
1 of 15

Implementing High Performance Multicast in a Managed Environment

Krzysztof Ostrowski

Cornell University

Ken Birman

Cornell University

Abstract

Component integration environments such as

Microsoft .NET and J2EE have become widely popu-

lar with application developers, who benefit from
standardized memory management, system-wide type

checking, debugging, and performance analysis tools

that operate across component boundaries. This pa-

per describes QuickSilver Scalable Multicast1 (QSM),

a new multicast platform designed to achieve high

performance in managed environments. Memory-

related overheads and phenomena related to schedul-

ing are shown to dominate the behavior of the system.

We discuss techniques that helped us to alleviate

these problems, and argue that they reveal general

principles applicable to other kinds of high-data-rate

protocols and applications in managed settings.

1 Introduction

A component integration “revolution” is trans-

forming the development of desktop applications.

Platforms such as Windows .NET and J2EE promote
an application development style in which compo-

nents are implemented independently and heavily

reused. By standardizing memory management and

type checking, these platforms enable safe and effi-

cient cross-component method invocations, avoiding

overheads associated with protection boundaries,

argument marshaling, copying and un-marshaling.

Broadly, our project is interested in leveraging

these benefits to help developers implement robust

and scalable computing services that will run on clus-

ters or in datacenters. Early users of our platform are

creating applications in areas such as parallelized
data mining, event stream filtering software, and

scalable web services.

Developers of clustered services need reliable

multicast protocols for data replication; and in light

of our broader goal of leveraging the power and

component integration features of a managed frame-

work, the multicast technology must run in a ma-

naged setting. But little is known about high-

performance protocols in managed environments. It

is interesting to realize that although Microsoft pro-

1
 This research was supported by AFRL/IF with additional support

from AFOSR, NSF, I3P, and Intel. Address: Department of Com-

puter Science, Cornell University, Ithaca, NY 14850, USA; Email:

krzys@cs.cornell.edu, ken@cs.cornell.edu

motes end-user application development using C# in
its .NET framework, the company’s own products are

still implemented primarily in unmanaged C++. By

building XYX in the recommended manner, we

found ourselves breaking new ground.

The multicast protocols employed by QSM were

designed for performance and scalability, incorporat-

ing a mixture of new ideas and ideas drawn from

prior systems. Nonetheless, the aspects on which we

focus here reflect architectural responses to schedul-

ing delays, overheads associated with threads, and

costs arising in the memory management subsystem.

Over the period during which QSM was developed
(two years), these had pervasive consequences, forc-

ing us to redesign and recode one layer of the system

after another. For example, the original system was

multithreaded, used synchronous I/O calls and was

rather casual about buffering and caching; the current

system is single-threaded, uses asynchronous I/O,

and obsessively minimizes memory consumption.

Today, QSM (finally) performs well and is stable

at high data rates, large scale and under stress. The

finished system achieves extremely high performance

with relatively modest CPU and memory loads. Al-
though our paper is not “about” setting performance

records the absolute numbers are good: QSM outper-

forms the multicast platforms we’ve worked with in

the past – systems that run in unmanaged settings.

This paper won’t tell the blow-by-blow story.

Instead, we use QSM in a series of experiments that

highlight fundamental factors. These reveal linkages

between achievable performance and the costs and

characteristics of the managed framework. Doing so

sheds light on the challenges of working in a kind of

environment that will be more and more prevalent in

years to come. Our insights should be of value to
developers of other high-performance communica-

tion and event-oriented systems. To summarize:

1. We propose a new “positioning” of multicast

technology, as an extension of the component in-

tegration features of the Microsoft .NET ma-

naged runtime environment.

2. Although we started with a sophisticated multi-

cast protocol, experiments reveal a series of

problematic interactions between its high-speed

event-processing logic and the properties of the

managed framework, which we document.
3. We addressed these and achieved high perfor-

mance by making some unusual architectural de-

cisions, which we distill into general insights.

mailto:krzys@cs.cornell.edu
mailto:ken@cs.cornell.edu

2 of 15

The embedding of QSM into Windows yielded

an unexpected benefit: it enables what we are calling

“live distributed objects.” As the term suggests,

these are abstract data types in which content evolves

over time. When an application binds to a live object,

the current state of the object is imported and the
object can send and receive updates at high data rates.

An object could be a place in a game like Second

Life, a media stream, a publish-subscribe topic, a

shared file, etc. Live objects are a natural and power-

ful idea, and we plan to pursue the concept in future

work. However, this use of QSM raises performance

and scalability issues beyond the ones seen in our

original target domain. For that reason, we leave de-

tailed discussion of the idea for the future.

QSM has been available for free download since

mid-2006, and it has a number of users, most work-

ing on clustered computing. For example, one large
project is pairing QSM with high-speed event stream

filtering and data mining system to obtain a scalable,

cluster-hosted service capable of handling very high

event rates.

2 Usage cases

Use of QSM in our target settings gives rise to

potentially large numbers of overlapping communica-

tion groups. As we have seen, the primary goal is to

support data replication in scalable, componentized

services, in which sets of components are intercon-

nected and cooperate to perform requests. To minim-

ize latencies, components sets are normally co-

located; when a service is replicated, each of its con-

stituent components will need to replicate its portion

of the service state. If QSM is used to disseminate

updates, this results in a pattern of communication
groups that are exactly overlapped: each replicated

component will have one or more associated groups,

delivering update streams to its replicas.

Of course, a datacenter will typically host many

services, each with a disjoint set of components, and

often deployed on disjoint sets of nodes. In cases

where two services are co-located on the same node,

we’ll still see heavy overlap, but unless the degree of

replication is identical, there may be two cases: nodes

that host both services (and hence both sets of QSM

groups), and nodes that just host one of them.
Cluster management systems use groups for pur-

poses other than component replication, such as

tracking node status and launching applications: these

groups will span large numbers of nodes, perhaps the

entire cluster. Such groups overlap with everything.

The result is an environment in which there will be a

hierarchy [6] of overlapping groups (Figure 1). QSM

is highly effective in supporting this style of use.

Group used for System Management

Service B Service c

X Y Z X Y Z X Y Z A B A B W
Figure 1: If sets of components are replicated, the

associated multicast groups overlap hierarchically.

The foregoing is the primary use scenario for

QSM, but may not be the only one. One could im-

agine an approach to laying out components on a

cluster that would result in irregular layouts of groups.

QSM can support such layouts, at least to a degree,

but for reasons of brevity the discussion in the re-

mainder of the paper focuses on regular, hierarchical-
ly structured communication groups with extensive

and regular overlap. Initial users of our system ha-

ven’t had any difficulty with this constraint: knowing

QSM is particularly effective with regular layouts,

they just design to favor regularity.

3 Architecture

Reliable multicast is a mature area, but a review

of prior systems convinced us that no existing system

would work well in the scenarios targeted by our

project. This forced us to build a new system that

combines features from a number of prior systems.

Our decision not to use some existing multicast

system reflects a number of issues. Most prior multi-

cast systems were designed to replicate state within

just a single group at a time, for example a single

distributed service. Some don’t support multiple
groups at all, while others have overheads linear in

the number of groups to which a node belongs. For

example, we looked at JGroups [2], a component of

the JBoss platform which runs in a managed Java

framework. JGroups wasn’t designed to support

large numbers of overlapping groups, and if confi-

gured to do so, overheads soar.

There has been a great deal of work on P2P pub-

sub and content delivery platforms in recent years,

often oriented towards content filtering in document

streams. A good example is Siena, a system that has

become popular in WAN settings [3]. However, sys-
tems in this class incur steep overheads associated

with content filtering. Moreover, messages often

follow circuitous routes from source to destination,

incurring high latency. In high performance settings,

these factors would degrade the performance of the

replicated application.

The Spread multicast system implements

“lightweight” groups [1, 4]. The groups seen by ap-

plications are an illusion; there is really only one

3 of 15

process group, consisting of a small set of servers to

which client systems connect. Each application-level

multicast is vectored through a server, which multi-

casts it to its peers. These filter the ordered multicast

stream and relay messages back out to receivers.

This approach can support huge numbers of groups
with irregular overlap patterns, but the servers are a

point of contention, and the indirect communication

pathway introduces potentially high latencies.

These considerations convinced us that a new

system was needed. QSM implements a approach

similar to Spread’s lightweight group abstraction, but

without a separate server group. We define a region

of overlap to be a set of nodes with approximately the

same group membership (Figure 2). Under the as-

sumptions of Section 2, our cluster should be nicely

“tiled” by regions. QSM uses regions for multicast

dissemination and for recovery of lost packets, em-
ploying different protocols for each purpose.

For initial dissemination, QSM currently uses an

unreliable IP multicast. Since a single group may

span multiple regions, to send to group G, a node

multicasts a message to each of the regions separately

(Figure 3). Our approach makes it easy to aggregate

messages across different groups, on a per-region

basis. If a node has two messages to send to a pair
of groups G1 and G2 which overlap in region R, then

while transmitting to R, the node can batch these

messages together.

To recover from packet loss, QSM uses a hierar-

chical structure of token rings (we considered using

other structures, such as trees, but token rings pro-

duce a more predictable traffic pattern; the impor-
tance of this will become clear later). The basic

structure is illustrated in Figure 4. At the highest

level, QSM circulates tokens around sets of regions,

aggregating information that can be used by a group

sender to retransmit packets that were missed by en-

tire regions (left). Within each region, a token circu-

lates to provide loss recovery at the level of nodes

belonging to the region (right).

If regions become large, QSM partitions them in-

to smaller rings. This is illustrated in Figure 5. In the

experiments reported in this paper, no token ring ever

grows larger than about 25 nodes, and the system
uses single and two-level hierarchies. In the future,

we plan to experiment with larger configurations and

will work with deeper hierarchies.

The QSM recovery protocol uses tokens to track

message status (missing/received/cached) at each

node. In effect, the token carries ACK and NAK

information, aggregated over the nodes “below” each

ring. Token rings avoid the kinds of ACK/NAK im-

plosion problems with which reliable multicast pro-

tocols traditionally have struggled, but problems of

their own: if a message is lost, the sender may not
find out for quite a while. In QSM, this isn’t a major

issue because most message losses can be corrected

locally, through cooperation among receivers.

The basic idea is to perform recovery “as locally

as possible” (Figure 6). If a message is available

within the same token ring, some process that has a

ABC

B

A

AB

AC C

B

BC

A

C

Figure 2. Groups overlap to form regions. Nodes

belong to the same region if they have similar

group membership.

Send

to A

A

B

C

A

AB

AC

ABC

B

C

BC

Apps

Group

Senders

Region

Senders

Send

to B

Figure 3: To multicast to a group, QSM sends a

copy to each of the underlying regions.

node
region

inter-region protocol

intra-region

protocol

recover in Y

recover in X

X

Y

Figure 4: Hierarchical recovery in QSM. A

group spans multiple regions. Each region has

an associated structure of token rings (right).

region

leader

partition

leader intra-

partition

token

inter-partition

token

partition

Figure 5. A hierarchy of token rings.

4 of 15

copy will forward it to the process missing the mes-

sage. To conserve memory, QSM implements a

scheme originally proposed by Zhao [7]: even in a
large ring, no more than five nodes cache any given

message. QSM also uses this idea at the level of par-

titions: each message is cached in a single partition,

round-robin fashion; if some partition is missing a

message, the partition caching it steps in to resend it.

Finally, if an entire region is missing a message, the

sender becomes involved and re-multicasts it.

QSM tokens also carry other information, in-

cluding data used to perform rate control and infor-

mation used to trigger garbage collection.

The overall system configuration is managed by
what we call the Configuration Management Service

(CMS), which handles join and leave requests, de-

tects node failures, and uses these to generate a se-

quence of membership views for each multicast. The

CMS also determines and continuously updates re-

gion boundaries, maintains sequences of region views

for each region, and tracks the mapping from group

views to region views. In our prototype, the CMS

runs on a single node, but we intend to replace this

with a state-machine replicated version in the future

to eliminate the risk of single-point failures. In the

longer term we will move to a hierarchically struc-
tured CMS, similar to Moshe [8].

4 Implementation

When we set out to implement QSM, our intent

was to leverage the component integration tools
available on the Windows platform. We didn’t ex-

pect that co-existence with the managed environment

would require any special architectural features.

QSM is implemented much like any .NET com-

ponent. The system is coded in C# (about 200,000

lines of code, of which 7500 are unmanaged C++ to

interface to the native Windows asynchronous I/O

library), and is accessible from any .NET application.

Windows understands QSM to be the handler for

operations on new kind of event stream. An applica-

tion can obtain handles from these QSM-managed

streams, and can then invoke methods on those han-
dles to send events; incoming messages are delivered

through upcalls. QSM is also registered as a “shell

extension”, making it possible to access the commu-

nication subsystem directly from the Windows GUI.

For example, the user can store a shortcut to a QSM

stream in the file system, and can point-and-click to

attach a previewer or a viewer to an event stream.
The overall architecture is summarized in Figure

7. The system is single-threaded and event-driven.

We use a Windows I/O completion port, henceforth

referred to as an I/O queue, to collect all asynchron-

ous I/O completion events, including notifications of

any received messages, completed transmissions, and

errors, for all sockets. A single “core thread” syn-

chronously polls the I/O queue to retrieve incoming

messages. The core thread also maintains an alarm

queue, implemented as a splay tree, for timer-based

events, and a request queue, implemented as a lock-

free queue with CAS-style operations, for requests
from the (possibly multithreaded) application. The

core thread polls all queues in a round-robin fashion

and processes the events sequentially.

Events of the same type are processed in batches,

up to the limit determined by a quantum (currently

50ms for I/O, 5ms for alarms; there is no limit for

application requests). When an I/O event representing

a received packet is retrieved for a given socket, the

socket is drained to minimize the probability of loss.

Several aspects of the architecture are notewor-

thy because of their performance implications. First,

QSM assigns priorities to different types of I/O

events. The basic idea is that when an I/O event oc-

curs, we retrieve all events from the I/O queue, de-

termine the type of each, and then place it in an ap-

propriate priority queue. Then, the system processes
queued events in priority order (Figure 8). By priori-

tizing incoming I/O over sending-related events we

application

thread

operating

system

kernel

socket

core

thread

alarm

queue

request

queue

I/O

queue

QSM

Figure 7. QSM uses a single-threaded architecture,

with a “core” thread that controls three queues:

for I/O requests, timer-based events, and requests

from the possibly multithreaded application.

QSM

partition

sender region

data

ACK
NAKs local push / pull

inter-partition push / pull

Figure 6. Recovery inside and across partitions.

5 of 15

reduce packet loss, and by prioritizing control pack-

ets over data we reduce delays in reacting to packet

loss or other control. In Section 5 we will see that

this slashes system-wide memory overheads.

The pros and cons of using threads in event-

oriented systems are hotly debated. In QSM itself,
threads turned out to be a bad idea. Although we

used threads rather casually in the first year of our

effort, that version of the system was annoyingly

unstable, and prone to oscillatory throughput when

scaled up. When we decided to take control over

event processing order, we also eliminated multith-

reading. Fine-grained scheduling eliminated convoy
behavior and oscillatory throughput of the sort that

can disrupt reliable multicast systems when they run

at high data rates on a large scale2.

The last aspect relates to the creation of new

messages, particularly by QSM itself. Readers who

have implemented multicast protocols will know that

most existing systems are push-based: some layer

initiates a new message at will, and lower layers then

buffer that message until it can be sent. This makes

sense under the assumption that senders often gener-

ate bursts of packets; by buffering them, the commu-
nication subsystem can smooth the traffic flow and

keep the network interface busy. One consequence is

that messages can linger for a while before they are

sent. Not only does this increase memory consump-

tion, but if a message contains “current state” infor-

mation, that state may be stale by the time it’s sent.

In contrast to this usual approach, QSM imple-

ments a “pull” architecture. Our original motivation

2 For reasons of brevity, we are unable to undertake a
detailed analysis of oscillatory phenomena in this

paper (also called convoys and broadcast storms;

these plague many multicast and pub-sub products).

Event prioritization eliminated such problems in the

configurations tested by our experiments.

was to reduce staleness by postponing the creation of

control messages until the time when transmission is

actually about to take place. “Just-in-time” informa-

tion is more accurate, and this makes QSM more sta-

ble. An unintended benefit is that the “pull” architec-

ture slashes buffering and memory overheads, which,

as we shall demonstrate, turns out to have an enorm-

ous impact on performance.

In QSM each element of a protocol stack acts as

a feed that has data to send, or a sink that can send it

(Figure 9), and many play both roles (Figure 10).
Rather than creating a message and handing it down

to the sink, a feed registers the intent to send a mes-

sage with the sink. The message can be created at this

time and buffered in the feed, but the creation may

also be postponed until the time when the sink polls

the feed for messages to transmit. The sink deter-

mines its readiness to send based on a control policy,

such as rate, concurrency, windows size limitation,

and so forth. When the socket at the root of the tree is

ready for transmission, messages will be recursively

pulled from the tree of protocol stack components, in

a round-robin fashion. Feeds that no longer have data
to send are automatically deregistered.

5 Evaluation

Evaluation of QSM could pursue many direc-

tions: costs of the domain crossing between the ap-

plication and QSM, protocol design and scalability,
and interactions between protocol properties and the

managed framework. Here we focus on the latter.

Our goal is to arrive at a deep understanding of the

performance limits of QSM when operating at high

data rates with large numbers of overlapping groups

feed sink

register

to send

get messages

policy limit sending rate

limit concurrency

limit window size

Figure 9. In a “pull” protocol a "feed" regis-

ters the intent to send with a “sink” that may

be controlled by a policy limiting the send

rate, concurrency etc. When the sink is

“ready” to send, it issues an upcall.
pre-process

I/O events

handle

I/O events

according

to priorities

process

timer

events

process

requests

incoming

control

outgoing

control

incoming

data

outgoing

data

disk I/O

other

Figure 8. The QSM time-sharing and priority

I/O processing policy.

app

sock

f/s
app

f/s
app

f/s

elements of the protocol stack

socket

Figure 10. One can think of QSM as a col-

lection of “protocol stacks” in which compo-

nents act as both feeds and as sinks. The

overall structure is of a forest of trees, rooted

at sockets.

6 of 15

on varying numbers of nodes. We’ll find that the

experiments have a pattern: in scenario after scenario,

the performance of QSM is ultimately limited by

overheads associated with memory management in

the managed environment. Basically, the more

memory in use, the higher the overheads of the mem-
ory management subsystem and the more CPU time

it consumes, leaving less time for QSM to run. These

aren’t just garbage collection costs: every aspect of

memory management gets expensive, and the costs

grow linearly in the amount of memory in use. When

QSM runs flat-out, CPU cycles are a precious com-

modity. Thus, minimizing the memory footprint

turns out to be the key to high performance.

All results reported here come from experiments

on a 200-node3 cluster of Pentium III 1.3GHz blades

with 512MB memory, connected into a single broad-

cast domain using a switched 100Mbps network.
Nodes run Windows Server 2003 with the .NET

Framework, v2.0. Our benchmark is an

nary .NET GUI application, linked to the QSM li-

brary, running in the same process. Unless otherwise

specified, we send 1000-byte arrays, without preallo-

cating them, at the maximum possible rate, and with-

out batching. The majority of the figures include 95%

confidence intervals, but these intervals are some-

times so small that they may not always be visible.

5.1 Memory Overheads on the Sender

We begin by showing that memory overhead at

the sender is a central to throughput. Figure 11 shows

throughput in messages/s in experiments with 1 or 2

senders multicasting to a varying number of receivers,

all of which belong to a single group. With a single

sender, no rate limit was used: the sender has more

work to do than the receivers and on our clusters,

isn’t fast enough to saturate the network (Figure 12).
With two senders, we report the highest combined

send rate that the system could sustain without devel-

oping backlogs at the senders.

Why does performance decrease with the num-

ber of receivers? First, let’s focus on a 1-sender sce-

nario. Figure 12 shows that whereas receivers are not

CPU-bound, and loss rates in this experiment (not

shown here) are very small, the sender is saturated,

and hence is the bottleneck. Running this test again in

a profiler reveals that the percentage of time spent in

QSM code is decreasing, whereas more and more

time is spent in mscorwks.dll, the CLR (Figure 13).
More detailed analysis (Figure 14) shows that the

main culprit behind the increase of overhead is a

3 This configuration is typical of the host environ-

ment expected for our target applications.

growing cost of memory allocation (GCHeap::Alloc)

and garbage collection (gc_heap_garbage_collect).

The former grows by 10% and the latter by 15%,

as compared to 5% decrease of throughput. The bulk

Figure 14. Memory allocation and

garbage collection overheads on the

sender node.

Figure 13. The percentages of the profiler

samples taken from QSM and CLR DLLs.

Figure 12. Processor utilization as a func-

tion of the multicast rate (100 receivers).

Figure 11. Throughput as a function of the

number of nodes (1 group, 1KB messages).

7 of 15

of the overhead is the allocation of byte arrays to

send in the application (“JIT_NewArr1”, Figure 15).

Roughly 12-14% of time is spent exclusively on co-

pying memory in the CLR (“memcopy”), even

though we used our own scatter-gather serialization

scheme that efficiently uses scatter-gather I/O.
The increase in the memory allocation overhead

and the activity of the garbage collector are caused by

the increasing memory usage. This, in turn, reflectsan

increase of the average number of multicasts pending

completion (Figure 16). For each, a copy is kept by

the sender for possible loss recovery. Notice that

memory consumption grows nearly 3 times faster

than the number of messages pending acknowledge-

ment. If we freeze the sender process and inspect the

contents of the managed heap, we find that the num-

ber of objects in memory is more than twice the

number of multicasts pending acknowledgement.
Although some of these have already been acknowl-

edged, they haven’t yet been garbage collected.

The growing amount of unacknowledged data is

caused by the increase of the average time to ac-

knowledge a message (Figure 17). This grows be-

cause of the increasing time to circulate a token

around the region for purposes of state aggregation

(“roundtrip time”). The time to acknowledge is only

slightly higher than the expected 0.5s to wait until the

next token round, plus the roundtrip time; as we scale

up, however, roundtrip time becomes dominant.
These experiments show that the critical factor de-

termining performance is the time needed for the

system to aggregate state over regions. Moreover,

they shed light on a mechanism that links latency to

throughput, via increased memory consumption and

the resulting increase in allocation and garbage col-

lection overheads.

An 500ms increase in latency, resulting in a

10MB increase in memory consumption, can inflate

overheads by 10-15%, and degrade the throughput by

5%. One way to alleviate the problem we've identi-

fied could be to reduce the latency of state aggrega-
tion, so that it grows sub-linearly. In our system, this

might be achieved by using a deeper hierarchy of

rings, and by letting tokens in each of these rings

circulate independently. This would create a more

complex structure, but aggregation latency would

grow logarithmically rather than linearly.

Is reducing state aggregation latency the only op-

tion? We evaluated two alternative approaches, but

found that neither can substitute for lowering the la-

tency of the recovery state aggregation.

Our first approach varies the rate of aggregation
by increasing the rate at which tokens are released

(Figure 18). This helps only up to a point. Beyond

1.25 tokens/s, more than one aggregation is underway

at a time, and successive tokens perform redundant

work. Worse, processing all these tokens is costly.

Changing the default 1 token/s to 5 tokens/s decreas-

es the amount of unacknowledged data by 30%, but

increases throughput by less than 1%.

Figure 18. Varying token circulation rate.

Figure 17. Token roundtrip time and an

average time to acknowledge a message.

Figure 16. Memory used on sender and the

number of multicast requests in progress.

Figure 15. Time spent allocating byte ar-

rays in the application, and copying.

8 of 15

Our second approach increased the amount of

feedback to the sender. In our base implementation,

each aggregate ACK contains a single value Max-

Contiguous, representing the maximum number such

that messages with this and all lower numbers are

stable in the region. To increase the amount of feed-
back, we permit ACK to contain up to k numeric

ranges, (a1, b1), (a2, b2), …, (ak, bk). The system

can now cleanup message sequences that have as

gaps (messages that are still unstable).

In the experiment shown in Figures 19 and 20,

we set k to the number of partitions. Unfortunately,

while the amount of acknowledged data is reduced by

30%, it still grows, and the overall throughput is ac-

tually lower because token processing becomes more

costly. Furthermore, the system becomes unstable

(notice the large variances in Figure 21Figure), be-

cause our flow control scheme, based on limiting the
amount of unacknowledged data, breaks down. While

the sender can cleanup any portion of the message

sequence, receivers have to deliver in FIFO order.

The amount of data they cache is larger, and this re-

duces their ability to accept incoming traffic.

Notice the linkage to memory. In this case, the

growth in memory occurs on the receivers, but the

pattern is similar to what we saw earlier: merely hav-

ing more cached data is enough to slow them down.

5.2 Memory Overheads on the Receiver

The reader may doubt that memory overhead on

receivers is the real issue, considering that their CPUs

are half-idle (Figure 12). Can increasing memory

consumption affect a half-idle node? To find out, we

performed an experiment with 1 sender multicasting

to 192 receivers, in which we vary the number of

receivers that cache a copy of each message (“repli-

cation factor” in Figure 22). Increasing this value
results in a linear increase of memory usage on re-

ceivers. If memory overheads were not a significant

issue on half-idle CPUs, we would expect perfor-

mance to remain unchanged. Instead, we see a dra-

matic, super-linear increase of the token roundtrip

time, a slow increase of the number of messages

pending ACK on the sender, and a sharp decrease in

throughput (Figure 23).

The underlying mechanism is as follows. The in-

creased activity of the garbage collector and alloca-

tion overheads slow the system down and processing

of the incoming packets and tokens takes more time.
Although the effect is not significant when consider-

ing a single node in isolation, a token must visit all

nodes in a region to aggregate the recovery state, and

delays are cumulative. Normally, QSM is configured

so that five nodes in each region cache each packet.

If half the nodes in a 192-node region cache each

packet, token roundtrip time increases 3-fold. This

delays state aggregation, increases pending messages

and reduces throughput (Figure 23).

As the replication factor increasess, the sender’s

flow control policy kicks in, and the system goes into

Figure 22. Varying the number of caching

replicas per message in a 192-node region.

Figure 21. Instability with O(n) feedback.

Figure 20. More work with O(n) feedback,

and lower rates despite saving on memory.

Figure 19. More aggressive cleanup with

O(n) feedback in the token and in ACKs.

9 of 15

a form of the oscillating state we encountered in Fig-

ure 21: the amount of memory in use at the sender

ceases to be a good predictor of the amount of memo-

ry in use at receivers, violating what turns out to be

an implicit requirement of our flow-control policy.

5.3 Overheads in a Perturbed System

The reader might wonder whether our results

would be different if the system experienced high

loss rates or was otherwise perturbed. To find out,

we performed an experiment in which one of the re-

ceiver nodes experiences a periodic, programmed

perturbation: every 5s the node sleeps for 0.5s. This

simulates the effect of disruptive, overloaded applica-
tions. In the “loss” scenario, every 1s the node drops

all incoming packets for 10ms, thus simulating 1%

bursty packet loss. In practice, the loss rate is higher,

around 2-5%, because recovery traffic interferes with

regular multicast, causing further losses.

In both scenarios, CPU utilization at the receiv-

ers is in the 50-60% range and doesn’t grow with

system size, but throughput decreases (Figure

24Figure). In the sleep scenario, the decrease starts at

about 80 nodes and proceeds steadily thereafter. It

doesn’t appear to be correlated to the amount of loss,

which oscillates at the level of 2-3% (Figure 25). In
the controlled loss scenario, throughput remains fair-

ly constant, until it falls sharply beyond 160 nodes.

Here again, performance does not appear to be direct-

ly correlated to the observed packet loss. Finally,

throughput is uncorrelated with memory use both on

the perturbed receiver (Figure 26) or other receivers

(not shown). Indeed, at scales of up to 80 nodes,

memory usage actually decreases, a consequence of

the cooperative caching policy described in Section 3.

The shape of the performance curve does, however,

correlate closely with the number of unacknowledged
requests (Figure 27).

We conclude that the drop in performance in

these scenarios can’t be explained by correlation with

CPU activity, memory, or loss rates at the receivers,

but that it does appear correlated to slower cleanup

and the resulting memory-related overheads at the

sender. The effect is much stronger than in the undis-

turbed experiments; the number of pending messages

starts at a higher level, and grows 6-8 times faster.

Token roundtrip time increases 2-fold, and if a failure

occurs, it requires 2 token rounds before repair occurs,

and then another round before cleanup takes place
(Figures 28, 29). Combined, these account for the

rapid increase in acknowledgement latency.

Figure 26. Memory usage at the perturbed

node (at unperturbed nodes it is similar).

Figure 25. Average packet loss observed at

the perturbed node.

Figure 24. Throughput in the experiments

with a perturbed node (1 sender, 1 group).

Figure 23. As the number of caching rep-

licas increases, the throughput decreases.

10 of 15

It is worth noting that the doubled token

roundtrip time, as compared to unperturbed experi-

ments, can’t be accounted for by the increase in

memory overhead or CPU activity on the receivers,

as was the case in experiments where we varied the

replication factor. The problem can be traced to a

priority inversion. Because of repeated losses, the

system maintains a high volume of forwarding traffic.
The forwarded messages tend to get ahead of the to-

ken, both on the send path, where in the sinks, we use

a simple round-robin policy of multiplexing between

data feeds, and on the receive path, where forwarded

packets are treated as control traffic, and while

they’re prioritized over data, they are treated as

equally important as tokens. They also increase the

overall volume of I/O that the nodes process. As a

result, tokens are processed with higher latency.

Although it would be hard to precisely measure

these delays, measuring alarm delays sheds light on

the magnitude of the problem. Recall that our time-

sharing policy assigns quanta to different types of

events. High volumes of I/O, such as caused by the

increased forwarding traffic, will cause QSM to use a
larger fraction of its I/O quantum to process I/O

events, with the consequence that timers will fire late.

This effect is magnified each time QSM is preempted

by other processes or by its own garbage collector;

such delays are typically shorter than the I/O quan-

tum, yet longer than the alarm quantum, thus causing

the alarm, but not the I/O quanta, to expire.

The maximum alarm firing delays taken from

samples in 1s intervals are indeed much larger in the

perturbed experiments, both on the sender and on the

receiver side (Figures 30 and 31). Large delays are

also more frequent (not shown). The maximum delay
measured on receivers in the perturbed runs is 130-

140ms, as compared in 12-14ms in the unperturbed

experiments. On the sender, the value grows from

700ms to 1.3s. In all scenarios, the problem could be

alleviated by making our priority scheduling more

fine-grained, e.g. varying priorities for control pack-

ets, or by assigning priorities to feeds in the sending

stack.

Figure 31. Histogram of maximum alarm

delays in 1s intervals, on the sender.

Figure 30. Histogram of maximum alarm

delays in 1s intervals, on the receivers.

Figure 29. Token roundtrip time and the

time to recover in the "loss" scenario.

Figure 28. Token roundtrip time and the

time to recover in the "sleep" scenario.

Figure 27. Number of messages awaiting

acknowledgement in experiments with

perturbances.

11 of 15

5.4 Overheads in a Lightly-Loaded System

So far the evaluation has focused on scenarios

where the system was heavily loaded, with un-
bounded multicast rates and occasional perturbations.

In each case, we traced degraded performance or

scheduling delays to memory-related overheads. But

how does the system behave when lightly loaded? Do

similar phenomena occur? Here we’ll see that load

has a super-linear impact on performance. In a nut-

shell, the growth in memory consumption causes

slowdowns that amplify the increased latencies asso-

ciated with the growth in traffic.

To show this we designed experiments that vary

the multicast rate. Figure 12 showed that the load on
receivers grows roughly linearly, as expected given

the linearly increasing load, negligible loss rates and

the nearly flat curve of memory consumption (Figure

33), the latter reflecting our cooperative caching poli-

cy. Load on the sender, however, grows super-

linearly, because the linear growth of traffic, com-

bined with our fixed rate of state aggregation, in-

creases the amount of unacknowledged data (Figure

32), increasing memory usage. This triggers higher

overheads: for example, the time spent in the garbage

collector grows from 50% to 60% (not shown here).

Combined with a linear growth of CPU usage due to
the increasing volume of traffic, these overheads

cause the super-linear growth of CPU overhead

shown on Figure 12.

The increasing number of unacknowledged re-

quests and the resulting overheads rise sharply at the

highest rates because of the increasing token

roundtrip time. The issue here is that the amount of

I/O to be processed increases, much as in some of the

earlier scenarios. This delays tokens as a function of

the growing volume of multicast traffic. We confirm

the hypothesis by looking at the end-to-end latency
(Figure 34). Generally, we would expect latency to

decrease as the sending rate increases because the

system operates more smoothly, avoiding context

switching overheads and the extra latencies caused by

the small amount of buffering in our protocol stack.

With larger packets once the rate exceeds 6000

packets/s, the latency starts increasing again, due to

the longer pipeline at the receive side and other phe-

nomena just mentioned. This is not the case for small

packets (also in Figure 34); here the load on the sys-

tem is much smaller. Finally, the above observations

are consistent with the sharp rise of the average delay
for timer events (Figure 35). As the rate changes

from 7000 to 8000, timer delays at the receiver in-

crease from 1.5ms to 3ms, and on the sender, from

7ms to 45ms.

Figure 35. Alarm firing delays on sender

and receiver as a function of sending rate.

Figure 34. The send-to-receive latency for

varying rate, with various message sizes.

Figure 33. Linearly growing memory use

on sender and the nearly flat usage on the

receiver as a function of the sending rate.

Figure 32. Number of unacknowledged

messages and average token roundtrip

time as a function of the sending rate.

12 of 15

5.5 Per-Group Memory Consumption

In a final set of experiments, we focus on scala-

bility with the number of groups. A single sender
multicasts to a varying number of groups in a round-

robin fashion. All receivers join all groups, and since

the groups are perfectly overlapped, the system con-

tains a single region. QSM’s regional recovery pro-

tocol is oblivious to the groups, hence the receivers

behave identically no matter how many groups we

use. On the other hand, the sender maintains a num-

ber of per-group data structures. This affects the

sender’s memory footprint, so changes to throughput

or protocol behavior must be directly or indirectly

linked to memory usage.
We do not expect the token roundtrip time or the

amount of messages pending acknowledgement to

vary with the number of groups, and until about 3500

groups this is the case (Figure 36). However, in this

range memory consumption on the sender grows

(Figure 37), and so does the time spent in the CLR

(Figure 38), hurting throughput (Figure 39). Inspec-

tion of the managed heap in a debugger shows that

the growth in memory used is caused not by messag-

es, but by the per-group elements of the protocol

stack. Each maintains a queue, dictionaries, strings,

small structures for profiling etc. With thousands of
groups, these add up to tens of megabytes.

We can confirm the theory by turning on addi-

tional tracing in the per-group components. This trac-

ing is lightweight and has little effect on CPU con-

sumption, but it increases the memory footprint by

adding additional data structures that are updated

once per second, which burdens the GC. As expected,

throughput decreases (Figure 39, “heavyweight”).

It is worth noting that the memory usages re-

ported here are averages. Throughout the experiment,

memory usage oscillates, and the peak values are
typically 50-100% higher. The nodes on our cluster

only have 512MB memory, hence a 100MB average

(200MB peak) memory footprint is significant. With

8192 groups, the peak footprint approaches 360MB,

and the system is close to swapping.

Even 3500-4000 groups are enough to trigger

signs of instability. Token roundtrip times start to

grow, thus delaying message cleanup (Figure 40) and

increasing memory overhead (Figure 41). Although

the process is fairly unpredictable (we see spikes and

anomalies), we can easily recognize a super-linear

trend starting at around 6000 groups. At around this
point, we also start to see occasional bursts of packet

losses (not shown), often roughly correlated across

receivers. Such events trigger bursty recovery over-

loads, exacerbating the problem.

Figure 39. Throughput decreases with the

number of groups (1 sender, 110

receivers, all groups have the same

subscribers).

Figure 38. Time spent in the CLR code.

Figure 37. Memory usage grows with the

number of groups. Beyond a certain thre-

shold, the system is increasingly unstable.

Figure 36. Number of messages pending

ACK and token roundtrip time as a func-

tion of the number of groups.

13 of 15

Stepping back, the key insight is that all these ef-

fects originate at the sender node, which is more

loaded and less responsive. In fact, detailed analysis

of the captured network traffic shows that the multi-

cast stream in all cases looks basically identical, and

hence we cannot attribute token latency or losses to
the increased volume of traffic, throughput spikes or

longer bursts of data. With more groups, the sender

spends more time transmitting at lower rates, but

doesn’t produce any faster data bursts than those we

observe with smaller numbers of groups (Figure 40).

Receiver performance indicators such as delays in

firing timer event or CPU utilization don’t show any

noticeable trend. Thus, all roads lead back to the

sender, and the main thing “going on” in the sender is

that it has a steadily growing memory footprint.

We also looked at token round-trip times. The

distribution of token roundtrip times for different

numbers of groups shows an increase of the token

roundtrip time, caused almost entirely by 50% of the

tokens that are delayed the most (Figure 41), which

points to disruptive events as the culprit, rather than a
uniform increase of the token processing overhead.

And, not surprisingly, we find that these tokens were

most commonly delayed on the sender.

With many thousands of groups, the average

time to travel by one hop from sender to receiver or

receiver to sender can grow to nearly 50-90ms, as

compared to an average 2ms per hop from receiver to

receiver (not shown). Also, the overloaded sender

occasionally releases the tokens with a delay, thus

introducing irregularity. For 10% of the most-delayed

tokens, the value of the delay grows with the number

of groups (Figure 42). Our old culprit is back:
memory-related costs at the sender! To summarize,

increasing the number of groups slows the sender,

and this cascades to create all sorts of downstream

problems that can destabilize the system as a whole.

6 Discussion

The experiments just reported make it clear that

the performance-limiting factor in the QSM system is

latency, and that in addition to protocol factors such

as the length of token rings, latency is strongly influ-

enced by the memory footprint of the system. Of

course, when we built the system it was obvious that

minimizing latency would be important; this moti-

vated several of the design decisions discussed in

Section 3. But the repeated linkage of latency and

oscillatory throughputs to memory was a surprise: we

expected a much smaller impact. We can summarize
our design insights as follows:

1. Minimize the memory footprint. We expected that

the primary cost of managed memory would be asso-

ciated with garbage collection. Instead, all costs as-

sociated with managed memory rise in the amount of

allocated memory, at least in the Windows CLR.

Implications include:

1.1 Pull data. Whereas traditional multicast systems

accept messages whenever the application layer or

the multicast protocols produce it, QSM uses an up-

call-driven pull architecture. Often we can delay
generating a message until the last minute, and we

can also avoid situations in which data piles up on

behalf of an aggressive sender.

1.2 Limit buffering and caching. Most existing mul-

ticast protocols buffer data at many layers and cache

data rather casually for recovery purposes. This turns

out to be extremely costly in a managed setting and

must be avoided whenever possible.

Figure 42. Intervals between the subse-

quent tokens (cumulative distribution).

Figure 41. Token roundtrip times for 4K

and 7K groups (cumulative distribution).

Figure 40. Cumulative distribution of the

multicast rates for 1K and 8K groups.

14 of 15

1.3 Clear messages out of the system quickly. Data

paths should have rapid data movement as a key goal.

2. Minimize delays. We’ve already mentioned that

data paths should clear messages quickly, but there

are other important forms of delay, too. Most situa-

tions in which QSM developed convoy-like behavior
or oscillatory throughput can be traced to design de-

cisions that caused scheduling jitter or allowed some

form of priority inversion to occur, delaying a crucial

message behind a less important one. Implications

included the following:

2.1 Event handlers should be short, predictable and

terminating. In building QSM, we struggled to make

the overall behavior of the system as predictable as

possible – not a trivial task in configurations where

hundreds of processes might be multicasting in thou-

sands of overlapping groups. By keeping event han-

dlers short and predictable and eliminating the need
for locking, we obtained a more predictable system

and were able to eliminate multithreading, with the

associated context switching and locking overheads.

2.2 Drain input queues. Here we encounter a ten-

sion between two goals. From a memory footprint

perspective, one might prefer not to pull in a message

until QSM can process it. But in a datacenter or clus-

ter, most message loss occurs in the operating system,

not on the network, hence message loss rates soar if

we leave messages on input sockets for long.

2.3 Control the event processing order. In QSM,
this involved single-threading, batched asynchronous

I/O, and the imposition of an internal event

processing prioritization. Small delays add up in

large systems: tight control over event processing

largely eliminated convoy effects and oscillatory

throughput problems.

2.4 Act on Fresh State. Many inefficiencies can be

traced to situations in which one node takes action on

the basis of stale state information from some other

node, triggering redundant retransmissions or other

overheads. The pull architecture has the secondary

benefit of letting us delay the preparation of status
packets until they are about to be transmitted.

7 Conclusions

The premise of our work is that developers of

services intended to run on clustered platforms desire
the productivity and robustness benefits of managed

environments, and need replication tools integrated

with those environments. Building such tools so

posed challenges to us as protocol and system de-

signers, which were the primary focus of our paper.

A central insight is that high-performance protocols

running in managed settings need to maintain the

smallest possible memory footprint. By repeated ap-

plication of this principle, QSM achieves scalability

and stability even at very high loads.

An unexpected side effect of building QSM in

Windows was that by integrating our system tightly

with the platform, we created a new kind of live dis-

tributed objects: abstract data types that form groups,
share state, and that are updated using QSM multi-

casts. These look natural to the Windows user: such

an object changes faster than the average Windows

object, but the same basic mechanisms can support

them, and the component integration environment

(type checking, debugging, etc) extends seamlessly to

encompass them. Although a great deal of additional

work is needed, QSM should eventually enable ca-

sual use of live objects not just in datacenters but also

on desktops in WAN settings, opening the door to a

new style of distributed programming.

The current version of QSM is stable in cluster
settings and, as noted earlier, has a growing commu-

nity of users. Looking to the future, we plan to scale

QSM into WAN settings, to support a wider range of

multicast reliability properties, and to introduce a

gossip infrastructure that would support configuration

discovery and other self-* mechanisms. Live objects

pose a protocol design challenge: they give rise to

irregular patterns of overlapping multicast groups;

hence our region-oriented state aggregation mechan-

isms will need to be redesigned. We have an idea for

solving this (basically, recovery would be performed
by selecting a subset of nodes that form a clean

overlay structure, rather than just treating every sin-

gle receiver as a member of a recovery region).

Whether this can really scale remains to be seen.

8 References

[1] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz,

J. Stanton. The Spread Toolkit: Architecture and

Performance. 2004.

[2] B. Ban. Design and Implementation of a Reliable

Group Communication Toolkit for Java. (1998).

[3] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf.
Design and Evaluation of a Wide-Area Event

Notification Service. ACM Transactions on

Computer Systems, 19(3):332-383, Aug 2001.

[4] B. Glade, K. Birman, R. Cooper, and R. van Re-

nesse. Light-Weight Process Groups in the ISIS

System. Distributed Systems Engineering. Mar

1994. 1:29-36.

[5] S. Maffeis, D. Schmidt. Constructing Reliable

Distributed Communication Systems with COR-

BA. IEEE Communications Magazine feature

topic issue on Distributed Object Computing,

Vol. 14, No. 2, February 1997.

15 of 15

[6] Y. Tock, N. Naaman, A. Harpaz, and G. Ger-

shinsky. Hierarchical Clustering of Message

Flows in a Multicast Data Dissemination System.

PDCS, 2005.

[7] Zhen Xiao, Robbert van Renesse, Kenneth Bir-

man. Optimizing Buffer Management for Relia-
ble Multicast. Proceedings of the International

Conference on Dependable Systems and Net-

works (DSN ’02), June 2002.

[8] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev.

Moshe: A group membership service for WANs.

ACM Transactions on Computer Systems, Vol.

20, No. 3, August 2002, p. 191-238.

