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ABSTRACT

In this paper we generalize the Dehn-Sommerville equations to the
cases of completely balanced spheres and Eulerian poset complexes. For
such complexes, we consider an extension of the usual notion of f-vector,
counting the number of faces having a prescribed Tabel set. In the case
of poset complexes, this is equivalent to counting the number of chains
having elements of prescribed ranks. In each case we determine the
affine span of the extended f-vectors of the class of objects. The
result for Eulerian posets also gives the affine span of the extended

f-vectors of convex polytopes.
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ABSTRACT

In this paper we generalize the Dehn-Sommerville equations to the
cases of completely balanced spheres and Eulerian poset complexes. For
such complexes, we consider an extension of the usual notion of f-vector,
counting the number of faces having a prescribed label set. In the case
of poset complexes, this is equivalent to counting the number of chains
having elements of prescribed ranks. In each case we determine the
affine span of the extended f-vectors of the class of objects. The
result for Eulerian posets also gives the affine span of the extended
f-vectors of convex polytopes. For d-polytopes, the dimension of this

affine span is given by the dih Fibonacci number.

Partially supported by the National Science Foundation grant MCS-81-02353
at Cornell University.



1. Introduction

This paper generalizes the Dehn-Sommerville equations for simplicial
spheres to related classes of objects. The underlying motivation is to
understand the combinatorial structure of arbitrary polytopes, that is,
polytopes that are not necessarily simplicial. Towards this end we
determine the affine span of the extended f-vectors of d-polytopes.

A polytope is the convex hull of finitely many points in Rd. We will
generally consider a polytope of affine dimension d to be a subset of Rd;
this is referred to as a d-polytope. A face of a polytope is the inter-
section of a supporting hyperplane with the polytope. For the most part
we identify a polytope P with the abstract cell complex (or Tattice)
realized by the boundary of P, and write a face of P as the set of ver-
tices of P it contains., That is, we will shorten F = conv{vo,..,,vk} to
Fo= {vo,...,vk} when there is no risk of confusion. By convention, the
empty set is considered a (-1)-dimensional face, and the polytope itself
is a d-dimensional face; these faces will be called improper faces of P.

A polytope P s called simplicial if each of its faces, except
possibly P itself, is a simplex (the convex hull of affinely
independent points). We will write Pd (respectively, Pg) for the
set of all (respectively, all simplicial) d-polytopes.

The number of i-dimensional faces (or i-faces) of a polytope P s
written fi’ and f(P) = (fﬂ’f]’°"’fd-]) is called the f-vector of P.
The set of f-vectors of all {(simplicial) polytopes is written f(Pd)(f(PS)).
A certain transformation on the f-vectors of simplicial polytopes has
arisen in a number of different contexts, and will play an important part

here. For a d-polytope P define the h-vector h(P) = (hO’h1""’hd) by
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h =Tl (DTG

; (here we use the convention f . =1). This

i
-1
relation can be inverted to give f. = §j+] ( 81 h The f- and h-vector
j = &i=0 ‘d-j-1774°

J-1

are defined in exactly the same way for simplicial complexes.

The f-vector of any d-polytope P satisfies Euler's relation:

d-1 ) d
fo = fp + fpmeeet (1906, 5 =1 = (-1)

linear relation satisfied by all f-vectors ([14], Chapter 8); i.e., the

. This is the only (affine)

dimension of the affine hull of the f-vectors of d-polytopes, denoted

dim aff £(p"

), is d-1. The only other general result is the Upper Bound
Theorem: given integers n, d with n > d+1 > 3, among all d-polytopes
with n vertices there exists one, called the cyclic polytope, that
maximizes the number of faces of every dimension ([20], [24]). Euler's

formula and the Upper Bound Theorem are not sufficient conditions for a

vector of positive integers to be the f-vectors of a polytope. A

f
w

characterization of f(Pd) is known only for d

£(P°) - {fo,f0+f2-2,f2)'4‘§ fy < 2f,-4 and 4 < f, < 2f -4},
For d =4 the projections of f(P4) into two dimensions have been
characterized (see [14]7,[2]1,[3]).

When we restrict consideration to simplicial polytopes, a complete
characterization of the f-vectors is known. This was conjectured by
McMullen [197 in 1971 and proved in 1980 by Billera and Lee (sufficiency
[71,[8]1) and Stanley (necessity [27]). To state the theorem, we need the

following definition. For h and 1 positive integers there is a unique

decomposition of h, called the i-canonical representation, as

= (7)) (5
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such that ns > s

. n.+1° n. .+ n.+1
<Gy _ i i-1 J | ;
then h _(H] >+< ; >+ +( j+1>‘ Recall that there is a

one-to-one correspondence between the f-vector and h-vector of a polytope.

P oees U nj >3 > 1. The i-th pseudo-power of h s

Write h(Pg) for the set of h-vectors of simplicial d-polytopes.

Theorem 1.1. For an integer h = (hO’hl""’hd)’ he h(PS) if and
only if the following conditions hold:
. B . 1 -,
(i) h, = hd-i’ 0<iX« E§ dl;
(ii) h

o _
4 2 01 <Al =T

(iii) h, =1 and gy - h, < (hi'hi-

<i>
0 1 i - )

DY, 1<z dl -

The conditions in (i) are equivalent to the relations

d-1 .
£ 7 (DTEThe 1 Ck < d-2,

k j2k k+17°3°

These are the Dehn-Sommerville equations, named for Dehn, who conjectured
their existence in 1905, and Sommerville, who first discovered and proved
them in 1927 [23]. The equations did not become well-known until Klee
reproved them in a more general context in 1963 [15].

In our discussions of generalizations of the Dehn-Sommerville
equations, we will need to use several operations on convex polytopes.
We briefly describe them here and indicate their effect on the h-vector.
Note first that for any d-polytope Q, hd(Q) = 1 because of Euler's
formula.

If Q is a d-polytope, the pyramid on Q, PQ, 1is the convex

(d+1)-polytope formed by taking the convex hull of 0Q with a point not in



A

the affine span of Q. Sommerville [23] showed that h(PQ) = (h{0),1).
Note that PO s not simplicial unless 0 s itself a simplex since
0 4is a facet of POQ. In this case PO 1is again a simplex, and we get
by induction that h(Tg) = (1,1,...,1), where Tg is the d-simplex.

For a d-polytope Q, the bipyramid over Q, BQ, fis defined to be
the convex (d+1)-polytope formed by taking the convex hull of 0 with a
line segment which meets Q 1in a relative interior point of each. For
example, the bipyramid over an interval is a square and the bipyramid over a
square is an octahedron. For the h-vectors, we have h(BQ) = (h(Q),0) +
(0,h(Q)). Note that if Q is simplicial, then so is BQ. For example, since
the h-vector of the interval is (1,1), that of the square is (1,2,1) =
(1,1,0) + (0,1,1), and that of the octahedron is (1,3,3,1) = (1,2,1,0) +
(0,1,2,1).

To define the final operation, let Q be a simplicial d-polytope and
F a proper face of Q. If H is a ((d-1)-dimensional) hyperplane
containing Q in one of its closed half spaces, then a point x ¢ H is
said to be beneath H if it is on the same side of H as Q, and beyond
H otherwise. MNow let F}""’Fk (k > 1) be all the facets ((d-1)-

dimensional faces) of 0 which contain F. Let x be a point which is

beyond the hyperplanes generated by these Fi s and beneath the hyperplanes
generated by any other facets. (A point x ¢ Q sufficiently close to the

centroid of F will do.) Define the stellar subdivision of the face F

in Q, st(F,0), to be the (simplicial) d-polytope which is the convex hull
of Qu {x}. (See [12] where this operation is described for nonsimplicial

Q0 as well.)
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To describe st{F,0) combinatorially, let A be the boundary complex
of 0, and let o be the set of vertices of F. Then the boundary complex

of st{F,Q) is the complex st(o,A), the stellar subdivision of simplex o

in A, where

st(o,A) = {A\c} U ?-ac-zkl_\c.

Here Mo = {1 ¢ A'r 7 o}, ko is the link of o in 4, defined by
,QkAG ={'c€A|'rﬂc=@5 T U o e A},

dc is the complex of proper subsets of o, x denotes the complex con-
sisting of {x} and § and ¢ denotes the join of simplicial complexes.
Stellar subdivision can be used to construct a set of simplicial

polytopes whose f-vectors span the Dehn-Sommerville space and, from these, a
d

set of polytopes whose f-vectors span the Euler hyperplane. If TO is the
d-simplex and FX s a k-face of Tg, define Ti - st(Fk,Tg). The

f-vectors of the polytopes Ti, 0 <k < [d/2], span the subspace determined

by the Dehn-Sommerville equations. Their h-vectors are given by

h(Tg)  (1,2,3, 00 Kokt T kT, oo e kK e 53,2, 1),

Now for 0 < r < d-2, define Tg’r to be the r-fold pyramid over

the (d-r)-polytope Ti—r. These polytopes constitute all the d-polytopes
with d+2 wvertices; in fact, the TS are all the simplicial d-polytopes
with d+2 vertices. Their f-vectors span the Euler hyperplane. For
details see [147,[6].

In this paper we will develop similar results for the extended

f-vectors of completely balanced spheres and Eulerian poset complexes.



2. Labeled simplicial complexes

Let A be a simplicial complex with vertex set V. A labeling of A

. the

by labels 0,1,...,r 1is a partition of V = VO U V] U wos U Vr

vertices in Vi are said to have label 1i. [If each maximal simplex of A
has precisely one vertex with each label, then A s said to be completely
balanced; in this case A 1is a pure simplicial r-complex, that is, a
simplicial complex in which each maximal face has r+1 vertices.

An interesting class of completely balanced complexes arises in the

A

study of ranked posets. let P be a poset, having a least element 0 and

a greatest element 1. We form a simplicial complex A(P) having vertex
set P\{0,1} by defining {x1,x2,.,.,xk} to be a simplex in A(P) if
(after reordering, if necessary) X < X5 { ean X Xy e That is, the
simplices of A(P) are the chains of P\{as?}. A(P) is called the order

complex of P or, more generally, a poset complex.

P is said to be ranked if for each x e P, x # 6, all maximal chains

0 <Xy < vun < X, = X in P have the same length k+l1. We then call k the

0
rank of x, written r(x), and make the convention r(a) = -1. (MNote that
this rank function corresponds to the usual rank function shifted down by
1; it corresponds to the usual rank in the poset P\{a}.) A labeling of
the vertices of A(P) with the ranks of the corresponding elements in P
makes A(P) completely balanced, since every maximal chain contains exactly
one element of each rank.

An especially interesting special case of ranked poset complexes occurs
when P s the lattice of faces of a convex d-polytope Q. In this case,

A(P) is the barycentric subdivision of the polytope Q and is itself a

convex polytope [12]. Each vertex of A(P) corresponds to a face of Q,
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its label being the dimension of that face. The Tabel set here is
[0,1,...,d-1}, which we will denote by the symbol <d>.
We extend the notion of f-vector and h-vector to labeled simplicial

complexes as follows. Suppose A 1is labeled by 0,1,...,r. For each

r+1

7z = (zo,z],.,.,z Vel , define fz = 'Az’ where

r

p, = {oen: Ic n Vi‘ =z, for 0<i <l

Note that the number of j-simplices in A 1S

fa)y= 1 ),
EER

where for z e mr+1, ’z' = Z?:O z,. Finally, define

h(8) = | <-x>‘z"’w’fw<m.
<

z
w<z

When there is at most one vertex of any label in a simplex, we have

f (a) = 0 unless each 2z, < 1. Write S =supp z = {i: z;y > 0} and

define Ag = A, and fS(A) = fZ(A). Then

f.(a) = ) fe(a),
J Selr+1> 3
|s =j+1

and if the labeling makes A a completely balanced complex of dimension

r = d-1, then
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It is straightforward to verify that

S c <d>) as the extended

Thus we will refer to (fe; S < <d>) and (h

S’ S
f-vector and h-vector. MNote that by Mobius inversion (137, we can write
) = g 1e(0):

In tﬁg remainder of this section we will derive a set of linear
relations on the fZ(A) which must hold when A triangulates a sphere or,
more generally, is a homology sphere. These relations will hold, in
particular, for barycentric subdivisions of convex polytopes. In the case
of completely balanced complexes, these relations have a particularly nice
form when expressed in terms of the hS.

To derive the relations, we first recall the definition of the
Stanley-Reisner ring of a simplicial complex [21]1, [241. If A 1is a
simplicial complex on vertex set V = {v1,.,.,vﬂ}, then define the

Stanley-Reisner ring of A to be

Ay = KDXeesX 1T,

where K{X],,.,,Xn] is the polynomial ring in n indeterminates over a
field K (which we assume here to be the field of rational numbers)
and EA is the ideal generated by all monomials of the form

X. X, ...X. where i, < i, < ... <, and {v. ,v. ...,V } g A
i 5 i 1 2 k o, i

If A is labeled by 0,1,...,r, we can define an Nr+] grading of

AA’ that is, a K-vector space direct sum decomposition



)
A €Nr+! z
where A A < A and A. = K. If vertex v. has label 1, then Jet the
Zw— Ztw 0 K
degree. of Xj be e the ith unit vector in ]Nr+1. This defines an

-i’
mr+] grading on K[X],...,Xn], and since IA is generated by monomials,

it is a homogeneous ideal in this grading. Thus AA inherits the grading
from the polynomial ring; AZ is the subspace of AA spanned by all

monomials of degree z. We define the Hilbert function of AA by

H(A,z) = dimK AZ; the Hilbert series of AA is then given by
P(AGE) = 1 ri H(AA,z)tZ,
ZelN

where 17 = tQ t1 oot
The following result of Stanley (stated in [26] only for balanced
complexes but proved in general) gives the Hilbert function of AA for

a labeled complex A.

Proposition 2.1. If A 1is a simplicial complex labeled by 0,1,00050,

then for we Wr+},

We use the conventions that (g) =0 if n <0, (_1, =0 if n=# -1
and (:}) = 1. When A 1is completely balanced, we have fZ(A) = 0 unless

W, -1
i

7.1 ) is nonzero if and only 1if
i

z. <1 forall 1i; 1in this case, H§=0<f

z < w and, for all i, z, = 0 4if and only if Wy = 0. Thus the term

, (w1.-1
f () Ty 21 is zero unless



in which case it is equal to fZ(A). Thus d(AA,w) = fsupp y

W e B‘irﬂ

when A is completely balanced.
Now suppose A is a homology (d-1)-sphere, that is, a simplicial
complex with the property that for each k-face o ¢ A, &kAo is a {(d-k-2)-
dimensional complex having the rational homology of a (d-k-2)-sphere,

-1 <k <d-1. Let Ay be the set of j-simplices in A, -1 <J <d-1.

If ceAj, 0={v_i Y

and define

a direct sum of vector spaces over K.

If A is labeled by 0,1,...,r, then AA and each Cj has an ]Nr+
grading as discussed above. The following result is an application of an
exact sequence stated without proof by Danilov [11], who referred to a

similar result due to Kouchnirenko [16]. A proof, based on the proof in

1671, can be found in [6].

Theorem 2.2. Let A be a homology (d-1)-sphere labeled by
0,1,...,r. Then there exist homogeneous (in the mr+] grading defined

above) linear maps 5; SO that the sequence of K-vector spaces

is exact.
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The result actually states that the maps are homogeneous in the finest

grading of these algebras by the semigroup of monomials in X],...,Xn. To
a a
prove it, it is enough to show that for each such monomial m = X11..,Xnn,

the sequence of mth homogeneous components

> esoe

0~ Am i (Cd—])m i (Cd—Z)m

is exact. The proof consists of relating the homology of this complex to
the usual simplicial homology of the link in A of the simplex
o ={i:a, > 0}. See [6] for details.

Now, since vector space dimension is additive over exact sequences, Wwe
get the relation in Hilbert functions

d-1

H(A,»7) = 5_1 (-1)d"'3H(cj,z)

for each z ¢ Nr+1, which in turn gives the relation of Hilbert series

d-1 .
PALt) = 7 (-3 p(c,,t).
j=-1 )

By Proposition 2.1 and the discussion immediately following, we have

; 5 r wi—l W
P(A ,t}y = ) - f_(P) @ gt
A We]NH1 z<w z i=0 ,Zi t

On the other hand, Cj is the direct sum of the vector spaces A(o)

for o e Ay Now if z. = |on Vil for 0< i <r, then



Thus, since

?(Cjat> = } P{A(o’),t\),

A
o€ j

we get, by equating coefficients the two expressions for P(AA,t), the
following identities on the numbers fZ(A) for homology spheres. See

[6] for details.

Theorem 2.3. Let A be a homology (d-1)-sphere with vertices labeled

{0,1,...,r}. Then for all w T

r wi-i d—'zl r 'wﬁ+z].-]
) fo(a) @ >= ) (-1) f_(p) T .0
20 a0 \ATY s AR A

Ry applying Theorem 2.3 to the case r = 0, we obtain the usual
Dehn-Sommerville equations for homology (d=1)-spheres

d

fk =

1

d-j-1,3+1
(‘}) (k“!"])fj’ ".! 5- k < d"z-

I3 3

j=k
Again, see [6] for details.

Corollary 2.4. If A 1is a completely balanced homotogy

(d-1)-sphere, then for all S 5_{0,1,.,.,d—1},

ScTe <d>

Equivalently, writing S = <d>\S, we have for all S,



This result has been noted in [9] and [29] for those completely
balanced complexes arising from certain posets. Again, see 6] for details

of proofs in this and other cases.
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3. Generators for the hS of spherical complexes

In this section we show that the relations given in Corollary 2.4
along with the trivial equation h@ =1, are the only affine linear
relations satisfied by the numbers hS(A) for every completely belanced
homology sphere A. To do this we describe a set of polytopes and
partitions of their vertices that make them completely balanced.

Suppose in Rd we have d mutually orthogonal segments, [Vi’wil
(0 <i<d-1), that intersect at a single point interior to each of the
segments. The convex hull of these segments is a simplicial polytope,

called the d-crosspolytope Qd or just Q (see [14], section 4.3).

Atternatively, Q 1is the polar to the d-cube, and its boundary complex
can be viewed as the order complex of the rank d poset having 2
elements of each rank, any two elements of different rank being comparable.

For 0 < k < d-1, the k-faces of 0 are determined by sets F of

k+1 of the points {v,} v {w;} where no pair {viow} disin F.o o In

particular, the facets consist of exactly one element from each pair

{viow}, 0<1i <d-1. Thus, the sets Vi = fviow} (01 < d-1)

partition the vertices of 0, making 0 a completely balanced simplicial
complex. For S c {0,1,...,d-1}, the elements of QS are the sets

- S
ly;o0e S} where y. eV, = {Vi’wi}' There are clearly 2 such sets,

i.e., fS(Q) = 2" ', It follows easily that hg(Q) =1 for all
S 5_{0,1,,..,d-1}. This makes the crosspolytope the completely balanced

analog of the simplex, which has h, = 1 forall i, 0<1i <d.
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Suppose F is a j-face of Q labeled by some subset

Xe {0,1,...,d-1} (IX, = j+1). Then XkQF is a complex whose facets

consist of exactly one element from each V., for ie {0,1,...,d=-T]\X,

So XkQF is itself a (d-j-1)-crosspolytope with vertices labeled by
[0,7,...,d=-TI\X,

We describe an operation that will produce from 0O another completely
balanced polytope with slightly different numbers hS' To do this we need
to define a stellar subdivision of a face in a simplicial complex.

Suppose K dis a simplicial complex, and F 1is a j-face of K. let v

be a point not in the vertex set of K. Then the stellar subdivision of F

in K is the simplicial complex whose maximal faces are either maximal faces
of K that do not contain F or faces of the form Hu {v} u G, where H
is a maximal proper subface of F and G is a maximal face of kaF. We

write this complex st,(F,v). If K is the boundary of a simplicial

 (
d-polytope then stK(F,v) can also be realized as a simplicial d-polytope

rei.

Theorem 3.1. For any X c {0,1,...,d-1} there exists a simplicial
d-polytope PX and a labeling of the vertices of PX such that
(i) PX is a completely balanced complex, and

(ii) For each S < {0,1,2,...,d-1},

1 if SnX=¢ or XcS

2 else,
AN

Proof: Let Q be the d-crosspolytope with vertices Tabeled as above.

If |x. <1, then for any S, either Sn X=9 or XcS, so P" =0
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satisfies the conclusion of the theorem. So assume ix‘ > 2; without Toss
of generality, let X = {0,1,...,r} (r>1). Let F = {ug...,u} bea
face of 0 with us labeled 1.

Now choose a new vertex to, label it 0, and form the polytope
QO = stQ(F,tO). A facet of QO is one of two types: it is either a facet
of 0 not containing F (in which case its vertices are labeled
{0,1,...,d-1}); or it is of the form Hu {tO} v G, where H 1is a facet
of F and G 1is a facet of szF. In the latter case, H = {UO""’UT}\{UK}
for some k, and G 1is labeled {r+l,r+2,...,d-1}, so Hu {t,} v G 1is
labeled ({0,...,r}\{k}) v {0} v {r+1,r+2,...,d-1} (considered as a multiset,
i.e., two vertices will have label 0 if k= 0).

We proceed to construct a sequence of polytopes inductively. The induc-
tive hypothesis will be that for some Jj > 0 we have a simplicial d-polytope
Qj with the following properties: the vertices of Qj are the vertices
of Q plus {to’t]""’tj} (ti labeled 1i); and the facets of Qj are

(1) facets of Q not containing F; or

(2) {XQ’Xl""’Xj} v {uj+],uj+2,...,ur} u G, where for 0<1i <J,

X e {ui’ti}’ not every x, is u,, and G fisa facet of 2k F; or

(3) {XO’X1""’Xj-1} v {uj,tj} U ({uj+1’Uj+2”°"ur}\{uk}) u G, where for

0 <1 <3-1, x; e {unty}, G s a facet of 2kjFand  j+1 < k <r.

Note that type (1) and (2) facets are labeled by {0,1,...,d-1}, but in a type
(3) facet the label Jj occurs twice. The inductive hypothesis clearly holds
for j = 0.

Suppose the hypothesis holds for some Jj, 0 <Jj < r. Choose a new vertex

i

tj+]’ label it j+1 and form the polytope Qj+1 StQj({uj’tj}’tj+})'

According to the definition of stellar subdivision we get facets of Qj+}
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in two ways. First there are the facets of Qj that do not contain {uj,vj}.

These are the type (1) and (2) facets of Qj‘ They account for all of the

type (1) facets of Qj+]’ and some of the type (2) facets of Qj+1 (those

for which SR uj+}).

{tj+1} v E, where xj e fu.,t;} and E 1is a facet of kuj{uj,tj}. Now

Secondly there are facets of the form {xj} v

J7J
from the description of the facets of Qj we see that E must be of the form

{XO’X1""’Xj—1} v ({uj+],...,ur}\{uk}) u G (x;,6,k as in (3)).

When k = j+1 we get the rest of the type (2) facets of Qj+] (those for

which Xip = tj+1)‘
Q

satisfies the conditions of the inductive hypothesis.

When k > j+1 we get the type (3) facets of Qj+]‘ So
j+

Finally, we obtain from this sequence a simplicial d-polytope Qr whose
vertices are the vertices of Q plus {tO’tl"’°’tr} (ti labeled 1i). We
see that the construction of Qr from Qr—] produces no facets of type (3),
because there is no k > r. So all the facets of Qr are labeled
[0,1,...,d-1}, i.e., Qr is completely balanced. Qr is our desired polytope
X

P". The facets of PX = Qr are facets of Q not containing F and facets of

the form {XO’xl"°”Xr} u G, where for 0 <1 <r, x;

;e {ussty}, not every

X is Uss and 6 1is a facet of kuF.
Let Q' be the simplicial complex whose facets are {xo,x],...,xr} u G,
where for 0 < i <r, x5 e {u,,t;}, and G s a facet of aksF. Since
kuF is a crosspolytope, it is clear that Q' 1is a d-crosspolytope. Let
F' = {”O’U1"‘°’ur} (as a face of Q'). Then the facets of pX can be
thought of as the facets of Q not containing F and the facets of Q' not
containing F'.
This description enables one to compute the extended f-vector and hence

the extended h-vector of PX. The details of the calculation can be found in

[6; Theorem 6.11. [
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We note here that the sequence of stellar subdivisions constructed in the
proof of Theorem 3.1 can be carried out in any completely balanced simplicial

complex, defining the notion of a completely balanced stellar subdivision of

any face in such a complex. See [6] for a discussion of this.

Let ¢

d 1
C')) the set of the vectors (HS(A))SEﬁd> e IN

be the set of all completely balanced homology (d-1)-spheres,

d
and  (h 2" for ae

ol

Theorem 3.2. dim aff(n(c?)) = d-1 1,

Proof: For all A ¢ Cd we have h@ =1 and (by Corollary 2.4)

hS(A) = hg(A) for S c {0,1,...,d-1}. These are clearly independent linear

d-1 d d _ 8T

equations, and there are 2 + 1 of them, so dim aff hS(C )‘ﬁ 27 -

= Zd-] - 1. The rest of the proof will consist in showing the other inequality

by demonstrating Zd'i affinely independent vectors in hs(cd).

We first define a lexicographic order on the subsets of {0,1,...,d-1} as
follows. If S = {51""’Sk}’ S; <5, Cawn <5y, and T o= {ti""’tk'}’
t, <t, <... <1t then S < T if k < k' orif k=k' and for some

1 2 k'?

j £k, sj < tj, while for 1 < 3, s, = ti’ In this ordering S < T if and

only if S > ?, so the complement of the nth subset is the (2d~n+1)st

subset.

Now define a (Zd'IXZG']) matrix A with columns indexed by the first
2d°] subsets of {O,1,...,d—1} in increasing order, and the rows indexed by
the Tast 297! subsets of {0,1,...,d-1} arranged in decreasing order. If S
is one of the first 29=1 cubsets and X is one of the last 241 subsets,

then the (X,S) entry in A s



1 if SnaX=¢ or Xc S

0 else,

where PX is given by Theorem 3.1. Note that for X and S within the range
defined, S < X, so X 3_3.

The matrix A is lower triangular with ones along the diagonal. To see
this, Tet 1< g <n §_2d’1, and let X be the (Zd-q+1)st set (the set
indexing row q) and S the nth set. Then X is the qth set, so X < S.

This implies S E.Y’ i.e., Sn Xz @, So ay g = 0. The diagonal elements

of A are g g = 1. Thus, rank A = Zd']. This says that the polytopes PX,
as X ranges over the last Zd"] subsets of {O,T,...,d—]}, have affinely
d-1

2 d-1

independent vectors hS e N (S ranges over the first 2 subsets of

. X
{0,1,...,d=1}). But then their complete h-vectors (hS(P ))Si<d> must be
affinely independent. Thus dim aff(Cd)_Z Zd'] - 1; combined with the other

inequality, this gives the desired result. [I

Since the basis constructed for the proof of Theorem 3.2 actually consists

of polytopes, we have the following.

Corollary 3.3. The dimension of the affine span of the extended h-vectors
d-1

of completely balanced d-polytopes is 2 - 1.

In [267, a variety of other conditions on the extended h-vectors are shown
to hold in the more general class of completely balanced Cohen-Macaulay
complexes. Proposition 3.6 of [26] can be used to give a simpler proof of
Corollary 2.4 for shellable completely balanced homology spheres, since every

shelling of such a complex is reversible [17; Proposition 3.3.111.
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4, Eulerian poset complexes

In this section we look at a special class of completely balanced
complexes: the order complexes of Eulerian posets. A poset P is called

() F)=r(x).

Fulerian if for every x <y in P, pu(xy) = We shall see
that this means that Fuler's formula holds for intervals in the poset, and
so the order complexes of these posets are Eulerian manifolds rs51. The

face lattice of a convex polytope is always Eulerian rsl,rz21.

Theorem 4.1. Let P be an Eulerian poset of rank d, and
Sc {0,1,...,d-1}. If {i,k} ¢ Suv {-1,d}, 1< k-1, and S contains no

j such that 1 < j <k, then

k-1

j=i-1 B k-1-1
L G ) = 0 - (DI

Proof: Let C be a chain in P with rank set S. Let x be the

element of C with rank i (0 if i = -1), and y the element with

~

rank k (1 if 1 =4d). For i <J <k write fj(x,y) for the number

of rank j elements of P between x and y. Since P is Eulerian,
k-1

p(x,y) = (-1) and it follows from the fact that Exizﬁy pix,z) =0
(see, e.g., [18; Theorem 2]) that
k-1 k-1 J-1
("]) = U(X,)’) = - 5 (']) fj(X’Y)'
J=1

Then, since fi(x,y) =1 we get a form of the Euler equation:

k-i-1 _ 5 j-i-l
e I G L A CRYE
5=+



] =

Summing over all S-chains C we get (here x and y depend on C)

k-1

t(P)(1-(-)FTT) - 11T )
C an S-chain d=1+1

k-1

it

j-1=~1
SRECUA ) f5 (%)
=i+l C an S-chain

k-1 .
= 7 TTr

I (P). O
=i+

Suj

For face lattices of arbitrary polytopes, this theorem is the analog
of the Dehn-Sommerville equations, which hold for the f-vectors of
simplicial polytopes. The proof here follows Sommerville's original proof
[23]. Note that taking S =9, i =-1, k=d, the equation given by
Theorem 4.1 is Euler's formula.

We now analyze the dependencies among the variables fS given by the

equations of Theorem 4.1. For d > 1, Tlet @d be the set of subsets

S< {0,1,...,d-2} such that S contains no two consecutive integers.

Proposition 4.2. For all Tc {0,1,...,d-1} there is a nontrivial linear

relation expressing fT(P) in terms of fS(P), S ¢ Wd, which holds for

all Eulerian posets P of rank d. The cardinality of wd is Cq> the

dth Fibonacci number (cd = Cq1 T Cyup G T 1, ¢, = 2).

Proof: Order the subsets of {ﬂ,?,..;,d—l} as in the proof of
Theorem 3.2. If Tyg Yd then for some k, 1 <k <d, [k=-T,kl = Tu {d}.
Let S =T\{k-1}, and i =max{j e Tu {-1}: J < k-1}. Then Theorem 4.1

for these S, i and k says



PP

(P) + F(PY(1 - (1)K,

0 = 1 (1 g

A11 the subscripts appearing on the right-hand side of this equation are
less than T 1in the lexicographic order. Repeating the process for any

subscript not in Wd we get the desired Tinear relation.

d is one of two

types: either d-2 ¢ S or d-2e S. In the first case S ¢ de]; in the

To compute de’, note that any element S of v

second case d-3 ¢ S, so S\{d-2} « Wd'z. Thus ’Wdl = 'Yd—]' + '?d_z‘;
2
|

]
ad
“

it is easy to see that 'YT‘ 'Y = 2, so the proposition is

proved., [J

Adding the relation f@ =1 we get that the dimension of the affine
span of the extended f-vectors of Eulerian posets is at most cd-1. In
fact, this upper bound is the actual dimension, and its value gives us a

hint as to the proof. We need to exhibit ¢, affinely independent

d
extended f-vectors; it turns out we can do this within the class of

. B d-1
polytopes. Since Cq = Cqo1 T Cqop Ve try to use bases for aff(fS(P ))

d-Z)) to create a basis for aff(fS(Pd)). We obtain

and aff(fS(P
d-polytopes by taking pyramids and bipyramids over (d-1)-polytopes.

The faces of the pyramid PQ consist of the faces of Q, the polytope Q
itself, pyramids over faces of Q, and the new vertex. The faces of the

bipyramid BQ consist of the faces of Q (but not Q itself), two

pyramids over each face of Q, and the two new vertices.
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In what follows we will use the convention that the symbol P alone
means the "O-dimensional" polytope, i.e., a single point (a pyramid over the
empty polytope). An ordered string or word made up of the symbols B and
P, and ending in P, stands for the polytope obtained by taking successive

pyramids and bipyramids over the empty polytope in the order indicated by the

word. Thus PZ = PP is an interval, P3 is a triangle, BP2 is a square,

and 82P2 is an octahedron. Clearly, the dimension of the polytope is one

d

less than the length of the word. For d > 1 Tlet @ be the set of

d-polytopes named by words of length d+1 in P and B that end in P2
and contain no two adjacent B's. We set QO = {9,P}.

First note that we restrict Qd to words ending in P2 because

BP = PZ. To calculate the cardinality of Qd, consider the two types

of words in Qd: those beginning with P and those beginning with

B, Words of the first type are of the form PQ, where Q is any word

in Qd-]. Words of the second type must start with BP (since 82 is not
allowed) and thus are of the form BPQ, where Q 1is any word in Qd_z.

So I@d‘ = IQd'1| + IQd'Z , i.e., the cardinality of Qd satisfies the
Fibonacci recursion. Since ,Q]' = '{Pz}' =1, 'Qzl = '{Pg,BPZ}' = 2,
we get 'Qd' = Cqe

Proposition 4.3. For d > 1, the extended f-vectors of the 4 elements

of Qd are affinely independent.
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The proof that the extended f-vectors of elements of Qd are

independent is difficult because the effect on the extended f-vector of
taking a pyramid or bipyramid is not easily described. We have seen,
however, that it is relatively easy to describe the faces of a pyramid or
bipyramid in terms of the faces of the original polytope. In particular,
all the faces of a polytope in Qd are in (u?;g Qi). So we will define

a vector which counts the number of faces of each combinatorial type

in a given polytope Q ¢ Qd, use the recursive construction of Qd to
show these vectors independent, and prove that a nonsingular transformation
takes these vectors to the extended f-vectors.

As it turns out, we will not need to consider the facets of Q¢ Qd.

The remaining faces of these Q are indexed by Md = (u?;g 91); it is
easy to show by induction that .Md’ = 'Qd' = cy. Associate with a poly-

d . )
tope Qe @ the cd—vector (aQ,M) where M is the number

d
MeM
of faces of Q of combinatorial type M. We wish to show that the CqCq
matrix - (aQM) has full (row) rank. We do this by induction on d.

However, in the inductive step we will need the fact that Ad is

equivalent to the matrix of extended f-vectors, so we must work with two

other matrices at the same time. We define Kd to be a submatrix of the

matrix of extended f-vectors. Kd is a cdxcd matrix with rows indexed
by Qd, columns indexed by Wd and entries ng = fS(Q). Finally we

define the transformation from Ad to Kd. Let Td be the cdxcd matrix
with rows indexed by Md, columns indexed by Wd, and block diagonal form

as follows:



d of

Here the kI block is located in the rows indexed by words in M
length j+1, and in the columns indexed by sets in Wd with maximal
element j. The first two columns are indexed by ¢ and {0}, respec-

tively. Writing T4 - (tMS) we have tyo = ky S\~ fs\j(M) if M is of

length j+1 and S has maximal element j, and tMS = 0 otherwise.

Lemma 4.4, AdTd = 9.

t
-~

d

H

Proof: (A Td) (row Q of Ad)o(coiumn S of Td). Let j be the

Qs

maximal element of S; the product will only pick up components of row Q

indexed by faces of length j+1. So

d.d

(A“T%) ¢ = y a e Ky o s

gs M2A4d QM TMLS\J
Tength(M)=]+1

[

Lo (# of faces of Q of type M)(fs\.(M))
Me M J
Tength(M)=j+1

f

‘ foys(F)
F face of ( S\J

dim F = J

Proof of Proposition 4.3: We wish to show by induction that

rank Ad = rank Td = rank Kd = Cyqe For d = 1,2 it is clear:
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Al =T =K = (1); A2 = K2 = (} 2), T2 = (; ?). So assume d > 3

rank Kr = C .

and that for r < d, rank Ar = rank Tr r

d-1 and Ad'z, and show that it is non-

ft

We construct Ad out of A

singular. First let E = (eQM) be a ¢ xc, matrix of the form

d d
|
Ad-] | %
E: [ UU R S
i
\ 0 ' I
[

. . d A . d d-1
with rows indexed by @ and columns indexed by M . Here for Qe Q s
row 0O of Ad"] is located in row PQ of E, and for M ¢ Md-!, column
M oof A9l 45 1ocated in column M of E. For 0« Qd~] and M ¢ Md\Md_1
(i.e., M of length d-1), define ePQ M= the number of faces of (Q of
combinatorial type M. I 1is a C42C4-2 identity matrix, so clearly

rank £ = C4o + Cqop = Cye We show that Ad can be obtained from E by
elementary row and column operations. The last operations will be the column
operations which will take the faces of Q to the faces of PQ. But the
bottom rows of the matrix correspond to bipyramids, not pyramids. So we must
put in the bottom rows vectors that will yield the face vector of a bipyramid
when the pyramiding operation is applied.

We first do row operations on E to get a matrix G. Leave the first

d-2 and 0

Cqy Ows (those whose indices start with P) alone. If Qe Q
does not begin with B, add row PBQ of E torow BPQ of E. If Q
begins with B, then PBQ does not label a row of E. We mimic the

above row operation by finding the face vector of the polytope B(Q as a

linear combination of the first ¢ rows of E.

d-1
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lemma 4.5. Let v be the cd—vector with Vy = the number of

faces of BQ of type M (Me Md). Then v is linearly dependent on the
first Cyqp rows of E.

Proof: Ry looking at the proof that Ade = Kd we see that

- N
9T o Cq
V[e—m o= (f(BO)) e N,

| -
o | yd-

where the subscript S ranges over sets which have no two consecutive ele-

ments, but may contain d-2. Adjoining v to the bottom of the matrix

consisting of the first Cqq Tows of E we get

/Ad-1 *\\ / 410 \ A1 . \)

]
AR Y U IO B N R
i
\ v L0, Kd’z/ . (B0) ) -

e

By Proposition 4.2 there are at most C4o independent extended

so the rank of the matrix on the right-hand

21|
Td.lyO \\

—_———— _
ﬂ“d-Z |

0 : K
x /

is invertible, so the left-hand matrix has rank Cq-1*

v-vectors of dimension d-1,

side is Cq1e The matrix

Therefore v 1is a

linear combination of the first Cd-} rows of E. 1[I

We can now finish defining the row operations on the matrix E. If

G Qd_z begins with B, we add to row BPQ of E the combination of the

first Cy_1 ows of E given by the lemma.
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We now have the matrix G = (gQM), whose first c, , rows are the
same as those of E, and whose (BPQ,M)-entry is the number of faces of the
polytope BO of type M (or one more than this number if M = Q). Clearly,
rank G = rank E = Cqr

Now we perform column operations on G to get H = (hQM) and show
H = Ad. The operations are indicated by the description of the faces of a
pyramid. For M starting with B, Tleave column M alone. If M = PN,
N e Md-1, add column N of G to column M of G to obtain column M of
H. We now calculate the entries of H by considering four cases.

(i) Suppose OQ ¢ Qd'1, M e Md, and M starts with B. Then

hPQ,ﬁ = gPQ,M = ePQ,M = the number of faces of Q of type M = the
number of faces of PO of type M = aPQ Me since no new bipyramid faces
can be created by taking the pyramid over Q.

.. d-1 d-1 _ -
(i1) Suppose Qe @ ', Ne M . Then hPQ3PN = 9pq, N + Ipq,pN = QN +

ePQ PN = the number of faces of Q of type N + the number of faces of (
of type PN = the number of faces of PQ of type PN = aPQ PN*
(ii1) Suppose Q ¢ Qd"z, M e Md, and M starts with B. Then

hBPQ,M = gBPQ,M = the number of faces of BQ of type M + x(M = Q)

the number of faces of (0 of type M
= the number of faces of PQ of type M

= the number of faces of BPQ of type M
4Bpo,M°

Here x(M = Q) is 1 if M =10, and O otherwise. Again we are using the
fact that no new bipyramid faces are created by taking pyramids and

bipyramids.
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(iv) Suppose O e Qd—z, Noe w7, Then

hBPQ,PN = gBPQ,N + gBPQ,PN = the number of faces of B0 of type

+ the number of faces of BQ of type PN + X(PN = Q).
If N itself is a pyramid over L, then

hBPQ,PN = 2 x the number of faces of Q of type L

+ 3 x the number of faces of O of type N

+ the number of faces of O of type PN

= 2 x the number of faces of PQ of type N

+ the number of faces of PQ of type PN

= the number of faces of BPQ of type PN

2gpQ,PN°
If N is, instead, a bipyramid, then

hBPQ,PN = 3 x the number of faces of Q of type N

+ the number of faces of Q of type PN

2 x the number of faces of PQ of type N

+ the number of faces of PQ of type PN

arpQ,PN°

Thus H = Ad, and rank Ad = rank H = Cye

N
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To finish the proof we must compute the ranks of Td and Kd, but

fortunately these are easy. By the induction hypothesis K™ s nonsinguiar
for r <d; so by the block diagonal construction of Td, Td is clearly

nonsingular. Then Kd is the product of two nonsingular matrices, hence is

nonsingular. So the proof of Proposition 4.3 is complete. [J
Combining Propositions 4.2 and 4.3 gives us the following result.
Theorem 4.6, For d > 1,

dim aff{(fS(P)) P s an Eulerian poset of rank d}

Sc<d>’

= dim aff{(f P is a d-polytope} = cy = 1s

s(PV)sc oy

where ¢ is the dth Fibonacci number. [J

d

In particular, the extended f-vectors of Eulerian posets (or polytopes)
are contained in a proper subspace of the affine span of the extended
f-vectors of completely balanced homology spheres. In other words, the
equations hS = hg for Eulerian posets are dependent on the equations given
by Theorem 4.1.

Already at dimension 4, the f-vectors of polytopes have not been
characterized. The results of this section show that the extended f-vectors
of 4-polytopes are determined linearly by the values of fe,f],fz and

f (here we have dropped the set brackets on f{j}, because it

{0,2}
coincides with fi in the original f-vector).
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Conclusion
The results of this paper could all be viewed as generalizations of the
Dehn-Sommerville equation for simplicial spheres. The equations hS = hg,
which determine the affine span of the extended f-vectors of completely
balanced spheres resemble the original Dehn-Sommerville equations most

closely in form. It is the equations of Theorem 4.1,

k-1

i-1-1 k- -1
e (1) g s (P) = (P - ()T,

however, whose proof follows Sommerville's original proof and which, up to
affine span, describe the extended f-vectors of polytopes.
Part of the motivation for considering extended f-vectors is to derive

information on the original f-vectors themselves. The linear equations

obtained do not help with this problem. One attempt in this direction is the

following conjecture [5]: If f(P) = (fg,f},...,fd_]) is the f-vector of a
d-1 d-1-3,3+]1
- - ¥ -
d-polytope P, then for 0 <k <d-2, fk > L=k (-1) (k+1)fj'

This conjecture is, in general, false. The inequality for k =0 fails
for the 5-polytope constructed by joining two 5-cubes along a common facet and
performing stellar subdivisions on the (cubical) facets of the resulting
polytope. On the other hand, the inequality holds for k = d-2 and,
equivalently for k = d-3. The conjecture is true for polytopes of dimension
< 4; for simple polytopes (and, of course, simplicial polytopes, for which
the relations are equalities); and for prisms on simplicial polytopes. If the
inequalities hold for some polytope, then they hold for the pyramid and
bipyramid over that polytope. For details see rs1.

It would, of course, be of great interest to find characterizations of

the f-vectors and extended f-vectors of polytopes.
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