametric model for the quantal response curves. Even for the
problem of estimation of a single parametric gquantal response curve, most
of the theoretical results are available only for the large sample case;

thus they are often irrelevant for intended applications.
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We have pointed out above that the particular selection problem of in-
terest to us (as stated in its most general form) is fraught with many dif-
ficulties. To date we have not found a satisfactory solution to it. How-
ever, as a first step towards studying this problem in some depth, we at-
tempted a systematic review of the pertinent literature on estimation prob-
lems for guantal response curves. That therefore is the main objective of
the present article. We do discuss, however, in the last section of the
paper, some tentative approaches to the selection problem which serve to
highlight some of the specific difficulties involved.

The outline of the paper is as follows. We begin the review of the
literature with the problem of estimation of a single quantal respcnse curve
or some specified point, e.g., the ED50, for a single such curve. In §2 we
introduce the two commonly used parametric models -- the logistic and the
prcbi;. §3 considers single-stage procedures for such models. The first
part of §3 deals with the case of parametric models while the second part
deals with the nonparametric case where techniques of isotonic estimation
and classical nonparametric estimators of the mean tolerance, e.g., the
Spearman-KSrber estimator, are reviewed. §4 considers sequential procedures
which are useful when the result of administration of a dose becomes known
without a prolonged time delay. The main emphasis in §4 is on stochastic
approximation procedures of the Robbins-Monro type; the up-and-down method
is also briefly reviewed. §5 reviews same available literature on multiple
comparisons among several quantal response curves. Finally in §6 we treat
the selection problem in some detail. We give an explicit asymptotic solu-
tion for a single-stage selection procedure under certain restrictive as-

sumptions on the quantal response curves.



2. Parametric Models for a Quantal Responge Curve

Throughout this and the next two sections we consider the case of a
single quantal response curve which we denote by p(x). Various mathematical
models have been proposed in the literature for p(x) to portray the usual
S-shape associated with quantal response curves. Many of these models are

of the form
p{x) = F(a+ Bx) {2.1)

where a € R, B> 0 are unknown parameters and F(-) is a cdf having a speci-
fied form. If Eq denotes the gth quantile of F(-) then the ED100g is given

by

p @2 (0<g<l). (2.2)

Usually F(-) is chosen so that it possesses a density f(-) which is sym-
metric around zero. In that case (and more generally if F(0) =1/2) go 5==0

and the EDS50 is given by

L (2.3)

Often the model (2.1) is written. in the form
-1
F{px)} =a + Bx (2.4)

showing explicitely that the inverse F transform of the guantal response
curve is a straight line. The logistic and probit models correspond to
specific choices of F(-).

2.1 Logistic Model

For the logistic model, F(-) is the logistic cdf

(2.5)



and thus

-1
F {px)} = an {-Tgiil——} =a+Bx. ’ (2.86)

The quantity &n {p(x)/(l—p(x))} is known as the logit transform of p(x).

For the logistic model the ED100Qg is given by

8

. (2.7)

in (——3——) -0
" (@ _ 1-g

A general reference on the logistic model is a book by Ashton (1972).

2.2 Probit Model

For the probit model, F(-) is the standard normal cdf

2
% x -2
3 (x) =J¢(u)du=J 1l o2 au (2.8)
B  on
and thus
-l -1 '
F {px)} =¢ {px)} = a+Bx (2.9)

-1
where ¢ {p(x)} is known as the probit transform of p(x). (In traditional

practice, the term probit model is used to refer to the transformation

-1
o {p(x)}+5 = a+8x. To distinguish between this model and (2.9), the

latter is sometimes referred to as the normit model.)

If zq denotes the gth quantile of the standard normal distribution

then the ED100g for the model (2.9) is given by

u T N ] (2.10)

A general reference on the probit model is a book by Finney (1971).
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Cox (1970, §2.7) and Finney (1978, §17.14) have shown that the quantal
response curves resulting from the above two models match very closely in
" their central portion (0.2sp(x)<0.8) as do sgyeral other models such as
the angular (arcsin transform) and the linear. Thus the cheice of a par-
ametric model is usually dictated by other considerations such as con-
venience of computation.and statistical analysis, ease of interpretability,
etc. Based on these considerations the logistic model is preferred in a
large majority of situations. We review inference procedures for both the
logistic and the probit model here, the latter being considered mainly for
historical reasons. Prentice (1976) has proposed a general four parameter
model of which the logistic and probit models are special cases.

3. Single Quantal Response Curve: Estimation Using

Single-Stage Procedures

We consider a single-stage procedure which uses m22 fixed dose-levels
and which takes a predetermined number nj of observations at dose-level
xj (1sj<m) where X < X, € eew <‘xm. Let rj denote the number of successes
obtained at dose-level xj (1<j<m). Based on these data we wish to esti-
mate the dose-response curve p(x). In §3.1 and §3.2 we discuss two popu-
lar methods of estimation for the parametric model (2.1). After discussing
.the methods of estimation for general F(-) (of specified form), we specialize
the results to the logistic and normal cdf’s.

For convenience, we denote p(xj) by Pj' and let

p. = r./n, (L<j<m). (3.1)
J 33

3.1 Parametric Estimation: Maximum Likelihood Method

The likelihood function is

m nj rj nj-rj
L=1I 7 (1-p. .
5 rj) Py (1-py) (3.2)
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Setting partial derivatives of &n L with respect to a and £ equal to zero,
the following equations are obtained for the maximum likelihood estimators

(MLE's) a and é of a and B8, respectively:

r.-n.p.

B:QnL =‘§ 3(13 3)_. f(a+8xj)=0
aQ . : ~P.
i=1 pJ PJ
(3.3)
m r"’n.P.
8%21« = _3.(_1_1__3_). xjf(a+8xj)=0-
o . . -
j=1 | P3'*7P;

Here f(-) is the probability density function (pdf) corresponding to F(-).
In general, some iterative algorithm is needed for solving (3.3), the
Newton-Raphson algorithm being the one most commonly employed. After com-

puting a and é, the MLE of u(q) is computed by using
@ | S
]
where Eq is the gth quantile of F(-).

To implement the Newton-Raphson algorithm a current estimate of the

Hessian matrix

len L len L
8a2 9038
(3.5)
3%an L 3%an L
N ELETS 382 .

is needed at each step; expressions for the second partials can be easily

F NN

obtained from (3.3). The asymptotic variance-covariance matrix of (a,8) is

given by -1 times the inverse of the expected value of the matrix (3.3).

~{q)

Using the delta method, the asymptotic variance of u is found to be
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2 - - PO
R a . p .\ -
Var(u(q)) = ( q) Jag(a) + Vaé(,,) _ 2 Cov(a,B) (3.6)
g a B a B
q 9

wﬁere aq = a'-gq = a for g=1/2).

Expréssions for the asymptotic Var(&), Var(é), and-Cov(&,é) for the
logistic model are given in (3.9); for the probit model a slightly dif-
ferent parametrization is used and the corresponding expressions are given
in (3.19). The asymptotic variance~-covariance matrix of (&,é) can be con-
sistently estimated in large samples (nj-*é ¥j) using the matrix obtained
‘by inverting the estimate of (3.5) at the final iteration of the Newton-
Raphson algorithm.

We now specialize the above method to the logistic and probit models.

3.1.1 Logistic Model

Using the fact that
£(x) = F(x){1-F(x)} (3.7)

for the logistic model and hence that f(a+ ij)= pj(l-pj) (1£j<m), we

see that the equations (3.3) reduce to

=

m ~
Lnp.,=1In.p.
3=1 373 3=1 373
(3.8)

m m -~
I n.x.p. =1 n,X.p
j=1 3713 j=1 33

J
where the Ej are defined in (3.1). The necessary and sufficient conditions
for the existence of a unigque scolution to (3.8) were given by Silvapulle

(1981).

The expressions for the asymptotic variances of o and £, and their
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covariance are given by

-2
vVar (&) = 1 + ,
m m 5
I w I w,(x.~x)
j:l J 3::1 J
{(3.9)
vVar (é) = = '
o -2
L w.(x,-x)
and
Cov (&,8) = —X .
m 2
L ow.(x.~-Xx)
j=1 33
Here
. =n.p.{l-p. (1£9<m) (3.10)
Wy 3Pj( pj) 3
are the unknown weights, and
m
z wjxj
e b S (3.11)
m
T w.
j=1 7

is the unknown weighted mean. Using (3.6) it can be shown that the asymptotic

variance of ﬁ(q) is given by

~ ~ (@) _=z,2
var (@) T L {2 Rt

8

. (3.12)
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This variance can be consistently estimated in large samples (nj‘Mc ¥i)

by replacing u,8,u(q) by their MLE's and estimating the wj and x by

o = n.p.(l-ps) (1<ism), (3.13)
J JPJ( p] ]
and
m ~
. z wjx3
R ) (3.14)
m -~
I w,
j=1°
respectively.

3.1.2 Probit Model

It is more common to use the parametrization

e} = 22 (3.15)

for the probit model. Here pu=-a/8 1S the ED50 and 0=1/8; see, e.g.,

~

Golub and Grubbs (1956). The following equations for the MLE's {;ané.c are

easily obtained:

(n,=r.)¢. r.o.
sanr _ 1 T 5775085 Tsts L o
I o 421 | 19 ¢
(3.16)
o n.-r.}t.o, r.t.¢o.
"a’%zl’}:‘:‘}"? e i LA R i i | S
g 0 4= 1-9. $.
=1 ] j
where
xj-u .
t. = .= t.),d. = ¢{t.) = p. £3< . .
j = 5 by = ele,ey =0ty =py ASism) (3.17)
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The MLE of the ED100g for arbitrary ge (0,1) is given by

W =y + 2z 0. (3.18)

The asymptotic variances of i and 8, and their covariance are given by

2 2 . 2
B - ~oon Lo
var () = 3 Var (o) = g A2 , Cov(u,o) = ° g (3.19)
AB=~C AB-C AR~C
where
2
m n.¢.

n t2¢2
B _i5%
j=1 q’j(l“q’j’ (3.20)
2
n.t.¢.
c=3 3 5%5

Using (3.18) and (3.19), the asymptotic Var(ﬂ(q)) can be easily derived. Con~-
sistent estimates of the variances can be obtained in large samples by re-
placing the unknown parameters by their MLE's.

3.2 Parametric Estimation: Weighted Least-Squares

(Minimum Modified Chi-Sguare) Method

The basic method is as follows: Compute the empirical transforms

u =t (ﬁj) (1<3j<m). (3.21)

Ignore for the moment the possibility that ﬁj can be 0 or 1 which can make
uj = =» or + =, respectively. (Applying a continuity correction can help
overcome this difficulty; see (3.27).) Comparing (3.21) with (2.4) we see
that o and B can be estimated by fitting a linear regression of the uj on

the xj. We should not use ordinary least-sguares, however, since the
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variances of the Uj {(where Uj is the random variable corresponding to u.)

are not constant. In fact, using the delta method we see that

" op. (1-p.)
var(u,) = — e
J EF (p))) j
(3.22)
= —l—- (—-a ) (l<j<m)
wj say > = °

Thus we should use the weighted least-squares method to obtain the esti-

mates of o and B with the wj as the weights. But the wj are unknown and

must be replaced by their estimates (referred to as empirical weights)

~ ) 2 n.
wy = £y} _— (1<jsm. (3.23)

-~

Thus the weighted least-squares estimates of a and B are obtained by mini-

mizing

2
nj{f(uj)}

k=]

. (u—a“BX.)z- (3.24)
1 J

3 p. (1-p.)
p]( Py
Note that (3.24) corresponds to the minimization criterion proposed by

Neyman (1949) to obtain what he called the minimum modified chi-square es-

timates of o and 8. These are thus identical to the weighted least-sguares

estimates. These estimates are explicitely given by

m -

A A A A ~ ._Z_lw-(u."u)x.

G =8-8% ana B = 2] (3.25)
T w. (x.-X)



where

m m -
z wjxj z wjuj
== and u = == ) (3.26)
.om o, m
I w, I ow.
j=1 j=1 7

It should be noted that the minimum modified chi-sguare estimates are usually

recommended only for large samples.

We now specialize the above results to the logistic and probit models.

3.2.1 Logistic Model

Here corresponding to (3.21) we compute the empirical logistic trans-

forms

A.i-l 2n.
PJ / ]

u, = in {(1s3j<m) (3.27)

1-p. +1/2n.
py+1/2ny

where l/2nj is the continuity correction. From (3.7) we see that f(uj)

= F(uj){l-F(uj)} ﬁj(l~§j) which when used in (3.23) yields

il

~
W

. p. (1=p. 1<5<m). (3.28)
;) njpj( pj) ( 3

Once again, the Gj may be adjusted by adding l/2nj to the éj and 1—§j terms
in (3.28). The estimates & and § can now be computed using (3.25) and (3.26).
Berkson developed the weighted least-squares method for the logistic

model; he called it the minimum logit chi-sguare estimation method. 2An ac-

count of his work with reference to earlier work can be found in Berkson (1953) .
Considerable controversy has existed concerning the relative merits

and demerits of the maximum likelihood and the minimum chi-square methods

of estimation; the reader is referred to Berkson (1980) and the accompanying

discussion for relevant references and points at issue. As a practical
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matter, the fact that the minimum modified chi-sguare estimates can be
explicitely computed using (3.25) and do not regquire recourse to an itera-
tive algorithm as do the MLE's might be a consideration in some situations.
But in most other situations (particularly those involving small samples)
the MLE's would be preferred to the former.

Recently Cobb and Church (1983) have proposed some method-of-moments
estimators for the location parameter of a location-scale family of quantal
response curves of the type (2.1). When applied to the logistic family,
these estimators performed far better in small samples than the MLE and the
minimum modified chi-square estimators in a numerical comparison of their
exact distributions and mean squared errors. A more detailed study of these
new estimators is needed before they can be recommended for a wider use.

3.2.2 Probit Model

Here no special simplifications result as in the case of the logistic
model, Thus the procedure is the same as the general procedure described
earlier. The standard normal pdf ¢ (-) is substituted for f£(-) when com-
puting the empirical weights &j by (3.23).

3.3 Nonparametric/Robust Estimation

In this section we no longer assume the parametric model (3.1). We
assume only that p(x) is nondecreasing in x with p(-®) =0 and p(+=) = 1.
In §3.3.1 we discuss the problem of estimating p(x) and in §3.3.2 we discuss
the problem of estimating the mean tolerance 8 (which equals the EDSO u if
p(x) is skew-symmetric).

3.3.1 1Isotonic Estimation

_Ayer et al. (1955) showed that the maximum likelihood estimates of the
parameters pj==p(xj) {(i.e., the pj-values which maximize the likelihood

function {3.2)) under the order restriction
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plszﬁ ces Spm (3.29)
are given by
v
L r,
i=u *
By =1 l¥y 5 8%e |7 Gzyzm. (3.30)
L n,
i=u

The §j are known as the isotonic estimates of the pj. For a general ref-

erence on the toéic of estimation under order restrictions, see Barlow
et al. (1972).

The estimates (3,305 are equal to the proportions ﬁj if the latter
satisfy the order restriction (3.29); if not then (3.30) can be computed
by a steinse pooling process as follows: For any adjacent proportions
not satisfying the order constraint, say, for §j>'§j+1' find a common pooled
adjusted estimate ﬁj = §j+l = (rj-+rj+1)/(nj4-nj+l). Continue this process
until all the adjusted estimates satisfy (3.29). These final adjusted es-
timates are the same as those given by (3.30).

An isotonic estimate of p(x), say P(x), is obtained by connecting the
successive points (xj,ﬁjf by straight lines. An estimate of the ED50 1s

then given by §-l(0,5).

3.3.2 Nonparametric/Robust Estimation of the Mean Tolerance

Various nonparametric/robust estimators of the mean tolerance 6 have
been proposed in the literature. These are often used as estimators of the
ED50 with the implicit assumption that p(x) is skew-symmetric. We refer
the reader to articles by Miller (1973), Hamilton (1879), and Miller and
Halpern (1980) for comparisons among these estimators. Here we provide only

a brief summary of the estimators which are commonly used and/or which per-
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formed well in the comparisons carried out in the aforementioned articles.

3.3.2.1 Spearman-Kdrber Estimator

The Spearman-Kdrber estimator is given by -

GSK J x dp(x)
(3.31)
m-1

z
j=1

#

(pj+l ’pj) (xj+l+xj)/2

where the éj are given by (3.30). The classical version of the Spearman-

A~

Kérber estimator eSK uses the ﬁj in place of the éj in (3.31) but in that
case it is possible to have some of the §j+l-§j-<0. From (3.31) it can be

seen that éSK is not an unbiased estimator of 6 but rather of the dis~

cretized means of the tolerance distribution p(x); the same is true of eSK

~

asymptotically (nj—>co ¥j). Thus it is appropriate to use BSK or éSK to

estimate 6 only if the grid of the xj values is very fine. The exact var-

iance of eSK (which is also the asymptotic variance of eSK) is given by

2 2
var(§ ) = Py =Py (:x2+xl:> + P (1-Pp) (:Xm+xm—l:>
SK n 2 n 2
1 m 4

| (1-p.) ’
m.—l p -p. X, "x._

v 3 =2 <3+12 2 1) : (3.32)
J=2 3

When the doses are equally spaced with xj+l—xj=<i>0 (1<j<m-1), we

find that (3.31) simplifies to
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a\- T~
= x +—=] p_~| % -5 p,-d I p.. (3.33)

The performance of the Spearman-Kdrber estimatér is superior (based on
the usual criteria) to two other nonparametric estimator of 6 namely the
'Reed-Muench and the Behrens-Dragstedt estimators that have been proposed
(Finney 1978, Miller 1973). For additiocnal properties of the Spearman-
Kdrber estimator, see Brown (1961), Church and Cobb (1973), Chmiel (1976)
and the references listed therein.

3.3.2.2 Robust Estimators

Many robust estimators of 6, have been proposed and compared by
Hamilton (1979) and Miller and Halpern (1980). These are analogueé of the
commonly used robust estimators of location of a symmetric distribution
such as L-estimators (of which the trimmed mean is a special case) and M-
estimators. The studies by Hamilton, and Miller and Halpern show that the
trimmed Spearman-Kirber estimator with about 10% trimming is the preferred
choice among many alternatives that they studied. Here a 100a% trimmed

= {a)

Spearman~Kdrber estimator 6SK

let ﬂ(a) and ﬂ(l-a)

is given by the following: For O0<a<1l/2

~(1-a)

(a)) =q and é(u ) = 1-a where §(x)

be such that §(ﬁ

is the estimate of p(x) obtained by linearly interpolating between the 5j'

Then

\:(l—a)
~ (o) _ 1 ~
sk, T T1-2a J * dp (x)
;(G)
- 1 = (a) = _
= Ta-2a) | ¥ +xza+1“pza+1 a)
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a ~ ~
+ I (x. +x Y. . ,=p.)
j=g 41 0 9T TS
Q s
+ @ sy aea-p ) (3.34)
u -1 u
a a=-1

where £ = max{j:i)j <a} and u = min{j:fzj 2 l-—o-:}.

The Monte Carlo comparisons of Hamilton (1979) and the thecretical
asymptotic efficiency calculations of Miller and Halpern (1980) also
showed that the performance of the estimators given in §8§3.1 and 3.2 for
parametric models is very poor if the actual tolerance distribution has
heavy tails.

3.4 Design Aspects

Not much research has been carried out concerning the question of
how to design an experiment "optimally,” i.e., at what dose-levels should
the observations be taken, and what proportion of the total sample size
should be allocated to each dose-level, to estimate some selected param-
eter (s) associated with a quantal response curve. Brown (1966) gives some
practical guidelines for designing an experiment for estimating the ED50.
Bayesian design criteria have been considered by Freeman (1970), Tsutakawa
(1972,1980) and Leonard (1982a,b). Some of the designs considered in these
papers are sequential in nature. Here we discuss non-Bayesian approaches
proposed by Hoel and Jennrich (198C) and Abdelbasit and Plackett (1983).

Hoel and Jennrich consider the problem ofAthe "optimal" extrapolation
design for estimating p(x*) (and also p(x*)—p(O);nDtethat here x is not
transformed to the logarithmic scale) when the observations are to be taken

in the interval [a,b] with 0<x*<a<b. These estimation problems arise
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when the results of an experiment to study the effect of a suspected car-
cinogen on laboratory animals at high dose-levels, are to be extrapolated

to low dose~levels. Hoel and Jennrich assume the model

P i
p{x) = l-exp(-EO B,x) (3.35)
i=

which is an exponential model. They determine the "optimal" design which

minimizes the asymptotic variance of the weighted least-squares estimate
of p(x*); this is done by using the known results on optimal extrapolation
designs for polynomial regression (Hoel 1966). The optimal design is sup-
ported on p+1 points. A method of détermining these points (using the
Chebyshev polynomials) and the proportion of observations to be allocated
to each point is given in the Hoel-Jennrich article.

Abdelbasit and Plackett (1983) considered for the logistic model the
problem of maximizing the determinant of the information matrix of H=-a/8
and B using two and three-point designs. They considered only symmetric
designs (i.e., p(xl) = l-p(xz) for a two-point design, and p(xl) = l-p(x3),
p(xz) = 0.5 for a three-point design with equal number of observations at
each X, for each design). Clearly, given that p(xl) = p for some specified
pe (0,1), we need some prior estimates of p and 8 to determine the design
points. BAbdelbasit and Plackett determine the optimal values of p for two
and three-point designs. They study a multistage procedure wherein the re-
sults up to a given stage of the experiment are used to update the estimates
of p and B and thence to determine new design points for the next stage of
the experiment.

4. Single Quantal Response Curve: Estimation

Using Sequential Procedures

In this section we discuss two sequential procedures (i)
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the Robbins-Monro stochastic approximation method, and (ii) the up-and-down
method. Both these procedures are nonparametric in that they do not assume
a specific model for the gquantal response curve. 2 good elementary refer-
ence for both the procedures is Wetherill (1975, Ch.10). An advanced ref-
erence for stochastic approximation procedures is a book by Wasan (1969)
and a review article by Schmetterer (1961). These references also contain
extensive bibliographies.

4.1 Robbins-Monro Stochastic Approximation Method

The Robbins-Monro (1951) stochastic appfoximztion method can be ap-

plied to the problem of estimating the ED100g = p(q)

of a gquantal response
curve., We describe the method for this problem: Fix a positive constant

€ > 0. Denote the outcome of a single Bernoulli trial at dose-level X by
y(xi) = 1 ("success") or 0 ("failure”). Perform the initial trial at some
dose=-level X, {chosen randomly or nonrandomly). In general, given the out-
come of the ith trial, y(xi), choose the dose-level X for the (i+ 1)th
trial by the recursive relation

= x - < i .
X1 = %7 T {y(xi)-q} (l<i<n) (4.1)

Stop the experiment after n observations are made where n is usually fixed

in advance, and then use x

(q)

an estimate of u .

e+l (i.e., the dose-level for the next trial) as

Sacks (1958) showed that asymptotically (n-+=), under suitable reg-—

(@)

ularity conditions /?;(xn—u ) is normally distributed with zero mean and

variance given by

c*q(1-q)

. (4.2)
{ch(q)~l}
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(q)

provided that ¥y >1/2¢c where

@ _ aplo_
Y = £ (4.3)

is the slope of the guantal response curve at u(q). The optimal choice of

¢ that minimizes (4.2) is

1
C = m— (4.4)
Y(q)

and the corresponding minimum variance is

q (1-9)

‘ ) (4.5)
{y (q)}2

Note that'(4.5) is the Cramer-Rao lower bound on the asymptotic variance

(q)

of the MLE of u and thus X is asymptotically efficient if (4.4) is

used in the recursion (4.1). Note also that for the logistic model (2.6),

v = gq (1-q) (4.6)

while for the probit model (3.15),

(q)
@ _ 1 "
Y S ¢ 5 . (4.7)

(q)

In practice, of course, Y is unknown and therefore the optimal choice

(4.4) cannot be implemented. It is readily seen that if because of not

knowing Y(q)’ one uses a c-value in (4.1) which is r times (0 <r <) the
optimal value (4.4) then the resulting asymptotic variance is ;2/(21"—1)
times the minimum value (4.5). BAn examination of this factor shows that

moderate errors in prior guesses of y(q) {and hence c) do noct have very ad-

verse effects on the asymptotic efficiency of the Robbins-Monro estimator.
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However, a poor guess of y(q)

can lead to a substantial loss in the asympto-
tic efficiency.

All of the above discussion is concerned with large sample properties

of the Robbins-Monro method. .Small sample properties of this method are
studied in Wetherill (1963), Cochran and Davis (1965) and Davis (1971).
These authors also suggest several modifications of the basic method to im-
prove its performance in small samples, e.g., to reduce the bias (which can

{q)

be particularly severe when estimating u for an extreme value of g such as

0.1 or 0.9) that can result because of a poorly chosen starting value Xyr
and the much larger small-sample variance than (4.5) predicted by the asym-

ptotic theory.

4.2 Adaptive Modifications of the Robbins-~-Monro Method

To obviate the difficulty of not knowing the optimal value (4.4) of ¢
to use in (4.1) and also to correct the drawback of the classical Robbins-
Monro method that it does not provide a good estimate of Y(q), several
adaptive modifications of the Robbins-Monro method have been proposed. We
review these modifications in the present section.

Anbar (1977,1978) proposed an adaptive procedure which estimates Y(q)
at each stage of the experiment. This is done by first using a linear ap-
proximation to the guantal response curve in the region of u(q) and then
applying the usual least-sguares formula to obtain
i _ _
i (xj-xi) (Yj"‘Y-)

sl _ 3=t *
i -

. (25i<n). (4.8)
1 - 2

T (x, -xi)

j=1 7

- = _.i . = _ i
Here yj-y(xj), yi-—ijlyj/l and Xy z

j=1xj/i' To avoid the instability

associated with initial observations it may be desirable to use, instead

of (4.8), a "moving average" estimate based on some fixed number of the
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latest observations. Another alternative suggested by Anbar is to
specify two positive constants L <U and truncate the estimate (4.8) below

and above by L and U, respectively. Then (4.1) is modified to

C.
X, =xi-=-il—{y(xi)-q} (1<i<n) (4.9)

i+l .

where ci is the inverse of the truncated estimate of Y(q) computed as
just described. Anbar {(1978) showed that the resulting estimator is
strongly consistent and /;(Xn-p(q)) is asymptotically normal with zero
mean and variance = q(l—q)/{y(q)}z; i.e., the estimator is asymptotically
efficient. (Similar results were obtained earlier by Venter (1967) and
Fabian (1973) using a different estimator of slope which requires taking
observations at a pair of x-values at each stage.)

Lai and Robbins (1978) proposed an adaptive procedure which is very
similar to Anbar's but their analysis was done for the case in which the

Y(xi).have a constant wvariance.

In all of the above procedures no explicit use is made of the non-

decreasing property of p(x); also the final estimate x ., can be thrown off

by a few wild observations near the end. To obviate these difficulties
Mukerjee (1981) proposed a modification of the Robbins-Monro method which
constructs an isotonic estimate of p(x) (see 83.3.1) at each stage of the
experiment based on all of the data collected up to that stage. Let §i(x)
denote such an estimate at the ith stage of the experiment (i=1,2,...).
Then, roughly speaking, the next observation is taken at §;l(q), i.e.,
xi+l==§;l(q). Mukerjee restricted the choice of dose-levels {xi} to a
fixed grid of equispaced points which is also the case with the up-and-

down method discussed in the following section. Under certain regularity

conditions, Mukerjee showed the almost sure convergence to u(q) of his



sequential estimation procedure.

Wu (1983) made a proposal similar to Mukerjee's proposal but which
uses a parametric model to determine the dose-level at which the next ob-
servation is to be taken. 1In particular, Wu proposed that at the ith stage
of the experiment, an estimate ;i(x) of the unknown guantal response curve
p(x) be made assuming the logistic model (2.6) for p(x). Wu points out

that such a parametric assumption is required because with small samples it

is not feasible to obtain a good smooth nonparametric estimate of p(x). At

the ith stage (i==no4-l,no+'2,...n) of the experiment Wu estimates p(x) by
~ 1
pi(x) = (4.10)

1+ exp{-(ai+ Bix) }

where (ai'éi) is the MLE of (a,B8) at that stage and n, is some fixed initial

sample size; the dose-levels for the first nO observations are chosen based

on whatever prior knowledge the experimenter may have about p(x). The MLE
(ai,éi) is computed by iteratively solving the equations (3.8) (after making
appropriate changes in notation). The dose-level for the (i+ 1l)th stage is

then obtained by solving the equation ﬁi(xi+l)==q which yields (cf.(2.7))

2N (Ze) = G
1l-g i
X, = o (4.11)
i+l é

1

Wu noted that (4.11) can result in an unduly large change from X to X1
in certain “ill-posed” cases. Therefore he suggested a truncated version

of (4.11) which works as follows: Let c; be the solution to the equation

q ’h
&n( Tq ) -a, c

- i

B
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Then the (i + l1)th dose-level is chosen as

C*

: ) :
= - — -qg} .1
Xi =X T \y(xi) g} (4.12)

where for some prespecified positive constant C,

* .
c; = max{=-C, mln(ci,C)}.

Note that specifying a large C amounts to virtually no truncation.

Wu carried out a simulation study for comparing the performance of
various sequential designs for small samples (l2<n<35) for the problem
of estimating the EDS0 of a quantal response curve with an unknown func-
tional form. He considered the Robbins-Monro design (4.1), the adaptive
Robbins-Monro design (4.9) (with a slightly different truncation scheme
than the one proposed by Anbar), Wu's design (4.12), and the up-and-down
design described in the following section. Each design was used with sel-
ected values of its design parameter, viz., c¢ for the Robbins-Monro de-
sign, C for (4.12) and so on. The mean sguare error of the estimator was
used as the performance criterion in each case. In these simulations the
design (4.12) with a choice of moderate to large C performed much better
than its competitors and is thus a serious choice in practical work.

4.3 Up-and-Down Method

The up-and-down method proposed by Dixon anéd Mood (1948) for esti-

mating p=u 05 ang y=y©-5)

for a quantal response curve operates as
follows: Fix an equispaced grid of dose-levels, say, L= {Ri==c4-id,i==0,tl,
+ 2,...} for some prespecified values of ¢ and 4. Choose a starting dose-
level 3 from this grid at the best prior guess cof u available and then

perform the trials seguentially. In general, at the ith trial if y(xi) =1

(resp.,0) then take the next observation at the next lower (resp.,higher)
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level, i.e., X, =x, -4d (resp., X,

=x,.+d). Stop after a predetermined
i+l i i+l Ti ) p att P

number n of trials and then estimate u and Y by the method described be-
low.

Dixon and Mood proposed the method of maximum likelihood for esti-
mating p and y assuming the probit model for the guantal response curve.
This method results in equations (3.16) for the estimates of u and o (note
from (4.7) that for the probit model vy = (UVE;)-l) and in egquations (3.19)
for their asymptotic variances. Dixon and Mood suggested a simplified ver-
sion of this method which is based on the fact that in the up-and-down
method the number of successes r, (say) at any dose~level Zi do not dif-
fer by more than unity from the number of failures si_l(say) at the next

lower dose=-level 21-1 and therefore for large n one can set r,=s for

i=-1
all i with negligible loss in information. Wetherill (1963,1975 Ch.10)
proposed the use of the logistic model instead of the probit model.
Brownlee, Hodges and Rosenblatt (1953) proposed a very simple estimate of
y namely the arithmetic average of the dose-levels used (excluding Xy but
. . . -1 _n+l . . . .
including x ), i.e., n~ I, _x.; this estimate is asymptotically (n—+<=)
n+l i=271

equivalent to the MLE of p proposed by Dixon and Mood.

Derman (1957) generalized the original up-and-down method to the non-
parametric setting and to the problem of estimating p(q) for arbitrary

ge (0,1). He proposed the following recursive scheme for selecting the

dose~levels: Let Xy be a starting dose-level in grid L and let

X. ~-d wp-z-];?if y(xi)=l

= {x,+d wpl--— if y(x)=1

i+l 2gq

in+d wp 1 if y(xi)=0
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where it is assumed that 1/2<qg<1l. After n trials, u(q) is estimated by

the mode of the realized process xz,x3,...,x . Wetherill (1963, §12) has

(q)

suggested some alternative up-and-down methods for estimating u ; these -

n+l

have not been studied in detail.

Brownlee 3&_3&. (1953) pointed out that the up-and-down method gives
a very poor estimate of the slope Yy unless n is very large. This was confirmed
in the sampling studies of Wetherill (1963) who noted that if the product dxy
is small then the Var(Y) can be arbitrarily large. Thus a large 4 is required
to obtain a reasonably precise estimate of y. However, a large d can lead
to a large bias in the estimate of u. Wetherill (1963) proposed a two-phase
sequential procedure which attempts to obviate these difficulties. In the
first phase of the up-and-down method a large value of 4 is employed. This
phase is continued until k runs of "successes" or "failures" are observed
where k is a number fixed in advance. Based on the results of this phase a
preliminary estimate of u is computed. The second phase is started at this
estimated value of u with a grid d which is half the value of 4 used in the
first phase. The second phase is terminated after a fixed number of trials
are performed and then the final estimate of u is computed using one of the
methods described earlier. This modification (referred to by Wetherill as
the "k-changes rule") performs well in sampling experiments but its theoreti-
cal properties are unknown. Hsi (1969) has proposed a modification of the
up~and-down method which takes multiple observations at each stage; his mod-
ification also permits estimation of the ED100g for arbitrary qe (0,1)-

5. Several Quantal Response Curves: Multiple

Comparisons Under the Logistic Model

o "/\\ -

In this section we return to thefset upiof §1 where we had k2 2 popu-
~——__J .

lations with pi(x) as the quantal response curve associated with the ith

population Hi (1£isk). Very little literature exists on the problem of
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comparing two or more quantal response curves simultaneously, one major
exception being analysis of dilution assays (Finney 1978).

Reiersgl (1961) considered the goal of making all pairwise comparisons
between k populations under the logistic model

1
l+~exp{-(aii-61x)}

pi(x) = (L£1i<Kk). (5.1)

In particular, he considered three separate simultaneous pairwise hypotheses

testing problems:

(a) _ )

Hii" Bi -Bi, (5.2a)
(b) _ o g Do it

Hii’ : (ai+ Bix) = (ai, + Bi,x) for specified xe R (l<i<i’ £k) {(5.2b)

gle), p D 2 @ e checified qe (0,1) (5.2¢c)
11 R 1 1 J

where u;q) for population Hi is defined by (2.7) (1s£i<k). Reiersgl derived

Scheffé«type simultaneous tests for (5.2a), (5.2b), and (5.2c) when a
single-stage experiment of the type described at the beginning of §3 is
performed independently for each population. We now describe his procedure
in detail.

Choose dose-levels xil<:xi2< "'<:xim for experimenting with popu-
i

lation Hi(l$:1S1q. Take nij observations at dose-level xij for population

NM.; let r.. be the corresponding number of successes and let ﬁ..==r../n..
i ij 1j 13" 13

be the proportion of successes (1<3j smy, 1<ic<k). By analogy with (3.27)

and (3.28) define

fai.+1/2ni. )
= fn _=J ] 1<j<m ,1<i<k), (5.3)
1-p; +1/2n, »

u, .
ij
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and
w. = o -7 <5< <ic<k 5.4
respectively. Then by analogy with (3.25) compute
m, . 2
Etw, . (u,.=-u,)x,.
. - R . op 13 ij i"71i3
o, =u, -B8.X, and B.=3 (1£1i<Kk)
i i i i m, a
71 A 2 2
w, . { -X.)
j=1 13 713 i
where
m; . ms
zlwijxij zlwijuij
x, = =t and u, = = (1<i<k). (5.5)
i m. i my
zl," rs
4=1 *3 j=1 13
Also compute
[~ <1 -1
m; ms -
a, c. le.. Thw. X, .
1 1 3=1 1] ]-—'l 13 13
= (L<ic<k).
mj . m;
c. b. L w,..x.. lw..x?'.
i i Lj=l 13743 4=1 13743

Reirsol proposed the following procedure for testing (5.2a):

. (a) __ s 2 2 2 C e st <
Reject Hii y <=> (Bi Si,) > xa,2k—2(bi*'bi’) (1<i<i’ k)

where xi 22—2 is the upper a-point of the chi-square distribution with 2k-2
r

degrees of freedom. For testing (5.2b) he proposed the procedure:

. (b) ~ ~ A - 2
Reject Hii’ <=> {ai-+six-(ai,4-81,x)}
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2
G,2k~2

2

> X {a.+b4x2+2c.x+a4,+b,,x +2c,,x} (l<i<i’<Kk).
1 1 1 Py 1 1

For testing (5.2c) he propcsed the procedure

o (¢) A n PO
Reject Hii',<=> {(Q-—ai)ﬁi, - (Q.‘ai’)Bi}z

> Xa,2k-—2 m{én Giir(®) (1<i<i’< x)

where the minimum is taken over - o < t< + =,

‘_ - 52
Gll,(t) - (ai+ail){tBi+ (l-t)Bl,}

oA - 2
+ (bi+bi'){tai+ (1-ta,, -0}
“2(cy+ei ) {eBy+ (1-6) B, e, + (1-t)a,, -0},

and

= S
Q = &n <;~q .

All three procedures follow from Scheffé's projection method. Under the

hypothesis that all k quantal response curves are identical (i.e., 4 =...=q
and Bl==...= Bk) asymptotically (nij =+ ® Vi,j) the probability that any of

k

the above tests makes a false rejection is no greater than a.
Jensen (1976) deals with the problem of comparing several dose~response

curves with a standard; however, he assumes continuous normally distributed

responses,

6. Several Quantal Response Curves: Selection

Problem Under the Logistic Model

6.1 A Single-Stage Procedure

We begin by considering the simplest setup namely that of §5 wherein
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we assumed the logistic model (5.1) for each population. Here we further

assume that
B.=f_=...=8 =8 (say), (6.1)

(thus the k quantal response curves are members of a location parameter

family) and that the common value of B is known.

As formulated in §1, the gcal of the experimenter is to select the pop~
ulati . . (@) _ _. (q) . .
ation associated with p[l] =ming oo My where ge (0,1) is specified.

From (2.7) we see that because of the assumption (6.1), the goal of sel-

{q@)

ecting the population associated with the smallest My

for any g¢ (0,1) is
equivalent to selecting the population associated with the largest o
> > ' i -
Let a[l] 2 a[zj 2 .. 2 a[k] be the ordered a,'s so that u[i] is as
sociated with uégg(lSj.Sk). The probability requirement (1.3) can be re-

written as

*

P(CS) 2 P whenever 0[13 - a[Z] > g&* (6.2)

where now the "correct selection (CS)" refers to selecting the population
associated with o .
{1]
We propose the following single-stage natural selection procedure: For
each population Hi‘choose equispaced dose-levels xil'xiz""'xim where
L L. =X,. =48, > £icg £ ji<m-1). i . in-
x1,3+1 xlj dl 0 (1£i<gk,1<3<m-1) For each population Hl take n in
dependent observations at each xij and let N=mn denote the total number of
observations per population. Let rij denote the number of successes fox
i ) - . t p..=T.. <is <j<m). Com-
population IIl at dose~level xl} and let plj rlj/n (1<i<k,1£3<m) C
pute the MLE &i by solving the equation (which corresponds to the first of

the two eguations (3.8)):
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where

1
Piy = 7T¥ expl{-(a, + Bxij)}

Alternatively compute the weighted least squares estimate of oy by

~

where the quantities ﬁi and ii are given by (5.5) and the uij and &ij re-
quired in their computation are given by (5.3) and (5.4), respectively.
Select the population yielding maxX; o<k &i and assert that it is associ-
ated with a[l] (i.e., with ué%%).

We take the set of dose-levels {xij (L€i<k,1<€j<m)} as given and
address the problem of determining the smallest sample size N per popula-

tion (or equivalently the smallest n=N/m) which will guarantee (6.2) when

used in the selection procedure just described. We provide a large sample

(m »- ®©, n -+ =) solution to this problem.
First note that for large n, the MLE (and also the weighted least-

squares estimator) &i is approximately normal with
~ = ~ - S'S
E(ui) ass Var(ai) (L£i<k)
and, of course, the &i are independently distributed. The formula for the

variance follows by a calculation analogous to that made in (3.9) but here

it results in a simple one term expression because £ is assumed known and
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hence is not estimated. If m is large and di is small (1si<Xk) then we

can write

m m .
fw..=n L p,.{l-p..) )
5o i3 so1 19 ij
n = , 4
= = .Z p; (X y{1-p (xij)}
i j=1
o
= 2 -
nd di j pi(x){l pi(x)}dx. (6.4)

In the above Pij is given by (6.3) and pi(x) is given by (5.1) with

Bi= 8 ¥i. For the logistic model we obtain from {(3.7) that

dp. (x)
ax

p, ®){1-p ()} = _%_ (1<isk). (6.5)

Substituting (6.5) in (6.4) and noting that dpi(x)/dx is a (logistic) den-

sity function which integrates to unity, we obtain

If a common spacing between dose-levels is used for all k populations, i.e.,

if dl=d = .. =dk=d (say) then we have for large m and n that

a L gd .
—_— <
@, N(o.i, - ) {(1£isk).

Thus the estimators of the a, are (approximately) normally distributed with

a common known variance Rd/n and are independent. Based on the known re-

sults for the problem of selecting the largest normal mean when the popula-

tions have a common known variance (Bechhofer 1954) we can conclude that the
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infimum of the large-sample P(CS) over the part of the parameter space where

* _
- 8% =

o - Q > &% is attained at the slippage configuration a
[1] %23 %F ppage d [13

Oraoq T aee=0 and this infimum is given by
[2 (k] -

[--]

J oX ks * /-%9. 3 (x) . (6.6)

Equating (6.6) to P* we find that the desired n which guarantees (6.2) is

. 2
(o] * i
_ k,P d
n= <<—-—-—-—-—-—-—6* ) - > (6.7)

where < x > denotes the smallest integer 2x and Cy p* is the solution to
r

given by

the equation

J o5 L(x+c)as(x) =p*.

Selected values of S p* have been tabulated by Bechhofer (1954) and Gupta
14

(1963). We note from (6.7) that n is decreasing in B (i.e., n increases as

the slope of the quantal response curve decreases) and increasing in the

common spacing d between dose-levels.

6.2 Discussion

The intention of the above exercise was not to provide a realistic
solution to the selection problem but simply to illustrate the difficulties

that arise even under very highly restrictive assumptions (e.g., the

logistic dose-response curves with a common known slope, equispaced dose-

. levels, etc.). An exact small-sample solution is hard to obtain, and so it
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was necessary to employ asymptotics in both the number of observations n

at each dose-level and the number of dose-levels m. On the other hand, in
case of nonintersecting .guantal response curves (Figure 2) the exact small-
sample procedure proposéd by Bechhofer and Kulkarni (1982) for the under-
lying Bernoulli selection problem requires no additional assumptions but,
as pointed out in Section 1, it does not necessarily guarantee the proba-
bility reguirement (1.3).

Clearly, if the shapes of the quantal response curves are assumed to
be completely unknown then fully sequential procedures with large samples
must be used. Gupta and Huang (1975) have proposed such a Robbins=-Monro
type sequential sampling procedure followed by a natural selection terminal
decision rule. But their results also are asymptotic. They also assume
known lower bounds on the slopes of the quantal response curves. In practice
only small samples are available from each population, and the work of
Wetherill (1963) has shown that the asymptotic theory is not a good guide

in that case. Thus the selection problem is still essentially wide open.
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