
USING GENERAL-PURPOSE PROCESSOR CORES AS

PREFETCHING ENGINES IN CHIP

MULTIPROCESSOR ARCHITECTURES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ilya Konstantinovich Ganusov

August 2007

c© 2007 Ilya Konstantinovich Ganusov

ALL RIGHTS RESERVED

USING GENERAL-PURPOSE PROCESSOR CORES AS PREFETCHING

ENGINES IN CHIP MULTIPROCESSOR ARCHITECTURES

Ilya Konstantinovich Ganusov, Ph.D.

Cornell University 2007

Scaling the performance of applications with little thread-level parallelism is

one of the most serious impediments to the success of multi-core architectures. At

the same time, the long latency of memory accesses represents one of the largest

performance bottlenecks for individual program threads. As a result, a typical

microprocessor spends a significant amount of time waiting for data to be delivered

from memory instead of performing useful computation.

Fortunately, it is often possible to guess which memory data will be needed by

a program thread in the near future. Various hardware and software prefetching

techniques have been developed to fetch critical data before they are requested

by the processor. This way prefetching can eliminate processor stalls otherwise

induced by the slow response from the memory system.

The main contribution of this dissertation is the development of two techniques

that utilize extra cores of a chip multiprocessor (CMP) as prefetching engines to

increase the performance of single program threads. The proposed approaches

effectively leverage the execution capabilities of chip multiprocessors to compute

data addresses that are likely to miss in the cache and prefetch them ahead of

program thread load requests.

I demonstrate the effectiveness of the proposed approaches by performing cycle-

accurate simulations of a chip multiprocessor consisting of two four-way superscalar

cores running the single-threaded SPEC CPU2000 benchmark suite. The proposed

mechanisms provide significant performance improvements over a baseline that al-

ready includes an aggressive hardware stream prefetcher. A comparison with other

multi-core prefetching mechanisms from the literature shows that the techniques

proposed in this dissertation provide competitive performance, incur less energy

overhead, and require considerably simpler hardware support.

BIOGRAPHICAL SKETCH

The author graduated from High School #1, Ivanovo, Russian Federation, with

the Golden Medal for outstanding scholastic achievements in 1996. He enrolled at

the Ivanovo State Power University in 1996, pursuing a double major in Electrical

Engineering and English, and graduated with Electronics Engineer and Profes-

sional Translator degrees with Honors in 2001. Since mid 2002, the author has

been a graduate student in the Computer Systems Laboratory, which is a part of

the School of Electrical and Computer Engineering of Cornell University, working

under the guidance of Prof. Martin Burtscher.

iii

Dedicated to my parents

iv

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Prof. Martin Burtscher, for his con-

tinuous guidance and enthusiastic support throughout the lifetime of this project.

Thanks to my committee members, Profs. Rajit Manohar and Jose Martinez, for

encouraging discussions and insightful comments.

I am grateful to all my friends and fellow computer engineers from the Com-

puter Systems Laboratory for their help, great discussions, and a sense of humor.

Special thanks to David Fang, Filipp Akopyan, Karan Singh, Vince Weaver, and

Virantha Ekanayake for their assistance with all types of technical problems and

challenges - at all times.

I thank Maya Haridasan, Filipp Akopyan, Nosheen Ali, Jui Bhagwat, David

Fang, Carlos Tadeo Ortega Otero, Christina Peraki, Paula Petrica, Zoya Svitkina,

Basit Riaz Sheikh, and Jonathan Winter for their great friendship, selfless support,

and many exciting conversations.

Finally, I am forever indebted to my parents for their understanding, endless

patience and encouragement when it was most needed.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction 1

1.1 Problem . 1
1.2 Main Memory Stalls . 2
1.3 Data Prefetching . 4
1.4 Contributions . 6
1.5 Summary . 9
1.6 Organization . 9

2 Background 11

2.1 Conventional High-Performance Processor Architecture 11
2.2 Address Prediction and Prefetching 13

2.2.1 Stride Prefetching . 13
2.2.2 Markov Prefetching . 16

3 Evaluation Methodology 18

3.1 Baseline Architecture . 18
3.2 Benchmarks . 19

4 Future Execution 22

4.1 Motivation . 22
4.2 Implementation of Future Execution 26

4.2.1 Overview of Operation . 26
4.2.2 Hardware Support . 29

4.3 Evaluation Methodology . 30
4.4 Experimental Results . 31

4.4.1 Execution Speedup . 31
4.4.2 Analysis of Prefetching Activity 34
4.4.3 Comparison with Runahead Execution 39
4.4.4 Sensitivity Analysis . 42

4.5 Summary . 46

5 Event-Driven Helper Threading 48

5.1 Motivation . 48
5.2 Implementation . 50

5.2.1 Overview of Operation . 51
5.2.2 Implementation and Hardware Support 52

vi

5.2.3 Prefetching Algorithms . 55
5.3 Evaluation Methodology . 57
5.4 Experimental Results . 58

5.4.1 Prefetching Emulation Performance 59
5.4.2 Combining Hardware and EDHT Prefetching 63
5.4.3 Comparison with Other Multi-Core Prefetching Techniques . 65

5.5 Summary . 70

6 Improving The Energy-Efficiency of Multi-Core Prefetching 71

6.1 Motivation . 71
6.2 Energy-Efficiency Techniques for Future Execution 73
6.3 Energy-Efficiency Techniques for Event-Driven Helper Threading . . 76
6.4 Energy-Efficiency Techniques for Dual-Core Execution 80
6.5 Comparing Energy-Efficient Multi-Core Prefetching

Techniques . 83
6.6 Leakage Energy . 86
6.7 Summary . 91

7 Analyzing the SPEC CPU2006 programs 93

7.1 Motivation . 93
7.2 Coverage Analysis Simulation Methodology 95

7.2.1 Event-Driven Helper Threading 96
7.2.2 Future Execution . 97
7.2.3 Runahead Execution . 98

7.3 Experimental Results . 99
7.3.1 Load Cache Miss Rates in SPEC CPU2006 Programs 99
7.3.2 Comparing Cache Miss Rates in the SPEC CPU2000 and

CPU2006 benchmark suites 101
7.3.3 The Potential of Event-Driven Helper Threading 102
7.3.4 The Potential of Future Execution 104
7.3.5 The Potential of Dual-Core Execution 105
7.3.6 Comparing the Load Cache Miss Rate of the Various Pre-

fetching Techniques . 107
7.4 Summary . 110

8 Related Work 112

8.1 Prefetching based on outcome prediction 112
8.2 Prefetching based on operation prediction 114

9 Summary and Conclusions 119

Bibliography 124

vii

LIST OF TABLES

3.1 Simulated processor parameters . 19
3.2 Benchmark suite details (for the simulated intervals of 500M in-

structions) . 20

4.1 Future Execution Parameters . 31

5.1 EDHT threads for emulating hardware prefetching mechanisms . . 57

7.1 Value Predictors . 97

viii

LIST OF FIGURES

1.1 Execution time speedup for SPEC CPU2000 programs if all main
memory stalls are eliminated . 3

2.1 The pipeline of a high-performance microprocessor 12
2.2 Organization of stride prefetchers 14
2.3 Markov prefetching . 16

4.1 Execution distance measured in number of instructions between
the loads that result in an L2 cache miss and the previous dynamic
execution of the same static loads 23

4.2 Distribution of cache miss addresses that can be correctly predicted
directly by a future value predictor (fvpred) and using future exe-
cution (fexec) . 24

4.3 Code example . 25
4.4 The FE architecture . 27
4.5 Execution speedup . 32
4.6 Prefetch coverage . 34
4.7 Distribution of cache misses that were prefetched by a stream pre-

fetcher (stream), based on value predictions (vpred), and using fu-
ture execution (fexec) . 35

4.8 Percentage of useless prefetches issued by different prefetching mech-
anisms relative to the total number of prefetches issued 37

4.9 Timeliness of the prefetches . 38
4.10 Comparison with runahead execution 41
4.11 Sensitivity of future execution to the main memory latency 43
4.12 Sensitivity of future execution to the inter-core communication delay 44
4.13 Sensitivity of future execution to the inter-core communication

bandwidth . 45
4.14 Sensitivity of future execution to the future value prediction distance 46

5.1 Code example . 51
5.2 System Architecture . 53
5.3 Performance of hardware prefetchers and their EDHT counterparts

for stride prefetchers . 59
5.4 Performance of hardware prefetchers and their EDHT counterparts

for dfcm and markov prefetchers 60
5.5 Sensitivity to prefetch distance for stride prefetchers 61
5.6 Sensitivity to prefetch distance for DFCM and Markov prefetchers 61
5.7 Speedup provided by different EDHT prefetching mechanisms over

a baseline with hardware stride prefetching 63
5.8 Prefetching coverage . 64
5.9 Speedup provided by different multi-core prefetching mechanisms

over a baseline with stride prefetching 67

ix

5.10 Instruction overhead . 68
5.11 Helper core occupancy . 68

6.1 Increase in energy consumption compared to single-core execution . 72
6.2 Energy overhead of baseline Future Execution configuration and

two energy-efficient configurations 75
6.3 IPC increase provided by the baseline Future Execution configura-

tion and two energy-efficient configurations 76
6.4 Energy overhead of the baseline Markov EDHT configuration and

two energy-efficient EDHT versions 78
6.5 IPC increase provided by the baseline Markov EDHT configuration

and two energy-efficient EDHT versions 79
6.6 Energy overhead of the baseline Dual-Core Execution configuration

and three energy-efficient DCE configurations 82
6.7 IPC increase provided by the baseline Dual-Core Execution config-

uration and three energy-efficient DCE configurations 83
6.8 Energy consumption overhead of a the baseline markov EDHT tech-

nique, and energy-efficient versions of markov EDHT, future exe-
cution, and dual-core execution . 84

6.9 IPC increase provided by a baseline markov EDHT technique, and
energy-efficient versions of markov EDHT, future execution, and
dual-core execution . 85

6.10 Increase in the energy-delay product for the baseline markov EDHT
technique, and energy-efficient versions of markov EDHT, future
execution, and dual-core execution 85

6.11 Fraction of time the helper core is activated for the baseline mar-
kov EDHT technique and the energy-efficient versions of markov
EDHT, future execution , and dual-core execution 89

6.12 Increase in power consumption for the baseline markov EDHT tech-
nique and the energy-efficient versions of markov EDHT, future
execution, and dual-core execution 90

7.1 Load cache miss rate for the SPEC CPU2006 applications 100
7.2 Sensitivity of the average load cache miss rate to the cache size . . 101
7.3 Impact of value prediction on the load cache miss rate 103
7.4 Impact of future execution on the load cache miss rate 105
7.5 Impact of runahead execution on the load cache miss rate 106
7.6 Impact of prefetching techniques on average load cache miss rate of

integer applications in SPEC CPU2000 (left graph) and CPU2006
(right graph) suites . 107

7.7 Impact of prefetching techniques on average load cache miss rate
of floating-point applications in SPEC CPU2000 (left graph) and
CPU2006 (right graph) suites . 109

x

CHAPTER 1

INTRODUCTION

This chapter describes how scaling the performance of single-threaded applica-

tions represents a serious impediment to the success of chip multiprocessor (CMP)

architectures. It also discusses how the slow execution speed (the latency) of load

instructions can impact the performance of individual program threads and intro-

duces data prefetching, a technique to alleviate the load latency problem. Further-

more, the contributions of this dissertation to the area of multi-core prefetching

are presented.

1.1 Problem

Chip multiprocessors hold the promise of delivering performance scalability while

significantly reducing the complexity relative to monolithic superscalar out-of-order

cores. In fact, all major high-performance microprocessor manufacturers are al-

ready selling chips with up to eight cores. CMPs improve the performance by

integrating many cores on the same die and using them to harness thread-level

parallelism (TLP). At the same time, designing simple cores and then replicating

them reduces complexity.

While multiple cores are immediately beneficial in multiprogrammed environ-

ments, scaling the performance of applications with little TLP is one of the most

serious impediments to the success of CMP architectures. Modern automatic par-

allelization tools are efficient only on a small subset of data-regular applications.

Manual parallelization to extract significant TLP from general-purpose applica-

tions is often a difficult, time-consuming, and therefore expensive and error prone

task. Moreover, many programs exhibit limited scalability beyond a certain num-

1

2

ber of threads and are inherently incapable of utilizing the advantages of multiple

cores. In light of these trends, architectural techniques that allow the use of addi-

tional cores to speed up individual threads are becoming very attractive to CMP

manufacturers [38].

This dissertation investigates simple yet efficient ways to realize this goal.

One way to achieve this objective is to utilize additional cores as helper engines

for individual threads. These helper engines can accelerate program execution by

alleviating some of the performance bottlenecks that prevent the program thread

from fully utilizing a core’s capabilities.For example, helper engines can reduce the

number of branch mispredictions or eliminate stalls associated with cache misses.

The following section demonstarted that eliminating main memory stalls has high

performance improvement potential and provides a very attractive problem for

helper engines to attack.

1.2 Main Memory Stalls

Over the past two decades the CPU speed has been growing faster than the speed

of the memory subsystem. As a consequence, memory accesses have, in relative

terms, become slower over the years. The long latency of memory accesses causes

modern high-end microprocessors to deliver only a fraction of their theoretical peak

performance. Whenever the processor core requests data that is located in the main

memory, it has to stall for many clock cycles while the request is delivered to the

memory subsystem and the data is located in the main memory and transferred

back to the processor.

To reduce the access time of frequently used data, most modern microprocessor

systems incorporate multiple levels of fast cache memory. The first level caches

3

are characterized by the smallest sizes and the fastest access times. These caches

store the most recent data in case it is needed again. Subsequent cache levels

are generally bigger and slower. The main memory is at the end of the memory

hierarchy and has the longest access time. When a load instruction is executed, the

first-level cache is queried for the desired data item. If the data item is available in

the first-level cache, it is fetched to the processor and the load request is satisfied

very quickly. If not, the load request gets forwarded to subsequent cache levels

until the requested data is found. If the data cannot be found in any cache, the

data has to be retrieved from main memory. Hence, the time it takes to execute a

load instruction depends on the cache level that satisfies the load request and can

vary from a few clock cycles to hundreds of cycles. In comparison, reading data

values from the CPU’s register file rarely takes more than a single cycle.

While caching is effective at reducing the average load latency, a wide range

of applications have relatively high cache miss rates, i.e., a large fraction of load

requests that is not satisfied at any level of cache hierarchy. Since load instructions

Figure 1.1: Execution time speedup for SPEC CPU2000 programs if all main
memory stalls are eliminated

4

are the most frequently executed instructions in modern CPUs, even a small num-

ber of loads that miss in the cache can severely degrade processor performance.

Figure 1.1 demonstrates the theoretical speedup of SPEC CPU2000 programs run-

ning on an Alpha 21264-like microprocessor core with 64KB first-level cache, 2MB

second-level cache, and a main memory latency of 400 cycles when the negative

effects of all second-level cache misses are eliminated (i.e., assuming all first-level

cache misses are second-level cache hits). The data reveal that for half of the SPEC

programs the high latency of memory accesses reduces the core efficiency by more

than a factor of two even in the presence of a cache hierarchy with a significant

capacity.

1.3 Data Prefetching

Fortunately, load instructions often reference predictable sequences of data ad-

dresses. For example, a large fraction of the load instructions that miss in the cache

occur in loops that sequentially traverse the elements of large data arrays [23]. The

data addresses referenced by such loads form an easily predictable sequence of in-

crementally increasing addresses. Such behavior, which has been demonstrated

explicitly on a number of architectures, is a specific case of value locality [11, 28].

The predictability of load addresses can be exploited by predicting which data will

be requested by the CPU ahead of the actual load requests.

Data prefetching techniques identify load addresses that miss in the cache and

try to detect such predictable address patterns. Based on the identified patterns,

data prefetchers predict future load addresses and issue load requests on behalf of

a CPU. The data items requested by a prefetcher are pre-loaded into a certain level

of cache and, when needed, can be readily consumed by a CPU. Thus, correctly

5

predicted prefetches can effectively eliminate stalls associated with long memory

latencies and significantly increase program execution speed.

There are multiple ways to identify instructions with predictable load addresses.

First, such instructions can potentially be detected via static program analysis. In

this approach, the program binary or source code is analyzed prior to program

execution. The limitation of this technique is a rather large number of run-time

constants, which are not known at compile time. The second class of analysis

techniques involves profile-driven approaches that analyze program behavior by

running a set of sample inputs. While this approach provides better knowledge of

the program behavior, it does not provide accurate estimation of temporal data

locality that characterizes caching effects. As a result, it might result in incorrect

conclusions about which load instructions are likely to miss or hit in the cache. The

third class of analysis techniques represents dynamic analysis approaches which

continuously measure the behavior of programs while they execute. This dynamic

approach does not suffer from the limitations of static and profile-driven tech-

niques, but it can potentially incur run-time overheads or require specific hardware

support.

Due to the limitations of the static and profile-driven approaches, this disser-

tation focuses on developing new data prefetching algorithms utilizing dynamic

techniques. As such, I propose approaches that can accelerate existing applica-

tions without requiring profiling or compiler support. Moreover, I propose to take

advantage of available cores in a CMP to significantly lower the implementation

complexity and hardware support usually associated with dynamic data prefetch-

ing techniques.

6

1.4 Contributions

The goal of this dissertation is to develop and evaluate novel prefetching techniques

that can use available cores in multi-core microprocessors to prefetch data for

computation threads running on active cores. My contributions toward this goal

include the following:

• Future Execution based prefetching

The development of a novel prefetching mechanism using a simple hardware

value predictor to dynamically generate prefetching threads that can compute

and prefetch a significant fraction of unpredictable load addresses.

• Prefetching with event-driven helper threading

The design of a mechanism to implement prefetching algorithms based on

value prediction entirely in software, improving the flexibility of prefetcher

implementations and minimizing additional hardware complexity.

• Energy-efficient prefetching techniques

Several approaches to substantially decrease the energy consumption of the

proposed prefetching techniques by minimizing prefetching activity for pro-

gram phases with low miss rates.

• Prefetching coverage analysis

A comparative microarchitecture-independent analysis of the prefetch cov-

erage provided by various prefetchers and validating the relevance of the

proposed techniques in the context of future computer systems.

The results of this research have the potential to impact future generations

of microprocessors in two important ways. First, they present relatively simple

7

ways to use extra cores of CMPs as helper engines for individual program threads.

Thus, they enable multi-core architectures to accelerate applications with both

little and abundant thread-level parallelism. Second, they resolve many limitations

of hardware prefetching techniques previously proposed in the research literature

and reduce their implementation complexity while providing competitive execution

time speedups. The individual contributions are described in more detail in the

following paragraphs.

A data-flow analysis of the instructions that compute load addresses revealed

that many loads are caused by cache misses that execute repeatedly and whose

address-generating program slices do not change (much) between consecutive ex-

ecutions. Based on this observation, I proposed the Future Execution prefetching

technique, which dynamically generates a prefetching thread for each active core

by simply sending a copy of all committed, register-writing instructions to another

core. The key innovation is that on the way to the second core, a value predictor

replaces each predictable instruction in the prefetching thread with a load imme-

diate instruction, where the immediate is the predicted result that the instruction

is likely to produce during its nth next dynamic execution. Experimental results

show that executing the future execution prefetching thread on an available core

of a CMP can prefetch a larger fraction of cache misses than conventional stride

prefetching and can deliver a significant execution time speedup on a wide range

of applications.

Next, I analyzed hardware prefetching algorithms that are based on value pre-

diction. I found that despite a large number of interesting proposals, their in-

troduction into commercial designs was often hampered by the considerable stor-

age requirements for prediction tables and/or application specificity. To alleviate

8

these limitations, I developed an event-driven helper threading (EDHT) frame-

work, which allows using general-purpose memory for storage and a software helper

thread for executing a prefetching algorithm on an available CMP core. Experi-

mental results show that implementations of various prefetching techniques within

the EDHT framework provide performance improvements within 5% of pure hard-

ware implementations.

I investigated a hybrid prefetching approach by running event-driven helper

threads on top of a baseline with a conventional hardware stride prefetcher. I

found that this approach significantly outperforms a configuration that only in-

cludes a hardware stride prefetcher. Furthermore, the results show that the EDHT

approach provides competitive performance improvements over other approaches

for muti-core helper threading while executing fewer instructions and requiring

considerably less hardware support.

Next, I found that the proposed prefetching techniques considerably increase

the energy consumption. Since energy consumption has recently became a high-

priority concern even for high-performance microprocessors, I investigated tech-

niques to reduce the energy overheads of Future Execution and Event-Driven

Helper Threading. Experimental results show that the proposed techniques de-

crease the average energy overhead of the prefetching techniques by more than a

factor of two.

Finally, I validated the general conclusions of this dissertation in the context

of the new SPEC CPU2006 benchmark suite. First, I demonstrated that the high

latency of memory accesses is likely to remain an important problem for CPU2006

programs. Second, I developed analysis techniques to evaluate the prefetching

potential of various prefetching techniques. Interestingly, I found little difference

9

between various techniques for cache sizes larger than 2MB. Therefore, the dif-

ferences between the analyzed prefetching approaches are more likely to originate

from prefetch timeliness rather than from coverage. This result is similar to the

properties observed for the SPEC CPU2000 programs and, therefore, the general

conclusions of this dissertation are likely to remain relevant in the context of the

newer benchmark suite release.

1.5 Summary

Scaling the performance of applications with little thread-level parallelism is one

of the most serious impediments to the success of multi-core architectures. At

the same time, the long latency of memory accesses represents one of the largest

performance bottlenecks for individual program threads.

In this dissertation, I developed techniques that utilize extra cores of a CMP as

helper engines to increase the performance of single program threads. In particular,

my work focuses on using available cores to run data prefetching algorithms to mit-

igate the detrimental effects of the long memory latencies. The main contribution

of this dissertation is the development and evaluation of two multi-core prefetching

techniques that provide significant performance improvements for single-threaded

applications running in a multi-core environment.

1.6 Organization

The remainder of this dissertation is organized as follows. Chapter 2 explains the

impact of the load latency on modern superscalar CPUs and the operation of con-

ventional data prefetching techniques. Chapter 3 describes the configuration of

10

the simulator that is used to measure the speedup numbers and discusses the ap-

plication benchmark suite. Chapter 4 introduces the Future Execution technique

and analyzes its impact on single-thread performance. Chapter 5 investigates the

idea of Event-Driven Helper Threading and compares its performance with other

dual-core helper threading techniques. Chapter 6 takes a closer look at the energy

consumption of different helper threading techniques, proposes several improve-

ments to make the techniques more energy-efficient, and evaluates their effective-

ness. Chapter 7 presents a set of techniques for microarchitecture-independent

evaluation of different helper-threading techniques based on trace-driven simula-

tion and validates the general conclusions of the previous chapters in the context

of the SPEC CPU2006 benchmark suite. Chapter 8 presents related work on data

prefetching in uni-core and multi-core environments. Chapter 9 summarizes my

work and takes a look into the future.

CHAPTER 2

BACKGROUND

This chapter provides background information on the operation of contempo-

rary high-performance microprocessors. Furthermore, it describes data address

prediction approaches and the operation of data prefetching techniques.

2.1 Conventional High-Performance Processor Architecture

Most modern high-performance microprocessors have a superscalar architecture

with hardware support for dynamic out-of-order execution [35]. Since the goal of

my work is to improve the performance of high-performance microprocessors, all

experimental results in this dissertation are obtained by simulating the operation

of such a CPU. The list of configuration parameters of the simulated CPU can be

found in Chapter 3.

The term superscalar refers to CPU organizations that can execute multiple

instructions at the same time. An out-of-order CPU is capable of dynamically

re-arranging the order in which instructions are executed. Both superscalar and

out-of-order execution techniques exploit the instruction-level parallelism (ILP) of

computer programs. ILP is characterized by the existence of instructions that are

not dependent on the results of each other and, consequently, can be executed in

any order or in parallel.

Figure 2.1 shows a conceptual pipeline organization of such a CPU. First, in-

structions are fetched from the instruction cache. Then, they are decoded, re-

named, and dispatched into the instruction window as long as there are buffer slots

available. This dissertation assumes that these pipeline stages process instructions

in program order. While there are proposals in the literature for out-of-order im-

11

12

plementations of these pipeline stages for increased performance [35], they incur

significant hardware complexity and have yet to find their way into commercial

microprocessor implementations.

After being dispatched into the instruction window, each instruction remains

there until all of its source operands become available. The CPU’s issue logic

continuously scans the instruction window and searches for such instructions. If a

ready instruction is found, the issue logic checks the availability of a functional unit

(FU) that can execute this instruction. Once a functional unit becomes available,

the instruction is sent to the assigned unit for execution. As a result, instructions

in the instruction window might execute out of program order since their execution

is determined exclusively by the availability of data values. Executed instructions

are marked as completed. The commit stage of the CPU pipeline involves scanning

instructions in the program order, identifying completed instructions, and retiring

them from a CPU.

Modern superscalar CPUs can operate on multiple instructions in each stage

of the pipeline. As a result, they are capable of processing several instruction per

cycle (IPC) as long as there is enough ILP within the internal instruction window.

Figure 2.1: The pipeline of a high-performance microprocessor

13

Most program instructions that do not need to load data from memory have

deterministic latencies (no more than a few cycles). Thus, they can always exe-

cute and retire fast, maintaining a high IPC rate. However, the latency of load

instruction depends on the location of the requested data in the cache hierarchy.

Out-of-order execution is often able to mitigate the effects of latencies associated

with accessing second-level and third-level caches. Nevertheless, main memory la-

tencies in modern CPUs are on the order of hundreds of cycles. Thus, if a load

instruction misses in the cache, it eventually stalls the pipeline since it is very

difficult for a CPU to find enough instructions to keep itself busy for so long.

2.2 Address Prediction and Prefetching

Hardware prefetchers often rely on various kinds of address predictors to dynam-

ically predict which memory addresses to prefetch. In this work, we examined

stride-based address prediction and Markov address prediction. This section briefly

discusses both approaches and introduces the basic algorithms that I later use in

this dissertation.

2.2.1 Stride Prefetching

Stride prefetchers represent the most common form of prefetching based on out-

come prediction. The stride prefetcher is usually located in the cache controller,

where it monitors the stream of cache miss requests observed by the cache. Stride

prefetchers identify distinct streams within the sequence of cache misses, associate

strides with each of the streams, and issue memory requests for the next few ad-

dresses in the stream. The simplest form of stride prefetching is next-sequential

14

prefetching, in which the prefetcher issues a request for cache line L+1 as soon as

line L is referenced [36].

In many cases cache miss addresses are composed of several interleaved streams.

A typical case of multiple streams is the traversal of several arrays within a matrix-

matrix multiplication loop. Stride prefetchers employ special mechanisms to deci-

pher and disambiguate interleaving streams. If the memory hierarchy propagates

the program counter (PC) of the instructions that cause cache misses, the pre-

fetcher can attribute misses to specific instructions and track streams on a per PC

basis [10]. We call this local stride prefetching. The conventional implementation

of a local stride prefetcher uses a table to store stride-related local history informa-

tion and is shown in Figure 2.2a. The PC of the current load instruction indexes

the table. Each table entry holds the load’s last stride and the last address. A

prefetch is triggered when the load causes a cache miss and its last stride is equal

to the current stride.

If PC information is not available, then a global stride prefetcher can be used.

Such stride prefetchers need to identify distinct streams within the global memory

access pattern. Minimum delta prediction and memory partitioning were proposed

to handle this problem. Minimum delta prediction associates a miss with the

stream or prior miss that is the closest. Memory partitioning separates the physical

Last
address

… …

Stride PC

==

Predicted
stride

Miss
address

…

Global Miss
Address History

Miss

address

Min
delta

Predicted
stride

a) b)

_

Figure 2.2: Organization of stride prefetchers

15

memory address space into regions and attributes all misses falling within a single

region to a single stream [50]. Figure 2.2b shows the organization of a global stride

prefetcher. When a cache miss occurs, the global miss history buffer is searched for

the minimum difference between the previously observed addresses and the current

miss address. An address stream is identified if the global miss history contains

an address that differs from the current address by no more than two minimum

deltas.

For each identified address stream, the prefetcher allocates a prefetch stream

buffer from a limited number of available buffers. This buffer contains information

about the current stream base address and the associated stride. Typically, stride

prefetchers use an LRU replacement policy for stream buffers. The newly allocated

stream buffer issues prefetches and then waits for the prefetched cache lines to be

requested by the processor. Upon receiving such a notification, the stride prefetcher

looks up its stream table to see which stream entry the consumed address belongs

to. If it finds a match, it increments the corresponding stream address by the

stream’s stride and issues one new prefetch to keep up with the data consumption

of the processor.

Overall, majority of cache misses in a wide range of applications exhibit stride

pattern behavior (See chapter 7). This universal applicability and relative sim-

plicity made stride prefetchers the most popular hardware prefetching technique

in commercial microprocessors. Nevertheless, a significant portion of cache misses

exhibit access patterns which are not detectable by stride prefetchers. The next

subsection presents prediction approaches that attempt to identify and prefetch

more complicated cache miss patterns.

16

2.2.2 Markov Prefetching

Markov prefetching [21] is another example of outcome-based prediction. A Markov

predictor assumes that the address stream of a program can be approximated by

a Markov model. A Markov model is a probabilistic state machine with a set

of states and state transition probabilities. Each transition from state A to B

is assigned a weight representing the fraction of A states that are followed by B

states. Figure 2.3a presents an example of a Markov model. The states in the

Markov model are determined by the set of previously seen values.

…

stride 1 PC

hash

Predicted
stride

a) b)

Sequence of addresses

A, B, C, D, B, A, C, D, B, C

Markov graph

A B

C D

1
1

2/3

1/3

1/2

1/2

… …

stride 2

…

stride 3
Last
value

…

Figure 2.3: Markov prefetching

Markov models are usually characterized by two parameters. The first param-

eter determines what kind of values defines a state. In case of prefetching, the

most common approach is to use either the absolute addresses or the differences

between consecutive addresses. The second parameter determines how many val-

ues are used to determine the state. An order n Markov predictor associates each

state with the n previous values.

Markov prefetching techniques incrementally build an Markov model for the

target application at run-time. This model is later used by a prefetching mechanism

to predict future addresses. Previous work on hardware-based Markov prefetching

concentrated on finding optimal parameters for an accurate Markov model that

17

work well for many applications and on devising efficient hardware designs to

store this model. The most common hardware implementation in the literature

is based on a two-level table representation. The first table contains information

to determine the current state (i.e., a node in the Markov model). As in the case

of stream prefetchers, there are global and a local versions of Markov prefetchers.

A local Markov prefetcher, shown in Figure 2.3b, uses the load’s PC to index the

first-level table, which stores a local history of the last three deltas for that load.

A global Markov prefetcher uses a global history of the last three deltas (instead

of a per-PC local history).

The calculated state serves as an index into the second-level table, which stores

predictions (the immediate neighbors of the current node). To limit the total area

required for the table, the second-level table usually contains only a limited number

of unique predictions. A Markov prefetcher can prefetch the addresses predicted

by the adjacent nodes in the Markov model. We refer to this policy as width

prefetching. However, it is also possible to perform depth prefetching in which the

sequence of arcs in the Markov model is traversed with prefetching initiated at

each node along the path. We use a combination of width and depth prefetching

in our experiments.

Overall, Markov prefetchers can predict many non-stride memory access pat-

terns. This capability, however, often requires significant amount of storage for

markov graphs. In spite of a high performance potential, limited transistor budgets

and implementation complexity prevented a wide-spread use of markov algorithms

in the modern CPUs.

CHAPTER 3

EVALUATION METHODOLOGY

This chapter describes the configuration of the baseline CPU that is used for the

cycle-accurate simulations and gives information about the benchmark programs

that are used for the performance evaluations.

3.1 Baseline Architecture

All cycle-accurate measurements in this dissertation are based on the DEC Alpha

AXP architecture [7]. The various prefetching techniques are evaluated using an

extended version of the SimpleScalar v4.0 simulator [27]. The simulator is con-

figured to emulate a two-way high-performance CMP consisting of two identical

four-wide dynamic superscalar cores that are similar to the Alpha 21264. It ac-

curately models microprocessor’s internal timing behavior, resource constraints,

speculative execution as well as memory hierarchy and its latencies. Bandwidth

and contention on the memory bus are also fully modelled.

The modeled CPU parameters of each CMP core are shown in Table 3.1. Each

simulated CMP core is four-way superscalar, supports up to 128 in-flight instruc-

tions, issues instructions out-of-order from a 64-entry instruction window, has a

64-entry load/store queue, four integer and two floating-point units, a 64KB two-

way set associative L1 data cache, a 64KB two-way set associative instruction

cache, a 2048-entry branch target buffer (BTB), and a 16384-line hybrid gshare-

bimodal branch predictor. A 2MB unified eight-way set associative L2 cache is

shared between the two cores. All functional units are fully pipelined. Simulated

cache latencies are calculated with CACTI 3.2 tool [44].

18

19

Table 3.1: Simulated processor parameters

CMP core
Fetch/dispatch/commit width 4/4/4
I-window/ROB/LSQ size 64/128/64
Physical registers 184
LdSt/Int(IntMult)/FP units 2/4(2)/2
Branch predictor 16k-entry bimodal/gshare hybrid
RAS entries 16
BTB 2k entries, 2-way
Branch misprediction penalty minimum 12 cycles

Memory Subsystem
Cache sizes 64kB IL1, 64kB DL1, 2MB L2
Cache associativity 2-way L1, 8-way L2
Cache load-to-use latencies 3 cyc L1, 12 cyc L2
Cache line sizes 64B L1, 64B L2
Cache MSHRs 16 L1, 24 L2
Main memory latency minimum 400 cycles
Main memory bus split-trans., 8B-wide, 4:1 frequency ratio,

contention, queuing, bandwidth modeled
Hardware stream prefetcher between L2 and main memory, 16 streams,

max. prefetch distance: 8 strides

Unless otherwise noticed, the baseline configuration includes an aggressive

hardware global stride prefetcher [37] between the shared L2 cache and main mem-

ory. The stream prefetcher tracks the global history of the last 16 miss addresses,

detects arbitrary-sized strides, and applies a stream filtering technique by only

allocating a stream after a particular stride has been observed twice. It can simul-

taneously track 16 independent streams, and prefetch up to 8 strides ahead of the

data consumption of the processor.

3.2 Benchmarks

This study uses all 26 integer and floating-point programs from the SPECcpu2000

benchmark suite [18]. The programs are run with the SPEC-provided reference

inputs. If multiple reference inputs are given, we simulate the corresponding pro-

grams with up to the first three inputs and average the results from the different

runs. The only exception to this rule is the program vpr, which has two ref-

20

Table 3.2: Benchmark suite details (for the simulated intervals of 500M instruc-
tions)

App. NoPref loads L1 miss L2 miss perfect L2
IPC (M) rate (%) rate (%) speedup (%)

SPEC INT
bzip2 1.56 143.94 1.47 0.70 24.55
crafty 1.92 155.85 0.82 0.07 2.10
eon 1.75 148.32 0.12 0.00 0.20
gap 1.44 127.02 0.36 1.22 24.62
gcc 1.33 180.30 2.56 1.10 30.38
gzip 1.69 113.80 3.52 1.77 3.35
mcf 0.04 209.74 23.11 48.62 1399.55

parser 0.84 125.79 2.56 2.40 103.48
perlbmk 1.77 146.69 0.30 0.09 7.42

twolf 1.29 144.63 5.04 0.05 1.84
vortex 2.09 130.30 0.75 0.39 34.55
vpr 0.54 165.19 3.10 3.29 120.41

SPEC FP
ammp 1.44 132.32 3.90 1.35 31.92
applu 0.97 114.27 2.10 6.64 198.38
apsi 2.43 120.67 1.52 0.78 10.81
art 0.69 148.46 19.72 6.97 183.48

equake 0.26 234.53 7.50 24.40 675.56
facerec 1.15 123.90 2.40 4.83 178.51
fma3d 0.80 150.17 3.01 7.10 217.41
galgel 2.49 184.71 2.94 0.29 2.00
lucas 0.42 80.69 7.91 23.68 431.63
mesa 1.92 129.16 0.32 0.55 23.04
mgrid 0.91 183.09 2.42 19.02 203.19

sixtrack 2.62 96.83 0.23 0.18 4.77
swim 0.42 123.65 8.51 19.11 689.75

wupwise 1.30 114.31 1.15 3.60 134.67

erence inputs. Only one of the reference inputs is simulated (routing) because

SimpleScalar could not simulate vpr correctly with the second input (placement).

The C programs were compiled with Compaq’s C compiler V6.3-025 using “–O3

–arch ev67 –non shared” plus feedback optimization. The C++ and Fortran 77

programs were compiled with g++/g77 V3.3 using “–O3 –static”. The Fortran 90

programs were compiled with Compaq’s f90 compiler V5.3-915.

SimPoint 3.1 toolset [43] and SimpleScalar’s sim-safe simulator are used to

identify representative simulation points. Each program is simulated for 500 million

instructions after fast-forwarding past the number of instructions determined by

SimPoint.

21

Table 3.2 provides information about the benchmarks used. The first column

represents the baseline IPC for each program. The second column shows the total

number of load instruction in the simulated program interval. The third and fourth

columns show local miss rates for L1 data cache and L2 unified cache. Finally, the

fifth column represents the speedup for each application in the case where all load

requests that miss in L1 cache. Thus, the last column demonstrated the maximum

potential speedup achievable by data prefetching techniques.

Out of the 26 programs used in this study, four integer and two floating-point

programs are not memory-bound since they obtain less than 5% speedup with a

perfect L2 cache. The perfect-cache speedup for the rest of the programs varies

greatly and reaches up to 1400% for mcf. This large speedup is explained by

an exceptionally large number of L1 misses and a very high L2 cache miss rate

that reaches 48.6%. Note that for several memory-bound programs (e.g., mcf, art,

equake, and swim) the perfect L2 cache speedup cannot be obtained even with a

perfect prefetching scheme because of memory bus bandwidth limitations.

CHAPTER 4

FUTURE EXECUTION

This chapter presents the investigation of program properties related to cache

misses and presents the idea of the Future Execution prefetching technique. Fur-

thermore, it describes the implementation of Future Execution and performance

results. A sensitivity analysis of future execution to several architectural parame-

ters concludes this chapter.

4.1 Motivation

This section presents a quantitative analysis of the common program properties

that are exploited by future execution. All results are obtained using the bench-

mark suite and baseline microarchitecture described in Section 4.3.

One of the main program properties exploited by FE is that most load misses

occur in “loops” with relatively short iterations. Note that we call any repetitively

executed instruction a loop instruction and that FE is completely unaware about

the location of loops in a program. Figure 4.1 presents the breakdown of the

distance between the load instructions that cause an L2 cache miss and the previous

execution of the same load instruction. The bars are broken down by distance:

fewer than 100, between 100 and 1000, and between 1000 and 10000 dynamic

instructions. The taller the bar, the more often that range of instruction distances

occurred. The total height of the bar represents the fraction of L2 cache misses

that occur in loops with less than 10000 instructions per iteration.

The data show that on average from 70% to 80% of the misses occur in loops

with iterations shorter than 1000 instructions. This observation suggests a pre-

fetching approach in which each load instruction triggers a prefetch of the address

22

23

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2
bz

ip
2

fr
ac

tio
n

of
 L

2
ca

ch
e

m
is

se
s

(%
)

(1;100]
(100;1000]

(1000;10000]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p
am

m
p

fr
ac

tio
n

of
 L

2
ca

ch
e

m
is

se
s

(%
)

Figure 4.1: Execution distance measured in number of instructions between the
loads that result in an L2 cache miss and the previous dynamic execution of the
same static loads

that the same load is going to reference in the nth next iteration. Since in most

cases the time between the execution of a load instruction and its next dynamic

execution is relatively short, this approach is unlikely to prefetch much too early.

Analyzing the instructions in the dataflow graphs of the problem loads, I found

that while problem load addresses might be hard to predict, the inputs to their

dataflow graphs often are not. Therefore, even when the miss address itself is

unpredictable, it may be possible to predict the input values of the instructions

leading up to the problem loads and thus to compute an accurate prediction by

executing these instructions.

Figure 4.2 shows the breakdown of the load miss addresses in the SPECcpu2000

programs that can potentially be predicted and prefetched by future value predic-

tion and by future execution one iteration ahead of the main program execution.

The lower portion of each bar represents the fraction of misses that is directly pre-

dictable by a stride-two-delta (ST2D) value predictor [42]. The upper bar shows

how many miss addresses that are not predictable by the ST2D predictor can

be correctly obtained by predicting the inputs of the instructions in the dataflow

graph of the missing loads with ST2D predictor and computing the resulting ad-

24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

m
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

fr
ac

tio
n

of
 L

2
lo

ad
 m

is
se

s
(%

) fexec
fvpred

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

m
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

fr
ac

tio
n

of
 L

2
lo

ad
 m

is
se

s
(%

)

Figure 4.2: Distribution of cache miss addresses that can be correctly predicted
directly by a future value predictor (fvpred) and using future execution (fexec)

dress. The height of the stacked bar indicates the total fraction of misses that can

potentially be correctly predicted. To measure the potential prediction coverage

of future execution, we reconstruct the dataflow graph of each problem load when-

ever a cache miss occurs, compare it to the dataflow graph of the same static load

during its previous execution, extract the part of the dataflow graph that is the

same, and then check if the values provided by the future value predictor during

the previous execution would have allowed to correctly compute the load address

referenced by the load instruction in the current iteration. The size of analyzed

dataflow graph is limited to 64 instructions. This potential study ignores the ef-

fects of unpredictable loop-carried dependencies passed through memory, i.e., all

load instructions with predictable addresses are assumed to fetch correct data one

iteration ahead.

Figure 4.2 illustrates that while value prediction alone is quite effective for some

applications, future execution can significantly improve the fraction of load miss

addresses that can be correctly predicted and prefetched. Half of the SPECcpu2000

programs experience a significant (over 10%) increase in prediction coverage when

future execution is employed in addition to value prediction.

25

Figure 4.3: Code example

Figure 4.3a shows a code example that exhibits the program properties dis-

cussed above. An array of pointers A is traversed, each pointer is dereferenced

and the resulting data are passed to the function “foo”. Assume that the data

referenced by the elements of array A are not cache-resident. Further assume that

there is little or no regularity in the values of the pointers stored in A. Under these

assumptions each execution of the statement data=*ptr will cause a cache miss.

As shown in Figure 4.3b, in machine code this statement translates into a single

load instruction load r4, 0(r4) (highlighted in bold).

A conventional predictor will not be able to predict the address of the problem

instruction since there is no regularity in the address stream for this instruction.

However, the address references of instruction load r4, 0(r3) are regular be-

cause each instance of this instruction loads the next consecutive element of array

A. Therefore, it is possible to use a value predictor to predict the memory ad-

dresses for this instruction, speculatively execute this instruction, and then use

the speculatively loaded value to prefetch the data for the problem load instruc-

tion. Since the control flow leading to the computation of the addresses of the

26

problem load remains the same throughout each loop iteration (Figure 4.3c), a

value predictor can provide predictions for the next iterations of the loop and the

addresses of the problem load will be computed correctly. Therefore, sending the

two load instructions to the second core in commit order and future predicting the

first instruction makes it possible to compute the addresses of the second load that

will be referenced by the main program during the next iterations.

4.2 Implementation of Future Execution

The implementation of future execution is based on a conventional chip multipro-

cessor. A high-level block diagram of a two-way CMP supporting FE is shown in

Figure 4.4. Both microprocessors in the CMP have a superscalar execution engine

with private L1 caches. The L2 cache is shared between the two cores. Conven-

tional program execution is performed on the “left” core while future execution is

performed on the “right” core. To support FE, a unidirectional communication

link is introduced between the cores with a value predictor attached to it. Both the

communication link and the predictor are not on the critical path and should not

affect the performance of either core in a negative way. The following subsections

describe the necessary hardware support and the operation of FE in greater detail.

4.2.1 Overview of Operation

Each register-writing instruction committed in the regular core is sent to the second

core via the communication link. The data that need to be transferred to the

second core include the decoded instruction, result value, and a partial PC to

index the value predictor table. Stores, branches, jumps, calls, returns, privileged

instructions, and system calls are not transmitted. If the communication link’s

27

Figure 4.4: The FE architecture

buffer is full, further committed instructions are dropped and not transmitted to

the second core. Each sent instruction passes through the value predictor, updates

the predictor with its current output and requests a prediction of the value it is

likely to produce in the nth next dynamic instance. Each prediction is accompanied

by a confidence estimation [28].

If the confidence of the prediction is high, the corresponding instruction is

replaced by a load immediate instruction, where the immediate is the predicted

result. If the predicted instruction is a memory load, an additional non-binding

prefetch instruction for that load’s address is generated right before the load imme-

diate instruction. This allows the future core to prefetch this data without stalling

the pipeline if the memory access misses in the cache. All instructions with a low

prediction confidence remain unmodified.

After that, the processed stream of committed instructions is sent to the second

core, where it is injected into the dispatch stage of the pipeline. Since instructions

are transmitted in decoded format, they can bypass the fetch and decode stages.

Instruction dispatch proceeds as normal – each instruction is renamed and allocated

a reservation station and a ROB entry if these resources are available. Whenever

the input values for the instruction are ready, it executes, propagates the produced

result to the dependent instructions and updates the register file. If the instruction

28

at the head of the ROB is a long latency load, it is forced to retire after a timeout

period that equals the latency of an L2 cache hit. This approach significantly

improves the performance of the FE mechanism as it avoids stalling the pipeline.

Timed out instructions set the invalid bit in the corresponding result register. The

execution of instructions that depend on the invalidated result is suppressed.

When entering FE mode, i.e., before the prefetching thread starts being injected

into the available idle core, all registers of that core are invalidated. This flash

invalidation of all registers occurs only once before the future execution thread

is launched. The invalid register bits are gradually reset by the executed future

instructions that have valid inputs. For example, load immediate instructions

always make their target registers valid since they do not have input dependencies.

This register invalidation policy suppresses the execution of all further instructions

whose inputs cannot be predicted or computed with high confidence.

Note that the implementation of future execution in this dissertation differs

from the implementation used in some of the previous studies [12,13]. This study

simplifies the implementation so that all instruction transformations take place

outside the core. For example, our previous implementation required special logic

in the dispatch stage of the pipeline to fill in the result field of the ROB and RS

entries of FE instructions with predicted values. The implementation presented

in this dissertation is more intuitive, requires no additional dispatch logic to sup-

port future execution, and features a simpler way to suppress the execution of

unpredictable instructions.

29

4.2.2 Hardware Support

Future execution requires additional hardware support to transmit decoded in-

structions, their result values, and partial PCs to the value predictor between the

cores. Depending on the microarchitecture, the ROB may have to be augmented

to hold the necessary data until instruction retirement. In this study, the com-

munication bandwidth corresponds to the commit width (4 instructions/cycle),

which is a reasonable bandwidth for a unidirectional on-chip point-to-point link.

Since it is rare for a microprocessor to fully utilize its commit bandwidth for a

long period of time, and because not all instructions need to be transmitted to the

second core, it may be possible to curtail the bandwidth without significant loss

of performance. For example, Section 4.4.4 demonstrates that the communication

bandwidth can be reduced to 2 instructions/cycle with little effect on the efficiency

of the FE mechanism.

The value prediction module resides between the two CMP cores. The pre-

sented implementation uses a relatively simple, PC-indexed stride-two-delta pre-

dictor [42] with 4,096 entries. The predictor estimates the confidence of each

prediction it makes using 2-bit saturating up-down counters. The confidence is

incremented by one if the predicted value was correct and decremented by one if

the predicted value was wrong. The particular organization of the value predictor

is not essential to our mechanism and a more powerful predictor (e.g., a DFCM

predictor [14]) may lead to higher performance.

To support the execution of the future instruction stream, a multiplexer has to

be added in front of the dispatch stage of the pipeline. In FE mode, the multiplexer

directs instructions to be fetched from the receive buffer of the communication link.

In normal mode, instructions are fetched by the processor’s front end.

30

The processor’s register file may have to be extended to accommodate an in-

valid bit for each physical register. Only one extra bit per register is needed.

Many modern microprocessors already include some form of dirty or invalid bits

associated with each register that could be utilized by the FE mechanism.

Since I model a two-way CMP with private L1 caches, a mechanism is needed to

keep the data in the private L1 caches of the two cores consistent. This work relies

on an invalidation-based cache coherency protocol for this purpose. Therefore,

whenever the main program executes a store instruction, the corresponding cache

block in the private cache of the future core is invalidated. Since store instructions

are not sent to the future core, future execution never incurs any invalidations.

4.3 Evaluation Methodology

Future execution is evaluated using an extended version of the SimpleScalar v4.0

simulator [27]. The baseline is a two-way CMP consisting of two identical four-

wide dynamic superscalar cores that are similar to the Alpha 21264. In all modeled

configurations it is assumed that one of the cores in the CMP can be used for future

execution. The full description of the baseline architecture and benchmark suite

is provided in Chapter 3.

Table 4.1 describes the configuration of future execution parameters. The com-

munication latency between the two cores is 5 cycles and the communication band-

width corresponds to the commit width (4 instructions/cycle). Note that FE is not

very sensitive to the communication latency (see Section 4.4.4). The implementa-

tion of the future execution mechanism employs a stride-two-delta (ST2D) value

predictor [42] that predicts values four iterations ahead. Predicting four iterations

ahead does not require extra time in case of the ST2D predictor. The predictor

31

Table 4.1: Future Execution Parameters

Future value predictor 4k-entry ST2D, 2bc conf. estimator
Prediction distance 4 strides ahead
Inter-core communication link 5-cycle latency, 4 insns/cycle bandwidth
Communication link buffer size 64 instructions

hardware needs to be modified to add the predicted stride four times, which is

achieved by a rewiring that shifts the predicted stride by two bits.

4.4 Experimental Results

In this section, I experimentally measure the effectiveness of the proposed mecha-

nism. Section 4.4.1, evaluates the performance of prefetching based on future exe-

cution and compares the speedups with those of stream prefetching. Section 4.4.2

takes a closer look at prefetching itself and gains additional insight by measuring

the prefetching accuracy and coverage as well as the timeliness of prefetches. Sec-

tion 4.4.3 compares the future execution technique to prefetching based on several

variations of runahead execution and show that the two techniques are complemen-

tary to each other. Finally, Section 4.4.4 studies the sensitivity of future execution

to several parameters of the baseline microprocessor, such as the minimum memory

latency, the inter-core communication delay/bandwidth, and the prefetch distance.

4.4.1 Execution Speedup

This section compares the performance impact of the proposed prefetching tech-

nique to a stream-based hardware prefetcher. The base machine for this experiment

is described in Table 3.1. It represents an aggressive superscalar processor with-

32

 0

 20

 40

 60

 80

 100

 120

 140

 160

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

1.9

0.1 0.1

13.6

0.2 0.9

26.4

4.6

0.5 0.3
1.5

13.0 5.0

fexec
stream

stream+fexec

 0

 50

 100

 150

 200

 250

 300

 350

 400

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

-0.8

16.3

2.0

-0.1

85.9

36.1
73.7

1.5

89.3

4.9

10.5

1.3

7.1

17.7
21.2

Figure 4.5: Execution speedup

out hardware prefetching. We model three processor configurations: the baseline

with prefetching based on future execution (fexec), the baseline with an aggres-

sive hardware stream prefetcher between the shared L2 cache and main memory

(stream) [37], and the baseline with stream prefetching as well as future execu-

tion (stream+fexec). Figure 4.5 presents speedups for individual programs as well

as the geometric mean over the integer and the floating-point programs (integer

programs are shown in the left panel, floating-point programs in the right panel).

Note that the scale of the y-axis for the SPECint and the SPECfp benchmarks is

different. The percentages on top of the bars are the speedups of future execution

combined with stream prefetching (stream+fexec) over stream prefetching alone

(stream).

The results show that the hardware stream prefetcher used in this study is

very effective, attaining significant speedups for the majority of the programs,

with peaks of 306% for swim and 159% for lucas. The average speedup over the

SPECint programs is 13%, while the SPECfp applications experience an average

speedup of 48%. Note that the parameters of the stream prefetcher are tuned

to maximize the prefetching timeliness and to minimize cache pollution on our

benchmark suite.

33

When the model with only future execution is compared to the model with only

stream prefetching, future execution outperforms stream prefetching on five pro-

grams, while stream prefetching is better on nine. The remaining twelve programs

achieve about the same performance with both models. As the following section

will show, in many cases the stream prefetcher can prefetch fewer load misses than

future execution, but it provides more timely prefetching and hence larger perfor-

mance improvements. The timeliness of the prefetches issued by future execution

can be improved by adjusting the prediction distance of the future value predictor,

but this study uses a fixed prediction distance (except for Section 4.4.4) to make

the results comparable. Nevertheless, the fexec model provides significant speedup

(over 5%) for 12 programs, with an average speedup of 13% for the integer and

40% for the floating-point programs, and a maximum of 227% on swim.

The model with the best performance is the one that combines the stream

prefetcher and future execution. On average, this model has a 50% higher IPC

than the model with no prefetching. Moreover, this model has a 10% higher IPC

than the baseline with stream prefetching. Out of the 26 programs used in our

study, 12 significantly benefit (over 5% improvement) from future execution when

it is added to the baseline that already includes a hardware stream prefetcher.

Looking at the behavior of the integer and floating-point programs separately,

adding future execution to the baseline with a stream prefetcher increases the

performance of SPECint and SPECfp by 5% and 21%, respectively. This indicates

that future execution and stream prefetching interact favorably and complement

each other by prefetching different classes of load misses.

Overall, the results in this section demonstrate that future execution is quite

effective on a wide range of programs and works well alone and in combination

34

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

fr
ac

tio
n

of
 o

rig
in

al
 L

2
m

is
se

s
(%

) fexec
stream

stream+fexec

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

fr
ac

tio
n

of
 o

rig
in

al
 L

2
m

is
se

s
(%

)

Figure 4.6: Prefetch coverage

with a stream prefetcher.

4.4.2 Analysis of Prefetching Activity

This section provides insight into the performance of prefetching based on future

execution by taking a closer look at the prefetching activity. It begins by presenting

the prefetch coverages obtained by different prefetching techniques. The prefetch

coverage is defined as the ratio of the total number of useful prefetches (i.e., the

prefetches that reduce the latency of a cache missing memory operation) to the

total number of misses originally incurred by the application.

Figure 4.6 shows the prefetch coverages for different prefetch schemes, illustrat-

ing significant coverage, especially for SPECfp. On roughly half of the programs the

coverage achieved by future execution is higher than that achieved by the stream

prefetcher. The value predictor that assists the future execution makes predictions

based on the local history of values produced by a particular static instruction,

while the stream prefetcher observes the global history of values. Therefore, the

two techniques exploit different kinds of patterns, akin to local and global branch

predictors.

When stream prefetching is combined with future execution, the two techniques

35

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

m
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

pr
ef

et
ch

 c
ov

er
ag

e
(%

)

fexec
vpred

stream

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

m
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

pr
ef

et
ch

 c
ov

er
ag

e
(%

)

Figure 4.7: Distribution of cache misses that were prefetched by a stream prefetcher
(stream), based on value predictions (vpred), and using future execution (fexec)

demonstrate significant synergy. In eleven programs (bzip2, gcc, perlbmk, ammp,

applu, apsi, equake, facerec, fma3d, lucas, and mesa) the coverage is at least 10%

higher than when either technique is used alone. Overall, future execution increases

the prefetching coverage from 34% to 51% on the integer and from 63% to 85% on

the floating-point programs.

Figure 4.7 shows the breakdown of the prefetch coverage for the case when

stream prefetching is combined with future execution (stream+fexec configuration).

The lower segment of each bar corresponds to the prefetches initiated by the stream

prefetcher. The middle portion shows how many prefetches were issued based on

predictions provided by the value predictor. The upper part of each bar represents

the portion of issued prefetch addresses that required the execution of instructions

to compute the correct prefetch address. The height of the stacked bar indicates

the total fraction of misses that were prefetched. Note that the height of the bar is

sometimes slightly less than reported in Figure 4.6 because the origin of some of the

prefetches could not be determined. In this study, if multiple prefetch mechanisms

issued prefetches for the same memory location, the mechanism that issued the

earliest prefetch is given credit for that prefetch request.

Figure 4.7 illustrates that future value prediction and future execution provide

36

a significant coverage increase over the stream prefetcher (over 10%) for 16 out of

the 26 applications used in our study. Out of these 16 applications, six programs

benefit mostly from future execution, eight programs owe most of the coverage

increase to future value prediction, and two programs benefit roughly equally from

value prediction and future execution. Note that in seven programs the addition

of future execution makes the stream prefetcher more effective. For example, gap

gets almost all of its misses prefetched by the stream prefetcher, but the data

in Figure 4.6 demonstrate that stream prefetching can prefetch less than a half

of the cache misses without future execution. I suspect that this is caused by

favorable interactions between the loads issued from the future core and the stream

prefetcher, where future loads enable more precise and earlier identification of

important streams that are then further prefetched by the stream prefetcher. On

average, future execution increases the coverage provided by the stream prefetcher

from 34% to 41% on the integer applications and from 63% to 66% on the floating-

point programs.

Next, I analyze the accuracy of our prefetching scheme by comparing the num-

ber of useless prefetches issued by the prefetching mechanisms to the total number

of prefetches issued. A prefetch request is categorized as useless if the prefetched

data is evicted from the cache before being used by the main thread. Figure 4.8

shows the percentage of useless prefetches associated with the two prefetching

schemes. The results illustrate that a large majority of the prefetches issued are

useful in both the SPECint and the SPECfp programs with over 70% of useful

prefetches for both techniques. There are a few interesting cases where stream

prefetching causes much fewer useless prefetches than future execution. They oc-

cur in the programs eon, gap, twolf, facerec, and sixtrack. I find that useless

37

 0

 10

 20

 30

 40

 50

 60

 70

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

fr
ac

tio
n

of
 u

se
le

ss
 p

re
fe

tc
he

s
(%

) fexec
stream

stream+fexec

 0

 10

 20

 30

 40

 50

 60

 70

 80

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

fr
ac

tio
n

of
 u

se
le

ss
 p

re
fe

tc
he

s
(%

)

Figure 4.8: Percentage of useless prefetches issued by different prefetching mecha-
nisms relative to the total number of prefetches issued

prefetches occur in loops where many loads depend on the values of a loop-carried

dependency passed through memory that is not preserved by future execution.

This results in computing the wrong addresses for load instructions and the fetch-

ing of useless data. I suspect that in sixtrack many prefetches are issued too far in

advance and get evicted from the cache before being used. However, even though

the accuracy of the stream prefetcher is higher in those cases, the coverage for

many of the programs is quite small, meaning that the higher accuracy does not

noticeably improve the performance.

Finally, I investigate the prefetch timeliness of the different schemes. The

prefetch timeliness indicates how much of the memory latency is hidden by the

prefetches. The results are presented in Figure 4.9. For each program, the upper

bar corresponds to the fexec model, the middle bar to the stream model, and the

lowest bar represents the stream+fexec model. Each bar is broken down into five

segments corresponding to the fraction of the miss latency hidden by the prefetches:

less than 100 cycles (darkest segment), between 100 and 200 cycles, between 200

and 300 cycles, between 300 and 400 cycles, and over 400 cycles (lightest segment).

Therefore, the lightest segment represents the fraction of prefetches that hide the

minimum full memory latency.

38

gmean

vpr

vortex

twolf

perlbmk

parser

mcf

gzip

gcc

gap

eon

crafty

bzip2bzip2

 0 0.2 0.4 0.6 0.8 1

fraction of prefetched load misses

gmean

wupwise

swim

sixtrack

mgrid

mesa

lucas

galgel

fma3d

facerec

equake

art

apsi

applu

ammpammp

 0 0.2 0.4 0.6 0.8 1

fraction of prefetched load misses

>400
[300,400)
[200,300)
[100,200)

[0,100)

Figure 4.9: Timeliness of the prefetches

Both future execution and stream prefetching are quite effective at hiding the

memory access latency. In case of future execution, 65% of the prefetches in

SPECint and 55% of the prefetches in SPECfp are completely timely, fully elimi-

nating the associated memory latency. For both the integer and the floating-point

programs, only 25% of the prefetches hide less than 100 cycles of latency (one

quarter of the memory latency). The timeliness of future execution prefetches can

be improved by adjusting the prediction distance of the future value predictor.

For example, increasing the prediction distance from 4 to 8 increases the num-

ber of completely timely prefetches for most of the programs with a low prefetch

timeliness by at least 15%, resulting in significant increase in performance (see

Section 4.4.4).

Overall, this section demonstrates that prefetching based on future execution

is quite accurate, significantly improves the prefetching coverage over stream pre-

fetching, and provides timely prefetches, which may be further improved by dy-

namically varying the prediction distance.

39

4.4.3 Comparison with Runahead Execution

The previous subsections showed that prefetching based on future execution is quite

effective and provides significant speedups over the baseline with an aggressive

stream prefetcher. In this section I compare our mechanism to several variations

of runahead execution, an execution-based prefetching technique.

The concept of runahead execution was first proposed for in-order processors [8]

and then extended to perform prefetching for out-of-order architectures [33]. The

runahead architecture “nullifies” and retires all memory operations that miss in the

L2 cache and remain unresolved at the time they reach the ROB head. It starts by

taking a checkpoint of the architectural state and retiring the missing load before

the processor enters runahead mode. Once in runahead mode, instructions execute

normally except for two major differences. First, the instructions that depend on

the result of the load that was “nullified” do not execute but are nullified as

well. They commit an invalid result and retire as soon as they reach the head of

the ROB. Second, store instructions executed in runahead mode do not overwrite

data in memory. When the original “nullified” memory operation completes, the

processor rolls back to the checkpoint and resumes normal execution. All register

values produced in runahead mode are discarded.

I implemented a version of runahead execution similar to the one described

by [33]. Runahead mode is triggered by load instructions that stall for more than

30 cycles. Store data produced in runahead mode is retained in a runahead cache,

which is flushed upon the exit from runahead mode.

In addition to this conventional version of runahead execution, I implement and

evaluate two extensions. First, I employ value prediction to supply load values for

the long-latency load instructions. When such loads time-out, a stride-two-delta

40

value predictor provides a predicted load value and a prediction confidence. If the

confidence is above threshold, the predicted value is allowed to propagate to the

dependent instructions. If the confidence is below threshold, the result of the load

instruction that timed out is invalidated in the same way loads are invalidated in

the conventional runahead mechanism.

Second, I implement the checkpointed early load retirement mechanism

(CLEAR) [25], which attempts to avoid squashing the correct program results

produced in runahead mode. The CLEAR mechanism utilizes value prediction to

provide values for the load instructions that time out and is similar in spirit to

checkpoint-assisted value prediction as proposed by [4]. While the conventional

runahead mechanism checkpoints the processor state only once before entering

runahead mode, CLEAR checkpoints the processor state before every prediction

that is made in runahead mode. If the value provided by a value predictor was

incorrect, the processor state is rolled back to the checkpoint corresponding to that

value prediction. However, if the prediction was correct, the corresponding check-

point is released and the processor does not have to roll back after the long-latency

memory operation completes.

Note that both runahead extensions that are evaluated in this study share value

prediction and confidence estimation tables with the future execution mechanism.

When runahead is used without future execution, only load instructions update

the value predictor. When runahead and future execution are used together, every

committed instruction updates the value predictor with the exception of stores,

branches, and system calls. The implementation of CLEAR assumes an unlimited

number of available checkpoints.

Figure 4.10 shows the execution speedup of different techniques relative to the

41

-10

 0

 10

 20

 30

 40

 50

 60

 70

gmeanvprvortextwolfperlbmkparsermcfgzipgccgapeoncraftybzip2

IP
C

 in
cr

ea
se

 (
%

)

RA
RA + FE

RA vpred
RA vpred + FE

CLEAR
CLEAR + FE

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 4.10: Comparison with runahead execution

stream baseline. First, we compare the performance of future execution without

runahead execution, shown in Figure 4.5, to the performance of different runahead

schemes when they are used without future execution. Overall, the geometric-

mean speedups of different runahead techniques and FE are similar when they

are applied separately. On average, conventional runahead, runahead with value

prediction, and CLEAR provide performance improvements of 2%, 6.4%, 7.2% on

SPECint and around 17% on SPECfp. FE provides 5% speedup on SPECint and

21% on SPECfp applications.

When runahead execution and future execution are employed together, their

cumulative effect is quite impressive. The average speedups for the conventional

runahead implementation rise to 6.5% and 29% for the integer and the floating-

point programs, respectively. The average speedups for runahead with value pre-

diction also exhibits a significant boost with future execution, increasing from 6.4%

42

to 9.1% for SPECint and from 16% to 29% for SPECfp applications. The CLEAR

mechanism demonstrates similar performance improvements. The interaction be-

tween future execution and runahead execution is especially favorable with eight

programs (mcf, vpr, applu, facerec, fma3d, equake, mgrid, and wupwise), where the

speedups are from 5% to 50% higher than when either of the techniques is used

alone.

Runahead allows prefetching cache misses that are within close temporal prox-

imity of the long-latency load instructions that initiated runahead mode. There-

fore, even though runahead execution obtains significant prefetch coverage while

the processor is in runahead mode, its potential is limited by the length of the runa-

head period. On the other hand, FE prefetches can generally hide more latency

than runahead prefetches because the FE mechanism issues memory requests sev-

eral iterations ahead of the current execution point. In spite of the better prefetch

timeliness, FE’s coverage is sometimes limited by the value prediction coverage

and the regularity of the address-generating slices. The combination of runahead

execution and future execution allows to exploit the strengths of both approaches,

thus resulting in symbiotic behavior.

4.4.4 Sensitivity Analysis

In this subsection I evaluate the effectiveness of future execution when several hard-

ware parameters are varied. First, I investigate the effect of the memory latency

on FE’s performance. Second, I compare the performance of FE configurations

with different inter-core communication latencies and bandwidth capabilities. Fi-

nally, I analyze the performance benefits provided by FE with different prefetch

43

 0

 5

 10

 15

 20

 25

 30

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

100 cycles
200 cycles
300 cycles
400 cycles
500 cycles

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 4.11: Sensitivity of future execution to the main memory latency

distances. All results in this subsection show the speedup provided by FE relative

to the stream baseline.

Figure 4.11 shows the speedup provided by FE on processors with five different

memory latencies, ranging from 100 to 500 cycles. Overall, the performance benefit

for both integer and floating-point programs steadily increases with increasing

memory latency. The SPECint speedup ranges from 1.6% for a relatively short

100-cycle memory latency to almost 5.5% for a 500-cycle latency. The average

speedup for the SPECfp programs increases from 6.7% to 24.4%.

Figure 4.12 demonstrates how the communication latency between the cores

affects the performance improvements provided by FE. As the communication

latency is increased from 5 to 30 cycles, most of the applications show no significant

changes in the amount of speedup obtained by future execution. The speedup

changes by more than 5% only for four programs (vpr, applu, facerec, and fma3d).

We observe that longer communication latencies seem to hurt the performance

benefit in fma3d. Future execution in vpr and facerec generally becomes more

effective with the increasing communication delay, while applu demonstrates no

correlation between the speedup and the communication latency. The geometric

mean speedups for the SPECint and SPECfp applications change by less than

44

 0

 5

 10

 15

 20

 25

 30

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

5 cycles
10 cycles
15 cycles
20 cycles
25 cycles
30 cycles

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 4.12: Sensitivity of future execution to the inter-core communication delay

0.5%. FE is not very sensitive to the communication delay because of two main

reasons. First, prefetching four iterations ahead hides the full memory latency

for many of the applications and delaying a prefetch request by an additional 5-

25 cycles still results in a timely prefetch. Second, even if the delayed prefetch

does not hide the full memory latency, the communication delay constitutes only a

small fraction of the total memory latency. Increasing the latency of a prefetched

memory request by a few percent does not have a significant performance impact.

Figure 4.13 shows the sensitivity of future execution to the communication

bandwidth between the cores. The communication bandwidth is varied from 4 to

1 instructions/cycle. The results show that decreasing the bandwidth from 4 to

3 instructions/cycle has almost no impact on the effectiveness of FE. If the com-

munication bandwidth is cut in half to 2 instructions/cycle, only three programs

experience a significant (over 5%) performance degradation (vortex, applu, and

equake), while the geometric mean speedups stay practically unchanged. How-

ever, further reduction of the bandwidth to 1 instruction/cycle often makes the

bandwidth insufficient for the effective operation of FE. In particular, six pro-

grams experience a significant performance degradation. Compared to the case

where the communication bandwidth corresponds to the processor commit width

45

Figure 4.13: Sensitivity of future execution to the inter-core communication band-
width

(4 instructions/cycle), the geometric mean speedup for integer programs decreases

from 5% to 3.8%, while the IPC speedup for the floating-point applications drops

from 21% to 12%. In most cases, this degradation is caused by a large number

of instructions that are dropped due to the lack of space in the communication

buffer. As a result, some prefetch addresses are never computed, while others are

computed incorrectly and pollute the cache or the stream prefetcher’s miss history

(e.g., swim).

Next, I analyze the impact of the prefetch distance on the performance of fu-

ture execution. I vary the prediction distance of the value predictor from 1 to

10 iterations ahead and show the corresponding speedups in Figure 4.14. The

results show that most of the programs benefit from an increased prefetch dis-

tance. As one might expect, the prefetch coverage generally decreases slightly for

larger lookaheads, but the reduction in coverage is compensated for by the im-

proved timeliness of the prefetch requests. Vpr and ammp are the only programs

where the decreasing prefetch coverage dominates the improved timeliness. Sur-

prisingly, some programs (e.g., bzip2, applu, and fma3d) exhibit a growing prefetch

coverage with increasing prefetch distance. This phenomenon occurs due to a fa-

vorable interaction between future execution and the stream prefetch engine. As

46

 0

 5

 10

 15

 20

 25

 30

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

1
2
4
6
8

10

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 4.14: Sensitivity of future execution to the future value prediction distance

the prediction distance is increased, the memory requests issued by future exe-

cution indirectly increase the prefetch distance of the stream prefetcher and thus

make the stream prefetches more timely. Therefore, fewer loads time out in the

future core and fewer address-generating slices are invalidated, enabling more fu-

ture load addresses to be computed. I found that prefetching more than 10 strides

ahead does not improve FE performance.

On average, increasing the future prediction distance from 1 to 10 iterations

ahead increases the geometric mean speedup for integer applications from 3.2% to

5%, while the IPC speedup for the floating-point applications increases from 11%

to 30% over the baseline with aggressive stream prefetching. These results suggest

that future execution may greatly benefit from a dynamic mechanism to adjust

the prediction distance.

4.5 Summary

This chapter proposes the idea of future execution (FE), a data prefetching tech-

nique to hide the latency of cache misses using moderate hardware and no ISA,

programmer, or compiler support. FE harnesses the power of a second core in

a multi-core microprocessor to prefetch data for a thread running on a different

47

core of the same chip. Unlike previously proposed approaches for execution-based

prefetching, this mechanism does not need any thread triggers, features an ad-

justable lookahead distance, does not use complicated analyzers to extract pre-

fetching threads, requires no storage for prefetching threads, and works on legacy

code as well as new code.

This chapter further evaluates the performance of the proposed prefetching

technique. Overall, FE delivers a geometric-mean speedup of 5% in integer and

21% in floating-point programs over a baseline with an aggressive stream pre-

fetcher. Furthermore, I demonstrate that future execution is complementary to

runahead execution technique and the combination of these two techniques signif-

icantly raises the average speedup.

Finally, I study sensitivity of future execution to several architectural param-

eters, such as the minimum memory latency, the intercore communication de-

lay/bandwidth, and the prefetch distance. The results demonstrate that prefetch-

ing based on future execution delivers robust performance improvements across

many processor configurations. Moreover, the performance of future execution

is very sensitive to future prediction distance which suggests that it may greatly

benefit from a mechanism to dynamically adjust the prediction distance.

CHAPTER 5

EVENT-DRIVEN HELPER THREADING

This chapter discusses prefetching techniques based on outcome prediction and

motivates the idea of the Event-Driven Helper Threading. Furthermore, it de-

scribes the architectural support for Event-Driven Helper Threading, its operation,

and performance results. A sensitivity analysis of Event-Driven Helper Threading

to several architectural parameters concludes this chapter.

5.1 Motivation

Over the past years considerable research effort has been put into developing hard-

ware prefetching algorithms that are based on address prediction. In spite of the

large number of interesting proposals, their introduction into commercial designs

is often hampered by the considerable storage requirement for prediction tables,

which would consume valuable chip area. In many cases, the proposed techniques

are application specific and thus do not justify their implementation in a general-

purpose microprocessor. Moreover, the specificity of such algorithms may well hurt

the performance of other programs.

Having analyzed the limitations of previously proposed prefetching techniques,

I decided to approach the central question of this dissertation from a different an-

gle. Instead of devising new prefetching algorithms, I considered ways to alleviate

these limitations by employing the execution capabilities of available cores in CMP

architectures. This work resulted in a lightweight architectural framework to em-

ulate prefetching algorithms via a special class of software helper threads. I call

this technique event-driven helper threading (EDHT). The key principle behind

EDHT is to use simple and fast hardware to expose information about individual

48

49

cache miss events to software. Thus, a special software helper thread executing

on another core of a CMP can read this cache miss information and utilize it to

implement various prefetching algorithms. This EDHT concept efficiently com-

bines simple and fast hardware to communicate event data and flexible software

to implement prefetchers of almost arbitrary complexity.

The EDHT framework allows multi-core processors to provide immediate ben-

efits and presents a relatively simple yet effective architectural enhancement to

exploit additional cores to speed up individual threads. Unlike previously pro-

posed approaches for software prefetching, the EDHT mechanism can improve

performance without the need to modify or analyze the original binary. Moreover,

EDHT solves many problems that have hampered the introduction of complex

hardware prefetching algorithms into commercial microprocessors. Specifically,

EDHT needs minimal hardware modifications, does not require specialized hard-

ware storage for prediction tables, and can be easily reconfigured to customize

prefetching algorithms for individual applications.

Looking into the future, the EDHT concept opens opportunities for designing

novel prefetching techniques. For example, the flexibility of a software approach

provides an interesting possibility for the automatic generation of program-specific

EDHT threads. Furthermore, EDHT allows the design of new prefetchers that

dynamically adapt to the program behavior. Hybrid prefetchers that run several

pre-fetching algorithms in parallel may also be possible. Finally, the EDHT frame-

work makes it feasible to quickly prototype novel prefetching techniques on real

hardware without the need to recompile applications, modify the silicon, or resort

to slow simulations.

50

5.2 Implementation

Hardware prefetching algorithms based on outcome prediction are naturally decou-

pled from the execution of the target thread. The only data dependence between

the target thread and the prefetching algorithm is the information about the cache

miss address and the load instruction that caused it. As such, these prefetch mech-

anisms could be emulated by a software prefetching thread that is started whenever

the target thread experiences a cache miss. However, a software implementation

of a hardware prefetcher faces two obstacles. First, such prefetch threads would

need to be spawned quickly on microarchitectural events as opposed to program

events in the conventional multithreading paradigm. Second, complex prefetch

algorithms, such as Markov prefetching, often require a large amount of state that

needs to be stored somewhere.

To overcome these issues, it is necessary for a processor architecture to support

explicit communication of microarchitectural events from one thread to another.

Ideally, the target thread should not be aware of this communication so that pre-

fetching can be easily turned on and off depending on the availability of hardware

resources. To achieve this, I propose Event-Driven Helper Threading (EDHT),

which provides a way for a low-latency, unidirectional event trigger transmission

between regular and helper threads. EDHT threads execute on a conventional core

of a chip multiprocessor and the state of the underlying prefetching algorithm is

loaded into the private data cache of the core via the conventional memory hier-

archy. The rest of this section explains the hardware support for EDHT and its

operation.

51

5.2.1 Overview of Operation

Figure 5.1a shows a typical pointer chasing loop. Each iteration of the loop pro-

cesses a node of a linked list and fetches the next node to be processed. Assuming

that the linked list is not cache-resident, each access to the field data in the list’s

node will result in a cache miss and stall the processor. As shown in Figure 5.1a,

this access translates into a single load instruction data=pointer->data. Markov

prefetchers are a good fit for prefetching such linked list traversals since they can

memorize previous traversals of this list and accurately predict the next node’s

location.

A typical hardware implementation of a Markov prefetcher will snoop the cache

miss addresses coming out of the cache. For each observed cache miss, it will look

up its prediction table similar to the one shown in Figure 2.3b and determine which

addresses are likely to be referenced next. After that, it will issue prefetch requests

for those addresses into the memory hierarchy in the hope that the program will

soon request those data as well.

while (ptr) {
 data = ptr->data;
 foo(data);
 ptr=ptr->next;
}

 while (true) {
 miss_info=event.addr;
 pref=predict(miss_info);
 prefetch(pref);
}

1. data = ptr->data 1. miss_info=event.addr
2. foo(data) 2. pref=predict(miss_info)
3. ptr=ptr->next 3. prefetch(pref)
 ... 1. miss_info=event.addr
 ...
 ...
1. data = ptr->data 2. pref=predict(miss_info)
2. foo(data) 3. prefetch(pref)
3. ptr=ptr->next 1. miss_info=event.addr

a) target thread

b) pefetching helper thread

cache
miss event

cache
miss event

stall

Figure 5.1: Code example

52

Figure 5.1b shows a conceptual prefetching thread that can emulate a pre-

fetcher. The prefetching thread consists of an infinite while loop. In each itera-

tion, the prefetching loop stalls waiting for cache miss event data to arrive from

the target thread. When the target thread experiences such a miss, the prefetch-

ing thread loads the cache miss address along with the associated PC value and

uses this information to run its prediction algorithm. Finally, it issues a prefetch

instruction and loops back. If by this time there is a new miss event waiting in

the event queue, it immediately executes the prefetching algorithm with the new

data. Otherwise, it stalls until a new event arrives.

Of course, a dedicated hardware implementation will execute the prediction

algorithm much faster than its software thread equivalent. Hence, there may be

situations when the frequency of cache miss events outpaces the speed at which the

prefetching thread can process them. In this case, limited buffering can be provided

to store unprocessed events. The next subsection describes the organization of such

a buffer and its interaction with other components of the CPU.

5.2.2 Implementation and Hardware Support

Even if the architecture provides a way to communicate architectural events to

user-level threads, prefetching-based event-driven helper threading is likely to per-

form poorly on current hardware due to the following reasons. First, synchro-

nization must occur via the operating system or via spin-locks. In the OS case,

the trap and return time is so large that it can negate any performance advan-

tage. In addition, the communication between the threads must occur via shared

memory, increasing the contention for the shared cache ports and wasting dynamic

53

Decoder

Renamer

Reservation stations

FPU ALU LSU

Reorder Buffer

Fetch I-Cache

D-Cache
Decoder

Renamer

Reservation stations

FPU ALU LSU

Reorder Buffer

Fetch I-Cache

D-Cache

Event
buffer

L2 Cache

Figure 5.2: System Architecture

power. Thus, for EDHT-based prefetching to be successful, it is imperative that

the implementation of the event delivery mechanism be efficient.

Since much of the problem related to the implementation of fast inter-thread

communication is due to the use of shared memory, I propose to use an event buffer.

Figure 5.2 shows the architecture of an out-of-order CMP that supports event-

driven helper-threading. The event buffer and associated datapaths are highlighted

in bold. The regular computation thread executes on the “left” core, while its

EDHT prefetching thread is running on the “right” core. The event buffer is

located between the two cores. It represents a FIFO structure of limited capacity.

It receives information about cache miss events from the ROB of one of the cores.

The ISA abstraction for the event buffer is an I/O device that can be accessed

by program threads via I/O read instructions from a reserved address. The event

buffer controller snoops the cache bus and supplies data for all event buffer I/O

reads.

The instructions in the left core execute and commit normally. If a load instruc-

tion experiences a cache miss, a prefetch trigger is transmitted to the event buffer

once the load commits. Event transmission is also triggered if a load instruction

loads data that has been prefetched by the prefetching thread. The data that needs

54

to be transferred includes the instruction’s PC value and the referenced memory

address. Some prefetching mechanisms also require information on whether the

event was triggered by a cache miss or a correctly prefetched cache miss.

In the meantime, the prefetch thread is running on the helper core. When the

prefetching thread issues an I/O read instruction to obtain data about a cache

miss event, it stalls waiting for a reply. When the event buffer receives this data,

it supplies the received information to the stalling read request. Then the pre-

fetching thread calculates the prefetch address based on the underlying algorithm

and executes a non-binding prefetch load instruction that will fetch data into the

shared memory hierarchy. After that, it loops back and issues another I/O read

instruction to obtain information about the next architectural event.

The cache lines that are touched by the helper core are tagged. When the

regular core references a tagged cache line, it marks the executed load instruction as

the consumer of the prefetched data. When this load instruction commits, it causes

a prefetch trigger to be transmitted to the helper core as if this instruction had

experienced a cache miss. This mechanism essentially mimics the way traditional

hardware prefetchers work and allows the helper core to stay ahead of the data

consumption of the regular thread.

The operation of EDHT has the following implications on the operating system.

EDHT threads and the main application run in the same address space and hence

share a page table. EDHT threads do not use absolute code addresses (they

are fully relocatable) and use a thread-private data area to avoid conflicts with

the main thread. The OS scheduler should also be aware of the helper threads

associated with each application and schedule them as a group to execute on cores

that share at least one level of memory hierarchy. Note that, while I have presented

55

EDHT for two cores running a single main thread, the technique can be extended

to support multiple cores by providing either additional event buffers between pairs

of cores or the ability to communicate events from different cores to a centralized

buffer.

5.2.3 Prefetching Algorithms

To demonstrate the efficiency and flexibility of the proposed architectural frame-

work, I implemented a number of prefetching algorithms on it. This section

presents a detailed description of these algorithms.

First, a conventional stride prefetcher is implemented. I evaluate both a local

and a global stride prefetcher and name them lstride and gstride, respectively. The

local stride prefetcher uses a table with 1K entries to keep track of strides on a

per-load basis. The global prefetcher keeps a history of the 8 last miss addresses

to identify address streams. Both kinds of prefetchers have 8 stream buffers and

utilize an LRU replacement policy for buffer allocation.

Second, I implement two prefetching algorithms that are based on a third-

order delta-correlation Markov model with a table size that fits into the L1 data

cache. Unlike with stride prefetching, the algorithmic difference between the global

and local versions of the Markov prefetcher is minimal. Therefore, I evaluate

only local prefetchers. The first prefetching algorithm is based on the differential

finite context method (DFCM) value predictor [15]. This algorithm uses a 2-bit

counter-based confidence estimator in the first-level table to suppress low-confident

predictions for load instructions that exhibit unpredictable behavior. The second

algorithm is more similar to a conventional Markov model. It stores two distinct

values (predictions) in each entry of its second-level table. Each value in the second-

56

level table is associated with a 1-bit confidence counter, which is incremented every

time a particular prediction is observed to be correct. Thus, the confidence is

associated with transitions in the Markov graph rather than with the predictability

of individual load instructions. This algorithm uses a prefetch width of two and

a prefetch distance of four, generating up to eight prefetch addresses on each

invocation of the algorithm. I call this algorithm Markov prefetcher.

Finally, this work shows how the EDHT framework can be used to implement

prefetching schemes based on very large Markov models. To this end, I implement

a first order Markov prefetcher with address correlation containing 256K entries

in its second-level table. Each entry contains two Markov graph neighbors. In

addition to the delta for the next address, each table entry records the four deltas

that last followed the most recent address in MRU order. This organization of

the Markov prefetcher is similar to the replicated correlation prefetcher used by

Solihin et al. [46]. Each value in the second-level table is associated with a 1-bit

confidence counter, similar to the previously described Markov algorithm. When

a table entry is accessed by the prefetcher, all addresses recorded in this entry are

prefetched. Each second-level table entry is configured to fit into an L2 cache line.

I call this algorithm Correlation prefetcher.

To emulate these prefetching techniques, I manually constructed five different

prefetching threads. Table 5.1 summarizes the properties of these threads. The

third column provides the number of instructions in each thread up to the first

prefetch instruction. The stride prefetching mechanisms execute different instruc-

tion sequences depending on whether the event is associated with a cache miss

or an access to a correctly prefetched cache line. The values in parentheses indi-

cate the properties of a thread associated with the access to prefetched data. The

57

Table 5.1: EDHT threads for emulating hardware prefetching mechanisms

Prefetching Description Number of Load Longest
algorithm instructions instructions dep. chain

global stride 8 simultaneous streams, 8-entry miss
history buffer, prefetch distance of 8

52 (23) 12 (10) 15 (10)

local stride 1K-entry PC-indexed prediction table,
prefetch distance of 8

18 (23) 4 (10) 6 (10)

DFCM 128-entry 3rd order L1 table, 2bc con-
fidence, 16K-entry L2 table, select-
fold-shift-xor (SFSX) hash function,
prefetch distance of 8

26 6 7

markov 128-entry 3rd order L1 table, 8K-entry
L2 table storing 2 distinct predictions,
SFSX hash function, prefetch distance
of 4

29 7 8

correlation 128-entry 1st order L1 table, 256K-
entry L2 table storing 2 distinct se-
quences of 4 predictions, prefetch dis-
tance of 4

24 6 6

fourth column specifies the total number of load instructions, and the last column

indicates the length of the longest instruction dependence chain. Note that the

number of static and dynamic instructions for each prefetching thread up to the

issue of the first prefetch is the same because all branches are removed from the

code via loop unrolling and extensive use of conditional move instructions. Global

stride prefetching requires the most instructions due to the large number of com-

parisons when the global history is searched for two repeating strides. The next

section evaluates how well these prefetching threads work.

5.3 Evaluation Methodology

The performance of the EDHT framework is evaluated using an extended version

of the SimpleScalar v4.0 simulator [27]. The baseline is a two-way CMP consisting

of two identical four-wide dynamic superscalar cores that are similar to an Alpha

21264. In all modeled configurations it is assumed that one of the cores in the

CMP can be used for executing a prefetching thread. The full description of the

58

baseline architecture and benchmark suite is provided in Chapter 3.

The event buffer can hold information about up to 20 recent cache misses. The

communication latency between each core and event buffer is 5 cycles. All eval-

uated prefetching algorithms monitor L2 cache misses and issue prefetch requests

for the L2 cache only.

The operation of a hardware stride prefetcher used in the chapter differs from

the the operation of the stride prefetcher in Chapter 4. In my prior work, the

stream prefetcher was activated on cache misses or when the prefetched cache

blocks were accessed by a processor. My further research on prefetcher activation

policies showed that the performance of a stream prefetcher can be significantly

improved if it is activated on accesses to all cache blocks that were touched by the

stream prefetcher, whether or not they resulted in useful prefetches. Thus, this

and subsequent chapters of this dissertation use a more powerful version of the

hardware stride prefetcher.

5.4 Experimental Results

This section experimentally measures the effectiveness of the proposed mechanism.

In Section 5.4.1, I evaluate the performance of various prefetching schemes based on

EDHT and compare the speedups with those of hardware implementations of the

same prefetching mechanisms. In Section 5.4.2, I demonstrate how EDHT-based

prefetching can improve single thread performance by combining hardware stride

prefetching with Markov EDHT prefetching. Finally, Section 5.4.3 illustrates how

EDHT prefetching compares to two other previously proposed hardware techniques

that use extra cores to speed up single threads.

59

 0

 10

 20

 30

 40

 50

 60

 70

 80

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

gstride hw
gstride edht

lstride hw
lstride edht

 0

 50

 100

 150

 200

 250

 300

 350

 400

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 5.3: Performance of hardware prefetchers and their EDHT counterparts for
stride prefetchers

5.4.1 Prefetching Emulation Performance

This section evaluates and compares EDHT-based prefetchers with their conven-

tional, hardware-based counterparts. The baseline machine for this experiment

is described in Table 3.1. I measure the performance of four different prefetching

schemes: global stride prefetching (gstride), local stride prefetching (lstride), differ-

ential finite-context method prefetching (dfcm), and Markov prefetching (markov).

The hardware implementations of each scheme are marked with a hw identifier,

while the EDHT versions have an edht identifier after the name of the prefetching

algorithm. Figure 5.3 presents speedups for the stride prefetchers and Figure 5.4

demonstrates results for the DFCM and Markov algorithms. The performance for

the integer programs is shown in the left panel, floating-point application in the

right panel.

The results show that the prefetching techniques used in this study are very

effective, attaining significant speedups for the majority of the programs. When the

hardware implementations are compared with the EDHT implementations, we find

that hardware does outperform the software helper threads, but the performance

gap is not large. In case of gstride prefetching, hardware provides 13% speedup on

60

 0

 20

 40

 60

 80

 100

 120

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

dfcm hw
dfcm edht

markov hw
markov edht

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 5.4: Performance of hardware prefetchers and their EDHT counterparts for
dfcm and markov prefetchers

the integer applications and 72% speedup on the floating-point programs, while the

EDHT implementations achieve 11% and 70% average speedup on the integer and

floating-point programs, respectively. In case of lstride prefetching, the difference

between the hardware and EDHT implementations also amounts to two percentage

points. The main reason for the performance difference is the delayed issue of

the prefetch requests by the helper thread. Helper threads are triggered only

when delinquent load instructions commit and they take longer to compute and

issue prefetches. Hardware prefetchers initiate the prefetching algorithm as soon

a delinquent load instruction issues and generate prefetch requests much faster.

In case of Markov and DFCM prefetchers, there is almost no difference be-

tween hardware and EDHT in integer programs, but the difference is significant

in floating-point applications. The high frequency of cache miss events in floating-

point applications is the main reason for the decreased speedup. In case of dfcm

prefetching, the high frequency of cache misses in equake and facerec causes 86%

and 60% of the cache miss events to be dropped. EDHT markov prefetching faces

a similar problem with facerec and swim.

Surprisingly, some programs exhibit higher speedups with EDHT prefetching.

61

Figure 5.5: Sensitivity to prefetch distance for stride prefetchers

Figure 5.6: Sensitivity to prefetch distance for DFCM and Markov prefetchers

Hardware prefetchers observe cache misses in the issue order of the load instruc-

tions, while EDHT threads observe the sequence of cache miss events in commit

order. Commit order allows to get a more precise cache miss history. In addi-

tion, EDHT threads do not suffer from cache miss history pollution caused by

wrong-path loads.

It might be unexpected that the performance of the hardware and software

implementations of these prefetching algorithms differs by so little. After all, hard-

ware prefetches are issued at least 400 cycles earlier than software prefetches. It

seems unlikely that such a big delay would have so little impact of performance.

Figures 5.5 and 5.6 explains this phenomenon. They illustrate the average

62

speedup obtained by the prefetching schemes as the prefetch distance is varied

from 1 to 8. In each figure, average speedup for integer programs in shown on the

left panel, floating-point programs on the right panel. The most interesting feature

of this graph is how the performance difference between each hardware and EDHT

pair decreases with increasing prefetch distance. For example, with a prefetch

distance of 1 the average speedup for a hardware global stride prefetcher is 9%

in intgeger and 30% in floating-point applications. The corresponding EDHT pre-

fetcher achieves only 4.5% and 10% speedup in integer and floating-point programs,

respectively. However, prefetching with higher distances decreases the relative per-

formance gap. At a prefetch distance of 8 both hardware and EDHT prefetching

perform almost the same in relative terms. Higher prefetch distances provide time-

lier prefetches and at some point it does not matter whether prefetch requests are

issued with a 400-cycle delay or not. They are still issued early enough to mask

the full memory latency. Therefore, a high prefetch distance is the key to good

performance of software prefetching.

Interestingly, a markov edht configuration experiences a decrease in average

speedup when prefetch distance in larger than 4. This is caused mainly by a

significant drop in the performance improvement for swim program. As it was

mentioned earlier, swim has an exceptionally high frequency of cache misses. With

increasing prefetch distance, Markov EDHT needs to process more instructions per

cache miss event and at some point it is not fast enough to process all events in

the event buffer. This results into in a large number of cache miss events dropped

from the buffer and, consequently, decreased performance.

63

-10

 0

 10

 20

 30

 40

 50

 60

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

lstride edht
dfcm edht

markov edht
correlation edht

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 5.7: Speedup provided by different EDHT prefetching mechanisms over a
baseline with hardware stride prefetching

5.4.2 Combining Hardware and EDHT Prefetching

Current high-performance microprocessors already include some form of stride pre-

fetching. More complicated prefetching schemes are typically not implemented be-

cause of algorithm complexity and/or large storage requirements. EDHT offers an

attractive alternative implementation of complex prefetching schemes. In this sec-

tion, I investigate how hardware prefetching can be combined with a more complex

prefetching scheme implemented as an EDHT thread. The base machine for this

experiment includes the hardware global stride prefetcher described in Table 5.1.

We measure the performance of four different EDHT prefetching schemes: local

stride prefetching (lstride), differential finite-context method prefetching (dfcm),

Markov prefetching (markov), and duplicated correlation prefetching (correlation).

Figure 5.7 shows the program speedups relative to the gstride hw baseline.

The results show that adding a local stride prefetcher in most cases provides

little additional benefit. Only lucas and wupwise experience a significant (over

5%) speedup. On the other hand, markov EDHTs deliver significant speedups for

eight out of the 26 SPEC CPU2000 programs used in the study. The performance

of the dfcm prefetcher is similar to markov, but is generally slightly lower. The

64

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

pr
ef

et
ch

in
g

co
ve

ra
ge

 (
%

)

gstride hw
lstride edht
dfcm edht

markov edht
correlation edht

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

p

pr
ef

et
ch

in
g

co
ve

ra
ge

 (
%

)

Figure 5.8: Prefetching coverage

correlation prefetcher performs well for three programs. It is especially successful

with mcf, where it significantly outperforms all other prefetching algorithms. In

integer applications, on average local stride prefetching improves performance by

0%, DFCM by 2.8%, markov by 3.4%, and correlation by 4.4%. In floating-point

programs, local stride prefetching improves performance by 2%, DFCM by 10%,

markov by 15%, and correlation by 5%.

To gain additional insight about the prefetching activity, I measured the prefetch

coverage of the different algorithms. In this work, prefetch coverage is defined as

the ratio of the total number of useful prefetches to the total number of L2 cache

misses incurred by an application. Figure 5.8 illustrates that the speedup num-

bers of each algorithm largely correspond to their prefetch coverages. The markov

EDHT is very successful on all SPECfp programs where it pushes the prefetch

coverage above 90% for all but two programs. The correlation prefetcher is at

its best on mcf, where it increases the prefetch coverage from 52% to 78%. The

integer programs prove to be tough targets for prefetching. Programs gap, mcf,

and perlbmk are the only integer programs that experience a significant coverage

increase.

65

Overall, this section demonstrates that the combination of hardware stride pre-

fetching and the more complex prefetching mechanisms implemented in our EDHT

framework can yield significant performance improvements for a wide variety of

programs. Both approaches exhibit significant synergy, as the hardware prefetcher

detects and prefetches simple patterns, causing only undetectable patterns to be

exposed to the more complex software prefetching algorithms. In addition, some

algorithms suit applications much better than others. This further justifies the use

of EDHT-based prefetching as prefetching threads can easily be customized on a

per-program basis.

5.4.3 Comparison with Other Multi-Core Prefetching Tech-

niques

The previous subsections showed that emulating hardware prefetchers as EDHTs is

quite effective and provides significant speedups over the baseline with or without a

hardware stride prefetcher. In this section, I compare the EDHT mechanism with

two other hardware-only techniques that use an extra core of a CMP to speed up

single threads.

First, I consider the case of Future Execution (FE) [13], the prefetching tech-

nique that was presented and evaluated in the previous chapter. FE dynamically

creates prefetching threads by directing a copy of the stream of committed instruc-

tions to a helper core. On the way to the helper core, a value predictor modifies

this stream to compute the results that these instructions are likely to produce dur-

ing their nth next dynamic execution. Executing this modified instruction stream

on another core computes predictions for the future data addresses and issues

prefetches into the shared memory hierarchy. In this study, the FE mechanism is

66

supplied with a 4K-entry stride-two-delta hardware value predictor and a buffering

capacity of 100 instructions between the cores.

Second, I evaluate the performance of the dual-core execution (DCE) architec-

ture [52]. Instead of using the idle core to run specialized prefetching threads, this

technique uses it to launch and execute a copy of the original program in runahead

mode [33]. This runahead thread attempts to follow the program path and to ex-

ecute all instructions that are not dependent on the load instructions that miss in

the cache. Thus, it effectively extends the instruction window and allows to issue

load requests for data that may be needed in the near future. The non-speculative

core re-executes all instructions committed by the runahead core and makes sure

that the program execution stays on the correct path. We implement a variation

of DCE with a 2K-entry result queue between the cores, a 4KB runahead cache,

and an optimistic 1-cycle latency to copy the architectural state between the cores.

Note that both FE and DCE impose much higher hardware requirements and

complexity than the EDHT framework. FE needs a prediction table and a high-

bandwidth communication link between the cores. DCE requires hardware support

for a large result queue, a runahead cache, and misprediction recovery logic. Both

FE and DCE also require special multiplexing support to fetch instructions from

another core (in addition to from the instruction cache).

Figure 5.9 shows the speedup of the different techniques relative to the gstride

hw baseline. I chose the markov edht algorithm to represent EDHT prefetching

since it performs best on average. Out of the 26 programs used in this study, EDHT

performs best on four programs and DCE provides a significant performance lead

(of over 5%) on five. In integer applications, all three prefetching approaches

deliver a similar average speedup of about 4%. In floating-point programs, the

67

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

markov edht
fexec

dce

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 5.9: Speedup provided by different multi-core prefetching mechanisms over
a baseline with stride prefetching

EDHT Markov prefetcher delivers 15% speedup, the FE technique improves per-

formance by 9%, and DCE shows the best average speedup of 20%. Note that the

performance improvement provided by the FE technique differs from the results

demonstrated in Chapter 4. As explained in Section 5.3, this difference emerges

from the use of a more advanced hardware stride prefetcher in the baseline pro-

cessor configuration.

One of the explanations for DCE’s comparatively good performance in the in-

teger programs is its ability to significantly decrease the penalty of the branch

mispredictions observed by the target thread. Both EDHT prefetching and Fu-

ture Execution can only reduce load latencies. In floating-point programs, DCE

often provides more timely prefetch requests, even though its prefetch coverage is

generally somewhat lower than that of EDHT (e.g., facerec). This deficiency can

be mitigated by dynamically increasing the prefetch distance of the markov edht

prefetching thread. The investigation of this approach is left for future work.

Figures 5.10 and 5.11 provide additional insight about the operation of the

evaluated techniques. Figure 5.10 shows the total increase in the number of issued

instructions compared to single-core execution. For almost all programs EDHT

68

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

in
st

ru
ct

io
n

ov
er

he
ad

 (
%

)

446 144
markov edht

fexec
dce

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

p

in
st

ru
ct

io
n

ov
er

he
ad

 (
%

)

Figure 5.10: Instruction overhead

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

fr
ac

tio
n

of
 b

us
y

cy
cl

es
 (

%
)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

p

fr
ac

tio
n

of
 b

us
y

cy
cl

es
 (

%
)

Figure 5.11: Helper core occupancy

executes the least number of instructions. The only exceptions are mcf and swim,

which are explained by an exceptionally high frequency of cache misses. The FE

overhead varies from 18% to 95%, while DCE in two cases increases the total num-

ber of executed instructions by more than a factor of two (mcf and vpr). This

happens mainly due to fetching and executing many instructions along a mispre-

dicted branch path. DCE always executes more instructions than EDHT or FE on

all but five floating-point programs. In integer applications, the DCE technique

executes about 90% extra instructions, compared to 41% for future execution and

5% for markov EDHT. In floating-point programs, DCE and FE execute 72% and

70% more instructions, respectively, compared to a 21% instruction overhead for

EDHT.

69

Figure 5.11 estimates how often the helper core is busy. In case of EDHT, it

is assumed that the helper core is idle if it is fully stalled waiting for the next

cache miss event to occur. For FE and DCE, the idle periods correspond to the

cycles when the helper core’s ROB is empty. DCE keeps both cores active almost

all the time with an average occupancy of 95% in integer and 99% in floating-

point programs. FE is less demanding and the helper core occupancy, resulting

in an average occupancy of 79%. EDHT prefetching represents the lightest load

on the helper core by activating it on average only 4% and 36% of the time in

integer and floating-point programs, respectively. These results highlight another

strength of EDHT-based helper threading. By virtue of the event-driven thread

communication mechanism, helper threads become active for a short time only

when a cache miss occurs. The other two hardware techniques are active all the

time or/and have no fast way of exiting helper mode.

The results in this section demonstrate that prefetching based on EDHT can

provide performance improvements that are on par with those provided by the

dual-core execution paradigm and future execution. At the same time, it requires

considerably less complex hardware support and executes fewer instructions, thus

keeping the helper core available for other tasks. For example, in a CMP with more

than two cores, several EDHTs could time-share on one helper core to prefetch for

the regular computation threads running on the other cores. Moreover, the results

suggest that EDHT is considerably more energy-efficient than other dual-core pre-

fetching techniques. The energy-efficiency is further investigated in Chapter 6.

70

5.5 Summary

This chapter explores the idea of exploiting available cores on a chip multiprocessor

to improve the performance of individual program threads. I propose to use ex-

tra cores to execute prefetching threads that can emulate the behavior of complex

outcome prediction-based prefetching algorithms. However, for this threading tech-

nique to be effective, a low overhead mechanism for communicating microarchitec-

tural events is required. To accomplish this, this chapter presents the event-driven

helper threading (EDHT) framework, which uses lightweight hardware support for

efficient event communication. EDHT solves many problems that have hampered

the introduction of complex outcome-prediction prefetching algorithms into com-

mercial systems. Specifically, my scheme needs minimal hardware modifications,

does not need specialized hardware storage for prediction tables, and can be easily

reconfigured to tailor prefetching algorithms for individual applications.

The performance analysis reveals that EDHT-based prefetching provides es-

sentially the same speedup as pure hardware implementations of prefetching algo-

rithms. I further demonstrate that running prefetching EDHTs on top of a baseline

with a hardware stride prefetcher yields speedups between 5% and 100% on a wide

range of programs. Finally, I compared EDHT with two other hardware techniques

for multi-core execution and show that even without customization, EDHT pre-

fetching can provide competitive performance improvements while executing fewer

instructions and requiring considerably simpler hardware support.

CHAPTER 6

IMPROVING THE ENERGY-EFFICIENCY OF MULTI-CORE

PREFETCHING

This chapter presents the evaluation of the energy consumption of the previously

presented multi-core helper threading techniques. Furthermore, it proposes a set

of techniques that improve the energy-efficiency of the individual helper execution

designs. A comparative evaluation of energy-efficient versions of Future Execution,

Event-Driven Helper Threading, and Dual-Core Execution concludes this chapter.

6.1 Motivation

The previous chapters of this dissertation have discussed the performance of var-

ious prefetching techniques only in terms of execution time. However, the power

consumption of high-performance microprocessors has recently become a high-

priority concern for computer architects. New generations of microprocessors are

now designed to deliver maximum performance within a restricted power budget.

As a result, microprocessor designers can no longer ignore the power implications

of new performance-enhancing architectural techniques.

Taking these concerns into account, I decided to analyze the impact of different

prefetching techniques on energy consumption. In particular, I it is important to

quantify the energy overhead associated with using two cores instead of one for the

execution of a single thread. All previously discussed multi-core prefetching will

incur energy overhead due to the extra instructions that need to be executed on a

core devoted to prefetching technique. Moreover, the number of extra instructions

executed is likely to be different for each of the prefetching techniques presented

previously. For example, the execution of EDHTs is determined by the frequency

71

72

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

en
er

gy
 in

cr
ea

se
 (

%
)

markov EDHT
FE

DCE

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

p

en
er

gy
 in

cr
ea

se
 (

%
)

Figure 6.1: Increase in energy consumption compared to single-core execution

of cache misses. Thus, the instruction overhead of the EDHT technique is directly

proportional to the number of cache misses. In case of FE, the prefetching thread

is generated by transforming the committed stream of instruction. Therefore, the

overhead is directly proportional to the number of register-writing instructions

committed by the non-speculative core. The overhead of the DCE technique is

proportional to the number of executed instructions that would be executed by a

program thread in a single-core mode.

This chapter evaluates the energy consumption using the Wattch framework [1]

for architectural-level power analysis. In our experiments, we use 70nm technology

with a clock frequency of 4 GHz and aggressive conditional clocking. The condi-

tional clocking style assumes that 5% of maximum dynamic energy is consumed

when a particular module is disabled.

methodology in greater detail.

Figure 6.1 presents the energy overhead of the different multi-core prefetching

techniques relative to a single-core processor with hardware stride prefetching.

EDHT incurs the smallest energy overhead for all SPEC programs but mcf. On

average, integer programs are executed with 17% energy overhead, while floating-

point programs experience 26% energy overhead. The mcf and swim programs

73

incur the highest energy overhead of 70% due to an extremely large number of

cache misses. Both the FE and DCE techniques consume much more energy than

EDHT. Interestingly, FE incurs less overhead than DCE on integer applications

(on average, 70% for FE vs. 85% for DCE), while DCE is more energy-efficient on

floating-point applications (on average, 74% for DCE vs. 84% for FE).

DCE performs worse than FE on integer applications mainly due to the large

number of mispredicted branches in the front core. The DCE technique effectively

extends the instruction window by the size of the result queue, which significantly

raises the number of instructions executed on the mispredicted path. This scenario

is especially dominant in mcf and vpr, where DCE incurs the highest overhead of

150% and 108%, respectively. Since floating-point programs have more predictable

control flow, there are fewer branch mispredictions. As a result, DCE has less

energy overhead in floating-point programs than FE.

The results in Figure 6.1 demonstrate that the EDHT technique is significantly

more energy-efficient than both FE and DCE. However, the high overhead of these

techniques can potentially be decreased by using relatively simple architectural

enhancements to the original designs. In the following sections, I will present tech-

niques for improving the energy-efficiency of previously discussed helper threading

techniques and evaluate their effectiveness.

6.2 Energy-Efficiency Techniques for Future Execution

As discussed above, the overhead of Future Execution is directly proportional to

the number of instructions committed by the non-speculative core. However, many

programs in the SPEC CPU2000 benchmark suit do not experience many cache

misses and cannot be accelerated any prefetching technique. Therefore, there is no

74

need to executing an FE thread on a CMP core if the program execution thread

experiences very few cache misses.

To address this issue, I propose to adaptively switch FE on and off depending

on the dynamic behavior of the target thread. adaptive mode switching. The

algorithm for adaptive mode switching computes the L2 cache miss rate for every

one million committed instructions and turns FE mode off if the cache miss rate is

below 2.5 misses per 1000 committed instructions. The parameters in the algorithm

(i.e., the miss rate thresholds) are empirically determined to provide the best

average performance for the studied workloads.

I have also noticed that instructions with certain opcodes essentially never par-

ticipate in the computation of load addresses. For example, there is a little chance

that a floating-point add instruction is used in the computation of a load address.

Therefore, such instructions can be safely excluded from the future execution in-

struction stream. Following this intuition, I have profiled all applications to find

out instruction opcodes that participate in the computation of load addresses.

Based on this finding, I propose to augment the Future Execution technique

with an additional instruction filter. This filter needs to monitor the opcodes of

the instructions committed by the non-speculative core. When the filter detects

an instruction that belongs to the category of unimportant opcodes, it simply

removes this instruction from the committed instruction stream. The filtered in-

struction stream further proceeds to the value predictor, where it undergoes the

transformations described in Section 4.2.

Figures 6.2 and 6.3 present the effect of these techniques on the energy con-

sumption and IPC, respectively. Baseline future execution without any energy-

saving techniques is represented by the baseline FE bar. The next configuration

75

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

en
er

gy
 in

cr
ea

se
 (

%
)

baseline FE
+ mode switching

+ instruction filtering

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

p

en
er

gy
 in

cr
ea

se
 (

%
)

Figure 6.2: Energy overhead of baseline Future Execution configuration and two
energy-efficient configurations

adds dynamically switching of FE mode on and off depending on the frequency of

cache misses (+ mode switching). The third bar (+ instruction filtering) combines

the dynamic switching and the unimportant instruction filtering techniques.

Figure 6.2 demonstrates that mode switching is very effective at reducing the

energy overhead. On average, it reduces the overhead from 70% to 19% for integer

and from 84% to 53% for floating-point programs. Most integer applications have

very few cache misses and, therefore, gain a larger benefit from mode switching

than the more memory-bound floating-point applications. Instruction filtering is

quite effective on floating-point programs. When instruction filtering is added to

mode switching, the energy overhead of floating-point applications decreases from

53% to 43%. Integer applications execute very few unimportant floating-point

instructions and, therefore, do not benefit from instruction filtering.

Figure 6.3 shows the effect of the energy-saving techniques on the execution

speedup provided by Future Execution. While instruction filtering has very little

impact on the IPC increase, three programs (gap, vpr, and fma3d) experience a

significant performance degradation when FE mode switching is introduced. This

degradation occurs mainly due to the omitted prefetching opportunities when the

76

 0

 5

 10

 15

 20

 25

 30

 35

 40

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

baseline FE
+ mode switching

+ instruction filtering

-10

 0

 10

 20

 30

 40

 50

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

baseline FE
+ mode switching

+ instruction filtering

Figure 6.3: IPC increase provided by the baseline Future Execution configuration
and two energy-efficient configurations

target thread experiences a lot of cache misses, but FE is turned off. This problem

is largely an artifact of the last-interval cache miss frequency prediction policy. In

cases of bursty cache miss behavior, the frequency of misses in consecutive time

intervals is not well-correlated. Thus, it may be possible to devise techniques that

can predict which intervals of 1 million instructions are likely to have a lot of cache

misses. The investigation of this idea is left for future work.

6.3 Energy-Efficiency Techniques for Event-Driven Helper

Threading

Figure 6.1 demonstrates that the baseline version of Event-Driven Helper Thread-

ing is significantly more energy-efficient than other helper threading techniques.

Nevertheless, I developed two approaches that allow to further reduce EDHT’s

energy overhead. Both of these techniques are based on the observation that the

number of instructions executed by EDHT threads is directly proportional to the

number of events passing through the event buffer. Therefore, the most straightfor-

ward way to reduce the number of executed instructions is to decrease the number

of generated events.

77

As described in Section 5.2, the baseline EDHT configuration triggers events in

the following two cases. First, an event is generated if a load instruction is commit-

ted that experienced a cache miss. The second case involves the commitment of a

load that hit in the cache, but the cache block accessed by this load was previously

accessed by an EDHT prefetch instruction. Note that when an EDHT prefetch

instruction accesses a cache block, it marks it with an EDHT tag independent of

whether it was a cache hit or miss.

The energy-efficient techniques that I propose modify the cache block tagging

policy for EDHT prefetch instructions that hit in the cache. The original policy

marks cache blocks with an EDHT tag for all EDHT prefetches, even if a prefetch

instruction hit in the cache. This, however, may generate many events that do not

help the prefetching activity. Instead of being invoked only for data patterns that

miss in the cache, such a tagging policy may invoke EDHT events for all predictable

address streams, whether they hit or miss in the cache. As a result, extra EDHT

instructions are executed and more energy is consumed than necessary. However, a

stream prefetcher could prefetch those cache blocks in advance of EDHT prefetches.

Such prefetched addresses would still belong to important address streams that

miss in the cache.

Based on these observations, I propose two techniques to improve the energy-

efficiency of EDHT. In the first technique, I suggest to modify the policy of marking

cache blocks with EDHT tags in case of cache hits. I propose to mark blocks that

hit in the cache only if those blocks are already marked with a stream prefetcher

tag. Second, I suggest to completely remove the policy of tagging cache blocks

that already reside in the cache.

Figures 6.4 and 6.5 present the effect of the proposed techniques on the energy

78

 0

 10

 20

 30

 40

 50

 60

 70

 80

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

en
er

gy
 in

cr
ea

se
 (

%
)

baseline EDHT
stream hit EDHT
miss only EDHT

 0

 10

 20

 30

 40

 50

 60

 70

 80

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

en
er

gy
 in

cr
ea

se
 (

%
)

Figure 6.4: Energy overhead of the baseline Markov EDHT configuration and two
energy-efficient EDHT versions

consumption and IPC, respectively. The baseline EDHT implementation without

any energy-saving technique is represented by the baseline EDHT bar. The next

configuration marks cache blocks that hit in the cache with an EDHT tag only if

those blocks are already tagged with a stream prefetcher tag (stream hit EDHT).

The third bar (miss only EDHT) represents the configuration that completely

removes the policy of tagging cache blocks that already reside in the cache.

Figure 6.4 shows that the proposed techniques are relatively efficient at reducing

the energy overhead of memory-bound applications. In floating-point programs,

the first tagging policy brings the overhead down from 27% to 21%, while the

second tagging policy brings the overhead down to 13%. The second policy is es-

pecially successful since many floating-point applications are dominated by strided

address streams. The second policy avoids trigger generation on the accesses to

the data prefetched by the stream prefetcher, therefore reducing the total number

of cache miss events observed by the EDHT mechanism. In integer applications,

only mcf significantly benefits from the modified tagging policies.

While the proposed policies are effective at reducing the energy overhead, Fig-

ure 6.5 demonstrates a significant drop in execution time speedup. In case of the

79

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

baseline EDHT
stream hit EDHT
miss only EDHT

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 6.5: IPC increase provided by the baseline Markov EDHT configuration
and two energy-efficient EDHT versions

first policy, the penalty is especially significant in mcf, facerec, fma3d, and wup-

wise. The main reason for this performance penalty is the reduction in prefetching

coverage. Since some of the values from the address stream are never propagated

to the prediction algorithm, the history of the pattern gets obfuscated. Thus, it

is harder for the markov prediction algorithm to correctly predict values for the

next load addresses. At the same time, two applications perform better with the

first tagging policy than with the original baseline EDHT configuration. In equake,

this happens due to fewer dropped triggers. In swim, the extra performance ben-

efit is explained by the reduced interference of EDHT prefetches with the stream

prefetcher.

The same reason causes the performance to drop even further in case of the

second tagging policy. On average, the first tagging policy reduces IPC increase

from 3.9% to 2.6% in integer applications and from 15% to 11% in floating-point

programs. In case of the second tagging policy, integer programs obtain a 3.2%

speedup and floating-point programs exhibit 9% speedup.

80

6.4 Energy-Efficiency Techniques for Dual-Core Execution

The energy overhead of the Dual-Core Execution technique comes from two main

sources. First, all instructions that execute in the front core have to be re-executed

in the back core. The second reason is the large number of fetched and executed in-

structions that follow branch mispredictions that are not resolved in the front core.

Since the DCE technique forms a very large instruction window by concatenating

the ROBs of the two cores and the result queue, the maximum number of instruc-

tions that are fetched after a mispredicted branch is much higher than in a single

core. The authors of DCE proposed several techniques to attack these sources of

energy inefficiency [49]. This section describes these techniques in greater detail

and evaluates their effect on the energy consumption.

First, the authors propose to dynamically turn DCE on and off depending on

the frequency of cache misses in the front core. The algorithm is similar to the

one I used for Future Execution. It computes the L2 cache miss rate for every

one million committed instructions and turns DCE mode off if the cache miss

rate is below 2.5 misses per 1000 committed instructions. The original version of

the algorithm is more complicated and uses multiple cache miss rate thresholds

depending on the branch misprediction rate. I experimented with these versions

and found it to perform only marginally better than a single-threshold scheme.

Therefore, I used the same algorithm as for future execution.

The second technique attempts to reduce the number of instructions that are

fetched and executed after mispredicted branches that are unresolved in the front

core. The authors suggest to resize the result queue (RQ) depending on the branch

misprediction rate in the back processor. It computes the back-end branch mispre-

diction rate for every million committed instructions. If the branch misprediction

81

rate in the back core is less than 0.6 per 1000 committed instructions, the result

queue size is set to 128 entries. If the misprediction rate is between 0.6 and 0.3,

the RQ size is set to 256 entries, between 0.6 and 0.15 to 512 entries, and below

0.15 mispredictions to 1024 entries.

The third technique further attacks the problem of execution overhead after

mispredicted branches. The authors suggest to prevent invalidations of traversal

loads (loads that load an address to be consumed by the same static load) in the

front core. In case of pointer chain traversals, invalidating such loads can result in

invalidating a lot of dependent instructions, including branches. Thus, preventing

such invalidations can potentially reduce the number of instructions fetched and

executed along an incorrect program path.

The final energy-saving technique proposed by the DCE authors involves pre-

venting re-execution of the instructions that produced correct results in the front

core. This involves the introduction of special mechanisms to re-execute only load

instructions and compare the loaded values with the values loaded by these loads

in the front core. The other instructions are transformed into ”move immediate”

instructions of the pre-computed values into the result registers. Since this tech-

nique significantly raises the design complexity by requiring the modification of the

original DCE operation and the introduction of a new recovery mechanism, I de-

cided not to include into my evaluation. In addition, executing ”move immediate”

instructions is only marginally more energy-efficient than executing the original

version of the instructions.

Figures 6.6 and 6.7 present the effect of the three implemented techniques on

energy consumption and IPC, respectively. The baseline DCE implementation

without any energy-saving techniques is represented by the baseline DCE bar.

82

 0

 20

 40

 60

 80

 100

 120

 140

 160

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

en
er

gy
 in

cr
ea

se
 (

%
)

baseline DCE
+ mode switching

+ adaptive RQ
+ load filtering

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

en
er

gy
 in

cr
ea

se
 (

%
)

Figure 6.6: Energy overhead of the baseline Dual-Core Execution configuration
and three energy-efficient DCE configurations

The next three configurations cumulatively add energy-efficient techniques. The

first configuration, represented by the second bar, adds switching DCE mode off

and on depending of the L2 cache miss rate (+ mode switching). The third bar

(+ adaptive RQ) represents the configuration that adds dynamic resizing of the

results queue. Finally, the fourth bar (+ recursive load filtering) adds preventing

recursive load invalidations.

Figure 6.6 shows that dynamic switching of the DCE mode has the biggest

impact on reducing the energy overhead. On average, mode switching lowers energy

overhead for integer applications from 84% to 27%, while floating-point programs

experience a reduction from 74% to 44%. Adaptive result queue sizing further

reduces the energy overhead to 23% for integer applications, but has no impact for

floating-point programs. Preventing recursive load invalidation did not result in a

noticeable effect on the energy consumption.

Figure 6.7 presents the impact of the energy-saving techniques on the speedup.

DCE mode switching has the most dramatic effect on the performance. In integer

applications, it decreases the speedup from 3.5% to 2.3%. The reduction is less

severe in floating-point programs, where the IPC increase drops from 20% to 17%.

83

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

baseline DCE
+ mode switching

+ adaptive RQ
+ load filtering

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 6.7: IPC increase provided by the baseline Dual-Core Execution configura-
tion and three energy-efficient DCE configurations

In general, almost all programs that experience less than 5% benefit in the baseline

DCE version lose that performance after mode switching is introduced. Adaptive

RQ sizing has no effect on floating-point applications, but further reduces the

speedup of integer programs to 1.7%.

6.5 Comparing Energy-Efficient Multi-Core Prefetching

Techniques

This section provides a side-by-side comparison of energy-efficient implementa-

tions of different helper threading techniques. Figure 6.8 demonstrates the energy

overhead of the baseline markov EDHT technique (baseline EDHT) as well as the

most energy-efficient versions of EDHT (energy-efficient EDHT), future execution

(energy-efficient FE), and dual-core execution (energy-efficient DCE).

In case of integer programs, the energy overhead of the various helper threading

techniques significantly differs only in five applications - bzip2, gcc, mcf, parser, and

vpr. This variation is substantially less than the variation between the techniques

without the energy-saving features (see Figure 6.1). Nevertheless, in these five

applications EDHT still exhibits a significant advantage over the other techniques.

84

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

en
er

gy
 in

cr
ea

se
 (

%
)

baseline EDHT
efficient EDHT

efficient FE
efficient DCE

 0

 10

 20

 30

 40

 50

 60

 70

 80

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

en
er

gy
 in

cr
ea

se
 (

%
)

Figure 6.8: Energy consumption overhead of a the baseline markov EDHT tech-
nique, and energy-efficient versions of markov EDHT, future execution, and dual-
core execution

On average, the energy-efficient versions of the helper threading techniques exhibit

very similar energy overheads, which vary between 18% for energy-efficient EDHT

and 23% for energy-efficient DCE. Thus, we conclude that the proposed energy-

efficiency techniques are very effective on integer applications.

For floating-point programs, however, the situation is different. There is a

significant variation between different helper threading techniques in all but three

programs (galgel, mesa, and sixtrack). All three programs have few cache misses.

The energy-saving techniques are very effective at detecting this behavior and

dynamically switching off the prefetching activity. For most other applications,

energy-efficient DCE incurs the highest energy overhead of 44%. The FE technique

incurs less energy overhead than DCE (42% on average), but the difference is quite

small. The baseline EDHT technique incurs less energy overhead than either FE or

DCE for all but two applications (fma3d and swim). The energy-efficient EDHT

model has the lowest energy overhead on all floating-point programs. On average,

it exhibits an overhead of 15%, which is almost three times less than the overheads

of FE and EDHT.

Figure 6.9 provides the comparison of execution time speedup provided by

85

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

IP
C

 in
cr

ea
se

 (
%

)

baseline EDHT
efficient EDHT

efficient FE
efficient DCE

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

gm
ea

n

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

fa
ce

re
c

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

IP
C

 in
cr

ea
se

 (
%

)

Figure 6.9: IPC increase provided by a baseline markov EDHT technique, and
energy-efficient versions of markov EDHT, future execution, and dual-core execu-
tion

 0

 10

 20

 30

 40

 50

 60

 70

 80
gm

ea
n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2en
er

gy
-d

el
ay

 p
ro

du
ct

 in
cr

ea
se

 (
%

)

baseline EDHT
efficient EDHT

efficient FE
efficient DCE

-40

-20

 0

 20

 40

 60

 80

 100

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

pen
er

gy
-d

el
ay

 p
ro

du
ct

 in
cr

ea
se

 (
%

)

Figure 6.10: Increase in the energy-delay product for the baseline markov EDHT
technique, and energy-efficient versions of markov EDHT, future execution, and
dual-core execution

various techniques. The data demonstrates that if energy efficiency is taken into

account, the baseline EDHT emerges as the most attractive alternative. It provides

the highest IPC increase in integer programs (4%) and the second highest speedup

in floating-point programs (15%). While DCE delivers the best performance of 17%

in floating-point programs, it is only two percentage points better than the baseline

EDHT model. The energy-efficient EDHT and energy-efficient FE techniques

deliver the lowest performance of 9% and 7%, respectively.

Figure 6.10 demonstrates the increase in the energy-delay product incurred

by the various helper threading techniques. In this graph, the lower the height

86

of the bar, the better the energy efficiency. On average, energy-efficient EDHT

provides the lowest increase in the energy-delay product across both integer (12%)

and floating-point applications (4%). The baseline EDHT model is the second

best technique with a 12% increase for integer applications and a 10% increase for

floating-point applications. Therefore, the two versions of the EDHT technique

perform quite closely on the energy-delay metric. Both FE and DCE perform

significantly worse on the energy-delay metric than either EDHT version.

6.6 Leakage Energy

All results in this chapter estimate dynamic energy consumption and do not con-

sider the impact of the various prefetching techniques on static energy due to

transistor leakage. Technology scaling, however, has been increasing the relative

contribution of static power dissipation [9]. Thus, it is important to understand

the effect of the various prefetching techniques on the static power dissipation.

Due to limitations of the simulation infrastructure, this section evaluates basic

leakage trends using the analytical framework proposed by Butts and Sohi [3] and

later refined in the HotLeakage framework [51]. In this framework, static energy

can be estimated at the architectural level based on the following simple four-

parameter model:

Estatic = t ∗ Vcc ∗ N ∗ kdesign ∗ Ileakage (6.1)

where t is the execution time, V cc is the power supply voltage, N is the number of

transistors in the design, kdesign is an empirically determined parameter represent-

ing the characteristics of an average device, and Ileakage is a technology parameter

describing the per device subthreshold leakage.

87

The HotLeakage framework further elaborates this equation by computing

Ileakage dynamically during the simulation using the BSIM3 leakage-current equa-

tion [29]. As a result, the leakage

Ileakage = µ0 ∗ COX ∗
W

L
∗ eb∗(Vdd−Vdd0) ∗ v2

t ∗ (1 − e
−Vdd

vt) ∗ e
−|Vth|−Voff

n∗vt (6.2)

where µ0 is the zero bias mobility, COX is the gate oxide capacitance per unit area,

W
L

is the aspect ratio of the transistor, eb∗(Vdd−Vdd0) is the DIBL factor derived from

the curve fitting method, Vdd0 is the default supply voltage for each technology,

vt = k ∗ T/q is the thermal voltage, Vth is threshold voltage, which is also a func-

tion of temperature, n is the subthreshold swing coefficient, Voff is an empirically

determined BSIM3 parameter, which is also a function of threshold voltage.

Based on these equations, it is relatively easy to see the relationships of some

major factors that affect the leakage energy. Given a fixed kdesign, the leakage

energy is directly proportional to program execution time, operating voltage, the

number of transistors in the design, and temperature. The following paragraphs

discuss the effect of the considered multi-core prefetching approaches on each of

these terms.

Execution time. The results in Figure 6.9 demonstrate that the average dif-

ference in execution time for all prefetching techniques does not exceed 2% on

the integer programs and 10% on the floating-point applications. Moreover, the

difference between the baseline markov EDHT and energy-efficient DCE does not

exceed 2% on both the integer and the floating-point programs. Based on these

observations, if all other terms of leakage current equations are equal, the energy-

efficient versions of markov EDHT and FE are likely to consume up to 10% more

static energy than the baseline EDHT or the energy-efficient DCE techniques on

88

the floating-point applications. On the integer applications, the difference in con-

sumed static energy due to the execution time is likely to be less than 2%.

Number of Transistors. The number of transistors utilized by the prefetching

approaches discussed in this section consists of the total transistors in the helper

core and the transistors in additional hardware structures. While all prefetching

techniques use the same general-purpose CMP core, they require a different amount

of additional hardware support. In terms of transistor budget, EDHT requires

the least amount of hardware support, while DCE and FE require a considerably

higher hardware investment. FE requires several kilobytes of storage for prediction

tables and is likely to incur the highest hardware overhead. Nevertheless, even

several kilobytes of storage represent an insignificant portion of the total transistor

budget (e.g., compared to a 2MB L2 cache) and will not affect leakage energy in a

significant way.

Power Supply Voltage. The impact of supply voltage on leakage energy in

the context of the various prefetching approaches greatly depends on whether the

baseline CMP architecture has a dynamic voltage scaling (DVS) capability. In the

absence of DVS, helper cores will have the same supply voltage and the different

prefetching techniques will contribute equally to the supply voltage term of equa-

tions 6.1 and 6.2. If DVS is enabled, the supply voltage and operating frequency of

the helper core can be decreased dynamically at runtime to achieve a lower power

consumption at the expense of a slower execution speed. The impact of DVS on

the total energy consumption overhead of the active helper core represents a sep-

arate research topic and is outside the scope of this work. Nevertheless, we can

study the impact of DVS on leakage energy when the helper core is idle.

The energy-saving techniques proposed in this chapter for the FE and DCE

89

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

fr
ac

tio
n

of
 b

us
y

cy
cl

es
 (

%
) baseline EDHT

efficient EDHT
efficient FE

efficient DCE

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

p

fr
ac

tio
n

of
 b

us
y

cy
cl

es
 (

%
)

Figure 6.11: Fraction of time the helper core is activated for the baseline mar-
kov EDHT technique and the energy-efficient versions of markov EDHT, future
execution , and dual-core execution

prefetching approaches dynamically clock-gate the helper core off if the main ap-

plication thread experiences very few cache misses. Thus, the dynamic energy

can be saved since no switching happens in the helper core. With DVS, it is fur-

ther possible to reduce the static energy of the helper core by lowering the supply

voltage of the helper core during such idle periods.

Figure 6.11 demonstrates the fraction of time that the helper core is not in idle

mode for each energy-efficient prefetching technique. Note that energy-efficient

markov EDHT was augmented with a dynamic switching capability. This ca-

pability decreases the average speedup provided by markov EDHT prefetching

by less than 1%. Thus, our previous conclusions about the impact of execution

time on leakage remain valid. The parameters used for mode switching among all

energy-efficient techniques are the same: The algorithm for adaptive mode switch-

ing computes the L2 cache miss rate for every one million committed instructions

and turns prefetching mode off if the cache miss rate is below 2.5 misses per 1000

committed instructions. The results show that each prefetching technique keeps

the prefetching core idle for approximately the same number of cycles. As a conse-

quence, even if DVS is enabled to lower the supply voltage during helper core idle

90

 0

 20

 40

 60

 80

 100

 120

 140

 160

gm
ea

n

vp
r

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

po
w

er
 in

cr
ea

se
 (

%
)

baseline EDHT
efficient EDHT

efficient FE
efficient DCE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

gm
ea

n
w

up
w

is
e

sw
im

si
xt

ra
ck

m
gr

id
m

es
a

lu
ca

s
ga

lg
el

fm
a3

d
fa

ce
re

c
eq

ua
kear

t
ap

si
ap

pl
u

am
m

p

po
w

er
 in

cr
ea

se
 (

%
)

Figure 6.12: Increase in power consumption for the baseline markov EDHT tech-
nique and the energy-efficient versions of markov EDHT, future execution, and
dual-core execution

cycles, the resulting energy savings will be the same for all prefetching approaches.

Temperature. The energy consumed by the microprocessor is converted into

heat, which causes an increase in die temperature. At the same time, temperature

is one of the most important factors affecting leakage energy since leakage current

is proportional to the square of the temperature (see equation 6.1). The simulation

infrastructure used in this dissertation does not provide exact temperature values,

but it is possible to approximate the impact of the various prefetching techniques

on the temperature by comparing the power dissipation of these techniques. While

this approach ignores the effects of uneven heat dissipation (i.e., the existence of

hot spots [45]) and static power dissipation, it allows to reach general conclusions

about average die temperatures due to dynamic power dissipation.

Figure 6.12 compares the increase in power consumption incurred by the various

prefetching approaches. All prefetchers use the dynamic mode switching technique

to disable all activity in the helper core in case of a low cache miss rate. As in the

case with energy consumption, energy-efficient EDHT incurs the smallest power

overhead of 10% on the integer programs and 20% on the floating-point applica-

tions. All other techniques cause twice as much overhead on the integer workload

91

and up to three times as much overhead on the floating-point applications. Note

that baseline markov EDHT has a significantly lower power overhead than both

FE and DCE, especially on the floating-point programs. Overall, we conclude that

both the baseline and energy-efficient versions of EDHT cause the lowest increase

in die temperature due to dynamic power dissipation and, therefore, are likely to

cause the lowest increase in static energy consumption.

Overall, this section estimates the impact of considered prefetching approaches

on leakage energy consumptions by analytical analysis of their effect on execution

time, operating voltage, number of transistors in the design, and temperature.

Analysis shows that all considered prefetching approaches require similar amount of

hardware and are affected equally by dynamic voltage scaling techniques. Thus, the

main differences in leakage energy consumption will likely originate from differences

in program execution time and temperature. While energy-efficient DCE provides

the shortest execution time, it incurs significantly higher die temperature increase

than EDHT prefetching technique. As a result, the baseline and energy-efficient

versions of event-driven helper threading are likely to incur the least amount of

leakage energy overhead.

6.7 Summary

This chapter shows that the helper threading techniques presented in the previous

chapters considerably increase the processor energy consumption. For example,

the Event-Driven Helper Threading, Future Execution, and Dual-Core Execution

techniques increase energy consumption for floating-point programs by 30%, 84%,

and 74%, respectively. Since modern microprocessors are often power-limited,

92

high energy overheads might present a significant challenge for the introduction of

helper threading techniques into commercial microprocessors.

To address this problem, this chapter investigates techniques to reduce the

energy overheads of Future Execution and Event-Driven Helper Threading. The

proposed techniques are quite effective and reduce the energy overhead of Future

Execution by a factor of three on the integer applications and by factor of two on

the floating-point programs. Furthermore, two techniques are proposed to reduce

the energy overhead of Event-Driven Helper Threading. While the energy-saving

EDHT techniques are effective at reducing the overheads by more than a factor of

two on the floating-point programs, they significantly penalize the execution time

speedup. In addition, the chapter analyzes energy-saving techniques for Dual-Core

Execution proposed in the literature and validates their effectiveness.

Finally, this chapter provides a side-by-side comparison of energy-efficient im-

plementations of different helper threading techniques. It demonstrates that the

energy-efficient version of EDHT consumes the least amount of dynamic energy

among all considered helper threading techniques, but provides significantly less

execution time speedup than energy-efficient DCE or the baseline EDHT version.

Moreover, if FE, EDHT, and DCE techniques are evaluated based on the energy-

delay metric, both the baseline and energy-efficient versions of EDHT emerge as

the best choices by providing a high execution time speedup at a low energy cost.

CHAPTER 7

ANALYZING THE SPEC CPU2006 PROGRAMS

This chapter evaluates the cache miss rate of the SPEC CPU2006 benchmark

programs and validates the importance of prefetching techniques in future gen-

erations of computer systems. Furthermore, it proposes a set of fast and simple

microarchitecture-independent simulation techniques to evaluate the potential of

the previously discussed prefetching methods. A comparative evaluation of ad-

dress value prediction, future execution, and runahead execution techniques on

the SPEC CPU2000 and CPU2006 benchmark suites concludes the chapter.

7.1 Motivation

The previous chapters of this dissertation concentrated on improving the perfor-

mance of the programs from the SPEC CPU2000 benchmark suite. This bench-

mark suite became the standard for the evaluation of CPU performance after its

introduction in December 1999. However, in September 2006 the SPEC orga-

nization released a new version of the benchmark suite, SPEC CPU2006, which

introduced many significant changes to the suite. For example, only four out of the

26 CPU2000 programs were carried over to the new release. Moreover, the memory

requirement and the execution time of the programs increased by more than an

order of magnitude. Finally, the benchmark programs’ source code significantly

grew in size and complexity. The new suite represents a balanced mix of programs

written in C, C++, Fortran, and a combination of C and Fortran.

Since this dissertation focuses on application-driven research, the new bench-

mark suite raises the question of whether the previously outlined research findings

are valid in the context of the new benchmark suite. For example, it is vital to un-

93

94

derstand whether the memory wall remains a significant performance bottleneck.

If the load cache miss rate is still an important problem, it is further necessary to

quantify the prefetchability of these misses.

This observation motivated me to step back and look at studying the prefetch-

ing problem from a more fundamental perspective. It is difficult to draw definitive

conclusions about the effectiveness of the various prefetching algorithms with the

methodology used in the previous chapters of this dissertation. The main reason

for this is the use of a detailed cycle-accurate simulator as the main research tool.

The advantages of using a simulator are accurate estimations and definitive con-

clusions about the impact of various architectural techniques on execution time,

energy consumption, reliability, etc.

Nevertheless, detailed cycle-accurate simulators also present a set of disadvan-

tages. First, there are very slow and force architects to look at small instruction

intervals. Second, they are often limited to specific ISAs, which makes it difficult

to port research tools integrated with cycle-accurate simulators to new platforms.

Third, by virtue of being detailed and complex, cycle-accurate simulators impose

research studies to be microarchitecture-specific. However, the conclusions about

the impact of a prefetching technique on the performance of wide-issue out-of-order

microprocessors may not be valid for in-order single-issue architectures. Finally,

studying prefetching techniques in the context of detailed simulators results in

substantial simulation ”noise”. In particular, it becomes more difficult to isolate

the cause-effect relationships that impact the effectiveness of prefetching due to an

overwhelming number of factors that influence system performance.

Taking these challenges into account, this chapter presents microarchitecture-

independent study of the memory system behavior of the SPEC CPU2006 bench-

95

mark programs. It builds upon modeling only the most vital aspects of caching

with a trace-driven simulator and abandons the methodology of detailed cycle-

accurate simulation. While this approach results in a certain loss of accurate

execution time speedup estimation, it allows to reach more general conclusions

about the fundamental tradeoffs among the various prefetching techniques.

7.2 Coverage Analysis Simulation Methodology

The trace-driven simulator used for the experimental studies in this chapter is

built using the Pin toolkit [31]. Pin is a dynamic binary instrumentation system

for x86 (both 32-bit and 64-bit) and Itanium instruction-set architectures. Similar

to ATOM [48], Pin provides an API for writing program analysis tools. For these

studies, I created a set of analysis tools that simulate caches of different sizes as

well as various prefetching techniques.

All workloads from the SPEC CPU2000 and CPU2006 benchmark suites are

run to completion using their reference input sets. All benchmark programs were

compiled with Intel’s C/C++ (v9.1) and FORTRAN (v5.4) compilers. The bina-

ries were generated for a 64-bit version of x86 ISA using the base -O3 compiler

options provided with the SPEC distribution.

The cache simulator created for this study can simulate eight separate caches

in parallel. In particular, it simulates caches with sizes of 256KB, 512KB, 1MB,

2MB, 4MB, 8MB, 16MB, and 32MB. Each cache uses a 64B line size and 16-way

associativity, allocates on writes, and implements a true LRU replacement policy.

Due to the generally small working set for instructions, the effects of instruction

caching are ignored and only data caches are simulated. The cache sizes were

96

chosen to represent a wide practical spectrum of microprocessor architectures,

ranging from embedded to high-performance server-class microprocessors.

7.2.1 Event-Driven Helper Threading

The power of the Event-Driven Helper Threading technique lies in the ability of

address value prediction techniques to correctly predict the next load address that

will miss in the cache. To evaluate the potential of Event-Driven Helper Threading

in a microarchitecture-independent way, we need to abstract implementation de-

tails such as cache tagging policies, sizes of event trigger buffers, etc. Instead, we

need to study the inherent predictability properties of cache miss addresses. This

subsection describes the methodology used for measuring the cache miss address

predictability and discusses the experimental results.

We use the TCgen tool [2] to generate the analysis tool that measures the

address stream predictability. TCgen is a tool that automatically generates VPC

trace compressors that operate based on value prediction techniques. While the

generated source code is tailored for trace compression, it can be easily adapted

to study the predictability properties of any value stream. We use a set of four

value predictors to characterize the cache miss address predictability. Table 7.1

presents detailed information on the type and organization of the value predictors.

Note that each predictor can provide two distinct prediction values. Similar to

the naming convention in Chapter 5, we refer to a DFCM predictor that provides

a single prediction value as dfcm predictor, and a DFCM predictor that provides

two distinct predictions as markov predictor.

The analysis tool is organized as follows. First, each load address issued by

the simulated programs updates the cache simulator and indicates whether it was

97

Table 7.1: Value Predictors

predictor type L1 entries L2 entries order
Stride 65536 NA NA
FCM 65536 131072 1
FCM 65536 524288 3
DFCM 65536 524288 3

a cache hit or miss. If it is a cache miss, the PC of the instruction is used to

query a set of value predictors for prediction of the load address. The predictions

are compared to the actual load address and hit counters corresponding to the

different value predictors are updated. Finally, the value predictors are updated

with the current load address. This process is repeated for every load instruction

executed in the benchmark programs.

7.2.2 Future Execution

We measure the potential of Future Execution by simulating the stride predictor

from Table 7.1 and tracking the propagation of predictable values through the

architectural register file. The analysis tool consists of two parts. The first part

tracks the predictability of register values. For each executed instruction, the

analysis tool first checks the predictability of the input operand values. Input

operands can be correctly predicted in two ways - via direct prediction by a value

predictor or via speculative computation. If all input operand values are correctly

predicted by the stride predictor, the analysis tool marks all result registers of the

instruction as predictable. If the input operands are not directly predictable by

the value predictor, the analysis tool checks if the input registers are marked as

correctly computed by the preceding instructions.

98

The second part of the analysis tool checks the predictability of the cache miss

load addresses and updates the corresponding statistics. For each cache miss, the

analyzer checks if the load address is directly predictable by the stride predictor or if

the input registers are marked as correctly computed by the preceding instructions.

If either case is true, the cache miss is considered to be prefetchable.

Note that this study makes the important assumption that the data-flow graph

is very stable between subsequent loop iterations. We can conclude from the stud-

ies in Chapter 4 that this assumption generally holds true for instruction sequences

with fewer than 64 instructions. Thus, we integrate a special register decay mech-

anism to invalidate predictable registers after 64 committed instructions.

7.2.3 Runahead Execution

The effectiveness of Runahead Execution depends to a large degree on the inde-

pendence of the data-flow streams that compute the load addresses. To evaluate

the potential of Runahead Execution in a microarchitecture-independent way, we

need to abstract implementation details such as runahead distance, the sizes of

the runahead cache, the penalties associated with starting and stopping runahead

helper threads, etc. Instead, we study the inherent predictability properties of

cache miss addresses. This subsection describes the methodology used for measur-

ing the cache miss address predictability and discusses the experimental results.

Similar to the Future Execution study, the analysis tool consists of two parts.

The first part tracks information about which register values are not dependent on

load instructions that miss in the cache. This is achieved by maintaining an array

of valid/invalid tags that directly correspond to the architectural register file. For

each executed instruction, the analysis tool checks if any input register operand

99

is invalid. If any input register is marked as invalid or if the analyzed instruction

is a load cache miss, the analyzer invalidates the tags of all output registers. If

all input registers are valid and the instruction under consideration is not a cache

miss, all output registers are marked as valid.

The second part of the analysis tool checks the prefetchability of cache miss load

addresses and updates the corresponding statistics. The load address is considered

to be prefetchable if all input registers for the analyzed load instruction are valid.

Note that for the case of runahead execution with a finite runahead distance

all registers eventually become valid. To account for this property, we reset the

invalid bits for all registers that were updated more than 2000 instructions ago.

The value of 2000 instructions was chosen to fully hide the memory latency of up

to 500 cycles for aggressive superscalar architectures with a maximum IPC of 4 (it

would take at least 500 cycles to execute 2000 instructions on such an architecture).

7.3 Experimental Results

7.3.1 Load Cache Miss Rates in SPEC CPU2006 Programs

Figure 7.1 presents the load cache miss rates for individual SPEC CPU2006 pro-

grams. The results for integer and floating-point applications are shown in the

upper and lower panels, respectively. Interestingly, seven out of the 28 benchmark

programs have negligible cache miss rates even with cache sizes as small as 256KB

(gobmk, h264ref, perlbench, sjeng, gamess, namd, and povray). Moreover, the

cache miss rates for five floating-point programs (GemsFDTD, bwaves, lbm, milc,

zeusmp) appear to be largely unaffected by increases in the cache size. As with

the SPEC CPU2000 benchmark suite, mcf remains the most memory-intensive

100

 0

 5

 10

 15

 20

 25

 30

gm
ea

n

xa
la

n

sj
en

g

pe
rlb

en
ch

om
ne

tp
p

m
cf

lib
qu

an
tu

m

hm
m

er

h2
64

re
f

go
bm

k

gc
c

bz
ip

2

as
ta

r

Lo
ad

 m
is

s
ra

te
 (

%
)

256K
512K

1M
2M
4M
8M

16M
32M

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

gm
ea

n

ze
us

m
p

w
rf

to
nt

o

sp
hi

nx
3

so
pl

ex

po
vr

ay

na
m

d

m
ilc

lb
m

gr
om

ac
s

ga
m

es
s

de
al

II

ca
lc

ul
ix

ca
ct

us
A

D
M

bw
av

es

G
em

sF
D

T
D

Lo
ad

 m
is

s
ra

te
 (

%
)

Figure 7.1: Load cache miss rate for the SPEC CPU2006 applications

program with the highest cache miss rate for every considered cache size. The

rest of the programs generally exhibit a linear decrease in cache miss rate with

exponentially increasing cache size.

These results demonstrate that the behavior of the individual benchmark pro-

grams is very similar between the SPEC CPU2000 and CPU2006 benchmark suites.

With the exception of a few programs, most applications have relatively high miss

rates. The response of the individual benchmark programs to increasing cache

sizes varies greatly, but the geometric mean load miss rate decreases linearly with

an exponentially increasing cache size.

101

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

int 2000
int 2006

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

fp 2000
fp 2006

Figure 7.2: Sensitivity of the average load cache miss rate to the cache size

7.3.2 Comparing Cache Miss Rates in the SPEC CPU2000

and CPU2006 benchmark suites

Figure 7.2 compares the geometric mean cache miss rates of the two versions

of SPEC CPU benchmark suite. The curves in the left panel demonstrate the

sensitivity of the geometric mean cache miss rate of integer programs to the cache

size. The right panel provides data for floating-point programs.

Integer programs in the CPU2006 benchmark suite have a higher cache miss

rate for every considered cache size. The difference in cache miss rates varies

greatly depending on the cache size. The difference between the two benchmark

suites is relatively small for small cache sizes (256KB and 512KB). However, the

difference rapidly increases with increasing cache size and reaches its maximum for

cache sizes between 2MB and 8MB. However, the gap between the CPU2000 and

CPU2006 suites quickly decreases beyond a cache size of 8MB.

Surprisingly, the floating-point component of the CPU2000 benchmark suite

has a consistently higher cache miss rate than the later CPU2006 release. In

particular, the CPU2000 programs have an almost 50% higher cache miss rate than

the CPU2006 programs for small cache sizes (256KB and 512KB). Nevertheless, the

102

difference between the two versions of the benchmark suite quickly decreases with

larger cache sizes and becomes relatively small (less than 15% relative difference)

for sizes of 4MB and larger.

The data in Figure 7.2 leads to two observations. First, the ”memory wall”

remains an important problem in the new release of the benchmark suite. In fact,

the severity of the problem is worse for integer programs and remains about the

same for floating-point applications. Second, the microarchiture-independent data

in Figure 7.2 can be used to quickly estimate the worst-case impact of cache misses

on the execution time of the benchmark programs. The next subsection presents

the methodology for the worst-case cache miss delay estimation in greater detail.

7.3.3 The Potential of Event-Driven Helper Threading

Figure 7.3 compares the impact of address value prediction techniques on the

geometric mean cache miss rates of the SPEC CPU2006 benchmark suite. The

data for integer programs are shown in the left graph and floating-point programs

in the right graph. Each graph contains five curves. The first curve corresponds

to the original load cache miss rate (org miss rate). The second curve (stride

vpred) represents the cache miss rate if all cache miss addresses that are correctly

predicted by a stride predictor are not considered to be cache misses. The next

three curves demonstrate how many more cache misses can be eliminated if the

stride predictor is augmented with a DFCM predictor (dfcm vpred), a markov

predictor (markov vpred), or a combination of all predictors listed in Table 7.1

(hybrid vpred).

The stride predictor is very effective at predicting the cache miss addresses of

both integer and floating-point applications. In particular, stride prediction covers

103

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred
dfcm vpred

markov vpred
hybrid vpred

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred
dfcm vpred

markov vpred
hybrid vpred

Figure 7.3: Impact of value prediction on the load cache miss rate

between 60% and 70% of all cache misses in integer programs and between 80% and

85% of the cache misses in floating-point programs. More sophisticated prediction

algorithms are able to further reduce the effective cache miss rate, but the difference

between the DFCM, Markov, and hybrid algorithms is relatively small. Moreover,

this difference gets generally smaller with increasing cache size. This observation

leads to the conclusion that building complicated hybrid prefetchers is likely to

have a limited impact on the performance benefit.

None of the prediction algorithms can predict all cache miss addresses. The

question of how much prediction coverage is sufficient greatly depends on the micro-

architectural parameters. Let’s consider an example of a conventional out-of-order

four-wide superscalar architecture with a cache miss penalty of 200 cycles. Let’s

assume that on average 25% of all instructions are loads and the system can deliver

an average IPC of 2 in the absence of cache misses. Finally, let’s assume it is not

desirable to invest in designing prefetching techniques if they deliver less than a

10% theoretical average performance improvement. Based on this information, it

is possible to calculate the cache miss rate beyond which further improvements in

prefetcher designs will bring no tangible benefit.

First, we can calculate that prefetching will be valuable only if cache misses

104

reduce the average IPC below 1.8. Second, we can determine that the average cache

miss rate in this scenario should be at least 1 per 3600 committed instructions.

Applying the property of every fourth instruction being a load, we can calculate

that the minimal cache miss rate has to be 0.1%. None of the prefetching techniques

is capable of reducing the cache miss rate below 0.1% on integer applications. In

floating-point programs, however, the Markov predictor achieves effective cache

miss rates of 0.12% and 0.08% for cache sizes of 4MB and 8MB, respectively. Thus,

I conclude that the address value prediction technique is potentially sufficient to

resolve the problems associated with cache misses at cache sizes equal to or larger

than 4MB.

7.3.4 The Potential of Future Execution

Figure 7.4 demonstrates the impact of future execution on the geometric mean

cache miss rates of the SPEC CPU2006 programs. The data for integer programs

are shown in the left graph and for floating-point programs in the right graph.

Each graph contains three curves. The first curve corresponds to the original load

cache miss rate (org miss rate). The second curve (stride vpred) represents the

cache miss rate if all cache miss addresses that are correctly predicted by a stride

predictor are not considered to be cache misses. The last curve demonstrates

how many more cache miss addresses can be predicted if the Future Execution

technique is employed (fexec).

The results show that Future Execution behaves consistently across all cache

sizes. On integer applications, Future Execution has the potential to correctly

predict about 50% of the cache miss addresses that cannot be predicted by the

stride predictor. On floating-point programs, Future Execution provides less ben-

105

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred

fexec

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred

fexec

Figure 7.4: Impact of future execution on the load cache miss rate

efit when used in addition to a stride predictor. It is more effective for small cache

sizes, but its additional benefit decreases rapidly with increasing cache size.

Similar to the behavior of the address value prediction techniques, the abso-

lute difference between the stride value predictor and the more complex Future

Execution technique reduces with growing cache size. Assuming that the absolute

difference of less than 0.1% in cache miss rate is insignificant, Future Execution

provides no tangible benefits beyond a cache size of 8MB for integer programs and

4MB for floating-point applications.

7.3.5 The Potential of Dual-Core Execution

Figure 7.5 demonstrates the impact of Dual-Core Execution on the geometric mean

cache miss rates of the SPEC CPU2006 benchmark suite. The data for integer

programs are shown in the left graph and for floating-point programs in the right

graph. Each graph contains three curves. The first curve corresponds to the origi-

nal load cache miss rate (org miss rate). The second curve (stride vpred) represents

the cache miss rate if all cache miss addresses that are correctly predicted by a

stride predictor are not considered to be cache misses. The last curve demonstrates

106

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred

runahead

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred

runahead

Figure 7.5: Impact of runahead execution on the load cache miss rate

how many more cache miss addresses can be predicted if the Runahead Execution

technique is employed (runahead).

Similar to address value prediction and future execution, the prefetching cov-

erage trends for runahead execution are consistent across multiple cache sizes.

On integer applications, runahead execution can potentially prefetch between 50%

and 60% of the load cache misses that are not predictable by a stride predictor.

Runahead Execution is even more effective on floating-point programs, where is

can correctly prefetch between 70% and 80% of the cache miss addresses not cap-

tured by the stride predictor. Moreover, runahead execution pushes the absolute

cache miss rate below 0.1% for cache sizes beyond 8MB with integer programs and

beyond 2MB with floating-point applications.

The absolute gap between the stride predictor and the runahead execution

curves stays relatively constant for floating-point programs, but it decreases with

size for integer benchmark suite. Thus, the benefits of runahead execution are

more pronounced on integer programs for cache sizes below 4MB, but gets more

important on floating-point applications for cache sizes beyond 4MB.

107

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred

markov vpred
runahead

fexec

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred

markov vpred
runahead

fexec

Figure 7.6: Impact of prefetching techniques on average load cache miss rate of
integer applications in SPEC CPU2000 (left graph) and CPU2006 (right graph)
suites

7.3.6 Comparing the Load Cache Miss Rate of the Various

Prefetching Techniques

Figure 7.6 provides a side-by-side comparison of the prefetchability patterns of the

CPU2000 and CPU2006 integer programs. The data for the CPU2000 programs

are shown in the left graph and for the CPU2006 programs in the right graph.

Each graph contains five curves. The first curve corresponds the original load

cache miss rate (org miss rate). The second curve (stride vpred) represents the

cache miss rate if all cache miss addresses that are correctly predicted by the stride

predictor are not considered to be cache misses. The next three curves demonstrate

how many more cache misses can be eliminated if a stride predictor is augmented

with a Markov predictor (markov vpred), Future Execution (fexec), or Runahead

Execution (runahead).

The experimental data demonstrates that many properties of load cache misses

remain very similar between the two versions of the benchmark suite. First, the

stride predictor can consistently predict a significant portion of the load cache

miss addresses, but the other prefetching approaches can decrease the effective

108

cache miss rate even further. In addition, the absolute values of the effective cache

miss rates provided by the stride prefetcher are almost the same between SPEC

CPU2000 and CPU2006. Second, runahead execution and future execution behave

similarly for cache sizes above 512KB. Moreover, the absolute distance between the

stride prefetching curve and runahead/future execution in the CPU2006 applica-

tions did not change from the previous benchmark suite. Therefore, the average

benefit of runahead and future execution on the CPU2006 applications is likely to

remain similar to CPU2000 results.

Interestingly, the effect of the Markov predictor on the applications from the

CPU2006 suite changed significantly. On the CPU2000 applications, the Markov

predictor significantly outperforms the other prefetching techniques for all cache

sizes of less than 8MB. On the CPU2006 applications, the Markov predictor is

consistently worse than runahead or future execution. The main reason for this

drastic change is the behavior of the mcf program. This benchmark program

appears to be easily prefetchable by a big correlation predictor in the CPU2000

version, but the new CPU2006 version of the same application caused cache miss

patterns that are not predictable by the same type of predictor. Overall, this

implies that the importance of big correlation prefetchers on the SPEC CPU2006

integer applications is significantly reduced.

Figure 7.7 provides a side-by-side comparison of the prefetchability patterns in

the floating-point applications of the CPU2000 and CPU2006 benchmark suites.

The data for the CPU2000 programs are shown in the left graph and the CPU2006

programs in the right graph. The results for the two versions of the floating-point

benchmark suite show almost no difference. The only significant change between

the two benchmark suites is the relatively worse performance of future execution

109

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred

markov vpred
runahead

fexec

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

32
M

16
M8M4M2M1M

51
2K

25
6K

Lo
ad

 m
is

s
ra

te
 (

%
)

Cache size

org miss rate
stride vpred

markov vpred
runahead

fexec

Figure 7.7: Impact of prefetching techniques on average load cache miss rate of
floating-point applications in SPEC CPU2000 (left graph) and CPU2006 (right
graph) suites

on the CPU2006 applications. Thus, we can expect future execution to provide

less prefetching coverage in SPEC2006 compared to either runahead execution or

Markov value prediction.

In general, the experimental results in this section demonstrate that all con-

sidered prefetching techniques in the context of the SPEC CPU2006 benchmark

suite will have small differences in terms of potential prefetching coverage. Value

prediction and runahead execution are practically equivalent in terms of prefetch-

ing coverage for any architecture with cache sizes above 1MB. If a difference of

less than 0.1% in absolute cache miss rate has a negligible impact on execution

time (which is a likely case for modern high-performance microprocessors), then

address value prediction and runahead will not provide any competitive advan-

tages over each other in terms of prefetching coverage. If a difference of less than

0.3% is tolerable, the prefetch coverage of all three considered techniques becomes

indistinguishable.

Therefore, the competitive advantage of different prefetching techniques in the

SPEC CPU2006 applications will not originate from increased prefetch coverage.

Instead, the timeliness of the prefetch requests is likely to be a more differentiating

110

aspect when choosing the best technique.

7.4 Summary

This chapter validates the general conclusions of this dissertation in the context of

the SPEC CPU2006 benchmark suite. First, it analyzes the load cache miss rates

and demonstrates that the high latency of memory accesses is likely to remain

an important problem in future generations of computer systems. The SPEC

CPU2006 benchmark suite is characterized by a relatively large geometric mean

cache miss rate across a wide range of cache sizes. In particular, when the cache

size is increased from 256KB to 32MB in power of two increments, the geometric

mean load cache miss rate changes almost linearly from 4.8% to 0.7% in integer

programs and from 3.3% to 1.8% in floating-point programs. Compared to the

previous SPEC CPU2000 version, SPEC CPU2006 has significantly higher cache

miss rates in integer applications and similar cache miss rates in floating-point

programs.

Furthermore, this chapter presents program analysis techniques to evaluate the

potential prefetching coverage of different prefetching techniques. The analysis

techniques concentrate on fundamental principles behind each considered prefetch-

ing technique and abstract away implementation details. As a result, the potential

of event-driven helper threading, future execution, and runahead execution is eval-

uated by tracking specific data-flow information and analyzing the predictability

of program values.

Using the proposed program analysis techniques, I investigated the differences

between the previously discussed prefetching approaches on the SPEC CPU2000

and CPU2006 applications. I found that Markov value prediction and runahead

111

execution provide the same level of prefetching coverage on the CPU2006 applica-

tions, especially for cache sizes of 2MB and larger. Moreover, the usefulness of big

correlation prefetchers is singinficantly reduced compared to the CPU2000 suite.

Therefore, I conclude that the difference in performance improvement provided

by markov value prediction and runahead execution will likely originate from dif-

ferences in prefetch timeliness rather than coverage. This result is similar to the

properties observed for the SPEC CPU2000 programs and, therefore, my previous

findings are likely to remain relevant in the context of the CPU2006 benchmark

suite release.

CHAPTER 8

RELATED WORK

This chapter describes ideas from the current data prefetching literature, most

of which are used or built upon in this dissertation, and discusses some of the

differences to the presented work.

8.1 Prefetching based on outcome prediction

Most data prefetching techniques are based on one of two broad classes of pre-

dictors – outcome prediction or operation prediction. Hardware prefetching tech-

niques based on outcome prediction typically use various kinds of value predictors

(e.g., [28,37,42]) and/or pattern predictors to dynamically predict which memory

references should be prefetched. One of the first hardware prefetchers based on

outcome prediction was the concept of stream buffers [23]. Subsequently, a number

of other outcome prediction-based prefetching techniques was introduced. Exam-

ples include stride prefetching [10], the Markov prefetcher [22], content-directed

prefetching [6], tag correlating prefetching [19], and dead-block correlating pre-

fetching [26].

The advantage of prefetching schemes based on outcome prediction is the abil-

ity to implement the schemes in the cache controller so that other parts of the

microprocessor do not need to be modified. This way the implementation of the

prefetching scheme can be decoupled from the design of the execution core, signif-

icantly lowering the complexity and the verification cost. The downside of these

prefetching schemes is their limited coverage and their inability to capture misses

that exhibit irregular behavior.

112

113

I developed the Future Execution technique to alleviate some of these limita-

tions. Unlike previous approaches, future execution employs value prediction only

to provide initial predictions. These initial predictions are then used to compute

all values reachable from the predictable nodes in the program dataflow graph, i.e.,

to obtain predictions for otherwise unpredictable values. I demonstrate that our

approach significantly improves the prediction coverage relative to conventional

value prediction. Since future execution requires relatively simple modifications to

the execution core of the microprocessor, I believe it provides a reasonable tradeoff

between the implementation cost and the resulting performance improvement.

To be effective on a wide range of applications, many of the aforementioned

prefetching techniques require relatively large dedicated tables. While several ap-

proaches have been proposed to reduce the table sizes of differential Markov predic-

tors [24,34], these techniques are not applicable to other important Markov-based

algorithms. Moreover, hardware designs typically cannot be reconfigured, which

is why designers prefer to implement conservative prefetching algorithms that are

unlikely to hurt any application. These issues have hampered the introduction of

many promising techniques into commercial microprocessors.

Event-Driven Helper Threading represents an architectural framework that al-

lows to use available cores in a CMP to run various prefetching algorithms, elimi-

nating the need for dedicated hardware and table space. I further demonstrate that

EDHT prefetching works naturally in combination with hardware stride prefetch-

ing, where the hardware prefetcher handles the simple patterns and the EDHT

thread tackles the more complicated cases. Thus, the EDHT framework provides

unique support for customizable prefetcher designs.

Similar to future execution, Dual-Core Execution [53] used value prediction

114

to speculatively compute unpredictable values of instructions currently held in

the instruction window and speculatively issue load instructions. However, our

mechanism provides better latency tolerance due to the use of future predictions

and delivers a higher prediction coverage because the speculation scope is not

limited by the number of instructions in the instruction window.

Similar to EDHT, Solihin et al. [46] propose to emulate hardware prefetching al-

gorithms in software. Specifically, they employ user-level memory threads (ULMT)

that are executed on a processor in the memory controller or in a DRAM chip for

memory-side correlation prefetching. I found that PC information is crucial for

the effective operation of Markov prefetchers, but PCs are not usually available

at the memory interface. Hence, ULMT is algorithmically limited to exploiting

only the global cache-miss history. In addition, ULMT observes cache misses in

issue order. EDHT, on the other hand, has access to the PCs and observes the

misses in program order, thus enabling it to achieve a higher prefetching cover-

age and accuracy. ULMT faces scalability challenges in multi-core environments

where many threads might simultaneously try to access the shared memory. EDHT

naturally scales with the number of cores. Finally, our EDHT approach mainly

relies on the pre-existing hardware resources of a CMP and conventional user-level

threads while ULMT requires a programmable memory processor, OS support to

load the prefetching threads into specialized processors, and compiler support for

the memory processor’s (most likely different) ISA.

8.2 Prefetching based on operation prediction

Prefetching techniques based on pre-execution [32, 39, 40] typically use additional

execution pipelines or idle thread contexts in a multithreaded processor to execute

115

helper threads that perform dynamic prefetching for the main thread. Typically,

these techniques create pre-execution helper threads (PEHT) by extracting pro-

gram slices that compute critical data addresses. Then they insert triggers for these

helper threads into the original program. The execution of the helper threads at

run-time precomputes critical data addresses ahead of the original program and

issues prefetch requests. Helper threads can be constructed dynamically by special-

ized hardware structures or statically. If a static approach is used, the prefetching

threads are constructed manually [54] or generated by the compiler [30] or a trace

analysis tool [41]. If PEHTs are constructed dynamically, a hardware analyzer

extracts execution slices from the dynamic instruction stream at run-time, iden-

tifies trigger instructions to spawn the helper threads, and stores the extracted

threads in a special table. Examples of this approach include slice-processors [32]

and dynamic speculative precomputation [5].

Future Execution has the following advantages over pre-execution prefetching.

First, FE allows to dynamically change the prefetching distance through a simple

adjustment in the predictor. Second, since a PEHT is only able to execute once

all inputs to the thread are available, it runs a higher risk of prefetching late. FE,

on the other hand, does not need all inputs to initiate prefetching. Third, if any

load with dependent instructions in a PEHT misses in the cache, the prefetching

thread will stall, preventing further prefetching. FE often breaks dataflow depen-

dencies through value prediction and thus can avoid stalling the prefetch activity.

Compared to software PEHT approaches, FE does not require re-compilation or

binary rewriting and thus can speedup legacy code.

EDHT differs from these approaches in several ways. First, EDHT threads are

spawned on architectural events and as such do not require any explicit thread

116

triggers to be inserted into the original program. Second, speculative precompu-

tation threads sometimes require explicit progress synchronization with the main

thread during their execution. EDHT threads require no synchronization with the

main thread once they are launched. Third, EDHT helper threads can be gener-

ated without knowledge about the main program. Therefore, EDHT threads can

provide benefits without the need for program analysis or recompilation.

On the other hand, prefetching based on pre-execution can potentially provide

a higher prefetching coverage than future execution since it is not limited by the

predictability of the program data. In addition, PEHTs typically need to execute

fewer instructions than FE and as such can operate profitably on the same core

together with the main thread. Finally, pre-execution requires no value prediction

table and software approaches need no hardware support at all. Notwithstanding,

I believe my approach may well be complementary to software-controlled pre-

execution helper threads.

Slipstream prefetching [20] is another form of a software-controlled pre-execution

that targets distributed shared-memory (DSM) applications. Slipstream prefetch-

ing threads represent a reduced version of the target computation threads. This

reduced version dynamically skips the execution of shared memory stores and syn-

chronization primitives and thus is able to run ahead of the target thread and

generate an accurate address stream. As a result, Slipstream prefetching can pro-

vide higher prefetching coverage than FE. However, the proposed approach targets

only DSM applications and cannot speed up single-threaded programs.

Runahead execution is another proposal for prefetching based on speculative

execution [8,33]. In runahead processors, the processor state is checkpointed when

a long-latency load stalls the head of the ROB, the load is removed and the pro-

117

cessor continues to execute speculatively. When the data is finally received from

memory, the processor rolls back and restarts execution from the load. Future

execution does not need to experience a cache miss to start prefetching, requires

no checkpointing support or any other recovery mechanism and, as I demonstrate

is this dissertation, works well in combination with runahead execution.

Similar to FE and EDHT, hardware-only techniques such as the minimal dual-

core speculative multi-threading architecture [47] (SpMT) and the dual-core exe-

cution paradigm (DCE) [52] utilize idle cores of a CMP to speed up single-threaded

programs. The DCE approach effectively proposes to launch a Runahead execu-

tion thread whenever a long-latency load instruction fully stalls the execution of a

thread. The Runahead core then tries to follow the program path and execute all

instructions that do not depend on the results of load instructions that miss in the

cache while invalidating all instructions that stall the execution. The regular core

re-executes all instructions committed by the runahead core. If the regular core

detects that the runahead core deviated from the correct control path, it flushes

the runahead core’s pipeline and restarts runahead execution. In contrast to DCE,

FE and EDHT techniques never require to check the results produced by the spec-

ulative threads and are, therefore, recovery-free. In addition, DCE requires the

non-speculative core to redirect the instruction fetch engine upon reaching the

speculation point, while in FE and EDHT the non-helper computation is not even

aware that prefetching is taking place.

The SpMT approach spawns speculative threads on procedure calls, loop bound-

aries, or cache misses and executes them on another core. Speculative threads

prefetch important data, precompute branch outcomes, and perform some useful

computation that can later be integrated into the non-speculative thread. The

118

main difference between SpMT and the techniques proposed in this dissertation

is that the former needs mechanisms to control the execution of the speculative

threads by tracking the violation of memory and register dependences. The ex-

ecution of helper threads proposed in this dissertation is completely decoupled

from the non-speculative execution, which eliminates the need for any checking

mechanism and makes it recovery-free. In general, SpMT requires more complex

hardware support but may provide more performance benefit since it allows the

reuse of speculatively computed results.

Similar to EDHT, the concept of Informing Memory Operations (IMO) [16,17]

proposes to expose information about individual cache miss events to software via

a special class of load instructions. The IMO approach is shown to enable a number

of software-based memory optimizations in the context of performance monitor-

ing, cache coherence, software-controlled multithreading and software-controlled

prefetching. Despite some similarities, EDHT and IMO prefetching differ in two

significant ways. First, software prefetching via IMO support is based on oper-

ation prediction, while EDHT is used primarily for outcome prediction. Second,

IMO functionality is focused on modifying the original applications to insert IMO

instructions and prefetching code. EDHT proposes to completely decouple the

execution of the prefetching algorithms from the original application. As a result

of these differences, IMO approach requires more extensive software and compiler

support, while the implementation of EDHT technique may require more hardware

resources.

CHAPTER 9

SUMMARY AND CONCLUSIONS

Scaling the performance of applications with little thread-level parallelism is

one of the most serious impediments to the success of multi-core architectures. At

the same time, the long latency of memory accesses represents one of the largest

performance bottlenecks for individual program threads. The goal of this disserta-

tion is to develop simple yet efficient techniques that utilize extra cores of a CMP

as helper engines to increase the performance of single program threads. In partic-

ular, this work focuses on using available cores to run data prefetching algorithms

that mitigate the detrimental effects of long memory access latencies.

An investigation of program properties revealed that most load cache misses

occur in loops with relatively short iterations. This observation suggests a pre-

fetching approach in which each load instruction triggers a prefetch of the address

that the same load will reference in the nth next ”iteration”. Furthermore, I an-

alyzed the instructions in the dataflow graphs of the problem loads and found

that, while problem load addresses might be hard to predict, the inputs to their

dataflow graphs often are not. Therefore, even when the miss address itself is

unpredictable, it may be possible to predict the input values of the instructions

leading up to the problem loads and thus to compute an accurate prediction by

executing these instructions.

To exploit these properties, I developed the idea of the Future Execution (FE)

data prefetching technique. Future execution continuously generates a prefetching

thread by applying a set of simple transformations to the stream of instructions

committed by a target program thread. It further uses the execution capabilities

of an available core in a multi-core microprocessor to execute the generated pre-

119

120

fetching thread and prefetch data for its target thread, which runs on a different

core of the same chip.

Experimental results from a cycle-accurate processor simulator demonstrate

that the FE technique can provide significant performance improvements for a

wide range of applications. Overall, FE can deliver a geometric-mean speedup of

5% on integer and 21% on floating-point programs over a baseline with a hard-

ware stream prefetcher. Furthermore, I demonstrate that future execution is com-

plementary to runahead execution and the combination of these two techniques

significantly raises the average speedup. I analyzed the sensitivity of future exe-

cution to several architectural parameters, such as the minimum memory latency,

the inter-core communication delay/bandwidth, and the prefetch distance. The

results demonstrate that prefetching based on future execution delivers robust

performance improvements across many processor configurations.

Next, I analyzed the limitations of previously proposed outcome-prediction

based prefetching techniques and decided to approach the central question of this

dissertation from a different angle. Instead of devising new prefetching algorithms,

I considered ways to alleviate these limitations by utilizing the execution capabil-

ities of available cores in CMP architectures. As a result, I propose the Event-

Driven Helper Threading (EDHT) lightweight architectural framework to emulate

prefetching algorithms via a special class of software helper threads. The key

principle behind EDHT is to use special hardware to expose information about

individual cache miss events to the ISA and flexible software to implement the

prefetching algorithms. Thus, the EDHT concept efficiently exploits architectural

levels of abstraction by utilizing simple and fast hardware to communicate event

data and flexible software to implement prefetchers of almost arbitrary complexity.

121

The performance results reveal that EDHT-based prefetching provides similar

speedup as pure hardware implementations of the same prefetching algorithms.

Furthermore, running prefetching EDHTs on top of a baseline with a hardware

stride prefetcher yields speedups between 5% and 70% on a wide range of SPEC

CPU2000 programs. Thus, the combination of hardware stride prefetching and

more complex prefetching mechanisms implemented in the proposed EDHT frame-

work exhibits significant synergy, as the hardware prefetcher detects and prefetches

simple patterns, while software EDHT tackles more complicated load cache miss

patterns.

This dissertation provides performance numbers for the future execution, event-

driven helper threading, and dual-core execution prefetching techniques in the same

environment, making it possible to compare the performance of the studied multi-

core prefetchers. The results lead to two main observations. First, none of the

techniques uniformly outperforms the others. Second, while dual-core execution

provides the best average speedup on floating-point applications, the EDHT frame-

work provides competitive performance, executes fewer instructions, and requires

considerably simpler hardware support.

Since the power consumption of high-performance microprocessors has recently

become a high-priority concern for computer architects, this dissertation further

describes and evaluates techniques to improve the energy-efficiency of the studied

multi-core prefetching mechanisms. Experimental results show that the proposed

energy-efficient techniques are very effective and reduce the energy overhead of the

FE and EDHT techniques by more than a factor of two. Moreover, if the FE,

EDHT, and DCE techniques are evaluated based on the energy-delay metric, both

the baseline and the energy-efficient version of EDHT emerge as the best choices

122

by providing a high execution time speedup at a low energy cost.

The final chapter of this dissertation validates the general conclusions of this

dissertation in the context of the SPEC CPU2006 benchmark suite. First, I analyze

the load cache miss rates and demonstrate that the high latency of memory accesses

is likely to remain an important problem in future generations of computer systems.

Second, I utilize microarchitecture-independent analysis techniques to evaluate the

potential prefetching coverage of different prefetching techniques. The results show

that Markov value prediction and runahead execution provide the same level of

prefetching coverage, especially for cache sizes of 2MB and larger. Therefore,

the difference in performance improvement provided by the various prefetching

techniques will likely originate from differences in the prefetch timeliness rather

than from coverage. This result is similar to the properties observed for SPEC

CPU2000 programs and, therefore, the general conclusions of this dissertation are

likely to remain relevant in the context of a newer benchmark suite release.

Looking into the future, the EDHT concept opens opportunities for designing

novel prefetching techniques. For example, the flexibility of a software approach

provides an interesting possibility for the automatic generation of program-specific

EDHT threads. Hybrid prefetchers that run several pre-fetching algorithms in

parallel may also be possible. Finally, the EDHT framework may make it feasible to

quickly prototype novel prefetching techniques on real hardware without the need

to recompile applications, to modify the silicon, or to resort to slow simulations.

The prefetching techniques proposed in this dissertation utilize a fixed prefetch

distance. Nevertheless, sensitivity studies demonstrate that both the FE and the

EDHT technique can greatly benefit from a dynamic mechanism to adjust the

prefetch distance. In the future, it may be worthwhile to investigate dynamic

123

prefetch distance mechanisms to fully utilize the performance potential of the pro-

posed techniques.

In this work, I focus on how to use EDHT for prefetching because this is its

most immediately beneficial application. However, the idea can trivially be ex-

tended to implement other helper engines. For example, additional events such as

mispredicted branches, TLB misses, other stall events, certain touched addresses,

temperature events, etc. could be exposed in a similar manner. Such a system

might provide flexible, non-intrusive, real-time performance monitoring beyond the

capabilities of traditional hardware counters and could support online phase detec-

tion and code re-optimization, facilitate debugging, gather and compress execution

traces, or emulate complex branch predictors.

BIBLIOGRAPHY

[1] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework
for architectural-level power analysis and optimizations. In Proceedings of the
27th annual international symposium on Computer architecture, pages 83–94,
New York, NY, USA, 2000. ACM Press.

[2] Martin Burtscher and Nana B. Sam. Automatic generation of high-
performance trace compressors. In Proceedings of the international symposium
on Code generation and optimization, pages 229–240, Washington, DC, USA,
2005. IEEE Computer Society.

[3] J. Adam Butts and Gurindar S. Sohi. A static power model for architects.
In Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture, pages 191–201, New York, NY, USA, 2000. ACM Press.

[4] Luis Ceze, Karin Strauss, James Tuck, Jose Renau, and Josep Torrellas. Cava:
Hiding l2 misses with checkpoint-assisted value prediction. IEEE Comput.
Archit. Lett., 3(1):7, 2004.

[5] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic speculative
precomputation. In Proceedings of the 34th annual ACM/IEEE international
symposium on Microarchitecture, pages 306–317, 2001.

[6] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless, content-
directed data prefetching mechanism. In Proceedings of the 10th international
conference on Architectural support for programming languages and operating
systems, pages 279–290, 2002.

[7] Digital Equipment Corporation. Alpha Architecture Handbook, 1992.

[8] J. Dundas and T. Mudge. Improving data cache performance by pre-executing
instructions under a cache miss. In Proceedings of the 11th international
conference on Supercomputing, pages 68–75, 1997.

[9] Don Edenfeld, Andrew B. Kahng, Mike Rodgers, and Yervant Zorian. 2003
technology roadmap for semiconductors. Computer, 37(1):47–56, 2004.

[10] J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride directed prefetching in
scalar processors. In Proceedings of the 25th annual international symposium
on Microarchitecture, pages 102–110, 1992.

[11] F. Gabbay. Speculative execution based on value prediction. Tech. report
1080, Technion - Israel Institute of Technology, NOvember 1996.

[12] Ilya Ganusov. Hardware prefetching based on future execution in chip multi-
processor architectures. Master’s thesis, Department of Electrical and Com-
puter Engineering, Cornell University, Ithaca, New York, August 2005.

124

125

[13] Ilya Ganusov and Martin Burtscher. Future execution: A hardware prefetch-
ing technique for chip multiprocessors. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques, pages 350–
360, September 2005.

[14] B. Goeman, H. Vandierendonck, and K. de Bosschere. Differential fcm: In-
creasing value prediction accuracy by improving table usage efficiency. In
Proceedings of the Seventh International Symposium on High-Performance
Computer Architecture, 2001.

[15] Bart Goeman, Hans Vandierendonck, and Koen de Bosschere. Differential fcm:
Increasing value prediction accuracy by improving table usage efficiency. In
Proceedings of the 7th International Symposium on High-Performance Com-
puter Architecture, 2001.

[16] Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith.
Informing memory operations: providing memory performance feedback in
modern processors. In Proceedings of the 23rd annual international symposium
on Computer architecture, pages 260–270, New York, NY, USA, 1996. ACM
Press.

[17] Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith.
Informing memory operations: memory performance feedback mechanisms
and their applications. ACM Trans. Comput. Syst., 16(2):170–205, 1998.

[18] http://www.spec.org/osg/cpu2000/.

[19] Zhigang Hu, Margaret Martonosi, and Stefanos Kaxiras. Tcp: Tag correlating
prefetchers. In Proceedings of the The Ninth International Symposium on
High-Performance Computer Architecture, page 317, 2003.

[20] Khaled Z. Ibrahim, Gregory T. Byrd, and Eric Rotenberg. Slipstream exe-
cution mode for cmp-based multiprocessors. In Proceedings of the 9th Inter-
national Symposium on High-Performance Computer Architecture, page 179,
2003.

[21] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In
Proceedings of the 24th annual international symposium on Computer archi-
tecture, pages 252–263, New York, NY, USA, 1997. ACM Press.

[22] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In
Proceedings of the 24th annual international symposium on Computer archi-
tecture, pages 252–263, 1997.

[23] Norman P. Jouppi. Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers. In Proceedings
of the 17th annual international symposium on Computer Architecture, pages
364–373, 1990.

126

[24] Gokul B. Kandiraju and Anand Sivasubramaniam. Going the distance for tlb
prefetching: an application-driven study. In Proceedings of the 29th Annual
International Symposium on Computer Architecture, pages 195–206, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[25] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez. Checkpointed
early load retirement. In Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, pages 16–27, 2005.

[26] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction & dead-
block correlating prefetchers. In Proceedings of the 28th annual international
symposium on Computer architecture, pages 144–154, 2001.

[27] E. Larson, S. Chatterjee, and T. Austin. Mase: a novel infrastructure for
detailed microarchitectural modeling. In Proceedings of the The Second Inter-
national Symposium on Performance Analysis of Systems and Software, pages
1–9, 2001.

[28] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load
value prediction. In Proceedings of the seventh international conference on
Architectural support for programming languages and operating systems, pages
138–147, 1996.

[29] W. Liu, X. Jin, J. Chen, M-C. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan,
K. Hui, J. Huang, R. Tu, P.K. Ko, and Chenming Hu. Bsim 3v3.2 mosfet
model users’ manual. Technical Report UCB/ERL M98/51, EECS Depart-
ment, University of California, Berkeley, 1998.

[30] Chi-Keung Luk. Tolerating memory latency through software-controlled pre-
execution in simultaneous multithreading processors. In Proceedings of the
28th annual international symposium on Computer architecture, pages 40–51,
2001.

[31] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, pages 190–200, New York, NY, USA, 2005. ACM
Press.

[32] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi. Slice-processors: an
implementation of operation-based prediction. In Proceedings of the 15th in-
ternational conference on Supercomputing, pages 321–334, 2001.

[33] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An
alternative to very large instruction windows for out-of-order processors. In

127

Proceedings of the The Ninth International Symposium on High-Performance
Computer Architecture, page 129, 2003.

[34] Kyle J. Nesbit and James E. Smith. Data cache prefetching using a global
history buffer. In Proceedings of the 10th international symposium on High
Performance Computer Architecture, pages 96–106, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

[35] Paramjit S. Oberoi and Gurindar S. Sohi. Parallelism in the front-end.
SIGARCH Comput. Archit. News, 31(2):230–240, 2003.

[36] S. Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary
cache replacement. In Proceedings of the 21st annual international symposium
on Computer architecture, pages 24–33, 1994.

[37] S. Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary
cache replacement. In Proceedings of the 21st annual international symposium
on Computer architecture, pages 24–33, 1994.

[38] Justin Rattner. Multi-core to the masses. In Proceedings of the 14th Inter-
national Conference on Parallel Architectures and Compilation Techniques,
page 3, 2005.

[39] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching for
linked data structures. In Proceedings of the eighth international conference
on Architectural support for programming languages and operating systems,
pages 115–126, 1998.

[40] A. Roth and G. S. Sohi. Speculative data-driven multithreading. In Proceed-
ings of the Seventh International Symposium on High-Performance Computer
Architecture, page 37, 2001.

[41] Amir Roth and Gurindar S. Sohi. A quantitative framework for automated
pre-execution thread selection. In Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture, pages 430–441, 2002.

[42] Y. Sazeides and J. E. Smith. The predictability of data values. In Proceedings
of the 30th annual ACM/IEEE international symposium on Microarchitecture,
pages 248–258, 1997.

[43] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically charac-
terizing large scale program behavior. In Proceedings of the 10th international
conference on Architectural support for programming languages and operating
systems, pages 45–57, 2002.

[44] Premkishore Shivakumar and Norman P. Jouppi. Cacti 3.0: An integrated
cache timing, power, and area model. Tech. report WRL-2001-2, Compaq
Western Research Laboratory, December 2001.

128

[45] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik
Sankaranarayanan, and David Tarjan. Temperature-aware microarchitecture.
In Proceedings of the 30th annual international symposium on Computer ar-
chitecture, pages 2–13, New York, NY, USA, 2003. ACM Press.

[46] Yan Solihin, Jaejin Lee, and Josep Torrellas. Using a user-level memory thread
for correlation prefetching. In Proceedings of the 29th annual international
symposium on Computer architecture, pages 171–182, Washington, DC, USA,
2002. IEEE Computer Society.

[47] Srikanth T. Srinivasan, Haitham Akkary, Tom Holman, and Konrad Lai. A
minimal dual-core speculative multi-threading architecture. In Proceedings
of the IEEE International Conference on Computer Design, pages 360–367,
2004.

[48] Amitabh Srivastava and Alan Eustace. Atom: a system for building cus-
tomized program analysis tools. In Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, pages 196–
205, New York, NY, USA, 1994. ACM Press.

[49] M. Dimitrov Y. Ma, H. Gao and H. Zhou. Optimizing dual-core execution for
power efficiency and transient-fault recovery. IEEE Transactions on Parallel
and Distributed Systems, 2007.

[50] C. Zhang and S. A. McKee. Hardware-only stream prefetching and dynamic
access ordering. In Proceedings of the 14th international conference on Super-
computing, pages 167–175, 2000.

[51] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan.
Hotleakage: A temperature-aware model of subthreshold and gate leakage for
architects. Technical Report CS-2003-05, University of Virginia Department
of Computer Science, 2003.

[52] H. Zhou. Dual-core execution: Building a highly scalable single-thread in-
struction window. In Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques, 2005.

[53] H. Zhou and T. M. Conte. Enhancing memory level parallelism via recovery-
free value prediction. In Proceedings of the 17th annual international confer-
ence on Supercomputing, pages 326–335, 2003.

[54] C. Zilles and G. Sohi. Execution-based prediction using speculative slices. In
Proceedings of the 28th annual international symposium on Computer archi-
tecture, pages 2–13, 2001.

